JP4966482B2 - Process for producing ion-exchangeable layered silicate particles, catalyst component for olefin polymerization using the same - Google Patents

Process for producing ion-exchangeable layered silicate particles, catalyst component for olefin polymerization using the same Download PDF

Info

Publication number
JP4966482B2
JP4966482B2 JP2004154337A JP2004154337A JP4966482B2 JP 4966482 B2 JP4966482 B2 JP 4966482B2 JP 2004154337 A JP2004154337 A JP 2004154337A JP 2004154337 A JP2004154337 A JP 2004154337A JP 4966482 B2 JP4966482 B2 JP 4966482B2
Authority
JP
Japan
Prior art keywords
particles
layered silicate
zirconium dichloride
ion
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004154337A
Other languages
Japanese (ja)
Other versions
JP2005335981A (en
Inventor
竹弘 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2004154337A priority Critical patent/JP4966482B2/en
Publication of JP2005335981A publication Critical patent/JP2005335981A/en
Application granted granted Critical
Publication of JP4966482B2 publication Critical patent/JP4966482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、イオン交換性層状珪酸塩粒子の製造方法及びそれを用いたオレフィン重合用触媒成分に関する。更に詳しくは、特定の性状を示すイオン交換性層状珪酸塩粒子の製造方法および得られたイオン交換性層状珪酸塩粒子を用いることにより、流動性が良好で、重合反応器壁面等への付着がなく、形状の良好な取り扱いが楽なポリオレフィン重合パウダーの製造を可能にする触媒成分に関する。   The present invention relates to a method for producing ion-exchange layered silicate particles and an olefin polymerization catalyst component using the same. More specifically, by using the method for producing ion-exchangeable layered silicate particles having specific properties and the obtained ion-exchangeable layered silicate particles, the fluidity is good, and adhesion to the polymerization reactor wall surface or the like is achieved. The present invention relates to a catalyst component that enables the production of polyolefin polymer powder that is easy to handle and has a good shape.

粘土または粘土鉱物をオレフィン重合用触媒成分として利用した触媒の存在下に、オレフィンを重合してオレフィン重合体を製造することは公知である(例えば、特許文献1参照。)。また酸処理、塩類処理または酸と塩の共存処理を行ったイオン交換性層状化合物を成分として含むオレフィン重合用触媒も知られている(例えば、特許文献2〜4参照。)。
さらに、製造するポリマーの粒子性状の改良やファウリング予防のために、あらかじめ予備的な重合を行う方法(例えば、特許文献5〜6参照。)や、粘土または粘土鉱物を造粒することにより性状の良い重合パウダーを得る方法も知られている(例えば、特許文献7参照。)。
しかしながら、これまでの技術では、触媒活性と、安定したポリマーの製造に不可欠なポリマーの粒子性状の点で、両方を共に満たすレベルには到達していないのが現状である。さらに、得られたポリマーはその後の工程において、一度溶融して形状の揃ったペレットに加工することを前提に設計されており、微粉や粗粉が多く不定形であるため重合パウダー自体をペレットのように取り扱うことは困難である。
特開平5−301917号公報 特開平7−309907号公報 特開平8−127613号公報 特開平10−168109号公報 特開平5−295022号公報 特開平10−168130号公報 特開平7−228621号公報
It is known to produce an olefin polymer by polymerizing an olefin in the presence of a catalyst using clay or clay mineral as a catalyst component for olefin polymerization (see, for example, Patent Document 1). There are also known olefin polymerization catalysts containing, as a component, an ion-exchange layered compound subjected to acid treatment, salt treatment, or coexistence treatment of an acid and a salt (see, for example, Patent Documents 2 to 4).
Furthermore, in order to improve the particle properties of the polymer to be produced and prevent fouling, the properties are obtained by a preliminary polymerization method (for example, see Patent Documents 5 to 6) or by granulating clay or clay mineral. A method for obtaining a good polymerized powder is also known (for example, see Patent Document 7).
However, the current state of the art has not yet reached a level that satisfies both the catalytic activity and the particle properties of the polymer essential for the production of a stable polymer. Furthermore, the polymer obtained is designed on the premise that it is once melted and processed into a uniform pellet in the subsequent process. Are difficult to handle.
Japanese Patent Laid-Open No. 5-301917 Japanese Patent Laid-Open No. 7-309907 JP-A-8-127613 JP-A-10-168109 JP-A-5-295022 JP 10-168130 A JP-A-7-228621

本発明は、上記問題点に鑑み、流動性が良好で、ペレットと同じように取り扱うことのできるパウダー性状の優れた重合パウダーを得ることのできる、球状で、形状が揃っているイオン交換性層状珪酸塩粒子の製造方法を提供し、さらに、該イオン交換性層状珪酸塩粒子を用い、大粒径で形状が揃っており、流動性が良好で、ペレットと同じように取り扱うことのできるパウダー性状の優れた重合パウダーを高活性で、低コストで得ることができるオレフィン重合用触媒成分を提供することを目的とするものである。   In view of the above-mentioned problems, the present invention provides a spherical, uniform ion-exchange layered shape that can obtain a polymer powder having good fluidity and excellent powder properties that can be handled in the same manner as pellets. Providing a method for producing silicate particles, and further using the ion-exchange layered silicate particles, having a large particle size, uniform shape, good fluidity, and powder properties that can be handled in the same way as pellets It is an object of the present invention to provide a catalyst component for olefin polymerization which can obtain an excellent polymerization powder with high activity and low cost.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、少なくとも2段階に分けて造粒する工程を経てイオン交換性層状珪酸塩を造粒すると、粒形と粒径が制御でき、この粒形と粒径を制御したイオン交換性層状珪酸塩粒子をオレフィン重合用の触媒成分として使用することにより、経済的に要求されるオレフィン重合用触媒の重合を維持したまま、形状が良好で取り扱いやすいポリオレフィン重合パウダーの製造を可能にし、工業的・経済的に優れるものが得られるとの知見を得、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention can control the particle shape and particle size by granulating the ion-exchangeable layered silicate through a granulation process in at least two stages. By using the ion-exchange layered silicate particles with controlled particle shape and particle size as the catalyst component for olefin polymerization, the shape is good while maintaining the polymerization of the olefin polymerization catalyst that is economically required. It was possible to produce a polyolefin polymer powder that was easy to handle with ease, and obtained knowledge that an industrially and economically excellent product could be obtained, leading to the completion of the present invention.

すなわち、本発明の第1の発明によれば、平均粒径が25〜200μmであり、M/L≧0.80(ただし、Lは投影図の粒子の最大径の値、MはLと直交する径の値を表す。)を満たす粒子数が全粒子数の50%以上を占めるイオン交換性層状珪酸塩粒子の噴霧造粒法による製造方法であって、少なくとも2段階に分けて造粒する工程を含み、第1段目造粒工程において、平均粒径が0.01〜5μmのイオン交換性層状珪酸塩微粒子を原料に用い、ディスク回転数10000〜30000rpmで平均粒径が1〜25μmの粒子を製造し、かつ、2次造粒のディスク回転数を1次造粒のディスク回転数より5000〜20000rpm低くすることを特徴とするイオン交換性層状珪酸塩粒子の製造方法が提供される。 That is, according to the first invention of the present invention, the average particle diameter is 25 to 200 μm, and M / L ≧ 0.80 (where L is the value of the maximum particle diameter of the projected view and M is orthogonal to L This is a production method by spray granulation of ion-exchange layered silicate particles in which the number of particles satisfying 50% or more of the total number of particles is granulated in at least two stages. step only contains, in a first stage granulation process, using the average particle size of the ion-exchange layered silicate microparticles 0.01~5μm the raw material, the average particle size in the disk rotation speed 10000~30000rpm is 1~25μm And a method for producing ion-exchange layered silicate particles, characterized in that the rotational speed of the secondary granulation disk is 5,000 to 20000 rpm lower than the rotational speed of the primary granulation disk. .

また、本発明の第の発明によれば、第1の発明において、第1段目造粒工程で得られる粒子の平均粒径が1〜15μmであることを特徴とするイオン交換性層状珪酸塩粒子の製造方法が提供される。 According to the second invention of the present invention, in the first invention, the average particle size of the particles obtained in the first stage granulation step is from 1 to 15 μm. A method for producing silicate particles is provided.

また、本発明の第の発明によれば、第1または2の発明において、圧壊強度が3〜15MPaであることを特徴とするイオン交換性層状珪酸塩粒子の製造方法が提供される。 According to a third aspect of the present invention, there is provided the method for producing ion-exchange layered silicate particles according to the first or second aspect , wherein the crushing strength is 3 to 15 MPa.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、イオン交換性層状珪酸塩粒子がスメクタイト族の珪酸塩粒子であることを特徴とするイオン交換性層状珪酸塩粒子の製造方法が提供される。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the ion-exchangeable layered silicate is characterized in that the ion-exchangeable layered silicate particles are smectite group silicate particles. A method for producing salt particles is provided.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明のイオン交換性層状珪酸塩粒子からなることを特徴とするオレフィン重合用触媒成分が提供される。   According to a sixth aspect of the present invention, there is provided an olefin polymerization catalyst component comprising the ion-exchangeable layered silicate particles of any one of the first to fifth aspects.

本発明のイオン交換性層状珪酸塩粒子は、少なくとも2段階の造粒工程で造粒されているので、平均粒径が25〜200μmで、M/L≧0.8を満たす粒子数が前粒子数の50%以上の球状である。したがって、このイオン交換性層状珪酸塩粒子をオレフィン重合用触媒成分に用いると、高い触媒活性で、大粒径で、形状が揃っており、流動性が良好なペレットと同等に扱うことのできる粒子性状に優れた重合パウダーを製造することができる。   Since the ion-exchange layered silicate particles of the present invention are granulated in at least two stages of granulation processes, the average particle size is 25 to 200 μm, and the number of particles satisfying M / L ≧ 0.8 is the number of previous particles. Spherical shape of 50% or more of the number. Therefore, when this ion-exchange layered silicate particle is used as a catalyst component for olefin polymerization, it has high catalytic activity, large particle size, uniform shape, and can be handled in the same way as pellets with good fluidity. A polymer powder having excellent properties can be produced.

I.イオン交換性層状珪酸塩粒子
本発明のイオン交換性層状珪酸塩粒子は、原料のイオン交換性層状珪酸塩を造粒して一次造粒粒子を得る第1段目造粒工程と得られた一次造粒粒子を構成粒子として再び造粒する工程とからなる少なくとも2段階に分けて造粒する工程から製造される。詳細を以下に説明する。
I. Ion Exchange Layered Silicate Particles The ion exchange layered silicate particles of the present invention are a first-stage granulation step obtained by granulating a raw material ion exchange layered silicate to obtain primary granulated particles, and a primary obtained. It is manufactured from a step of granulating in at least two stages comprising a step of granulating the granulated particles as constituent particles again. Details will be described below.

本発明において、原料として使用するイオン交換性層状珪酸塩は、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、かつ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分のイオン交換性層状珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、それ以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでいてもよい。また、本発明で使用するイオン交換性層状珪酸塩は、天然産のものに限らず、人工合成物であってもよい。当該珪酸塩の具体例としては、例えば、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている次のようなものが挙げられる。   In the present invention, the ion-exchange layered silicate used as a raw material has a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other, and the contained ions can be exchanged. A silicate compound. Most ion-exchange layered silicates are naturally produced mainly as the main component of clay minerals, and therefore often contain other impurities (quartz, cristobalite, etc.). May be. Further, the ion-exchange layered silicate used in the present invention is not limited to a natural product, and may be an artificial synthetic product. Specific examples of the silicate include, for example, the following ones described in Haruo Shiramizu “Clay Mineralogy” Asakura Shoten (1995).

(a)1:1層が主要な構成層であるディッカイト、ナクライト、カオリナイト、アノーキサイト、メタハロイサイト、ハロイサイト等のカオリン族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族。
(b)2:1層が主要な構成層であるモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群。
(A) A kaolin family such as dickite, nacrite, kaolinite, anorokite, metahalloysite, halloysite, etc., and a serpentine family such as chrysotile, lizardite, antigolite, etc., in which the 1: 1 layer is the main constituent layer.
(B) 2: 1 layer is the main constituent layer of montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stevensite and other smectites, vermiculite such as vermiculite, mica, illite, sericite, sea Mica such as green stone, attapulgite, sepiolite, palygorskite, bentonite, pyrophyllite, talc, chlorite group.

本発明で原料として使用する珪酸塩は、上記(a)、(b)の混合層を形成した層状珪酸塩であってもよい。しかし、本発明においては、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。層間カチオンの種類は、特に限定されないが、工業原料として比較的容易に且つ安価に入手し得る観点から、アルカリ金属あるいはアルカリ土類金属を層間カチオンの主成分とする珪酸塩が好ましい。   The silicate used as a raw material in the present invention may be a layered silicate in which the mixed layers (a) and (b) are formed. However, in the present invention, the main component silicate is preferably a silicate having a 2: 1 type structure, more preferably a smectite group, and particularly preferably montmorillonite. The type of interlayer cation is not particularly limited, but a silicate containing an alkali metal or an alkaline earth metal as a main component of the interlayer cation is preferable from the viewpoint of being relatively easy and inexpensive to obtain as an industrial raw material.

原料のイオン交換性層状珪酸塩の粒子径は、平均粒径が0.01〜5μmで、かつ、1μm未満の粒子分率を10%以上、好ましくは、平均粒子径が0.1〜3μmで、1μm未満の粒子分率を40%以上とすることが好ましい。このような粒径のイオン交換性層状珪酸塩粒子を得る方法としては、乾式の微粒子化方法、例えばジェットミル、ボールミル、振動ミル等による微粒子化、あるいは、湿式状態下での粉砕方法、ポリトロン等を使用した強制撹拌による粉砕やダイノーミル、パールミル等による方法がある。好ましくは、イオン交換性層状珪酸塩の膨潤性を活用した、水を媒体に使用する湿式の方法である。   The particle size of the raw material ion-exchangeable layered silicate has an average particle size of 0.01 to 5 μm and a particle fraction of less than 1 μm of 10% or more, preferably an average particle size of 0.1 to 3 μm. The particle fraction of less than 1 μm is preferably 40% or more. As a method of obtaining ion-exchange layered silicate particles having such a particle size, a dry fine particle formation method, for example, a fine particle formation by a jet mill, a ball mill, a vibration mill or the like, or a wet grinding method, polytron, etc. There are methods such as pulverization by forced agitation using dyno, dyno mill, pearl mill and the like. Preferably, it is a wet method using water as a medium utilizing the swellability of the ion-exchange layered silicate.

本発明で用いられる造粒法としては、例えば、攪拌造粒法、噴霧造粒法、転動造粒法、ブリケッティング、流動層造粒法、液中造粒法が挙げられる。好ましい造粒法は、攪拌造粒法、噴霧造粒法、転動造粒法または流動造粒法であり、更に好ましくは噴霧造粒法である。粒子強度については後述するが、本造粒工程においてもその制御が可能である。好ましい範囲の圧壊強度を得るためには、前述したような粒径分布のイオン交換性層状珪酸塩珪酸塩を使用することが好ましい。
少なくとも2段階に分けて造粒する場合の造粒方法の組み合わせに制限はないが、好ましくは、噴霧造粒法と噴霧造粒法、噴霧造粒法と転動造粒法、噴霧造粒法と流動造粒法との組み合わせである。
Examples of the granulation method used in the present invention include stirring granulation method, spray granulation method, rolling granulation method, briquetting, fluidized bed granulation method, and submerged granulation method. A preferable granulation method is a stirring granulation method, a spray granulation method, a rolling granulation method or a fluidized granulation method, and more preferably a spray granulation method. The particle strength will be described later, but it can also be controlled in this granulation step. In order to obtain a preferred range of crushing strength, it is preferable to use an ion-exchange layered silicate silicate having a particle size distribution as described above.
There is no limitation on the combination of granulation methods when granulating in at least two stages, but preferably, spray granulation method and spray granulation method, spray granulation method and rolling granulation method, spray granulation method And a fluidized granulation method.

本発明の造粒法で得られる造粒粒子の形状は、球状である。具体的には、M/Lの値が0.8以上1.0以下である粒子の数が、全粒子の50%以上100%以下であること(ここで、Lは投影図の粒子の最大径の値を、MはLと直交する径の値を、それぞれ示す。)を満たす形状である。好ましくは、M/Lの値が0.8以上1.0以下である粒子の数が、全粒子の85%以上100%以下である。
なお、M/Lは任意の粒子の100個以上を光学顕微鏡で観察し、それを画像処理して求めたときのものである。
The shape of the granulated particles obtained by the granulation method of the present invention is spherical. Specifically, the number of particles having an M / L value of 0.8 or more and 1.0 or less is 50% or more and 100% or less of all particles (where L is the maximum number of particles in the projected view) It is a shape that satisfies the diameter value, and M is the diameter value orthogonal to L.) Preferably, the number of particles having an M / L value of 0.8 or more and 1.0 or less is 85% or more and 100% or less of all particles.
M / L is obtained by observing 100 or more of arbitrary particles with an optical microscope and image-processing them.

球形のイオン交換性層状珪酸塩粒子が得られる噴霧造粒における原料スラリー液の珪酸塩の濃度は、スラリー粘度にもよるが、0.1〜50重量%、好ましくは0.5〜30重量%、特に好ましくは5.0〜20重量%である。球状粒子が得られる噴霧造粒の熱風の入り口の温度は、分散媒により異なるが、水を例にとると80〜260℃、好ましくは100〜220℃で行なわれる。分散媒は合目的な任意のものを使用することができる。水あるいは有機溶媒、例えばメタノール、エタノール、クロロホルム、塩化メチレン、ペンタン、ヘキサン、ヘプタン、トルエン、キシレンの単独または混合溶媒を用いる。これらの中で、特に好ましいのは水である。
ところが、原料のイオン交換性層状珪酸塩は、水膨潤性をもつものが多く、水に分散させた場合には微分散し、かつ粒子径も小さいので、スラリー粘度が高く、そのためスラリー濃度を上げることが困難であることが多い。スラリー粘度が高すぎると噴霧造粒時に噴霧経路の詰まりや供給不安定となり、良好な形状の粒子を得ることは難しい。逆に、スラリー粘度を下げるためにスラリー濃度を下げると、乾燥温度を上げなくてはならず急激な水分の蒸発によって形状を制御することが困難となるし、液滴中に含有するイオン交換性層状珪酸塩の量が少ないので、その液滴を乾燥させても小さい粒径の粒子しか製造することができず、粒径を制御することは難しい。
The concentration of the silicate in the raw slurry in the spray granulation in which spherical ion-exchange layered silicate particles are obtained is 0.1 to 50% by weight, preferably 0.5 to 30% by weight, depending on the slurry viscosity. Particularly preferably, it is 5.0 to 20% by weight. The temperature at the inlet of the hot air for spray granulation from which spherical particles are obtained varies depending on the dispersion medium, but is 80 to 260 ° C, preferably 100 to 220 ° C when water is taken as an example. Any desired dispersion medium can be used. Water or an organic solvent such as methanol, ethanol, chloroform, methylene chloride, pentane, hexane, heptane, toluene, xylene alone or in a mixed solvent is used. Of these, water is particularly preferred.
However, many of the raw material ion-exchange layered silicates have water swellability, and when dispersed in water, they are finely dispersed and have a small particle size, so that the slurry viscosity is high, and therefore the slurry concentration is increased. Is often difficult. If the slurry viscosity is too high, the spray path becomes clogged or the supply becomes unstable during spray granulation, and it is difficult to obtain particles having a good shape. Conversely, if the slurry concentration is lowered in order to lower the slurry viscosity, the drying temperature must be raised, and it becomes difficult to control the shape by rapid evaporation of water, and the ion exchange properties contained in the droplets Since the amount of the layered silicate is small, only particles having a small particle size can be produced even when the droplets are dried, and it is difficult to control the particle size.

形状が整った粒子を所望の粒径で得るためには、原料の粒子径を少なくとも2段階の造粒工程で調製することが必要となる。すなわち、第1段目の造粒工程で、ある程度造粒可能な粒子径に造粒して、それを用いて再度造粒処理することで、粒形と粒径を制御することができる。第1段目の造粒工程では、平均粒径が0.01〜5μmの原料のイオン交換性層状珪酸塩微粒子を造粒して一次造粒粒子を製造する。一次造粒粒子の粒径は、1〜25μmであることが好ましい。さらに好ましくは、1〜15μmである。   In order to obtain particles having a desired shape with a desired particle size, it is necessary to prepare the particle size of the raw material by at least two stages of granulation processes. That is, it is possible to control the particle shape and particle size by granulating to a particle size that can be granulated to some extent in the first-stage granulation step, and performing granulation again using the granulated particle size. In the first-stage granulation step, primary exchange particles are produced by granulating ion-exchange layered silicate fine particles as a raw material having an average particle diameter of 0.01 to 5 μm. The primary granulated particles preferably have a particle size of 1 to 25 μm. More preferably, it is 1-15 micrometers.

このようにして造粒された一次造粒粒子をさらにスラリー化して次の造粒を行う。その際には、比較的スラリー粘度が低くなっており、スラリー濃度を上げることが出来るのである。適当な噴霧造粒条件をとることによって、オレフィン重合触媒成分に適した粒径および粒形を得ることができる。製造できる粒径は、原料のイオン交換性層状珪酸塩の種類によるが、25〜200μm、好ましくは25〜150μmである。   The primary granulated particles thus granulated are further slurried to perform the next granulation. At that time, the slurry viscosity is relatively low, and the slurry concentration can be increased. By taking appropriate spray granulation conditions, it is possible to obtain a particle size and particle shape suitable for the olefin polymerization catalyst component. The particle size that can be produced is 25 to 200 μm, preferably 25 to 150 μm, although it depends on the type of raw material ion-exchangeable layered silicate.

造粒条件は、造粒方法により適宜良好な性状の粒子が得られるよう選択することがでる。例えば、噴霧造粒方法においては、噴霧時の熱風の入り口温度は90℃〜300℃程度の広い温度範囲で設定できる。また、出口温度はノズルやディスクからの噴霧流量や熱風流量などによって規定され、80℃〜150℃となる。噴霧形式はディスクタイプや加圧ノズル式、2流体ノズル式などの一般的な噴霧乾燥方法が適用できる。粒径を制御するためには噴霧液の流量、ディスクの回転数またはディスクサイズ、加圧ノズルの圧力、キャリアーガスの流量などを設定することで可能である。本発明においては一次造粒粒子を再度造粒して2次粒子を製造することから、2次造粒粒子の方が大きいサイズとなる。原料粒子に対する1次粒子の粒径アップ率は、3〜500%が好ましく、5〜300%がさらに好ましい。また、1次粒子に対する2次粒子の粒径アップ率は3〜200%が好ましく、3〜100%がさらに好ましい。そのため1次造粒条件と2次造粒条件は異なる条件をとった方が良好な粉体性状の粒子を得ることができる。例えば、1次造粒より2次造粒の方がディスクの回転数を下げる方が好ましい粒子を得ることができる。2次造粒のディスク回転数は、1次造粒のディスク回転数より1000〜30000rpm低い方が好ましく、5000〜20000rpm低い方がさらに好ましい。また乾燥温度は、1次造粒より2次造粒の方が低い方が好ましい。2次造粒の熱風入り口温度は、1次造粒の熱風入り口温度より10〜80℃低い方が好ましく、20〜50℃低い方がさらに好ましい。具体的には、ディスクサイズによるが、一次造粒においては、熱風入り口温度は130〜250℃が好ましく、150〜200℃がさらに好ましい。ディスク回転数は10000〜30000rpmの条件が好ましい。2次造粒においては熱風入り口温度は90℃〜180℃が好ましく、100〜150℃がさらに好ましい。ディスク回転数は5000〜20000rpmの条件が好ましい。   The granulation conditions can be selected appropriately so that particles having good properties can be obtained by the granulation method. For example, in the spray granulation method, the inlet temperature of hot air during spraying can be set in a wide temperature range of about 90 ° C to 300 ° C. The outlet temperature is defined by the flow rate of spray from the nozzle or disk, the flow rate of hot air, and the like, and is 80 ° C. to 150 ° C. As the spray format, a general spray drying method such as a disk type, a pressurized nozzle type, or a two-fluid nozzle type can be applied. In order to control the particle size, it is possible to set the flow rate of the spray liquid, the rotational speed or the disk size of the disk, the pressure of the pressure nozzle, the flow rate of the carrier gas, and the like. In the present invention, since the primary granulated particles are granulated again to produce secondary particles, the secondary granulated particles have a larger size. The particle size increase rate of the primary particles relative to the raw material particles is preferably 3 to 500%, more preferably 5 to 300%. Further, the particle size increase rate of the secondary particles relative to the primary particles is preferably 3 to 200%, more preferably 3 to 100%. Therefore, it is possible to obtain particles with better powder properties when the primary granulation condition and the secondary granulation condition are different. For example, it is possible to obtain particles in which secondary granulation is preferred to lower the rotational speed of the disc than primary granulation. The secondary granulation disk rotation speed is preferably 1000 to 30000 rpm lower than the primary granulation disk rotation speed, and more preferably 5000 to 20000 rpm. The drying temperature is preferably lower in the secondary granulation than in the primary granulation. The hot air inlet temperature of secondary granulation is preferably 10 to 80 ° C. lower than the hot air inlet temperature of primary granulation, and more preferably 20 to 50 ° C. lower. Specifically, depending on the disk size, in the primary granulation, the hot air inlet temperature is preferably 130 to 250 ° C, more preferably 150 to 200 ° C. The disk rotation speed is preferably 10,000 to 30,000 rpm. In secondary granulation, the hot air inlet temperature is preferably 90 ° C to 180 ° C, more preferably 100 to 150 ° C. The disk rotation speed is preferably 5000 to 20000 rpm.

造粒の際に、有機物、無機溶媒、無機塩、各種バインダーを用いてもよい。用いられるバインダーとしては、例えば砂糖、デキストローズ、コーンシロップ、ゼラチン、グルー、カルボキシメチルセルロース類、ポリビニルアルコール、水ガラス、塩化マグネシウム、硫酸アルミニウム、塩化アルミニウム、硫酸マグネシウム、アルコール類、グリコール、澱粉、カゼイン、ラテックス、ポリエチレングリコール、ポリエチレンオキシド、タール、ピッチ、アルミナゾル、シリカゲル、アラビアゴム、アルギン酸ソーダ等が挙げられる。   During granulation, organic substances, inorganic solvents, inorganic salts, and various binders may be used. Examples of the binder used include sugar, dextrose, corn syrup, gelatin, glue, carboxymethylcelluloses, polyvinyl alcohol, water glass, magnesium chloride, aluminum sulfate, aluminum chloride, magnesium sulfate, alcohols, glycol, starch, casein, Examples thereof include latex, polyethylene glycol, polyethylene oxide, tar, pitch, alumina sol, silica gel, gum arabic, and sodium alginate.

また、イオン交換性層状珪酸塩は化学処理を施されてもよい。これは一次造粒粒子を形成する造粒の前、一次造粒粒子を形成する造粒の後、または次いで行われる2次造粒粒子の造粒の後の工程のいずれでもよい。化学処理としては、洗浄操作を挟んで酸処理と塩処理が行われる。化学処理剤は、適当な溶剤に溶解させて処理剤溶液として用いてもよいし、処理剤自身を溶媒として用いてもよい。使用できる溶剤としては、水、アルコール類、脂肪族炭化水素、芳香族炭化水素、エステル類、エーテル類、ケトン類、アルデヒド類、フラン類、アミン類、ジメチルスルホキシド、ジメチルホルムアミド、二硫化炭素、ニトロベンゼン、ピリジン類やこれらのハロゲン化物などが挙げられる。また、処理剤溶液中の処理剤濃度は0.1〜100重量%程度が好ましく、より好ましくは5〜50重量%程度である。処理剤濃度がこの範囲内であれば処理に要する時間が短くなり効率的に生産が可能になるという利点がある。   The ion-exchange layered silicate may be subjected to chemical treatment. This may be performed either before the granulation for forming the primary granulated particles, after the granulation for forming the primary granulated particles, or after the subsequent granulation of the secondary granulated particles. As the chemical treatment, acid treatment and salt treatment are performed with a washing operation interposed therebetween. The chemical treatment agent may be dissolved in an appropriate solvent and used as a treatment solution, or the treatment agent itself may be used as a solvent. Solvents that can be used include water, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons, esters, ethers, ketones, aldehydes, furans, amines, dimethyl sulfoxide, dimethylformamide, carbon disulfide, nitrobenzene Pyridines and their halides. Further, the concentration of the treatment agent in the treatment agent solution is preferably about 0.1 to 100% by weight, more preferably about 5 to 50% by weight. If the concentration of the treatment agent is within this range, there is an advantage that the time required for the treatment is shortened and the production can be efficiently performed.

上記酸処理は、イオン交換性層状珪酸塩粒子の表面の不純物を除く、あるいは層間陽イオンの交換を行なうほか、結晶構造のAl、Fe、Mg等の陽イオンの一部または全部を溶出させることができる。酸処理で用いられる酸としては、塩酸、硝酸、硫酸、リン酸、酢酸、シュウ酸、安息香酸、ステアリン酸、プロピオン酸、アクリル酸、マレイン酸、フマル酸、フタル酸、などが挙げられるが、好ましくは無機酸、特に好ましくは硫酸である。酸処理条件に特に制限はないが、好ましくは5〜50重量%の酸の水溶液を60〜100℃の温度で1〜24時間反応させるような条件であり、その途中で酸の濃度を変化させてもよい。   In the above acid treatment, impurities on the surface of the ion-exchange layered silicate particles are removed or interlayer cations are exchanged, and some or all of cations such as Al, Fe, Mg, etc. in the crystal structure are eluted. Can do. Examples of the acid used in the acid treatment include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, benzoic acid, stearic acid, propionic acid, acrylic acid, maleic acid, fumaric acid, and phthalic acid. An inorganic acid is preferable, and sulfuric acid is particularly preferable. There are no particular limitations on the acid treatment conditions, but preferably the conditions are such that an aqueous solution of 5 to 50% by weight acid is reacted at a temperature of 60 to 100 ° C. for 1 to 24 hours, and the acid concentration is changed during the reaction. May be.

イオン交換性層状珪酸塩を酸処理した後洗浄が行われる。洗浄とは、処理系内に含まれる酸をイオン交換性層状珪酸塩から分離除去する操作である。酸の分離除去方法については特に制限はなく、溶媒で洗浄する方法、吸着剤で取り除く方法、気体で除去する方法などが挙げられる。好ましくは溶媒で洗浄する方法である。特に水が好ましい。   The ion-exchanged layered silicate is washed after being acid-treated. Washing is an operation for separating and removing the acid contained in the treatment system from the ion-exchangeable layered silicate. The method for separating and removing the acid is not particularly limited, and examples thereof include a method of washing with a solvent, a method of removing with an adsorbent, and a method of removing with a gas. A method of washing with a solvent is preferred. Water is particularly preferable.

上記塩類処理で用いられる塩類としては、特開平8−127613号公報に記載の各種塩類が例示されるが、本発明においては塩類として、特定の陽イオンを含有するものを選択して使用することが好ましい。陽イオンの種類については、1から4価の金属陽イオンが好ましく、特にLi、Ni、Zn、Hfの陽イオンが好ましい。具体的な塩類としては、次のものを例示することができる。   Examples of the salt used in the salt treatment include various salts described in JP-A-8-127613. In the present invention, a salt containing a specific cation is selected and used. Is preferred. As for the type of cation, a monovalent to tetravalent metal cation is preferable, and a cation of Li, Ni, Zn, or Hf is particularly preferable. Specific examples of the salts include the following.

陽イオンがLiのものとしては、LiCl、LiBr、LiSO、Li(PO)、Li(ClO)、Li(C)、LiNO、Li(OOCCH)、Li(C)などが挙げられ、陽イオンがNiのものとしては、NiCO、Ni(NO、NiC、Ni(ClO、NiSO、NiCl、NiBr等が挙げられ、陽イオンがZnのものとしては、Zn(OOCH、Zn(CHCOCHCOCH、ZnCO、Zn(NO、Zn(ClO、Zn(PO、ZnSO、ZnF、ZnCl、ZnBr、ZnIなどが挙げられ、陽イオンがHfのものとしては、Hf(OOCCH、Hf(CO、Hf(NO、Hf(SO、HfOCl、HfF、HfCl、HfBr、HfI等を挙げることができる。 Examples of the cation with Li include LiCl, LiBr, Li 2 SO 4 , Li 3 (PO 4 ), Li (ClO 4 ), Li 2 (C 2 O 4 ), LiNO 3 , Li (OOCCH 3 ), Li 2 (C 4 H 4 O 4 ) and the like, and those whose cation is Ni include NiCO 3 , Ni (NO 3 ) 2 , NiC 2 O 4 , Ni (ClO 4 ) 2 , NiSO 4 , NiCl 2. NiBr 2 and the like, and those whose cation is Zn include Zn (OOCH 3 ) 2 , Zn (CH 3 COCHCOCH 3 ) 2 , ZnCO 3 , Zn (NO 3 ) 2 , Zn (ClO 4 ) 2 , Zn 3 (PO 4) 2, ZnSO 4, ZnF 2, ZnCl 2, ZnBr 2, ZnI 2 , and the like, those cations of Hf, Hf (OOCCH 3 4, Hf (CO 3) 2 , Hf (NO 3) 4, Hf (SO 4) 2, HfOCl 2, HfF 4, HfCl 4, can be cited HfBr 4, HFI 4, and the like.

存在させる陽イオンの量については、特に制限は無いが、好ましくはイオン交換性層状珪酸塩1g当たり0.001mol以上を存在させて処理することが好ましい。この陽イオンは、1種類を単独で用いてもよいし2種類以上を組み合わせて用いてもよい。組み合わせて用いる場合、存在させる量はそれぞれの合計がイオン交換性層状珪酸塩1gあたり0.001mol以上であることが好ましい。   Although there is no restriction | limiting in particular about the quantity of the cation to exist, Preferably it is preferable to process by making 0.001 mol or more exist per 1g of ion-exchange layered silicate. One kind of these cations may be used alone, or two or more kinds may be used in combination. When used in combination, it is preferable that the total amount to be present is 0.001 mol or more per gram of ion-exchangeable layered silicate.

塩類処理をおこなうに際して、上述したLi、Ni、Zn、及び/又は、Hfの陽イオンを別の方法で存在させる方法として、反応によりこのような陽イオンを生成する物質を存在させる方法、処理剤自身やイオン交換性層状珪酸塩自身がこれらの陽イオンを含有する方法を採用することも可能である。存在させる陽イオンの量については特に制限は無いが、好ましくはイオン交換性層状珪酸塩1g当たり0.001mol以上存在させて処理することが好ましい。塩類と組み合わせて用いる場合は、それぞれの陽イオンの合計がイオン交換性層状珪酸塩1gあたり0.001mol以上であることが好ましい。   In the salt treatment, as a method for causing the above-described Li, Ni, Zn, and / or Hf cation to exist in another method, a method for causing a substance that generates such a cation by reaction to exist, a treatment agent It is also possible to adopt a method in which the ion exchange layered silicate itself contains these cations. Although there is no restriction | limiting in particular about the quantity of the cation to exist, Preferably it is preferable to process by making 0.001 mol or more exist per 1g of ion exchange layered silicate. When used in combination with salts, the total of the cations is preferably 0.001 mol or more per 1 g of ion-exchangeable layered silicate.

本発明の方法で処理された珪酸塩は、構造破壊されなくとも乾燥温度により特性が変化するために、用途に応じて乾燥温度を変えることが好ましく、可能である。乾燥時間は、通常1分〜24時間、好ましくは5分〜4時間であり、雰囲気は乾燥空気、乾燥窒素、乾燥アルゴン、または減圧下であることが好ましい。乾燥方法に関しては特に限定されず各種方法で実施可能である。   Since the silicate treated by the method of the present invention changes in properties depending on the drying temperature even if it is not structurally destroyed, it is preferable and possible to change the drying temperature depending on the application. The drying time is usually 1 minute to 24 hours, preferably 5 minutes to 4 hours, and the atmosphere is preferably dry air, dry nitrogen, dry argon, or under reduced pressure. It does not specifically limit regarding a drying method, It can implement by various methods.

本発明の処理後のオレフィン重合用触媒成分として使用される状態のイオン交換性層状珪酸塩は、さらに以下の特性を有することが好ましい。
本発明では、イオン交換性層状珪酸塩の圧壊強度が一定の範囲内にあることが好ましい。イオン交換性層状珪酸塩の粒子強度が低すぎると、触媒粉体やポリマー粒子が崩壊しやすいため、微粉が発生し、流れ性や付着性が悪化して嵩密度が低下してしまう。そこで、本発明においては、担体の平均圧壊強度は、1MPa以上あることが望ましく、より好ましくは3MPa以上である。一方、圧壊強度が高すぎると、予備重合あるいは重合の際に、均一な触媒活性化が阻害されたり、粒子成長が不均一となって微粉が発生する場合もある。したがって、担体強度の上限は平均圧壊強度が15MPa以下であることが望ましく、より好ましくは10MPa以下である。
The ion-exchangeable layered silicate in a state used as a catalyst component for olefin polymerization after the treatment of the present invention preferably further has the following characteristics.
In the present invention, the crushing strength of the ion exchange layered silicate is preferably within a certain range. If the particle strength of the ion-exchange layered silicate is too low, the catalyst powder and polymer particles are likely to collapse, so that fine powder is generated, flowability and adhesion are deteriorated, and the bulk density is lowered. Therefore, in the present invention, the average crushing strength of the carrier is desirably 1 MPa or more, more preferably 3 MPa or more. On the other hand, if the crushing strength is too high, uniform catalyst activation may be hindered during pre-polymerization or polymerization, or particle growth may be uneven and fine powder may be generated. Therefore, the upper limit of the carrier strength is desirably an average crushing strength of 15 MPa or less, more preferably 10 MPa or less.

本発明の製造法によるイオン交換性層状珪酸塩の細孔は、珪酸塩の酸処理によって構成成分が溶出する結果生成する細孔に加え、造粒されて得られる一次造粒粒子よる細孔も生成する。粒子内細孔分布は、細孔半径10〜10Åに極大細孔径を持ち、細孔半径10〜10Åの細孔容積が0.2〜0.8ml/gである。細孔径分布、特に相対的に大きい細孔の制御は使用する一次造粒粒子の粒度分布で制御することが可能であり、効果的である。 The pores of the ion-exchange layered silicate produced by the production method of the present invention are not only the pores generated as a result of elution of the constituent components by the silicate acid treatment, but also the pores of the primary granulated particles obtained by granulation. Generate. Intragranular pore distribution has a maximum pore diameter in a pore radius 10 3 to 10 5 Å, a pore volume of pore radius 10 3 to 10 5 Å is 0.2~0.8ml / g. The pore size distribution, particularly the control of relatively large pores, can be controlled by the particle size distribution of the primary granulated particles used, and is effective.

上述の圧壊強度および制御された細孔分布を有するイオン交換性層状珪酸塩を、例えばメタロセン等の遷移金属錯体の活性化剤として機能するためのオレフィン重合用触媒成分(助触媒)として使用することで、以下に述べるような作用機構が働くものと考えることができる。すなわち、本発明の珪酸塩は、ある特定範囲の細孔サイズを示すが、その大きさはメタロセン錯体、有機アルミニウム化合物、およびモノマーに対して十分に大きくなる。したがって、反応に関与するこれらの化合物が、触媒の形成、活性化、予備重合さらには重合の各段階において、容易に細孔内に入り込むことができ、担体中に錯体が高分散化し、メタロセン触媒活性点が均一に形成されると考えられる。   Use of the ion-exchange layered silicate having the above-mentioned crushing strength and controlled pore distribution as a catalyst component (co-catalyst) for olefin polymerization for functioning as an activator of a transition metal complex such as metallocene. Thus, it can be considered that the action mechanism described below works. That is, the silicate of the present invention exhibits a specific range of pore sizes, but the size is sufficiently large relative to metallocene complexes, organoaluminum compounds, and monomers. Therefore, these compounds involved in the reaction can easily enter the pores at each stage of catalyst formation, activation, prepolymerization, and polymerization, and the complex is highly dispersed in the support, thereby allowing the metallocene catalyst It is considered that the active points are uniformly formed.

さらに、触媒粒子の均一な成長には、ポリマー粒子の成長と共に、担体が微粒子状に分散することが重要であり、本発明のような細孔を有する担体では、これを助長するものと考えられる。このような触媒では、重合反応において、従来の触媒に比べ、触媒上での局部発熱等が抑制される。このため、特に、溶融あるいは溶解しやすいポリマーの製造時、例えば、プロピレン系の低融点ランダム重合やエチレン−プロピレンのブロックポリマーの重合において、従来なし得なかった、高活性で、かつ、粒子状を維持した状態で重合を進行させることが可能となったものと推定される。   Furthermore, for uniform growth of catalyst particles, it is important that the carrier is dispersed in the form of fine particles along with the growth of the polymer particles. In the carrier having pores as in the present invention, this is considered to promote this. . In such a catalyst, local heat generation on the catalyst is suppressed in the polymerization reaction as compared with the conventional catalyst. For this reason, particularly in the production of a polymer that is easy to melt or dissolve, for example, in the polymerization of propylene-based low-melting-point random polymerization or ethylene-propylene block polymer, a highly active and particulate form that could not be obtained conventionally. It is presumed that the polymerization can be allowed to proceed in a maintained state.

一般に、イオン交換性層状珪酸塩には吸着水および層間水が含まれる。本発明においては、これらの吸着水および層間水を除去して使用するのが好ましい。水の除去には通常加熱処理が用いられる。その方法は特に制限されないが、付着水、層間水が残存しないように、また構造破壊を生じないよう条件を選ぶことが必要である。加熱時間は0.1時間以上、好ましくは0.2時間以上である。その際、除去した後の水分含有率が、温度200℃、圧力1mmHgの条件下で2時間脱水した場合の水分含有率を0重量%とした時、3重量%以下、好ましくは1重量%以下であることが好ましい。   In general, the ion-exchangeable layered silicate includes adsorbed water and interlayer water. In the present invention, it is preferable to remove these adsorbed water and interlayer water before use. Usually, heat treatment is used to remove water. The method is not particularly limited, but it is necessary to select conditions so that adhering water and interlayer water do not remain and structural damage does not occur. The heating time is 0.1 hour or longer, preferably 0.2 hour or longer. At that time, the moisture content after removal is 3% by weight or less, preferably 1% by weight or less when the moisture content is 0% by weight when dehydrated for 2 hours under the conditions of a temperature of 200 ° C. and a pressure of 1 mmHg. It is preferable that

II.オレフィン重合用触媒
本発明のオレフィン重合用触媒は、上述したイオン交換性層状珪酸塩粒子を触媒成分として用いる触媒である。具体的には、(A)周期律表第4〜6族メタロセン化合物、(B)上述したイオン交換性層状珪酸塩粒子、(C)有機アルミニウム化合物を用いて調製した触媒である。成分(A)と成分(C)、及び調製方法、オレフィンの重合等について詳細を以下に説明する。
II. Olefin Polymerization Catalyst The olefin polymerization catalyst of the present invention is a catalyst using the ion-exchange layered silicate particles described above as a catalyst component. Specifically, it is a catalyst prepared using (A) Periodic Table Group 4-6 metallocene compound, (B) the above-described ion-exchange layered silicate particles, and (C) an organoaluminum compound. Details of the components (A) and (C), the preparation method, the polymerization of olefins and the like are described below.

1.触媒成分
(A)周期律表第4〜6族メタロセン化合物成分
本発明のオレフィン重合触媒で用いる(A)周期律表第4〜6族メタロセン化合物は、共役五員環配位子を少なくとも一個有する周期律表第4〜6族の遷移金属化合物である。かかる遷移金属化合物として好ましいものは、下記一般式(1)、(2)、(3)、(4)で表される化合物である。
1. Catalyst Component (A) Periodic Table Group 4-6 Metallocene Compound Component (A) Periodic Table Group 4-6 metallocene compound used in the olefin polymerization catalyst of the present invention has at least one conjugated five-membered ring ligand. It is a transition metal compound of Groups 4-6 of the periodic table. Preferred as such a transition metal compound are compounds represented by the following general formulas (1), (2), (3) and (4).

Figure 0004966482
Figure 0004966482

式中、AおよびA’は置換基を有してもよい共役五員環配位子(同一化合物内においてAおよびA’は同一でも異なっていてもよい)を示し、Qは二つの共役五員環配位子を任意の位置で架橋する結合性基を示し、Zは窒素原子酸素原子、珪素原子、リン原子またはイオウ原子を含む配位子を示し、Q’は共役五員環配位子の任意の位置とZを架橋する結合性基を示し、Mは周期律表4〜6族から選ばれる金属原子を示し、XおよびYは水素原子、ハロゲン原子、炭化水素基、アルコキシ基、アミノ基、リン含有炭化水素基または珪素含有炭化水素基(同一化合物内においてX及びX’は同一でも異なっていてもよい)を示す。   In the formula, A and A ′ represent a conjugated five-membered ring ligand (which may be the same or different in the same compound), and Q represents two conjugated five-membered ligands. Z represents a ligand containing a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom or a sulfur atom, and Q ′ represents a conjugated five-membered ring coordination. An arbitrary position of a child and a bonding group that bridges Z; M represents a metal atom selected from groups 4 to 6 of the periodic table; X and Y represent a hydrogen atom, a halogen atom, a hydrocarbon group, an alkoxy group, An amino group, a phosphorus-containing hydrocarbon group, or a silicon-containing hydrocarbon group (in the same compound, X and X ′ may be the same or different).

AおよびA’としてはシクロペンタジエニル基を挙げることができる。シクロペンタジエニル基は、水素原子を五個有するもの[C−]であってもよく、また、その誘導体、すなわちその水素原子のいくつかが置換基で置換されているものであってもよい。
この置換基の例としては、炭素数1〜40、好ましくは1〜30の炭化水素基である。この炭化水素基は一価の基としてシクロペンタジエニル基と結合していても、またこれが複数存在するときにその内の2個がそれぞれ他端(ω−端)で結合してシクロペンタジエニルの一部と共に環を形成していてもよい。後者の例としては、2個の置換基がそれぞれω−端で結合して該シクロペンタジエニル基中の隣接した2個の炭素原子を共有して縮合六員環を形成しているもの、即ちインデニル基、テトラヒドロインデニル基、フルオレニル基、および縮合七員環を形成しているもの、即ちアズレニル基、テトラヒドロアズレニル基が挙げられる。
Examples of A and A ′ include a cyclopentadienyl group. The cyclopentadienyl group may be one having five hydrogen atoms [C 5 H 5- ], or a derivative thereof, that is, one in which some of the hydrogen atoms are substituted with substituents. May be.
Examples of this substituent are hydrocarbon groups having 1 to 40 carbon atoms, preferably 1 to 30 carbon atoms. Even if this hydrocarbon group is bonded to the cyclopentadienyl group as a monovalent group, and when there are a plurality of these, two of them are bonded to the other end (ω-end) to form cyclopentadienyl. A ring may be formed together with a part of the enyl. Examples of the latter include those in which two substituents are each bonded at the ω-end to share two adjacent carbon atoms in the cyclopentadienyl group to form a condensed six-membered ring, That is, an indenyl group, a tetrahydroindenyl group, a fluorenyl group, and those forming a condensed seven-membered ring, that is, an azulenyl group and a tetrahydroazurenyl group can be mentioned.

AおよびA’で示される共役五員環配位子の好ましい具体的例としては、置換または非置換のシクロペンタジエニル基、インデニル基、フルオレニル基、またはアズレニル基等が挙げられる。この中で、特に好ましいものは、アズレニル基である。   Preferable specific examples of the conjugated five-membered ring ligand represented by A and A ′ include a substituted or unsubstituted cyclopentadienyl group, indenyl group, fluorenyl group, or azulenyl group. Among these, an azulenyl group is particularly preferable.

シクロペンタジエニル基上の置換基としては、前記の炭素数1〜40、好ましくは1〜30の炭化水素基に加え、フッ素、塩素、臭素等のハロゲン原子基、炭素数1〜12のアルコキシ基、例えば−Si(R)(R)(R)で示される珪素含有炭化水素基、−P(R)(R)で示されるリン含有炭化水素基、または−B(R)(R)で示されるホウ素含有炭化水素基が挙げられる。これらの置換基が複数ある場合、それぞれの置換基は同一でも異なっていてもよい。上述のR、R、Rは、同一でも異なっていてもよく、炭素数1〜24、好ましくは1〜18のアルキル基を示す。 As the substituent on the cyclopentadienyl group, in addition to the hydrocarbon group having 1 to 40 carbon atoms, preferably 1 to 30 carbon atoms, halogen atom groups such as fluorine, chlorine and bromine, and alkoxy having 1 to 12 carbon atoms. A group, for example, a silicon-containing hydrocarbon group represented by -Si (R 1 ) (R 2 ) (R 3 ), a phosphorus-containing hydrocarbon group represented by -P (R 1 ) (R 2 ), or -B (R 1 ) a boron-containing hydrocarbon group represented by (R 2 ). When there are a plurality of these substituents, each substituent may be the same or different. R 1 , R 2 and R 3 described above may be the same or different and each represents an alkyl group having 1 to 24 carbon atoms, preferably 1 to 18 carbon atoms.

Qは二つの共役五員環配位子間を任意の位置で架橋する結合性基を、Q’は共役五員環配位子の任意の位置とZで示される基を架橋する結合性基を表す。
QおよびQ’の具体例としては、
(イ)メチレン基、エチレン基、イソプロピレン基、フェニルメチルメチレン基、ジフェニルメチレン基、シクロヘキシレン基等のアルキレン基類、
(ロ)ジメチルシリレン基、ジエチルシリレン基、ジプロピルシリレン基、ジフェニルシリレン基、メチルエチルシリレン基、メチルフェニルシリレン基、メチル−t−ブチルシリレン基、ジシリレン基、テトラメチルジシリレン基等のシリレン基、
(ハ)ゲルマニウム、リン、窒素、ホウ素あるいはアルミニウムを含む炭化水素基、さらに具体的には、(CHGe、(CGe、(CH)P、(C)P、(C)N、(C)N、(C)B、(C)B、(C)Al(CO)Alで示される基等である。好ましいものは、アルキレン基類およびシリレン基類である。
Q is a binding group that bridges two conjugated five-membered ring ligands at any position, and Q ′ is a binding group that bridges any position of the conjugated five-membered ring ligand with a group represented by Z. Represents.
Specific examples of Q and Q ′ include
(A) alkylene groups such as methylene group, ethylene group, isopropylene group, phenylmethylmethylene group, diphenylmethylene group, cyclohexylene group,
(B) Silylene groups such as dimethylsilylene group, diethylsilylene group, dipropylsilylene group, diphenylsilylene group, methylethylsilylene group, methylphenylsilylene group, methyl-t-butylsilylene group, disilylene group, tetramethyldisilylene group, etc. ,
(C) A hydrocarbon group containing germanium, phosphorus, nitrogen, boron or aluminum, more specifically, (CH 3 ) 2 Ge, (C 6 H 5 ) 2 Ge, (CH 3 ) P, (C 6 H 5) P, (C 4 H 9) N, (C 6 H 5) N, (C 4 H 9) B, (C 6 H 5) B, (C 6 H 5) Al (C 6 H 5 O) And a group represented by Al. Preference is given to alkylene groups and silylene groups.

Mは、周期律表第4〜6族から選ばれる金属原子遷移金属を、好ましくは周期律表第4属金属原子、具体的にはチタン、ジルコニウム、ハフニウム等である。特には、ジルコニウム、ハフニウムが好ましい。   M is a metal atom transition metal selected from Groups 4 to 6 of the Periodic Table, preferably a Group 4 metal atom of the Periodic Table, specifically titanium, zirconium, hafnium and the like. In particular, zirconium and hafnium are preferable.

Zは、窒素原子、酸素原子、ケイ素原子、リン原子またはイオウ原子を含む配位子、水素原子、ハロゲン原子又は炭化水素基を示す。好ましい具体例としては、酸素原子、イオウ原子、炭素数1〜20、好ましくは1〜12のチオアルコキシ基、炭素数1〜40、好ましくは1〜18のケイ素含有炭化水素基、炭素数1〜40、好ましくは1〜18の窒素含有炭化水素基、炭素数1〜40、好ましくは1〜18のリン含有炭化水素基、水素原子、塩素、臭素、炭素数1〜20の炭化水素基である。   Z represents a ligand, a hydrogen atom, a halogen atom or a hydrocarbon group containing a nitrogen atom, oxygen atom, silicon atom, phosphorus atom or sulfur atom. Preferable specific examples include an oxygen atom, a sulfur atom, a thioalkoxy group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, a silicon-containing hydrocarbon group having 1 to 40 carbon atoms, preferably 1 to 18 carbon atoms, and 1 to 1 carbon atoms. 40, preferably a nitrogen-containing hydrocarbon group having 1 to 18 carbon atoms, 1 to 40 carbon atoms, preferably a phosphorus-containing hydrocarbon group having 1 to 18 carbon atoms, a hydrogen atom, chlorine, bromine, or a hydrocarbon group having 1 to 20 carbon atoms. .

XおよびYは、各々水素、ハロゲン原子、炭素数1〜20、好ましくは1〜10の炭化水素基、炭素数1〜20、好ましくは1〜10のアルコキシ基、アミノ基、ジフェニルフォスフィノ基等の炭素数1〜20、好ましくは1〜12のリン含有炭化水素基、またはトリメチルシリル基、ビス(トリメチルシリル)メチル基等の炭素数1〜20、好ましくは1〜12のケイ素含有炭化水素基である。XとYは同一でも異なってもよい。これらのうちハロゲン原子、炭化水素基、特に炭素数1〜8のもの、およびアミノ基が好ましい。   X and Y are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, an amino group, a diphenylphosphino group, etc. A phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, or a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms such as a trimethylsilyl group or a bis (trimethylsilyl) methyl group. . X and Y may be the same or different. Of these, halogen atoms, hydrocarbon groups, particularly those having 1 to 8 carbon atoms, and amino groups are preferred.

(a)一般式(1)で表される化合物としては、例えば
(1)ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、
(2)ビス(エチルシクロペンタジエニル)ジルコニウムジクロリド、
(3)ビス(プロピルシクロペンタジエニル)ジルコニウムジクロリド、
(4)ビス(n−ブチルシクロペンタジエニル)ジルコニウムジクロリド、
(5)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、
(6)ビス(1−エチル−3−メチルシクロペンタジエニル)ジルコニウムジクロリド、
(7)ビス(1−n−ブチル−3−メチルシクロペンタジエニル)ジルコニウムジクロリド、
(8)ビス(1−i−ブチル−3−メチルシクロペンタジエニル)ジルコニウムジクロリド、
(9)ビス(1−t−ブチル−3−メチルシクロペンタジエニル)ジルコニウムジクロリド、
(10)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジメチル、
(11)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムメチルクロリド、
(12)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジエチル、
(13)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジイソブチル、
(14)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムクロリドモノハイドライド、
(15)ビス(1−n−ブチル−3−メチル−シクロペンタジエニル)ジルコニウムジハイドライド、
(16)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジメトキシド、
(17)ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムビス(ジメチルアミド)、
(18)ビス(1−n−ブチル−3−メチル−シクロペンタジエニル)ジルコニウムジエチルアミドモノクロリド、
(19)ビス(1−メチル−3−トリフルオロメチルシクロペンタジエニル)ジルコニウムジクロリド、
(20)ビス(1−メチル−3−トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、
(21)ビス(1−シクロヘキシル−3−メチルシクロペンタジエニル)ジルコニウムジクロリド、
(22)ビス(1−メチル−3−フェニルシクロペンタジエニル)ジルコニウムジクロリド、
(23)ビス(1−ベンジル−3−メチルシクロペンタジエニル)ジルコニウムジクロリド、
(24)ビス(1−n−ブチル−3−トリフルオロメチルシクロペンタジエニル)ジルコニウムジクロリド、
(25)ビス(インデニル)ジルコニウムジクロリド、
(26)ビス(テトラヒドロインデニル)ジルコニウムジクロリド、
(27)ビス(2−メチル−テトラヒドロインデニル)ジルコニウムジクロリドが挙げられる。
(A) Examples of the compound represented by the general formula (1) include (1) bis (methylcyclopentadienyl) zirconium dichloride,
(2) bis (ethylcyclopentadienyl) zirconium dichloride,
(3) bis (propylcyclopentadienyl) zirconium dichloride,
(4) bis (n-butylcyclopentadienyl) zirconium dichloride,
(5) bis (1,3-dimethylcyclopentadienyl) zirconium dichloride,
(6) bis (1-ethyl-3-methylcyclopentadienyl) zirconium dichloride,
(7) bis (1-n-butyl-3-methylcyclopentadienyl) zirconium dichloride,
(8) bis (1-i-butyl-3-methylcyclopentadienyl) zirconium dichloride,
(9) Bis (1-t-butyl-3-methylcyclopentadienyl) zirconium dichloride,
(10) bis (1,3-dimethylcyclopentadienyl) zirconium dimethyl,
(11) Bis (1,3-dimethylcyclopentadienyl) zirconium methyl chloride,
(12) Bis (1,3-dimethylcyclopentadienyl) zirconium diethyl,
(13) Bis (1,3-dimethylcyclopentadienyl) zirconium diisobutyl,
(14) bis (1,3-dimethylcyclopentadienyl) zirconium chloride monohydride,
(15) Bis (1-n-butyl-3-methyl-cyclopentadienyl) zirconium dihydride,
(16) bis (1,3-dimethylcyclopentadienyl) zirconium dimethoxide,
(17) Bis (1,3-dimethylcyclopentadienyl) zirconium bis (dimethylamide),
(18) bis (1-n-butyl-3-methyl-cyclopentadienyl) zirconium diethylamide monochloride,
(19) Bis (1-methyl-3-trifluoromethylcyclopentadienyl) zirconium dichloride,
(20) bis (1-methyl-3-trimethylsilylcyclopentadienyl) zirconium dichloride,
(21) bis (1-cyclohexyl-3-methylcyclopentadienyl) zirconium dichloride,
(22) bis (1-methyl-3-phenylcyclopentadienyl) zirconium dichloride,
(23) bis (1-benzyl-3-methylcyclopentadienyl) zirconium dichloride,
(24) Bis (1-n-butyl-3-trifluoromethylcyclopentadienyl) zirconium dichloride,
(25) bis (indenyl) zirconium dichloride,
(26) bis (tetrahydroindenyl) zirconium dichloride,
(27) Bis (2-methyl-tetrahydroindenyl) zirconium dichloride is mentioned.

(b)一般式(2)で表される化合物としては、例えば、
(1)ジメチルシリレンビス{1−(2−メチル−4−イソプロピル−4H−アズレニル)}ジルコニウムジクロリド、
(2)ジメチルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(3)ジメチルシリレンビス〔1−{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(4)ジメチルシリレンビス〔1−{2−メチル−4−(4−フルオロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(5)ジメチルシリレンビス〔1−{2−メチル−4−(3−クロロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(6)ジメチルシリレンビス[1−{2−メチル−4−(2,6−ジメチルフェニル)−4H−アズレニル}]ジルコニウムジクロリド、
(7)ジメチルシリレンビス{1−(2−メチル−4,6−ジイソプロピル−4H−アズレニル)}ジルコニウムジクロリド、
(8)ジフェニルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(9)メチルフェニルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(10)ジメチルフェニルシリレンビス〔1−{2−メチル−4−(1−ナフチル)−4H−アズレニル}〕ジルコニウムジクロリド、
(11)メチルフェニルシリレンビス〔1−{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(12)メチルフェニルシリレンビス〔1−{2−メチル−4−(4−フルオロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(13)メチルフェニルシリレンビス〔1−{2−メチル−4−(3−クロロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(14)ジメチルシリレンビス{1−(2−エチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(15)ジメチルシリレンビス〔1−{2−エチル−4−(1−ナフチル)−4H−アズレニル}〕ジルコニウムジクロリド、
(16)ジメチルシリレンビス〔1−{2−エチル−4−(4−クロロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(17)ジメチルシリレンビス〔1−{2−エチル−4−(4−フルオロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(18)ジメチルシリレンビス〔1−{2−エチル−4−(3−クロロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(19)ジメチルシリレンビス〔1−{2−エチル−4−(2−ナフチル)−4H−アズレニル}〕ジルコニウムジクロリド、
(20)ジメチルシリレンビス〔1−{2−エチル−4−(1−アントラセニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(21)ジメチルシリレンビス〔1−{2−エチル−4−(2−アントラセニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(22)ジメチルシリレンビス〔1−{2−エチル−4−(9−アントラセニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(23)ジメチルシリレンビス〔1−{2−エチル−4−(1−フェナンスリル)−4H−アズレニル}〕ジルコニウムジクロリド、
(24)ジメチルシリレンビス〔1−{2−エチル−4−(9−フェナンスリル)−4H−アズレニル}〕ジルコニウムジクロリド、
(25)ジメチルメチレンビス{1−[2−メチル−4−(4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(26)ジメチルゲルミレンビス{1−[2−メチル−4−(4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(27)エチレンビス{1−[2−メチル−4−(4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(28)ジメチルシリレンビス{1−[2−i−プロピル−4−(4−ビフェニリル)−4H−アズレニル]}ジルコニウジクロリド、
(29)ジメチルシリレンビス{1−[2−メチル−4−(2−フルオロ−4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(30)ジメチルシリレンビス{1−[2−エチル−4−(2−フルオロ−4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(31)ジメチルシリレンビス{1−[2−メチル−4−(2’,6’−ジメチル−4−ビフェニリル)−4H−アズレニル]}ジルコニウムジクロリド、
(32)ジメチルシリレンビス{1−[2−メチル−4−(1−ナフチル)−4H−アズレニル]}ジルコニウムジクロリド、
(33)ジメチルシリレンビス{1−[2−i−プロピル−4−(1−ナフチル)−4H−アズレニル]}ジルコニウムジクロリド、
(34)ジメチルシリレンビス{1−[2−i−プロピル−4−(4−t−ブチルフェニル)−4H−アズレニル]}ジルコニウムジクロリド、
(35)ジメチルシリレン{1−[2−メチル−4−(4−ビフェニリル)−4H−アズレニル]}{1−[2−メチル−4−(4−ビフェニリル)インデニル]}ジルコニウムジクロリド、
(36)ジメチルシリレンビス{1−[2−エチル−4−(4−ビフェニリル)−4H−5,6,7,8−テトラヒドロアズレニル]}ジルコニウムジクロリド、
(37)ジメチルシリレン{1−(2−エチル−4−フェニル−4H−アズレニル)}{1−(2−メチル−4,5−ベンゾインデニル)}ジルコニウムジクロリド、
(38)ジメチルシリレンビス{1−(2−エチル−4−フェニル−6−イソプロピル−4H−アズレニル)}ジルコニウムジクロリド、
(39)ジメチルシリレンビス{1−(2−エチル−4,6−ジフェニル−4H−アズレニル)}ジルコニウムジクロリド、
(40)ジメチルシリレンビス[1−{2−メチル−4−(ペンタフルオロフェニル)−4H−アズレニル}]ジルコニウムジクロリド、
(41)ジメチルシリレンビス{1−(2−エチル−4−フェニルー7ーフルオロ−4H−アズレニル)}ジルコニウムジクロリド、
(42)ジメチルシリレンビス{1−(2−エチル−4−インドリル−4H−アズレニル)}ジルコニウムジクロリド、
(43)ジメチルシリレンビス{1−(2−ジメチルボラノ−4−インドリル−4H−アズレニル)}ジルコニウムジクロリド、
(44)ジメチルシリレンビス[1−{2−エチル−4−(3,5−ビストリフルオロメチルフェニル)−4H−アズレニル}]ジルコニウムジクロリド、
(45)ジメチルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジメチル、
(46)ジメチルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムビス(トリフルオロメタンスルホン酸)、
(47)ジメチルシリレンビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(48)ジメチルシリレンビス{1−(2−メチル−4,5−ベンゾインデニル)}ジルコニウムジクロリド、
(49)ジメチルシリレンビス〔1−{2−メチル−4−(1−ナフチル)インデニル}〕ジルコニウムジクロリド、
(50)ジメチルシリレンビス{1−(2−メチル−4,6−ジイソプロピルインデニル)}ジルコニウムジクロリド、
(51)ジフェニルシリレンビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(52)メチルフェニルシリレンビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(53)ジメチルシリレンビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(54)ジメチルシリレンビス〔1−{2−エチル−4−(1−ナフチル)インデニル}〕ジルコニウムジクロリド、
(55)ジメチルシリレンビス〔1−{2−エチル−4−(9−アントリル)インデニル}〕ジルコニウムジクロリド、
(56)ジメチルシリレンビス〔1−{2−エチル−4−(9−フェナンスリル)インデニル}〕ジルコニウムジクロリド、
(57)ジメチルシリレン{1−(2−エチル−4−フェニルインデニル)}{1−(2−メチル−4,5−ベンゾインデニル)}ジルコニウムジクロリド、
(58)ジメチルシリレンビス[1−{2−メチル−4−(ペンタフルオロフェニル)インデニル}]ジルコニウムジクロリド、
(59)ジメチルシリレンビス{1−(2−エチル−4−フェニルー7ーフルオロインデニル)}ジルコニウムジクロリド、
(60)エチレン−1,2−ビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(61)エチレン−1,2−ビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(62)エチレン−1,2−ビス〔1−{2−メチル−4−(1−ナフチル)インデニル}〕ジルコニウムジクロリド、
(63)イソプロピリデンビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(64)エチレン−1,2−ビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(65)エチレン−1,2−ビス{1−(2−エチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(66)エチレン−1,2−ビス〔1−{2−メチル−4−(1−ナフチル)インデニル}〕ジルコニウムジクロリド、
(67)エチレン−1,2−ビス〔1−{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}〕ジルコニウムジクロリド、
(68)イソプロピリデンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ジルコニウムジクロリド、
(69)エチレン−1,2−ビス{1−(2−エチル−4−インドリル−4H−アズレニル)}ジルコニウムジクロリド、
(70)ジメチルゲルミレンビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(71)ジメチルゲルミレンビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(72)メチルアルミニウムビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(73)フェニルホスフィノビス{1−(2−エチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(74)フェニルアミノビス{1−(2−メチル−4−フェニルインデニル)}ジルコニウムジクロリド、
(75)ジメチルシリレンビス[3−(2−フリル)−2,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(76)ジメチルシリレンビス[2−(2−フリル)−3,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(77)ジメチルシリレンビス[3−(2−フリル)−4,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(78)ジメチルシリレンビス[3−(2−チエニル)−2,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(79)ジメチルシリレンビス[2−(2−チエニル)−4,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(80)ジメチルシリレンビス[2−(2−フリル)−インデニル]ジルコニウムジクロリド、
(81)ジメチルシリレンビス[2−(2−(5−メチル)フリル)−4,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(82)ジメチルシリレンビス[2−(2−(5−t−ブチル)フリル)−4,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(83)ジメチルシリレンビス[2−(2−(2−(5−トリメチルシリル)フリル)−4,5−ジメチル−シクロペンタジエニル)ジルコニウムジクロリド、
(84)ジメチルシリレンビス[2−(2−(4,5−ジメチル)フリル)−4,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(85)ジメチルシリレンビス[2−(2−ベンゾフリル)−4,5−ジメチル−シクロペンタジエニル]ジルコニウムジクロリド、
(86)ジメチルシリレンビス[2−(2−チエニル)−インデニル]ジルコニウムジクロリド、
(87)ジメチルシリレンビス[2−(2−(5−メチル)フリル)−インデニル]ジルコニウムジクロリド、
(88)ジメチルシリレンビス[2−(2−(5−メチル)フリル)−4−フェニルインデニル]ジルコニウムジクロリド、
(89)ジメチルシリレン[2−(2−(5−メチル)フリル)−4−フェニルインデニル][2−メチル−4−フェニルインデニル]ジルコニウムジクロリド、
(90)ジメチルシリレンビス(2,3,5−トリメチルシクロペンタジエニル)ジルコニウムジクロリド、
(91)ジメチルゲルミルビス(2,3,5−トリメチルシクロペンタジエニル)ジルコニウムジクロリド、
(92)ジメチルシリレンビス(2,3−ジメチル−5−エチルシクロペンタジエニル)ジルコニウムジクロリド、
(93)ジメチルゲルミルビス(2,3−ジメチル−5−エチルシクロペンタジエニル)ジルコニウムジクロリド、
(94)ジメチルシリレンビス(2,5−ジメチル−3−フェニルシクロペンタジエニル)ジルコニウムジクロリド、
(95)ジメチルゲルミル(2,5−ジメチル−3−フェニルシクロペンタジエニル)ジルコニウムジクロリド、等が挙げられる。
(B) Examples of the compound represented by the general formula (2) include:
(1) Dimethylsilylenebis {1- (2-methyl-4-isopropyl-4H-azurenyl)} zirconium dichloride,
(2) Dimethylsilylenebis {1- (2-methyl-4-phenyl-4H-azurenyl)} zirconium dichloride,
(3) Dimethylsilylenebis [1- {2-methyl-4- (4-chlorophenyl) -4H-azulenyl}] zirconium dichloride,
(4) Dimethylsilylenebis [1- {2-methyl-4- (4-fluorophenyl) -4H-azulenyl}] zirconium dichloride,
(5) Dimethylsilylenebis [1- {2-methyl-4- (3-chlorophenyl) -4H-azulenyl}] zirconium dichloride,
(6) Dimethylsilylenebis [1- {2-methyl-4- (2,6-dimethylphenyl) -4H-azulenyl}] zirconium dichloride,
(7) Dimethylsilylenebis {1- (2-methyl-4,6-diisopropyl-4H-azurenyl)} zirconium dichloride,
(8) Diphenylsilylenebis {1- (2-methyl-4-phenyl-4H-azurenyl)} zirconium dichloride,
(9) methylphenylsilylenebis {1- (2-methyl-4-phenyl-4H-azurenyl)} zirconium dichloride,
(10) Dimethylphenylsilylenebis [1- {2-methyl-4- (1-naphthyl) -4H-azurenyl}] zirconium dichloride,
(11) methylphenylsilylenebis [1- {2-methyl-4- (4-chlorophenyl) -4H-azulenyl}] zirconium dichloride,
(12) methylphenylsilylenebis [1- {2-methyl-4- (4-fluorophenyl) -4H-azulenyl}] zirconium dichloride,
(13) methylphenylsilylenebis [1- {2-methyl-4- (3-chlorophenyl) -4H-azulenyl}] zirconium dichloride,
(14) Dimethylsilylenebis {1- (2-ethyl-4-phenyl-4H-azurenyl)} zirconium dichloride,
(15) Dimethylsilylenebis [1- {2-ethyl-4- (1-naphthyl) -4H-azurenyl}] zirconium dichloride,
(16) Dimethylsilylenebis [1- {2-ethyl-4- (4-chlorophenyl) -4H-azulenyl}] zirconium dichloride,
(17) Dimethylsilylenebis [1- {2-ethyl-4- (4-fluorophenyl) -4H-azulenyl}] zirconium dichloride,
(18) Dimethylsilylenebis [1- {2-ethyl-4- (3-chlorophenyl) -4H-azulenyl}] zirconium dichloride,
(19) Dimethylsilylenebis [1- {2-ethyl-4- (2-naphthyl) -4H-azurenyl}] zirconium dichloride,
(20) Dimethylsilylenebis [1- {2-ethyl-4- (1-anthracenyl) -4H-azulenyl}] zirconium dichloride,
(21) Dimethylsilylenebis [1- {2-ethyl-4- (2-anthracenyl) -4H-azurenyl}] zirconium dichloride,
(22) Dimethylsilylenebis [1- {2-ethyl-4- (9-anthracenyl) -4H-azurenyl}] zirconium dichloride,
(23) Dimethylsilylenebis [1- {2-ethyl-4- (1-phenanthryl) -4H-azurenyl}] zirconium dichloride,
(24) Dimethylsilylenebis [1- {2-ethyl-4- (9-phenanthryl) -4H-azurenyl}] zirconium dichloride,
(25) Dimethylmethylenebis {1- [2-methyl-4- (4-biphenylyl) -4H-azurenyl]} zirconium dichloride,
(26) Dimethylgermylenebis {1- [2-methyl-4- (4-biphenylyl) -4H-azulenyl]} zirconium dichloride,
(27) ethylenebis {1- [2-methyl-4- (4-biphenylyl) -4H-azurenyl]} zirconium dichloride,
(28) Dimethylsilylenebis {1- [2-i-propyl-4- (4-biphenylyl) -4H-azurenyl]} zirconium dichloride,
(29) Dimethylsilylenebis {1- [2-methyl-4- (2-fluoro-4-biphenylyl) -4H-azurenyl]} zirconium dichloride,
(30) Dimethylsilylenebis {1- [2-ethyl-4- (2-fluoro-4-biphenylyl) -4H-azurenyl]} zirconium dichloride,
(31) Dimethylsilylenebis {1- [2-methyl-4- (2 ′, 6′-dimethyl-4-biphenylyl) -4H-azulenyl]} zirconium dichloride,
(32) Dimethylsilylenebis {1- [2-methyl-4- (1-naphthyl) -4H-azurenyl]} zirconium dichloride,
(33) Dimethylsilylenebis {1- [2-i-propyl-4- (1-naphthyl) -4H-azurenyl]} zirconium dichloride,
(34) Dimethylsilylenebis {1- [2-i-propyl-4- (4-t-butylphenyl) -4H-azulenyl]} zirconium dichloride,
(35) Dimethylsilylene {1- [2-methyl-4- (4-biphenylyl) -4H-azurenyl]} {1- [2-methyl-4- (4-biphenylyl) indenyl]} zirconium dichloride,
(36) Dimethylsilylenebis {1- [2-ethyl-4- (4-biphenylyl) -4H-5,6,7,8-tetrahydroazulenyl]} zirconium dichloride,
(37) Dimethylsilylene {1- (2-ethyl-4-phenyl-4H-azulenyl)} {1- (2-methyl-4,5-benzoindenyl)} zirconium dichloride,
(38) Dimethylsilylenebis {1- (2-ethyl-4-phenyl-6-isopropyl-4H-azurenyl)} zirconium dichloride,
(39) Dimethylsilylenebis {1- (2-ethyl-4,6-diphenyl-4H-azurenyl)} zirconium dichloride,
(40) Dimethylsilylenebis [1- {2-methyl-4- (pentafluorophenyl) -4H-azurenyl}] zirconium dichloride,
(41) Dimethylsilylenebis {1- (2-ethyl-4-phenyl-7-fluoro-4H-azulenyl)} zirconium dichloride,
(42) Dimethylsilylenebis {1- (2-ethyl-4-indolyl-4H-azurenyl)} zirconium dichloride,
(43) Dimethylsilylenebis {1- (2-dimethylborano-4-indolyl-4H-azurenyl)} zirconium dichloride,
(44) Dimethylsilylenebis [1- {2-ethyl-4- (3,5-bistrifluoromethylphenyl) -4H-azurenyl}] zirconium dichloride,
(45) Dimethylsilylenebis {1- (2-methyl-4-phenyl-4H-azurenyl)} zirconium dimethyl,
(46) Dimethylsilylene bis {1- (2-methyl-4-phenyl-4H-azurenyl)} zirconium bis (trifluoromethanesulfonic acid),
(47) Dimethylsilylenebis {1- (2-methyl-4-phenylindenyl)} zirconium dichloride,
(48) Dimethylsilylenebis {1- (2-methyl-4,5-benzoindenyl)} zirconium dichloride,
(49) Dimethylsilylenebis [1- {2-methyl-4- (1-naphthyl) indenyl}] zirconium dichloride,
(50) Dimethylsilylenebis {1- (2-methyl-4,6-diisopropylindenyl)} zirconium dichloride,
(51) Diphenylsilylenebis {1- (2-methyl-4-phenylindenyl)} zirconium dichloride,
(52) methylphenylsilylenebis {1- (2-methyl-4-phenylindenyl)} zirconium dichloride,
(53) Dimethylsilylenebis {1- (2-ethyl-4-phenylindenyl)} zirconium dichloride,
(54) Dimethylsilylenebis [1- {2-ethyl-4- (1-naphthyl) indenyl}] zirconium dichloride,
(55) Dimethylsilylenebis [1- {2-ethyl-4- (9-anthryl) indenyl}] zirconium dichloride,
(56) Dimethylsilylenebis [1- {2-ethyl-4- (9-phenanthryl) indenyl}] zirconium dichloride,
(57) Dimethylsilylene {1- (2-ethyl-4-phenylindenyl)} {1- (2-methyl-4,5-benzoindenyl)} zirconium dichloride,
(58) Dimethylsilylenebis [1- {2-methyl-4- (pentafluorophenyl) indenyl}] zirconium dichloride,
(59) Dimethylsilylenebis {1- (2-ethyl-4-phenyl-7-fluoroindenyl)} zirconium dichloride,
(60) ethylene-1,2-bis {1- (2-methyl-4-phenylindenyl)} zirconium dichloride,
(61) ethylene-1,2-bis {1- (2-ethyl-4-phenylindenyl)} zirconium dichloride,
(62) ethylene-1,2-bis [1- {2-methyl-4- (1-naphthyl) indenyl}] zirconium dichloride,
(63) isopropylidenebis {1- (2-methyl-4-phenylindenyl)} zirconium dichloride,
(64) ethylene-1,2-bis {1- (2-methyl-4-phenyl-4H-azurenyl)} zirconium dichloride,
(65) ethylene-1,2-bis {1- (2-ethyl-4-phenyl-4H-azurenyl)} zirconium dichloride,
(66) ethylene-1,2-bis [1- {2-methyl-4- (1-naphthyl) indenyl}] zirconium dichloride,
(67) Ethylene-1,2-bis [1- {2-methyl-4- (4-chlorophenyl) -4H-azurenyl}] zirconium dichloride,
(68) isopropylidenebis {1- (2-methyl-4-phenyl-4H-azurenyl)} zirconium dichloride,
(69) ethylene-1,2-bis {1- (2-ethyl-4-indolyl-4H-azurenyl)} zirconium dichloride,
(70) Dimethylgermylenebis {1- (2-methyl-4-phenylindenyl)} zirconium dichloride,
(71) Dimethylgermylenebis {1- (2-ethyl-4-phenylindenyl)} zirconium dichloride,
(72) methylaluminum bis {1- (2-ethyl-4-phenylindenyl)} zirconium dichloride,
(73) phenylphosphinobis {1- (2-ethyl-4-phenylindenyl)} zirconium dichloride,
(74) Phenylaminobis {1- (2-methyl-4-phenylindenyl)} zirconium dichloride,
(75) Dimethylsilylenebis [3- (2-furyl) -2,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(76) Dimethylsilylenebis [2- (2-furyl) -3,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(77) Dimethylsilylenebis [3- (2-furyl) -4,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(78) Dimethylsilylenebis [3- (2-thienyl) -2,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(79) Dimethylsilylenebis [2- (2-thienyl) -4,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(80) Dimethylsilylenebis [2- (2-furyl) -indenyl] zirconium dichloride,
(81) Dimethylsilylenebis [2- (2- (5-methyl) furyl) -4,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(82) Dimethylsilylenebis [2- (2- (5-t-butyl) furyl) -4,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(83) Dimethylsilylenebis [2- (2- (2- (5-trimethylsilyl) furyl) -4,5-dimethyl-cyclopentadienyl) zirconium dichloride,
(84) Dimethylsilylenebis [2- (2- (4,5-dimethyl) furyl) -4,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(85) Dimethylsilylenebis [2- (2-benzofuryl) -4,5-dimethyl-cyclopentadienyl] zirconium dichloride,
(86) Dimethylsilylenebis [2- (2-thienyl) -indenyl] zirconium dichloride,
(87) Dimethylsilylenebis [2- (2- (5-methyl) furyl) -indenyl] zirconium dichloride,
(88) Dimethylsilylenebis [2- (2- (5-methyl) furyl) -4-phenylindenyl] zirconium dichloride,
(89) Dimethylsilylene [2- (2- (5-methyl) furyl) -4-phenylindenyl] [2-methyl-4-phenylindenyl] zirconium dichloride,
(90) Dimethylsilylenebis (2,3,5-trimethylcyclopentadienyl) zirconium dichloride,
(91) Dimethylgermylbis (2,3,5-trimethylcyclopentadienyl) zirconium dichloride,
(92) Dimethylsilylenebis (2,3-dimethyl-5-ethylcyclopentadienyl) zirconium dichloride,
(93) Dimethylgermylbis (2,3-dimethyl-5-ethylcyclopentadienyl) zirconium dichloride,
(94) Dimethylsilylenebis (2,5-dimethyl-3-phenylcyclopentadienyl) zirconium dichloride,
(95) Dimethylgermyl (2,5-dimethyl-3-phenylcyclopentadienyl) zirconium dichloride, and the like.

(c)一般式(3)で表される化合物としては、例えば、
(1)(テトラメチルシクロペンタジエニル)チタニウム(ビスt−ブチルアミド)ジクロリド、
(2)(テトラメチルシクロペンタジエニル)チタニウム(ビスイソプロピルアミド)ジクロリド、
(3)(テトラメチルシクロペンタジエニル)チタニウム(ビスシクロドデシルアミド)ジクロリド、
(4)(テトラメチルシクロペンタジエニル)チタニウム{ビス(トリメチルシリル)アミド)}ジクロリド、
(5)(2−メチル−4−フェニル−4H−アズレニル)チタニウム{ビス(トリメチルシリル)アミド}ジクロリド、
(6)(2−メチル−4−フェニル−4H−アズレニル)ジルコニウム{ビス(トリメチルシリル)アミド}ジクロリド、
(7)(2−メチルインデニル)チタニウム(ビスt−ブチルアミド)ジクロリド、
(8)(フルオレニル)チタニウム(ビスt−ブチルアミド)ジクロリド、
(9)(3,6−ジイソプロピルフルオレニル)チタニウム(ビスt−ブチルアミド)ジクロリド、
(10)(テトラメチルシクロペンタジエニル)チタニウム(フェノキシド)ジクロリド、
(11)(テトラメチルシクロペンタジエニル)チタニウム(2,6−ジイソプロピルフェノキシド)ジクロリド等が挙げられる。
(C) As a compound represented by the general formula (3), for example,
(1) (tetramethylcyclopentadienyl) titanium (bis t-butylamide) dichloride,
(2) (tetramethylcyclopentadienyl) titanium (bisisopropylamide) dichloride,
(3) (tetramethylcyclopentadienyl) titanium (biscyclododecylamide) dichloride,
(4) (Tetramethylcyclopentadienyl) titanium {bis (trimethylsilyl) amide)} dichloride,
(5) (2-Methyl-4-phenyl-4H-azurenyl) titanium {bis (trimethylsilyl) amide} dichloride,
(6) (2-methyl-4-phenyl-4H-azurenyl) zirconium {bis (trimethylsilyl) amide} dichloride,
(7) (2-methylindenyl) titanium (bis t-butylamide) dichloride,
(8) (fluorenyl) titanium (bis t-butylamide) dichloride,
(9) (3,6-diisopropylfluorenyl) titanium (bis t-butylamide) dichloride,
(10) (Tetramethylcyclopentadienyl) titanium (phenoxide) dichloride,
(11) (Tetramethylcyclopentadienyl) titanium (2,6-diisopropylphenoxide) dichloride and the like.

(d)一般式(4)で表される化合物としては、例えば、
(1)ジメチルシランジイル(テトラメチルシクロペンタジエニル)(t−ブチルアミド)チタニウムジクロリド、
(2)ジメチルシランジイル(テトラメチルシクロペンタジエニル)(シクロドデシルアミド)チタニウムジクロリド、
(3)ジメチルシランジイル(2−メチルインデニル)(t−ブチルアミド)チタニウムジクロリド、
(4)ジメチルシランジイル(フルオレニル)(t−ブチルアミド)チタニウムジクロリド、等が挙げられる。
なお、一般式(1)ないし(4)で示される部分[A]は、同一の一般式で示される化合物および/または異なる一般式で表される化合物の二種以上の混合物として用いることができる。
(D) As a compound represented by the general formula (4), for example,
(1) Dimethylsilanediyl (tetramethylcyclopentadienyl) (t-butylamido) titanium dichloride,
(2) Dimethylsilanediyl (tetramethylcyclopentadienyl) (cyclododecylamide) titanium dichloride,
(3) Dimethylsilanediyl (2-methylindenyl) (t-butylamido) titanium dichloride,
(4) Dimethylsilanediyl (fluorenyl) (t-butylamido) titanium dichloride, and the like.
The moiety [A] represented by the general formulas (1) to (4) can be used as a mixture of two or more compounds represented by the same general formula and / or compounds represented by different general formulas. .

(C)有機アルミニウム化合物成分
本発明のオレフィン重合触媒で用いる(C)有機アルミニウム化合物は、一般式AlR 3−pで示される化合物が適当である。本発明ではこの式で表される化合物を単独で、複数種混合してあるいは併用して使用することができることは言うまでもない。また、この使用は触媒調製時だけでなく、予備重合あるいは重合時にも可能である。この式中、Rは炭素数1〜20の炭化水素基を示し、Xは、ハロゲン、水素、アルコキシ基、アミノ基を示す。pは1以上3以下までの範囲である。Rとしてはアルキル基が好ましく、またXは、それがハロゲンの場合には塩素が、アルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が、好ましい。
従って、好ましい化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムセスキクロライド、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。これらのうち、好ましくは、p=3、q=1のトリアルキルアルミニウムおよびジアルキルアルミニウムヒドリドである。さらに好ましくは、Rが炭素数1〜8であるトリアルキルアルミニウムである。
(C) used in the olefin polymerization catalyst of the organoaluminum compound component (C) in the present invention the organoaluminum compound is a compound represented by the general formula AlR 3 p X 3-p is suitable. In the present invention, it goes without saying that the compounds represented by this formula can be used alone, in combination of two or more, or in combination. Moreover, this use is possible not only at the time of catalyst preparation but also at the time of preliminary polymerization or polymerization. In this formula, R 3 represents a hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen, hydrogen, an alkoxy group, or an amino group. p is in the range of 1 to 3. R 3 is preferably an alkyl group, and X is chlorine when it is a halogen, an alkoxy group having 1 to 8 carbon atoms when it is an alkoxy group, and 1 to 8 carbon atoms when it is an amino group. The amino group of is preferable.
Therefore, specific examples of preferred compounds include trimethylaluminum, triethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum, trinormaldecylaluminum, diethylaluminum chloride, diethyl Examples include aluminum sesquichloride, diethylaluminum hydride, diethylaluminum ethoxide, diethylaluminum dimethylamide, diisobutylaluminum hydride, diisobutylaluminum chloride and the like. Of these, trialkylaluminum and dialkylaluminum hydride having p = 3 and q = 1 are preferable. More preferably, R 3 is a trialkylaluminum having 1 to 8 carbon atoms.

本発明の触媒は、上記の成分(A)、(B)、(C)を重合槽外であるいは重合槽内で、同時にもしくは連続的に、あるいは一度にもしくは複数回にわたって、接触させることによって形成させることができる。各成分の接触は、脂肪族炭化水素あるいは芳香族炭化水素溶媒中で行うのが普通である。接触温度は特に限定されないが、−20℃から150℃の間で行うのが好ましい。接触順序としては合目的的な任意の組み合わせが可能であるが、特に好ましいものを各成分について示せば次の通りである。
通常、まず成分(B)と成分(A)を接触させる。成分(C)の成分(B)への添加は、成分(A)よりも前に、同時に、あるいは後に添加することが可能である。触媒活性やポリマー粒子性状が改良される好ましい接触順としては、成分(B)へ成分(C)を添加し、続いて成分(A)を接触させる方法である。この時、成分(A)にあらかじめ成分(B)に使用したものと同種あるいは異種の成分(C)を使用することが可能である。
各成分を接触させた後は、脂肪族炭化水素あるいは芳香族炭化水素溶媒にて洗浄することが可能である。
The catalyst of the present invention is formed by bringing the components (A), (B), and (C) into contact with each other outside or in the polymerization tank, simultaneously or continuously, or once or multiple times. Can be made. The contact of each component is usually carried out in an aliphatic hydrocarbon or aromatic hydrocarbon solvent. Although a contact temperature is not specifically limited, It is preferable to carry out between -20 degreeC and 150 degreeC. As the contact order, any desired combination can be used. Particularly preferable components are shown as follows.
Usually, the component (B) and the component (A) are first contacted. Component (C) can be added to component (B) before, simultaneously with, or after component (A). A preferable contact order for improving the catalytic activity and polymer particle properties is a method in which the component (C) is added to the component (B) and then the component (A) is contacted. At this time, it is possible to use the same or different component (C) as the component (A) used in advance for the component (B).
After contacting each component, it can be washed with an aliphatic hydrocarbon or an aromatic hydrocarbon solvent.

本発明で使用する成分(A)、(B)および(C)の使用量は任意である。例えば、成分(B)に対する成分(A)の使用量は、成分(B)1gに対し、好ましくは0.1μmol〜1000μmol、特に好ましくは0.5μmol〜500μmolの範囲である。成分(B)に対する成分(C)の使用量は、成分(B)1gに対し、好ましくは遷移金属の量が0.001〜100μmol、特に好ましくは0.005〜50μmolの範囲である。したがって、成分(A)に対する成分(C)の量は、遷移金属のモル比で、好ましくは10−5〜50、特に好ましくは10−4〜5、の範囲内が好ましい。 The amount of components (A), (B) and (C) used in the present invention is arbitrary. For example, the amount of component (A) used relative to component (B) is preferably in the range of 0.1 μmol to 1000 μmol, particularly preferably 0.5 μmol to 500 μmol, relative to 1 g of component (B). The amount of component (C) used relative to component (B) is preferably such that the amount of transition metal is 0.001 to 100 μmol, particularly preferably 0.005 to 50 μmol, relative to 1 g of component (B). Therefore, the amount of component (C) relative to component (A) is preferably in the range of 10 −5 to 50, particularly preferably 10 −4 to 5 in terms of the molar ratio of transition metal.

2.予備重合
本発明のオレフィン重合触媒は、これに重合性モノマーを接触させてこのモノマーを少量重合されることからなる予備重合処理に付すことも可能であり、かつ好ましい。予備重合を行う段階は、任意であり、本発明のすべての触媒成分を接触させた後、あるいは予備重合を行った後に成分(C)を接触させる等の方法も可能である。そのときの重合条件は、本重合のそれよりも温和であるのが普通である。予備重合モノマ−としては、α−オレフィンが使用でき、好ましくはエチレンまたはプロピレンである。予備重合量は、通常0.01〜100g−PP/g−触媒、好ましくは0.1〜50g−PP/g−触媒である。また予備重合触媒を使用して重合を行う場合には、追加の成分(C)を使用することもあり、好ましい。
上記の各成分の接触の際もしくは接触の後に、ポリエチレン、ポリプロピレン等の重合体、シリカ、チタニア等の無機酸化物の固体を共存させるか、または、接触させてもよい。
2. Prepolymerization The olefin polymerization catalyst of the present invention can be subjected to a prepolymerization treatment comprising bringing a polymerizable monomer into contact therewith and polymerizing the monomer in a small amount, and is preferable. The step of performing the prepolymerization is optional, and a method such as contacting the component (C) after contacting all the catalyst components of the present invention or after performing the prepolymerization is also possible. The polymerization conditions at that time are usually milder than those of the main polymerization. As the prepolymerized monomer, α-olefin can be used, and ethylene or propylene is preferable. The amount of prepolymerization is usually 0.01-100 g-PP / g-catalyst, preferably 0.1-50 g-PP / g-catalyst. Moreover, when superposing | polymerizing using a prepolymerization catalyst, an additional component (C) may be used and it is preferable.
At the time of or after the contact of each of the above components, a polymer such as polyethylene and polypropylene, and a solid of an inorganic oxide such as silica and titania may coexist or may be brought into contact.

3.オレフィンの重合
本発明のオレフィン重合用触媒を用いてα−オレフィンを重合または共重合することができる。重合し得るα−オレフィンとしては、炭素数2〜20程度のものが好ましく、具体的にはエチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン等が挙げられる。共重合の場合、用いられるコモノマーの種類は、前記α−オレフィンとして挙げられるもののなかから、主成分となるもの以外のα−オレフィンを選択して用いることができる。コモノマーの量は、所望する物性(融点、分子量、剛性等)のポリマーを製造するために任意の条件で実施可能であるが、本発明の触媒は通常粒子性状の悪化により製造が困難となる例えばランダム重合体の製造等に適しており、特に低融点のプロピレンランダム共重合体や高ゴム含量のいわゆるエチレン/プロピレンブロック共重合体の製造に適している。
本発明の触媒を使用することで形状が揃った比較的粒径の大きいポリマーが製造できる。得られるポリマーの粒径は500μm〜5mmである。また、細孔容積が大きく、相対的に大きいサイズの細孔を持つポリマーを得ることができる。ポリマー同士の付着、重合反応層へのファウリングを著しく改善する効果がある。
3. Polymerization of Olefin An α-olefin can be polymerized or copolymerized using the olefin polymerization catalyst of the present invention. Preferred α-olefins that can be polymerized are those having about 2 to 20 carbon atoms, and specific examples include ethylene, propylene, 1-butene, 1-hexene, 1-octene and the like. In the case of copolymerization, the type of comonomer used can be selected from α-olefins other than the main component among those listed as the α-olefin. The amount of comonomer can be carried out under any conditions in order to produce a polymer having desired physical properties (melting point, molecular weight, rigidity, etc.), but the catalyst of the present invention is usually difficult to produce due to deterioration of particle properties, for example. Suitable for the production of random polymers and the like, particularly suitable for the production of low melting point propylene random copolymers and so-called ethylene / propylene block copolymers having a high rubber content.
By using the catalyst of the present invention, a polymer having a uniform shape and a relatively large particle size can be produced. The obtained polymer has a particle size of 500 μm to 5 mm. Also, a polymer having a large pore volume and relatively large pores can be obtained. There is an effect of remarkably improving adhesion between polymers and fouling to the polymerization reaction layer.

重合様式は、触媒成分と各モノマーが効率よく接触するならば、あらゆる様式を採用しうる。具体的には、不活性溶媒を用いるスラリー法、溶液重合法、不活性溶媒を実質的に用いないプロピレンを溶媒として用いるバルク法、あるいは実質的に液体溶媒を用いずに各モノマーをガス状に保つ気相法などが採用できる。また、連続重合、回分式重合に適用される。スラリー重合の場合は、重合溶媒として、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。重合温度は0℃〜200℃であり、また分子量調節剤として補助的に水素を用いることができる。重合圧力は0〜200MPaの範囲で実施可能である。   As the polymerization mode, any mode can be adopted as long as the catalyst component and each monomer come into contact efficiently. Specifically, a slurry method using an inert solvent, a solution polymerization method, a bulk method using propylene as a solvent that does not substantially use an inert solvent, or gasifying each monomer substantially without using a liquid solvent. A gas phase method can be used. Further, it is applied to continuous polymerization and batch polymerization. In the case of slurry polymerization, a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene, toluene, or the like is used alone or as a polymerization solvent. The polymerization temperature is 0 ° C. to 200 ° C., and hydrogen can be used supplementarily as a molecular weight regulator. The polymerization pressure can be carried out in the range of 0 to 200 MPa.

本発明を以下に実施例を示して具体的に説明するが、本発明はその要旨を逸脱しない限りこれら実施例によって制約を受けるものではない。なお、物性測定法は、以下の通りである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited by these examples without departing from the gist thereof. In addition, the physical property measuring method is as follows.

(1)イオン交換性層状珪酸塩粒子の粒径測定
レーザー回折・散乱式粒子径分布測定装置(堀場製作所社製「LA−920」)を使用して測定した。造粒前のスラリーのイオン交換性層状珪酸塩の測定は、水を分散媒として用い、屈折率1.32、形状係数1.0として粒径分布および平均粒径(メジアン径)を算出した。造粒後のイオン交換性層状珪酸塩の測定は、エタノールを分散媒として使用して、同様に測定した。
(2)MFR測定
ポリプロピレン系重合体はJIS−K−6758により、またポリエチレン系重合体はJIS−K−6760により測定したメルトインデックス値を示す。
(3)ポリマーBD
ASTM D1895−69に準拠した、ポリマーの嵩密度を示す。
(4)圧壊強度の測定
島津製作所(株)製 微小圧縮試験器「MCTM−500」を用いて、任意に選んだ10個以上の粒子の圧壊強度を測定し、その平均値を圧壊強度とした。
(5)パウダー粒径の測定
レッチェテクノロジー社製 粒度分布測定装置カムサイザーを使用して測定した。
(6)融点(Tm)
セイコーインスツルメンツ社製DSC6200を使用し、シート状にしたサンプル片を5mgアルミパンに詰め、室温から一旦200℃まで昇温速度100℃/分で昇温し、5分間保持した後に、10℃/分で40℃まで降温して結晶化させた後に、10℃/分で200℃まで昇温させた時の融解最大ピーク温度(℃)として求めた。
(7)23℃キシレン可溶分量(CXS)
ポリマーを電子天秤にて秤量し500mlの平底フラスコに入れ、工業用キシレンを300ml加える。予め140℃に調温したオイルバスに浸け、約1時間かけて溶解させる。次に、フラスコを取り出し、予め23℃に調温したオイルバスに1時間浸けた後に、ろ過により上澄み液を回収し、110℃で減圧下4時間で溶媒除去/乾燥を行うことによりキシレン可溶分量を求めた(単位:重量%)。
(8)M/L≧0.80を満たす粒子の割合の測定
任意の粒子100個以上を光学顕微鏡で観察し、(株)ニレコ社製 リアルタイム画像処理解析装置「LUZEX FS」を用いて、画像処理して求めた。ここで、Lは投影図の粒子の最大径の値を、MはLと直交する径の値をそれぞれ示す。
(1) Particle size measurement of ion-exchange layered silicate particles The particle size was measured using a laser diffraction / scattering particle size distribution measuring device ("LA-920" manufactured by Horiba Ltd.). For the measurement of the ion-exchangeable layered silicate in the slurry before granulation, water was used as a dispersion medium, and the particle size distribution and average particle size (median diameter) were calculated with a refractive index of 1.32 and a shape factor of 1.0. The ion exchange layered silicate after granulation was measured in the same manner using ethanol as a dispersion medium.
(2) MFR measurement A polypropylene polymer shows a melt index value measured according to JIS-K-6758, and a polyethylene polymer shows a melt index value measured according to JIS-K-6760.
(3) Polymer BD
It shows the bulk density of the polymer according to ASTM D1895-69.
(4) Measurement of Crushing Strength Using a micro compression tester “MCTM-500” manufactured by Shimadzu Corporation, the crushing strength of 10 or more arbitrarily selected particles was measured, and the average value was taken as the crushing strength. .
(5) Measurement of powder particle size It measured using the particle size distribution measuring device camsizer by Lecce Technology.
(6) Melting point (Tm)
Using a Seiko Instruments DSC6200, the sheet-shaped sample piece was packed in a 5 mg aluminum pan, heated from room temperature to 200 ° C. at a heating rate of 100 ° C./minute, held for 5 minutes, and then 10 ° C./minute. After the temperature was lowered to 40 ° C. for crystallization, the maximum melting peak temperature (° C.) when the temperature was raised to 200 ° C. at 10 ° C./min was obtained.
(7) 23 ° C. xylene soluble amount (CXS)
The polymer is weighed with an electronic balance and placed in a 500 ml flat bottom flask and 300 ml of industrial xylene is added. Immerse in an oil bath adjusted to 140 ° C. in advance and dissolve for about 1 hour. Next, the flask was taken out and immersed in an oil bath adjusted to 23 ° C. for 1 hour, and then the supernatant was collected by filtration. Solvent removal / drying was carried out at 110 ° C. under reduced pressure for 4 hours to dissolve xylene. The amount was determined (unit:% by weight).
(8) Measurement of ratio of particles satisfying M / L ≧ 0.80 More than 100 arbitrary particles were observed with an optical microscope, and an image was obtained using a real-time image processing analyzer “LUZEX FS” manufactured by Nireco Corporation. Obtained by processing. Here, L represents the value of the maximum diameter of the particle in the projection, and M represents the value of the diameter orthogonal to L.

(実施例1)
(1)微粒子の造粒(第1段目造粒工程)
4.5リットルの金属製容器に蒸留水2850ミリリットル、市販のモンモリロナイト(水澤化学社製ベンクレイSL)150gを徐々に添加し、数時間撹拌させた後に、ポリトロンを10分間使用して均一化処理した。平均粒径を測定したところ、モンモリロナイト水スラリーでは0.63μmであった。このスラリーを、大川原化工機社製噴霧造粒装置(LT−8)を用いて噴霧造粒を実施した。スラリー物性および運転条件は、以下の通りである。
スラリー物性:pH=9.6、スラリー粘度=3500CP;運転条件:アトマイザー回転数30000rpm、給液量=0.7L/h、入り口温度=200℃、出口温度=140℃、サイクロン差圧=80mmH
その結果、90gの造粒微粒子を回収した。平均粒径は、10.1μmであった。形状は球形であった。
(2)酸処理
1.0リットルの撹拌翼の付いたガラス製フラスコに、蒸留水510ミリリットル、続いて濃硫酸(96%)150gをゆっくりと添加し、さらに前記造粒した微粒子を80g分散させ、90℃で2時間加熱処理した。冷却後、このスラリーを減圧ろ過し、ケーキを回収した。このケーキに蒸留水を0.5〜0.6リットル加え再スラリー化後、ろ過した。この洗浄操作を4回繰り返した。
回収したケーキを110℃で終夜乾燥した。乾燥後の重量は67.5gであった。
(3)再造粒
このようにして得られた酸処理微粒子50gを、蒸留水150ミリリットル中に徐々に添加し、攪拌した。このスラリーを、大川原化工機社製噴霧造粒装置(LT−8)を用いて噴霧造粒を実施した。スラリー物性および運転条件は、以下の通り。
スラリー物性:pH=5.7、スラリー粘度=150CP;運転条件:アトマイザー回転数10000rpm、給液量=0.7L/h、入り口温度=130℃、出口温度=110℃、サイクロン差圧=80mmH
その結果、45gの造粒粒子を回収した。平均粒径は、69.3μmであった。形状は表面がざらざらしているが、球形であった。形状を測定するとM/Lが0.8以上1.0以下の粒子は92%であった。圧壊強度は3.6MPaであった。得られた粒子のSEM観察図を図1に示す。球状の粒子形態であることがわかる。
Example 1
(1) Granulation of fine particles (first stage granulation step)
Distilled water (2850 ml) and commercially available montmorillonite (Mizusawa Chemical Benclay SL) (150 g) were gradually added to a 4.5 liter metal container, stirred for several hours, and then homogenized using polytron for 10 minutes. . When the average particle size was measured, it was 0.63 μm for the montmorillonite water slurry. This slurry was subjected to spray granulation using a spray granulator (LT-8) manufactured by Okawara Chemical Corporation. The physical properties and operating conditions of the slurry are as follows.
Slurry properties: pH = 9.6, slurry viscosity = 3500 CP; operating conditions: atomizer rotation speed 30000 rpm, feed rate = 0.7 L / h, inlet temperature = 200 ° C., outlet temperature = 140 ° C., cyclone differential pressure = 80 mmH 2 O
As a result, 90 g of granulated fine particles were recovered. The average particle size was 10.1 μm. The shape was spherical.
(2) Acid treatment To a glass flask equipped with a 1.0 liter stirring blade, 510 ml of distilled water and 150 g of concentrated sulfuric acid (96%) were slowly added, and 80 g of the granulated fine particles were dispersed. And heat treatment at 90 ° C. for 2 hours. After cooling, the slurry was filtered under reduced pressure to recover the cake. Distilled water was added to the cake in an amount of 0.5 to 0.6 liter, and the slurry was reslurried and then filtered. This washing operation was repeated 4 times.
The collected cake was dried at 110 ° C. overnight. The weight after drying was 67.5 g.
(3) Re-granulation The acid-treated fine particles 50 g thus obtained were gradually added to 150 ml of distilled water and stirred. This slurry was subjected to spray granulation using a spray granulator (LT-8) manufactured by Okawara Chemical Corporation. The physical properties and operating conditions of the slurry are as follows.
Slurry properties: pH = 5.7, slurry viscosity = 150 CP; operating conditions: atomizer rotation speed 10000 rpm, liquid supply amount = 0.7 L / h, inlet temperature = 130 ° C., outlet temperature = 110 ° C., cyclone differential pressure = 80 mmH 2 O
As a result, 45 g of granulated particles were recovered. The average particle size was 69.3 μm. The shape was spherical, although the surface was rough. When the shape was measured, 92% of the particles had an M / L of 0.8 or more and 1.0 or less. The crushing strength was 3.6 MPa. The SEM observation figure of the obtained particle | grains is shown in FIG. It turns out that it is a spherical particle form.

(実施例2)
スラリー濃度を3%とする以外は、実施例1に記載の方法と同様にスラリー調製を行い、同様の方法で噴霧造粒を行った。その結果、平均粒径4.6μmの球状の微粒子を120g得た。
これを実施例1と同様に酸処理を行い、次いで造粒を実施した。その結果、37gの球状の造粒粒子を得た。平均粒径は、57.2μmであった。M/Lが0.8以上1.0以下の粒子は95%であった。圧壊強度は4.5MPaであった。
(Example 2)
A slurry was prepared in the same manner as in the method described in Example 1 except that the slurry concentration was 3%, and spray granulation was performed in the same manner. As a result, 120 g of spherical fine particles having an average particle diameter of 4.6 μm were obtained.
This was subjected to acid treatment in the same manner as in Example 1 and then granulated. As a result, 37 g of spherical granulated particles were obtained. The average particle size was 57.2 μm. The number of particles having an M / L of 0.8 or more and 1.0 or less was 95%. The crushing strength was 4.5 MPa.

(実施例3)
実施例1と同様に調製したスラリーを用いて、噴霧造粒条件でアトマイザー回転数を20000rpmとする以外は、実施例1と同様にして微粒子の造粒を行った。その結果、83gの球状の微粒子を得た。平均粒径は15.6μmであった。
これを実施例1と同様に酸処理を行い、次いでアトマイザー回転数を7000rpmにする以外は実施例1と同様にして再造粒を実施した。その結果、平均粒径93.6μmの球状の造粒粒子を得た。一部に扁平な粒子も存在したが、M/Lが0.8以上1.0以下の粒子は68%であった。圧壊強度は3.2MPaであった。
(Example 3)
Using the slurry prepared in the same manner as in Example 1, fine particles were granulated in the same manner as in Example 1 except that the atomizer rotation speed was set to 20000 rpm under spray granulation conditions. As a result, 83 g of spherical fine particles were obtained. The average particle size was 15.6 μm.
This was subjected to acid treatment in the same manner as in Example 1, and then re-granulation was carried out in the same manner as in Example 1 except that the atomizer speed was changed to 7000 rpm. As a result, spherical granulated particles having an average particle size of 93.6 μm were obtained. Some of the particles were flat, but 68% of the particles had an M / L of 0.8 or more and 1.0 or less. The crushing strength was 3.2 MPa.

(比較例1)
実施例1の(微粒子の造粒)において、噴霧造粒条件を変えて造粒した。運転条件は、以下の通り。
運転条件:アトマイザー回転数7000rpm、給液量=1.5L/h、入り口温度=200℃、出口温度=140℃、サイクロン差圧=80mmH
その結果、75gの造粒粒子を回収した。平均粒径は、44.5μmであった。形状は扁平体であった。M/Lが0.8以上1.0以下の粒子は42%であった。また、噴霧造粒装置の乾燥室内への付着も多かった。得られた粒子のSEM観察図を図2に示す。扁平な形状であることがわかる。
(Comparative Example 1)
In Example 1 (granulation of fine particles), granulation was performed by changing the spray granulation conditions. The operating conditions are as follows.
Operating conditions: atomizer rotation speed 7000 rpm, liquid supply amount = 1.5 L / h, inlet temperature = 200 ° C., outlet temperature = 140 ° C., cyclone differential pressure = 80 mmH 2 O
As a result, 75 g of granulated particles were recovered. The average particle size was 44.5 μm. The shape was a flat body. The number of particles having an M / L of 0.8 or more and 1.0 or less was 42%. In addition, the spray granulator was often attached to the drying chamber. The SEM observation figure of the obtained particle | grains is shown in FIG. It can be seen that the shape is flat.

(実施例4)
(1)触媒の調製
以下の操作は、不活性ガス下、脱酸素、脱水処理された溶媒、モノマーを使用して実施した。イオン交換性層状珪酸塩の造粒品は減圧下、200℃で、2時間乾燥を実施した。
内容積1リットルの攪拌翼のついたガラス製反応器に実施例1で得た造粒粒子10gを導入し、ノルマルヘプタン、さらにトリイソブチルアルミニウムのヘプタン溶液(25mmol)を加え、室温で攪拌した。1時間後、ヘプタンにて十分に洗浄し、スラリーを100mlに調製した。
次に、あらかじめ(r)−ジメチルシリレンビス{1−[2―エチル−4−(2−フルオロ−4−ビフェニル)−4H−アズレニル]}ハフニウムジクロリド0.30mmolに混合トルエン43mlを加え1時間以上撹拌した後に、トリイソブチルアルミニウムを1.5mmol(ヘプタン溶液,2.13ml)を室温にて1時間反応させておいた混合液を、造粒粒子スラリーに加え、1時間攪拌した。
(2)予備重合
続いて、窒素で十分置換を行った内容積1.0リットルの攪拌式オートクレーブに混合ヘプタン105mlを導入し、40℃に保持した。そこに先に調製した造粒粒子/錯体スラリーを導入した。温度が40℃に安定したところでプロピレンを10g/時間の速度で供給し、温度を維持した。2時間後、プロピレンの供給を停止し、さらに2時間維持した。サイホンにて予備重合触媒スラリーを回収し、上澄みを約100ml除き、40℃にて減圧下乾燥した。この操作により触媒1g当たりポリプロピレンが2.0gを含む予備重合触媒が得られた。
(3)重合
内容積3リットルの撹拌式オ−トクレ−ブ内をプロピレンで十分置換した後に、トリイソブチルアルミニウム・n−ヘプタン溶液2.76ml(2.02mmol)を加え、エチレン30g、水素100cc、続いて液体プロピレン1500mlを導入し、70℃に昇温しその温度を維持した。先に実施した予備重合触媒をノルマルヘプタンにスラリー化し、触媒として(予備重合ポリマーの重量は除く)10mgを圧入し重合を開始した。槽内温度を70℃に維持した。60分後、エタノール5mlを加え、残ガスをパージして得られたポリマ−を乾燥した。その結果、220gのポリマ−が得られた。触媒活性は、22000g−PP/g−触媒・時であった。ポリマーBD=0.41(g/cc)、MFR=22.8(dg/分)、融点は135.1℃であった。重合パウダーの粒径は、2.3mmで、球形であり、微粉はなかった。
Example 4
(1) Preparation of catalyst The following operations were carried out under inert gas using deoxygenated and dehydrated solvents and monomers. The granulated product of the ion exchange layered silicate was dried at 200 ° C. under reduced pressure for 2 hours.
10 g of the granulated particles obtained in Example 1 were introduced into a glass reactor equipped with a stirring blade having an internal volume of 1 liter, normal heptane and further a heptane solution (25 mmol) of triisobutylaluminum were added, and the mixture was stirred at room temperature. After 1 hour, the slurry was thoroughly washed with heptane to prepare a slurry of 100 ml.
Next, 43 ml of mixed toluene was added to 0.30 mmol of (r) -dimethylsilylenebis {1- [2-ethyl-4- (2-fluoro-4-biphenyl) -4H-azulenyl]} hafnium dichloride in advance for 1 hour or more. After stirring, a mixed solution in which 1.5 mmol of triisobutylaluminum (heptane solution, 2.13 ml) was allowed to react at room temperature for 1 hour was added to the granulated particle slurry and stirred for 1 hour.
(2) Preliminary polymerization Subsequently, 105 ml of mixed heptane was introduced into a stirring autoclave having an internal volume of 1.0 liter sufficiently substituted with nitrogen and maintained at 40 ° C. The previously prepared granulated particle / complex slurry was introduced there. When the temperature was stabilized at 40 ° C., propylene was supplied at a rate of 10 g / hour to maintain the temperature. After 2 hours, the propylene feed was stopped and maintained for another 2 hours. The prepolymerized catalyst slurry was recovered with a siphon, and about 100 ml of the supernatant was removed, followed by drying at 40 ° C. under reduced pressure. By this operation, a prepolymerized catalyst containing 2.0 g of polypropylene per 1 g of catalyst was obtained.
(3) Polymerization After the inside of a stirred autoclave with an internal volume of 3 liters was sufficiently substituted with propylene, 2.76 ml (2.02 mmol) of a triisobutylaluminum / n-heptane solution was added, and 30 g of ethylene, 100 cc of hydrogen, Subsequently, 1500 ml of liquid propylene was introduced and the temperature was raised to 70 ° C. to maintain the temperature. The preliminarily preliminarily polymerized catalyst was slurried in normal heptane, and 10 mg of the catalyst (excluding the weight of the prepolymerized polymer) was injected to initiate the polymerization. The bath temperature was maintained at 70 ° C. After 60 minutes, 5 ml of ethanol was added, and the polymer obtained by purging the residual gas was dried. As a result, 220 g of a polymer was obtained. The catalytic activity was 22000 g-PP / g-catalyst · hour. Polymer BD = 0.41 (g / cc), MFR = 22.8 (dg / min), and melting point was 135.1 ° C. The particle size of the polymer powder was 2.3 mm, was spherical, and there was no fine powder.

(実施例5)
(1)エチレン−プロピレンのブロック重合
内容積3リットルの撹拌式オ−トクレ−ブ内をプロピレンで十分置換した後に、トリイソブチルアルミニウム・n−ヘプタン溶液2.76ml(2.02mmol)を加え、水素150cc、続いて液体プロピレン1500mlを導入し、65℃に昇温しその温度を維持した。実施例4で調製した予備重合触媒をノルマルヘプタンにスラリー化し、触媒として(予備重合ポリマーの重量は除く)30mgを圧入し重合を開始した。槽内温度を65℃に維持した。触媒導入後、水素を150ml圧入した。触媒投入後1時間経過後に、残モノマーをパージし内温を40℃に下げた。その後、プロピレンを0.92MPa、続いてエチレンを1.38MPa導入し、内温を80℃に昇温した。その後、予め調製しておいたプロピレンとエチレンの混合ガスを導入し、内圧が2.5MPaで重合中にモノマー組成比が変化しないように調整しながら、40分間重合反応を制御した。その結果、反応器、撹拌翼等への付着が全くなく、粒子性状の良い250gのエチレン−プロピレンブロックポリマーが得られた。触媒活性は、8300g−PP/g−触媒であった。ポリマーBD=0.43(g/cc)、MFR=18.2(dg/分)、ポリマーの平均粒径は1.8mmであった。CXS可溶分量は37.5%であった。ゴム含量が非常に高いにもかかわらず粒子性状の良いポリマーが得られることが判った。
(Example 5)
(1) Block polymerization of ethylene-propylene After the inside of a stirred autoclave having an internal volume of 3 liters was sufficiently substituted with propylene, 2.76 ml (2.02 mmol) of a triisobutylaluminum / n-heptane solution was added and hydrogen was added. 150 cc and then 1500 ml of liquid propylene were introduced, and the temperature was raised to 65 ° C. to maintain the temperature. The prepolymerized catalyst prepared in Example 4 was slurried in normal heptane, and 30 mg of the catalyst (excluding the weight of the prepolymerized polymer) was injected to initiate polymerization. The tank temperature was maintained at 65 ° C. After introducing the catalyst, 150 ml of hydrogen was injected. One hour after the catalyst was added, the remaining monomer was purged and the internal temperature was lowered to 40 ° C. Thereafter, 0.92 MPa of propylene and then 1.38 MPa of ethylene were introduced, and the internal temperature was raised to 80 ° C. Thereafter, a previously prepared mixed gas of propylene and ethylene was introduced, and the polymerization reaction was controlled for 40 minutes while adjusting the internal pressure to be 2.5 MPa so that the monomer composition ratio did not change during the polymerization. As a result, 250 g of an ethylene-propylene block polymer having no particle adhesion and having good particle properties was obtained. The catalytic activity was 8300 g-PP / g-catalyst. Polymer BD = 0.43 (g / cc), MFR = 18.2 (dg / min), and the average particle size of the polymer was 1.8 mm. The amount of CXS solubles was 37.5%. It has been found that a polymer with good particle properties can be obtained despite the very high rubber content.

(比較例2)
比較例1で調製した造粒粒子を用い、実施例4と同様の方法で触媒の調製、予備重合、重合評価を実施した。その結果、180gのポリマ−が得られた。触媒活性は、18000g−PP/g−触媒・時であった。ポリマーBD=0.34(g/cc)、MFR=36.5(dg/分)、融点は136.1℃であった。重合パウダーの粒径は、2.4mmであるが、不定形で凝集体が多く、微粉が多く発生した。
(Comparative Example 2)
Using the granulated particles prepared in Comparative Example 1, catalyst preparation, preliminary polymerization, and polymerization evaluation were performed in the same manner as in Example 4. As a result, 180 g of a polymer was obtained. The catalytic activity was 18000 g-PP / g-catalyst · hour. Polymer BD = 0.34 (g / cc), MFR = 36.5 (dg / min), and melting point was 136.1 ° C. The particle size of the polymer powder was 2.4 mm, but it was irregular and had many aggregates and many fine powders were generated.

本発明によって、粒子性状に優れたオレフィン重合用触媒成分を製造することができる。本発明のオレフィン重合用触媒成分を用いれば、高い触媒活性で、大粒径で、形状が揃っており、流動性が良好なペレットと同等に扱うことのできる重合パウダーを製造することができる。   According to the present invention, a catalyst component for olefin polymerization having excellent particle properties can be produced. By using the catalyst component for olefin polymerization of the present invention, it is possible to produce a polymerized powder that can be handled in the same manner as a pellet having high catalytic activity, large particle size, uniform shape, and good fluidity.

実施例1で製造された粒子のSEM観察図SEM observation diagram of particles produced in Example 1 比較例1で製造された粒子のSEM観察図SEM observation diagram of particles produced in Comparative Example 1

Claims (5)

平均粒径が25〜200μmであり、M/L≧0.80(ただし、Lは投影図の粒子の最大径の値、MはLと直交する径の値を表す。)を満たす粒子数が全粒子数の50%以上を占めるイオン交換性層状珪酸塩粒子の噴霧造粒法による製造方法であって、少なくとも2段階に分けて造粒する工程を含み、第1段目造粒工程において、平均粒径が0.01〜5μmのイオン交換性層状珪酸塩微粒子を原料に用い、ディスク回転数10000〜30000rpmで平均粒径が1〜25μmの粒子を製造し、かつ、2次造粒のディスク回転数を1次造粒のディスク回転数より5000〜20000rpm低くすることを特徴とするイオン交換性層状珪酸塩粒子の製造方法。   The number of particles satisfying an average particle size of 25 to 200 μm and satisfying M / L ≧ 0.80 (where L is the maximum particle size value in the projected view and M is the diameter value perpendicular to L). It is a production method by spray granulation of ion-exchange layered silicate particles occupying 50% or more of the total number of particles, including a step of granulating in at least two stages, in the first-stage granulation step, Using ion-exchange layered silicate fine particles having an average particle diameter of 0.01 to 5 μm as raw materials, producing particles having an average particle diameter of 1 to 25 μm at a disk rotation speed of 10,000 to 30000 rpm, and secondary granulation disks A method for producing ion-exchangeable layered silicate particles, characterized in that the rotational speed is 5,000 to 20,000 rpm lower than the primary granulation disk rotational speed. 第1段目造粒工程で得られる粒子の平均粒径が1〜15μmであることを特徴とする請求項1記載のイオン交換性層状珪酸塩粒子の製造方法。   The method for producing ion-exchangeable layered silicate particles according to claim 1, wherein the average particle size of the particles obtained in the first stage granulation step is 1 to 15 µm. 圧壊強度が3〜15MPaであることを特徴とする請求項1または2記載のイオン交換性層状珪酸塩粒子の製造方法。 The method for producing ion-exchangeable layered silicate particles according to claim 1 or 2 , wherein the crushing strength is 3 to 15 MPa. イオン交換性層状珪酸塩粒子がスメクタイト族の珪酸塩粒子であることを特徴とする請求項1〜のいずれか1項に記載のイオン交換性層状珪酸塩粒子の製造方法。 The method for producing ion-exchange layered silicate particles according to any one of claims 1 to 3 , wherein the ion-exchange layered silicate particles are smectite group silicate particles. 請求項1〜のいずれか1項に記載のイオン交換性層状珪酸塩粒子からなることを特徴とするオレフィン重合用触媒成分。 A catalyst component for olefin polymerization, comprising the ion-exchangeable layered silicate particles according to any one of claims 1 to 4 .
JP2004154337A 2004-05-25 2004-05-25 Process for producing ion-exchangeable layered silicate particles, catalyst component for olefin polymerization using the same Expired - Lifetime JP4966482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154337A JP4966482B2 (en) 2004-05-25 2004-05-25 Process for producing ion-exchangeable layered silicate particles, catalyst component for olefin polymerization using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154337A JP4966482B2 (en) 2004-05-25 2004-05-25 Process for producing ion-exchangeable layered silicate particles, catalyst component for olefin polymerization using the same

Publications (2)

Publication Number Publication Date
JP2005335981A JP2005335981A (en) 2005-12-08
JP4966482B2 true JP4966482B2 (en) 2012-07-04

Family

ID=35489949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154337A Expired - Lifetime JP4966482B2 (en) 2004-05-25 2004-05-25 Process for producing ion-exchangeable layered silicate particles, catalyst component for olefin polymerization using the same

Country Status (1)

Country Link
JP (1) JP4966482B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866588B2 (en) * 2005-10-12 2012-02-01 日本ポリプロ株式会社 Olefin polymerization catalyst carrier and olefin polymerization catalyst component using the same
JP5508660B2 (en) * 2006-12-28 2014-06-04 日本ポリプロ株式会社 Ion exchange layered silicate particles and production method thereof, olefin polymerization catalyst comprising the same, and production method of olefin polymer using the same
JP5201940B2 (en) * 2007-10-18 2013-06-05 日本ポリプロ株式会社 Propylene polymer production method
JP2011148675A (en) * 2009-05-15 2011-08-04 Akebono Brake Ind Co Ltd Powder particle, method for producing the same and friction material using the powder particle
JP7104656B2 (en) * 2018-04-25 2022-07-21 Jfeミネラル株式会社 How to make halloysite powder and halloysite powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328311A (en) * 1996-05-31 1997-12-22 Mitsubishi Chem Corp Spherical granules of ion-exchanging laminar silicate and their production
JP4244403B2 (en) * 1998-06-11 2009-03-25 三菱化学株式会社 Catalyst component or catalyst for propylene polymerization

Also Published As

Publication number Publication date
JP2005335981A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP2006316160A (en) Method for preservation of olefin polymerization catalyst
JP4244403B2 (en) Catalyst component or catalyst for propylene polymerization
JP4866588B2 (en) Olefin polymerization catalyst carrier and olefin polymerization catalyst component using the same
JP4491117B2 (en) Olefin polymerization catalyst and method for producing polyolefin using the same
JP2018111841A (en) Catalyst component for olefin polymerization, catalyst for olefin polymerization and manufacturing method of olefin (co)polymer using the same
JP5520865B2 (en) Method for producing layered silicate particles and method for producing olefin polymerization catalyst using the same
JP2002069116A (en) Catalyst for propylene polymerization and method for producing propylene polymer using the same
JP4106221B2 (en) Method for producing catalyst component for olefin polymerization
JP2002020415A (en) Olefin polymerization catalyst and method for producing olefin polymer
JP4966482B2 (en) Process for producing ion-exchangeable layered silicate particles, catalyst component for olefin polymerization using the same
JP5870802B2 (en) Olefin polymerization catalyst component, olefin polymerization catalyst and polyolefin production method using the same
JP2003105029A (en) Olefin polymer and its production process
JP5794189B2 (en) Olefin polymerization catalyst component and process for producing the same, olefin polymerization catalyst and process for producing polyolefin using the same
JP4820472B2 (en) Olefin polymerization catalyst component, olefin polymerization catalyst and polyolefin production method using the same
JP4794246B2 (en) Method for producing catalyst carrier for olefin polymerization, catalyst component for olefin polymerization using the same
JP3914739B2 (en) Olefin polymerization catalyst and method for producing polyolefin
JP7092002B2 (en) A method for producing a catalyst component for olefin polymerization, a method for producing a catalyst for olefin polymerization, and a method for producing an olefin polymer using the same.
JP2006312748A (en) Catalyst for olefin polymerization and method of polyolefin production
JP2004051715A (en) Olefin polymerization catalyst and process for producing polyolefin
JP6136852B2 (en) Olefin polymerization catalyst component, catalyst component production method, olefin polymerization catalyst and olefin (co) polymer production method using the same
JP2002284808A (en) Olefin polymerization catalyst and production method for polyolefin
JP2000080117A (en) Preparation of olefin polymerization catalyst component
JP2003105015A (en) Catalyst component for olefin polymerization
JP2012126084A (en) Clay mineral particle and method of producing the same, and olefin polymerization catalyst using the same
JP2003252924A (en) Component for olefin polymerization catalyst, olefin polymerization catalyst and method for producing polyolefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4966482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250