JP4965469B2 - Brake control device for vehicle - Google Patents

Brake control device for vehicle Download PDF

Info

Publication number
JP4965469B2
JP4965469B2 JP2008009998A JP2008009998A JP4965469B2 JP 4965469 B2 JP4965469 B2 JP 4965469B2 JP 2008009998 A JP2008009998 A JP 2008009998A JP 2008009998 A JP2008009998 A JP 2008009998A JP 4965469 B2 JP4965469 B2 JP 4965469B2
Authority
JP
Japan
Prior art keywords
pressure
braking
control
wheel
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008009998A
Other languages
Japanese (ja)
Other versions
JP2008132984A (en
Inventor
千章 濱田
陽文 堂浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Toyota Motor Corp
Original Assignee
Advics Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd, Toyota Motor Corp filed Critical Advics Co Ltd
Priority to JP2008009998A priority Critical patent/JP4965469B2/en
Publication of JP2008132984A publication Critical patent/JP2008132984A/en
Application granted granted Critical
Publication of JP4965469B2 publication Critical patent/JP4965469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a braking apparatus with a so-called X-shaped piping, capable of, when performing an antiskid control during a braking force distribution control of front and rear wheels, preventing a braking pressure of the rear wheels from becoming unnecessarily high to improve traveling stability of a vehicle. <P>SOLUTION: When a holding pressure Pc of the rear wheel is calculated based on a vehicle speed V and a deceleration Gxb of the vehicle (S50 to S70) and a starting condition of the braking force distribution control of the front and rear wheels is established (S60 and S70), an increased pressure &Delta;Pf of the braking pressure of the front wheel is calculated based on a deviation Pm-Pc of a master cylinder pressure Pm and the holding pressure Pc of the rear wheel (S150 and S160), the braking pressure of the front wheel is controlled to be the sum of the master cylinder pressure Pm and the increased pressure &Delta;Pf (S170), and the braking pressure of the rear wheel is controlled to be the holding pressure Pc (S190). When the antiskid control is started during the braking force distribution control of the front and rear wheels (S90), the increased pressure &Delta;Pf of the braking pressure of the front wheel is gradually reduced (S100 and 130), and the holding pressure Pc of the braking pressure of the rear wheel is gradually increased (S180 and S200). <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、自動車等の車輌の制動制御装置に係り、更に詳細には前後輪の制動力配分制御を行う車輌の制動制御装置に係る。   The present invention relates to a braking control device for a vehicle such as an automobile, and more particularly to a braking control device for a vehicle that performs braking force distribution control of front and rear wheels.

自動車等の車輌の制動制御装置の一つとして、車輌の制動時に後輪がロックすることを防止して車輌の走行安定性を向上させるべく、車輌の運転状態が所定の状態になると後輪の制動圧を保持又は減圧し或いはパルス増圧して後輪の制動力の上昇を抑制する前後輪制動力配分制御を行うよう構成された制動制御装置が従来より知られている。   As one of the braking control devices for vehicles such as automobiles, when the driving state of the vehicle reaches a predetermined state in order to prevent the rear wheels from locking when the vehicle is braked and to improve the running stability of the vehicle, 2. Description of the Related Art Conventionally, a braking control device configured to perform front and rear wheel braking force distribution control that suppresses an increase in braking force of a rear wheel by holding or reducing a braking pressure or increasing a pulse is known.

この種の制動制御装置によれば、前後輪制動力配分制御が行われない場合に比して、後輪が前輪よりも先行してロック状態になること及びこれに起因して車輌の安定性が悪化することを防止して車輌の走行安定性を向上させることができるが、前後輪制動力配分制御が実行されると後輪の制動力の上昇が抑制されるため、運転者が制動力を高くしようとして制動操作量を増大させても車輌全体としての制動力が十分に上昇せず、運転者が制動操作に違和感を感じることがある。   According to this type of braking control device, the rear wheels are locked before the front wheels and the stability of the vehicle due to this compared to the case where front and rear wheel braking force distribution control is not performed. However, when the front and rear wheel braking force distribution control is executed, the increase in the braking force of the rear wheels is suppressed, so that the driver can increase the braking force. Even if the amount of braking operation is increased to increase the braking force, the braking force of the vehicle as a whole is not sufficiently increased, and the driver may feel uncomfortable with the braking operation.

かかる問題を解消すべく、例えば本願出願人の出願にかかる下記の特許文献1には、マスタシリンダの作動液圧を各車輪に対応して設けられた制動力発生装置のホイールシリンダへ供給することにより制動力を発生し、車輌の運転状態が所定の状態になると後輪の制動力の上昇を抑制する前後輪制動力配分制御を行う車輌の制動制御装置であって、前後輪制動力配分制御が行われているときには後輪の制動力の上昇抑制量に応じて前輪の制動力を増加させるよう構成された制動制御装置が記載されている。
特願2001−360510号明細書及び図面
In order to solve this problem, for example, in the following Patent Document 1 relating to the application of the present applicant, the hydraulic fluid pressure of the master cylinder is supplied to the wheel cylinder of the braking force generator provided corresponding to each wheel. A vehicle braking control device that performs front / rear wheel braking force distribution control that suppresses an increase in the braking force of the rear wheels when a vehicle driving state reaches a predetermined state. There is described a braking control device configured to increase the braking force of the front wheels in accordance with the amount of suppression of the increase in braking force of the rear wheels.
Japanese Patent Application No. 2001-360510 Specification and Drawing

上記先の出願にかかる制動制御装置によれば、前後輪制動力配分制御が行われているときには後輪の制動力の上昇抑制量に応じて前輪の制動力が増加されるので、前後輪制動力配分制御が行われ後輪の制動力の上昇が抑制されることによる後輪の制動力の不足分を確実に前輪の制動力の増大によって補填することができ、従って後輪が前輪よりも先行してロック状態になること及びこれに起因して車輌の安定性が悪化することを確実に防止しつつ車輌全体としての制動力を効果的に運転者の制動操作量に応じた制動力に制御することができる。   According to the braking control device of the previous application, when the front and rear wheel braking force distribution control is performed, the braking force of the front wheel is increased according to the amount of increase in the braking force of the rear wheel. The power distribution control is performed and the increase in the braking force of the rear wheel is suppressed, so that the shortage of the braking force of the rear wheel can be reliably compensated by the increase of the braking force of the front wheel. The braking force of the entire vehicle is effectively changed to the braking force corresponding to the amount of braking operation by the driver while reliably preventing the vehicle from being locked in advance and deteriorating the stability of the vehicle due to this. Can be controlled.

しかし制動圧(ホイールシリンダ圧力)を制御する増減圧制御弁を各車輪毎に有し、前輪に対応する前記増減圧制御弁の上流側と後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁と、右前輪に対応する前記増減圧制御弁の上流側と左後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁とを有する制動装置を備え、車輌の運転状態が所定の状態になると後輪の制動圧を前輪の制動圧よりも低くする前後輪制動力配分制御を行い、前後輪制動力配分制御の開始後に運転者による制動操作量が増大されたときには前記制御弁によりブレーキ油圧制御導管内の圧力を増大させて制動操作量の増大量に応じて前輪の制動圧を増大させる制動力増大制御を行い、前後輪制動力配分制御が行われている状況に於いて前輪についてアンチスキッド制御が行われると、前輪のアンチスキッド制御に応じてブレーキ油圧制御導管内の油圧が一時的に急上昇し、後輪の制動圧が急上昇するので、前後輪制動力配分制御が行われている状況に於いては、後輪はスリップ限界に近い状態にあることから、後輪が滑って車輌の走行が不安定になり易いという問題がある。 However, each wheel has a pressure increasing / decreasing control valve for controlling the braking pressure (wheel cylinder pressure), and upstream of the pressure increasing / decreasing control valve corresponding to the left front wheel and upstream of the pressure increasing / decreasing control valve corresponding to the right rear wheel. A control valve for controlling the pressure in the brake hydraulic control conduit communicating with the side, and an upstream side of the pressure increasing / reducing control valve corresponding to the right front wheel and a upstream side of the pressure increasing / reducing control valve corresponding to the left rear wheel And a braking device having a control valve for controlling the pressure in the brake hydraulic pressure control conduit, and the front-rear wheel braking force distribution that lowers the braking pressure of the rear wheels below the braking pressure of the front wheels when the driving state of the vehicle reaches a predetermined state When the amount of braking operation by the driver is increased after starting the front and rear wheel braking force distribution control, the pressure in the brake hydraulic control conduit is increased by the control valve, and the front wheel is controlled according to the amount of increase in the braking operation amount. Braking to increase braking pressure When anti-skid control is performed on the front wheels in the situation where the front and rear wheel braking force distribution control is performed with the increase control, the hydraulic pressure in the brake hydraulic control conduit temporarily rises temporarily according to the anti-skid control of the front wheels However, since the rear wheel braking pressure rises rapidly, the rear wheel slips near the slip limit in the situation where the front and rear wheel braking force distribution control is performed. There is a problem that tends to become unstable.

本発明は、各車輪毎に設けられ対応する車輪の制動圧を制御する増減圧制御弁と、前輪に対応する前記増減圧制御弁の上流側と後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁と、右前輪に対応する前記増減圧制御弁の上流側と左後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁とを有する制動装置を備えた車輌であって、車輌の運転状態が所定の状態になると後輪の制動力の上昇を抑制すると共に後輪の制動力の上昇抑制量に応じて前輪の制動力を増加させる前後輪制動力配分制御を行い、前後輪制動力配分制御の開始後に運転者による制動操作量が増大されたときには前記制御弁によりブレーキ油圧制御導管内の圧力を増大させて前記制動操作量の増大量に応じて前輪の制動圧を増大させる制動力増大制御を行うよう構成された制動制御装置に於いて、前後輪制動力配分制御の実行中に運転者による制動操作量の増大量に応じて前輪の制動圧を増大させているとき前輪についてアンチスキッド制御が行われるときの上述の問題に鑑みてなされたものであり、本発明の主要な課題は、そのような制動装置と制動制御装置を備えた車輌に於いて、前後輪制動力配分制御が行われている状況に於いてアンチスキッド制御が行われる場合の車輌の走行安定性を向上させることである。 The present invention provides an increase / decrease control valve provided for each wheel for controlling the braking pressure of the corresponding wheel, and the increase / decrease control valve corresponding to the upstream side of the increase / decrease control valve corresponding to the left front wheel and the right rear wheel. A control valve for controlling the pressure in the brake hydraulic control conduit communicating with the upstream side of the upstream side, an upstream side of the pressure increasing / reducing control valve corresponding to the right front wheel, and an upstream side of the pressure increasing / reducing control valve corresponding to the left rear wheel; And a braking device having a control valve for controlling the pressure in the brake hydraulic pressure control conduit communicating with the vehicle, and when the driving state of the vehicle reaches a predetermined state, an increase in the braking force of the rear wheels is suppressed and The front and rear wheel braking force distribution control is performed to increase the braking force of the front wheels in accordance with the increase suppression amount of the braking force of the wheels, and when the braking operation amount by the driver is increased after the start of the front and rear wheel braking force distribution control, the control valve Increases the pressure in the brake hydraulic control conduit In the braking control device configured to perform the braking force increase control for increasing the braking pressure of the front wheels according to the increase amount of the braking operation amount, the braking by the driver during the execution of the front and rear wheel braking force distribution control is performed. The present invention has been made in view of the above-mentioned problem when the anti-skid control is performed on the front wheel when the braking pressure of the front wheel is increased in accordance with the increase amount of the operation amount. In a vehicle equipped with a braking device and a braking control device, the running stability of the vehicle is improved when anti-skid control is performed in a situation where front and rear wheel braking force distribution control is performed.

上述の主要な課題は、本発明によれば、各車輪毎に設けられ対応する車輪の制動圧を制御する増減圧制御弁と、左前輪に対応する前記増減圧制御弁の上流側と右後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁と、右前輪に対応する前記増減圧制御弁の上流側と左後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁とを有する制動装置を備えた車輌の制動制御装置であって、車輌の運転状態が所定の状態になると後輪の制動圧を前輪の制動圧よりも低くする前後輪制動力配分制御を行い、前記前後輪制動力配分制御の開始後に運転者による制動操作量が増大されたときには前記制御弁によりブレーキ油圧制御導管内の圧力を増大させて前記制動操作量の増大量に応じて前輪の制動圧を増大させる制動力増大制御を行い、前記前後輪制動力配分制御の実行中に運転者による制動操作量の増大量に応じて前輪の制動圧を増大させているとき前輪についてアンチスキッド制御が行われるときには前記制御弁によ前記ブレーキ油圧制御導管内の圧力を漸減することを特徴とする車輌の制動制御装置によって達成される。 According to the present invention, the main problems described above are the pressure increasing / decreasing control valve provided for each wheel and controlling the braking pressure of the corresponding wheel, and the upstream side and the right rear side of the pressure increasing / decreasing control valve corresponding to the left front wheel. A control valve for controlling the pressure in the brake hydraulic control conduit communicating with the upstream side of the pressure increasing / reducing control valve corresponding to the wheel, and the upstream side of the pressure increasing / reducing control valve corresponding to the right front wheel and the left rear wheel A braking control device for a vehicle comprising a braking device having a control valve for controlling a pressure in a brake hydraulic control conduit communicating with an upstream side of the pressure increasing / decreasing control valve, wherein the vehicle operating state is brought into a predetermined state. In this case, front and rear wheel braking force distribution control is performed so that the braking pressure of the rear wheels is lower than the braking pressure of the front wheels. When the amount of braking operation by the driver is increased after the start of the front and rear wheel braking force distribution control, the control valve Increase the pressure in the hydraulic control conduit Brake force increase control is performed to increase the braking pressure of the front wheels according to the increase amount of the braking operation amount, and braking of the front wheels is performed according to the increase amount of the brake operation amount by the driver during the execution of the front and rear wheel braking force distribution control. is achieved by a vehicle braking control device, characterized by decreasing the pressure of the control valve by Ri said brake hydraulic pressure control conduit on when the front wheel antiskid control is performed for when to increase the pressure.

上記の構成によれば、各車輪毎に設けられ対応する車輪の制動圧を制御する増減圧制御弁と、左前輪に対応する前記増減圧制御弁の上流側と右後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁と、右前輪に対応する前記増減圧制御弁の上流側と左後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁とを有する制動装置を備えた車輌の制動制御装置であって、車輌の運転状態が所定の状態になると後輪の制動圧を前輪の制動圧よりも低くする前後輪制動力配分制御を行い、前記前後輪制動力配分制御の開始後に運転者による制動操作量が増大されたときには前記制御弁によりブレーキ油圧制御導管内の圧力を増大させて前記制動操作量の増大量に応じて前輪の制動圧を増大させる制動力増大制御を行い、前後輪制動力配分制御の実行中に運転者による制動操作量の増大量に応じて前輪の制動圧を増大させているとき前輪についてアンチスキッド制御が行われるときには前記制御弁によ前記ブレーキ油圧制御導管内の圧力を漸減されるので、前後輪制動力配分制御が行われ且つ運転者による制動操作量の増大量に応じて前輪の制動圧を増大させるアシスト制動が行なわれているとき、前輪についてアンチスキッド制御が行われても、前輪のアンチスキッド制御に応じてブレーキ油圧制御導管内の油圧が一時的に急上昇して後輪の制動圧が急上昇することが回避され、前後輪制動力配分制御が行われている状況にあって、後輪がスリップ限界に近い状態にあっても、後輪が滑って車輌の走行が不安定になる虞れはなくなる。 According to the above configuration, the increase / decrease control valve provided for each wheel to control the braking pressure of the corresponding wheel, and the increase / decrease corresponding to the upstream side of the increase / decrease control valve corresponding to the left front wheel and the right rear wheel. A control valve that controls the pressure in the brake hydraulic control conduit that communicates with the upstream side of the pressure control valve, and the pressure increase / reduction control valve that corresponds to the upstream side of the pressure increase / reduction control valve corresponding to the right front wheel and the pressure increase / reduction control valve corresponding to the left rear wheel. A braking control device for a vehicle having a braking device having a control valve for controlling a pressure in a brake hydraulic pressure control conduit communicating with an upstream side, wherein the braking pressure of a rear wheel is set when a driving state of the vehicle becomes a predetermined state. When the braking operation amount by the driver is increased after the start of the front and rear wheel braking force distribution control, the control valve controls the pressure in the brake hydraulic control conduit. Increasing the braking operation amount The braking force increase control is performed to increase the braking pressure of the front wheels according to the increase amount, and the braking pressure of the front wheels is increased according to the increase amount of the braking operation amount by the driver during the execution of the front and rear wheel braking force distribution control. because when the anti-skid control is performed for the front wheels is gradually reduced pressure in by Ri the brake pressure control line to the control valve, increase the amount of the amount of braking operation performed by the front and rear wheel braking force distribution control is performed and the driver when Accordingly, when assist braking that increases the braking pressure of the front wheels is being performed, even if anti-skid control is performed on the front wheels, the hydraulic pressure in the brake hydraulic control conduit temporarily increases rapidly according to the anti-skid control of the front wheels. Therefore, even if the rear wheel braking pressure distribution control is avoided and the rear wheel is close to the slip limit, the rear wheel slips. Possibility that the running of the vehicle becomes unstable will not.

以下に添付の図面を参照して本発明を好ましい実施の形態(以下単に実施形態という)について詳細に説明する。   Hereinafter, preferred embodiments of the present invention (hereinafter simply referred to as embodiments) will be described in detail with reference to the accompanying drawings.

図1は本発明による制動制御装置の一つの実施形態の油圧回路及び電子制御装置を示す概略構成図、図2は図1に示された前輪用の連通制御弁を示す解図的断面図である。尚図1に於いては、電磁的に駆動される各弁のソレノイドの図示は省略されている。   FIG. 1 is a schematic configuration diagram showing a hydraulic circuit and an electronic control device of one embodiment of a braking control device according to the present invention, and FIG. 2 is an illustrative sectional view showing a front wheel communication control valve shown in FIG. is there. In FIG. 1, the solenoid of each valve that is electromagnetically driven is not shown.

図1に於いて、10は油圧式の制動装置を示しており、制動装置10は運転者によるブレーキペダル12の踏み込み操作に応答してブレーキオイルを圧送するマスタシリンダ14を有している。マスタシリンダ14はその両側の圧縮コイルばねにより所定の位置に付勢されたフリーピストン16により画成された第一のマスタシリンダ室14Aと第二のマスタシリンダ室14Bとを有している。   In FIG. 1, reference numeral 10 denotes a hydraulic braking device, and the braking device 10 has a master cylinder 14 that pumps brake oil in response to a depression operation of a brake pedal 12 by a driver. The master cylinder 14 has a first master cylinder chamber 14A and a second master cylinder chamber 14B defined by free pistons 16 biased to predetermined positions by compression coil springs on both sides thereof.

第一のマスタシリンダ室14Aには第一のブレーキ油圧制御導管18Aの一端が接続され、ブレーキ油圧制御導管18Aの他端には左前輪用のブレーキ油圧制御導管20FL及び右後輪用のブレーキ油圧制御導管20RRの一端が接続されている。ブレーキ油圧制御導管18Aの途中には第一の連通制御弁22Aが設けられており、連通制御弁22Aは図示の実施形態に於いては常開型のリニアソレノイド弁である。連通制御弁22Aの両側のブレーキ油圧制御導管18Aには第一のマスタシリンダ室14Aよりブレーキ油圧制御導管20FL又はブレーキ油圧制御導管20RRへ向かうオイルの流れのみを許す逆止バイパス導管24Aが接続されている。   One end of a first brake hydraulic control conduit 18A is connected to the first master cylinder chamber 14A, and the brake hydraulic control conduit 20FL for the left front wheel and the brake hydraulic pressure for the right rear wheel are connected to the other end of the brake hydraulic control conduit 18A. One end of the control conduit 20RR is connected. A first communication control valve 22A is provided in the middle of the brake hydraulic pressure control conduit 18A, and the communication control valve 22A is a normally open linear solenoid valve in the illustrated embodiment. Connected to the brake hydraulic control conduits 18A on both sides of the communication control valve 22A are check bypass conduits 24A that permit only the flow of oil from the first master cylinder chamber 14A toward the brake hydraulic control conduit 20FL or the brake hydraulic control conduit 20RR. Yes.

図2に解図的に図示されている如く、連通制御弁22Aは内部に弁室70を郭定するハウジング72を有し、弁室70には弁要素74が往復動可能に配置されている。弁室70にはブレーキ油圧制御導管18Aのマスタシリンダ14の側の部分18AAが内部通路76を介して常時連通接続され、またブレーキ油圧制御導管18Aのマスタシリンダ14とは反対側の部分18ABが内部通路78及びポート80を介して連通接続されている。   As shown schematically in FIG. 2, the communication control valve 22A has a housing 72 that defines a valve chamber 70 therein, and a valve element 74 is disposed in the valve chamber 70 so as to be capable of reciprocating. . A portion 18AA of the brake hydraulic control conduit 18A on the master cylinder 14 side is always connected to the valve chamber 70 via an internal passage 76, and a portion 18AB of the brake hydraulic control conduit 18A opposite to the master cylinder 14 is internally connected. A communication connection is established via a passage 78 and a port 80.

図示の如く、弁要素74の周りにはソレノイド82が配設されており、弁要素74は圧縮コイルばね84により図2に示された開弁位置へ付勢されている。弁要素74はソレノイド82に駆動電圧が印加されると、圧縮コイルばね84のばね力に抗してポート80に対し付勢され、これによりポート80を閉ざすことによって閉弁する。   As shown in the figure, a solenoid 82 is disposed around the valve element 74, and the valve element 74 is urged to a valve opening position shown in FIG. 2 by a compression coil spring 84. When a drive voltage is applied to the solenoid 82, the valve element 74 is urged against the port 80 against the spring force of the compression coil spring 84, thereby closing the port 80.

また連通制御弁22Aが閉弁位置にある状況に於いて、ブレーキ油圧制御導管18Aのマスタシリンダ14とは反対側の部分18AB内の圧力による力と圧縮コイルばね84のばね力との合計がソレノイド82による電磁力よりも高くなると、弁要素74はポート80より離れて該ポートを開き、部分18AB内のオイルが内部通路78、ポート80、弁室70、内部通路76を経てブレーキ油圧制御導管18Aの部分18AAへ流れる。そしてこのオイルの流動により部分18AB内のオイルの圧力が低下すると、その圧力による力と圧縮コイルばね84のばね力との合計がソレノイド82による電磁力よりも低くなり、弁要素74はポート80を再度閉ざす。   In the situation where the communication control valve 22A is in the closed position, the sum of the force caused by the pressure in the portion 18AB on the opposite side of the master cylinder 14 of the brake hydraulic control conduit 18A and the spring force of the compression coil spring 84 is the solenoid. When the electromagnetic force is increased by the valve 82, the valve element 74 opens away from the port 80, and the oil in the portion 18AB passes through the internal passage 78, the port 80, the valve chamber 70, the internal passage 76, and the brake hydraulic control conduit 18A. To the portion 18AA. When the oil pressure in the portion 18AB decreases due to this oil flow, the sum of the force by the pressure and the spring force of the compression coil spring 84 becomes lower than the electromagnetic force by the solenoid 82, and the valve element 74 causes the port 80 to Close again.

かくして連通制御弁22Aはそのソレノイド82に対する印加電圧に応じてブレーキ油圧制御導管18Aの部分18AB内の圧力を制御するので、ソレノイド82に対する駆動電圧を制御することによって連通制御弁22Aにより部分18AB内の圧力(本明細書に於いては「上流圧」という)を所望の圧力に制御することができる。   Thus, since the communication control valve 22A controls the pressure in the portion 18AB of the brake hydraulic control conduit 18A according to the voltage applied to the solenoid 82, the communication control valve 22A controls the pressure in the portion 18AB by controlling the driving voltage for the solenoid 82. The pressure (referred to herein as “upstream pressure”) can be controlled to a desired pressure.

尚図示の実施形態に於いては、図1に示された逆止バイパス導管24Aは連通制御弁22Aに内蔵されており、内部通路86と、該内部通路の途中に設けられ弁室70より部分18ABへ向かうオイルの流れのみを許す逆止弁88とよりなっている。   In the illustrated embodiment, the check bypass conduit 24A shown in FIG. 1 is built in the communication control valve 22A, and is provided with an internal passage 86 and a part from the valve chamber 70 provided in the middle of the internal passage. It consists of a check valve 88 that allows only the flow of oil toward 18AB.

左前輪用のブレーキ油圧制御導管20FL及び右後輪用のブレーキ油圧制御導管20RRの他端にはそれぞれ左前輪及び右後輪の制動力を発生する図1には示されていない制動力発生装置のホイールシリンダ26FL及び26RRが接続されており、左前輪用のブレーキ油圧制御導管20FL及び右後輪用のブレーキ油圧制御導管20RRの途中にはそれぞれ常開型の電磁開閉弁28FL及び28RRが設けられている。電磁開閉弁28FL及び28RRの両側のブレーキ油圧制御導管20FL及び20RRにはそれぞれホイールシリンダ26FL及び26RRよりブレーキ油圧制御導管18Aへ向かうオイルの流れのみを許す逆止バイパス導管30FL及び30RRが接続されている。   A braking force generator not shown in FIG. 1 generates braking forces for the left front wheel and the right rear wheel at the other ends of the brake hydraulic control conduit 20FL for the left front wheel and the brake hydraulic control conduit 20RR for the right rear wheel, respectively. Wheel cylinders 26FL and 26RR are connected, and normally open electromagnetic on-off valves 28FL and 28RR are provided in the middle of the brake hydraulic control conduit 20FL for the left front wheel and the brake hydraulic control conduit 20RR for the right rear wheel, respectively. ing. Connected to the brake hydraulic control conduits 20FL and 20RR on both sides of the electromagnetic on-off valves 28FL and 28RR are check bypass conduits 30FL and 30RR that permit only the flow of oil from the wheel cylinders 26FL and 26RR toward the brake hydraulic control conduit 18A, respectively. .

電磁開閉弁28FLとホイールシリンダ26FLとの間のブレーキ油圧制御導管20FLにはオイル排出導管32FLの一端が接続され、電磁開閉弁28RRとホイールシリンダ26RRとの間のブレーキ油圧制御導管20RRにはオイル排出導管32RRの一端が接続されている。オイル排出導管32FL及び32RRの途中にはそれぞれ常閉型の電磁開閉弁34FL及び34RRが設けられており、オイル排出導管32FL及び32RRの他端は接続導管36Aにより前輪用のバッファリザーバ38Aに接続されている。   One end of an oil discharge conduit 32FL is connected to the brake hydraulic control conduit 20FL between the electromagnetic on-off valve 28FL and the wheel cylinder 26FL, and oil is discharged to the brake hydraulic control conduit 20RR between the electromagnetic on-off valve 28RR and the wheel cylinder 26RR. One end of the conduit 32RR is connected. Normally closed solenoid valves 34FL and 34RR are provided in the middle of the oil discharge conduits 32FL and 32RR, respectively, and the other ends of the oil discharge conduits 32FL and 32RR are connected to a buffer reservoir 38A for the front wheel by a connection conduit 36A. ing.

以上の説明より解る如く、電磁開閉弁28FL及び28RRはそれぞれホイールシリンダ26FL及び26RR内の圧力を増圧又は保持するための増圧弁であり、電磁開閉弁34FL及び34RRはそれぞれホイールシリンダ26FL及び26RR内の圧力を減圧するための減圧弁であり、従って電磁開閉弁28FL及び34FLは互いに共働して左前輪のホイールシリンダ26FL内の圧力を増減し保持するための増減圧弁を郭定しており、電磁開閉弁28RR及び34RRは互いに共働して右後輪のホイールシリンダ26RR内の圧力を増減し保持するための増減圧弁を郭定している。   As understood from the above description, the electromagnetic on-off valves 28FL and 28RR are pressure-increasing valves for increasing or maintaining the pressure in the wheel cylinders 26FL and 26RR, respectively. The electromagnetic on-off valves 34FL and 34RR are in the wheel cylinders 26FL and 26RR, respectively. Therefore, the electromagnetic on-off valves 28FL and 34FL cooperate with each other to define an increasing / decreasing valve for increasing and decreasing the pressure in the wheel cylinder 26FL of the left front wheel, The electromagnetic on-off valves 28RR and 34RR cooperate with each other to define an increase / decrease valve for increasing and decreasing the pressure in the wheel cylinder 26RR of the right rear wheel.

接続導管36Aは接続導管40Aによりポンプ42Aの吸入側に接続されており、接続導管40Aの途中には接続導管36Aよりポンプ42Aへ向かうオイルの流れのみを許す二つの逆止弁44A及び46Aが設けられている。ポンプ42Aの吐出側は途中にダンパ48Aを有する接続導管50Aによりブレーキ油圧制御導管18Aに接続されている。ポンプ42Aとダンパ48Aとの間の接続導管50Aにはポンプ42Aよりダンパ48Aへ向かうオイルの流れのみを許す逆止弁52Aが設けられている。   The connecting conduit 36A is connected to the suction side of the pump 42A by a connecting conduit 40A, and two check valves 44A and 46A that allow only the flow of oil from the connecting conduit 36A to the pump 42A are provided in the connecting conduit 40A. It has been. The discharge side of the pump 42A is connected to the brake hydraulic pressure control conduit 18A by a connection conduit 50A having a damper 48A on the way. The connection conduit 50A between the pump 42A and the damper 48A is provided with a check valve 52A that allows only the flow of oil from the pump 42A toward the damper 48A.

二つの逆止弁44A及び46Aの間の接続導管40Aには接続導管54Aの一端が接続されており、接続導管54Aの他端は第一のマスタシリンダ室14Aと制御弁22Aとの間のブレーキ油圧制御導管18Aに接続されている。接続導管54Aの途中には常閉型の電磁開閉弁60Aが設けられている。この電磁開閉弁60Aはマスタシリンダ14と制御弁22Aとの間のブレーキ油圧制御導管18Aとポンプ42Aの吸入側との連通を制御する吸入制御弁として機能する。   One end of a connection conduit 54A is connected to the connection conduit 40A between the two check valves 44A and 46A, and the other end of the connection conduit 54A is a brake between the first master cylinder chamber 14A and the control valve 22A. It is connected to the hydraulic control conduit 18A. A normally closed electromagnetic on-off valve 60A is provided in the middle of the connecting conduit 54A. The electromagnetic on-off valve 60A functions as a suction control valve that controls communication between the brake hydraulic pressure control conduit 18A between the master cylinder 14 and the control valve 22A and the suction side of the pump 42A.

同様に、第二のマスタシリンダ室14Bには第二のブレーキ油圧制御導管18Bの一端が接続され、ブレーキ油圧制御導管18Bの他端には左後輪用のブレーキ油圧制御導管20RL及び右前輪用のブレーキ油圧制御導管20FRの一端が接続されている。ブレーキ油圧制御導管18Bの途中には常開型のリニアソレノイド弁である後輪用の連通制御弁22Bが設けられている。   Similarly, one end of a second brake hydraulic control conduit 18B is connected to the second master cylinder chamber 14B, and the brake hydraulic control conduit 20RL for the left rear wheel and the right front wheel are connected to the other end of the brake hydraulic control conduit 18B. One end of the brake hydraulic pressure control conduit 20FR is connected. A rear wheel communication control valve 22B, which is a normally open linear solenoid valve, is provided in the middle of the brake hydraulic control conduit 18B.

連通制御弁22Bは第一の連通制御弁22Aについて図2に示された構造と同一の構造を有しており、従って図には示されていないソレノイドに対する駆動電圧を制御することにより、連通制御弁22Bより下流側のブレーキ油圧制御導管18B内の圧力(上流圧)を所望の圧力に制御することができる。更に連通制御弁22Bの両側のブレーキ油圧制御導管18Bには第二のマスタシリンダ室14Bよりブレーキ油圧制御導管20RL又はブレーキ油圧制御導管20FRへ向かうオイルの流れのみを許す逆止バイパス導管24Bが接続されている。   The communication control valve 22B has the same structure as that shown in FIG. 2 for the first communication control valve 22A. Therefore, the communication control valve 22B controls the drive voltage for the solenoid not shown in the figure, thereby controlling the communication. The pressure (upstream pressure) in the brake hydraulic pressure control conduit 18B downstream of the valve 22B can be controlled to a desired pressure. Further, a check bypass conduit 24B that allows only the flow of oil from the second master cylinder chamber 14B toward the brake hydraulic control conduit 20RL or the brake hydraulic control conduit 20FR is connected to the brake hydraulic control conduit 18B on both sides of the communication control valve 22B. ing.

左後輪用のブレーキ油圧制御導管20RL及び右前輪用のブレーキ油圧制御導管20FRの他端にはそれぞれ左後輪及び右後輪の制動力を発生する図1には示されていない制動力発生装置のホイールシリンダ26RL及び26FRが接続されており、左後輪用のブレーキ油圧制御導管20RL及び右前輪用のブレーキ油圧制御導管20FRの途中にはそれぞれ常開型の電磁開閉弁28RL及び28FRが設けられている。電磁開閉弁28RL及び28FRの両側のブレーキ油圧制御導管20RL及び20FRにはそれぞれホイールシリンダ26RL及び26FRよりブレーキ油圧制御導管18Bへ向かうオイルの流れのみを許す逆止バイパス導管30RL及び30FRが接続されている。   A brake force generation not shown in FIG. 1 is generated at the other ends of the brake hydraulic control conduit 20RL for the left rear wheel and the brake hydraulic control conduit 20FR for the right front wheel, respectively. The wheel cylinders 26RL and 26FR of the apparatus are connected, and normally open type electromagnetic on-off valves 28RL and 28FR are provided in the middle of the brake hydraulic control conduit 20RL for the left rear wheel and the brake hydraulic control conduit 20FR for the right front wheel, respectively. It has been. Connected to the brake hydraulic control conduits 20RL and 20FR on both sides of the electromagnetic on-off valves 28RL and 28FR are check bypass conduits 30RL and 30FR that permit only the flow of oil from the wheel cylinders 26RL and 26FR toward the brake hydraulic control conduit 18B, respectively. .

電磁開閉弁28RLとホイールシリンダ26RLとの間のブレーキ油圧制御導管20RLにはオイル排出導管32RLの一端が接続され、電磁開閉弁28FRとホイールシリンダ26FRとの間のブレーキ油圧制御導管20FRにはオイル排出導管32FRの一端が接続されている。オイル排出導管32RL及び32FRの途中にはそれぞれ常閉型の電磁開閉弁34RL及び34FRが設けられており、オイル排出導管32RL及び32FRの他端は接続導管36Bより後輪用のバッファリザーバ38Bに接続されている。   One end of an oil discharge conduit 32RL is connected to the brake hydraulic control conduit 20RL between the electromagnetic on-off valve 28RL and the wheel cylinder 26RL, and oil is discharged to the brake hydraulic control conduit 20FR between the electromagnetic on-off valve 28FR and the wheel cylinder 26FR. One end of the conduit 32FR is connected. Normally closed solenoid valves 34RL and 34FR are provided in the middle of the oil discharge conduits 32RL and 32FR, respectively, and the other ends of the oil discharge conduits 32RL and 32FR are connected to the buffer reservoir 38B for the rear wheel through the connection conduit 36B. Has been.

第一の側の場合と同様、電磁開閉弁28RL及び28FRはそれぞれホイールシリンダ26RL及び26FR内の圧力を増圧又は保持するための増圧弁であり、電磁開閉弁34RL及び34FRはそれぞれホイールシリンダ26RL及び26FR内の圧力を減圧するための減圧弁であり、従って電磁開閉弁28RL及び34RLは互いに共働して左後輪のホイールシリンダ26RL内の圧力を増減し保持するための増減圧弁を郭定しており、電磁開閉弁28RR及び34FRは互いに共働して右前輪のホイールシリンダ26FR内の圧力を増減し保持するための増減圧弁を郭定している。   As in the case of the first side, the electromagnetic on-off valves 28RL and 28FR are pressure-increasing valves for increasing or maintaining the pressure in the wheel cylinders 26RL and 26FR, respectively. The electromagnetic on-off valves 34RL and 34FR are respectively the wheel cylinder 26RL and 26FR is a pressure reducing valve for reducing the pressure in the 26FR. Therefore, the electromagnetic opening / closing valves 28RL and 34RL cooperate with each other to define an pressure increasing / reducing valve for increasing and decreasing the pressure in the wheel cylinder 26RL of the left rear wheel. The electromagnetic open / close valves 28RR and 34FR cooperate with each other to define a pressure increasing / decreasing valve for increasing and decreasing the pressure in the wheel cylinder 26FR of the right front wheel.

接続導管36Bは接続導管40Bによりポンプ42Bの吸入側に接続されており、接続導管40Bの途中には接続導管36Bよりポンプ42Bへ向かうオイルの流れのみを許す二つの逆止弁44B及び46Bが設けられている。ポンプ42Bの吐出側は途中にダンパ48Bを有する接続導管50Bによりブレーキ油圧制御導管18Bに接続されている。ポンプ42Bとダンパ48Bとの間の接続導管50Bにはポンプ42Bよりダンパ48Bへ向かうオイルの流れのみを許す逆止弁52Bが設けられている。尚ポンプ42A及び42Bは図1には示されていない共通の電動機により駆動される。   The connecting conduit 36B is connected to the suction side of the pump 42B by a connecting conduit 40B, and two check valves 44B and 46B that allow only the flow of oil from the connecting conduit 36B to the pump 42B are provided in the connecting conduit 40B. It has been. The discharge side of the pump 42B is connected to the brake hydraulic control conduit 18B by a connection conduit 50B having a damper 48B on the way. The connection conduit 50B between the pump 42B and the damper 48B is provided with a check valve 52B that allows only the flow of oil from the pump 42B toward the damper 48B. The pumps 42A and 42B are driven by a common electric motor not shown in FIG.

二つの逆止弁44B及び46Bの間の接続導管40Bには接続導管54Bの一端が接続されており、接続導管54Bの他端は第二のマスタシリンダ室14Bと制御弁22Bとの間のブレーキ油圧制御導管18Bに接続されている。接続導管54Bの途中には常閉型の電磁開閉弁60Bが設けられている。この電磁開閉弁60Bもマスタシリンダ14と制御弁22Bとの間のブレーキ油圧制御導管18Bとポンプ42Bの吸入側との連通を制御する吸入制御弁として機能する。   One end of a connection conduit 54B is connected to the connection conduit 40B between the two check valves 44B and 46B, and the other end of the connection conduit 54B is a brake between the second master cylinder chamber 14B and the control valve 22B. It is connected to the hydraulic control conduit 18B. A normally closed electromagnetic on-off valve 60B is provided in the middle of the connecting conduit 54B. The electromagnetic opening / closing valve 60B also functions as a suction control valve that controls communication between the brake hydraulic pressure control conduit 18B between the master cylinder 14 and the control valve 22B and the suction side of the pump 42B.

図示の実施形態に於いては、各制御弁及び各開閉弁は対応するソレノイドに駆動電流が通電されていないときには図1に示された非制御位置に設定され、これによりホイールシリンダ26FL及び26RRには第一のマスタシリンダ室14A内の圧力が供給され、ホイールシリンダ26RL及び26FRには第二のマスタシリンダ室14B内の圧力が供給される。従って通常時には各車輪のホイールシリンダ内の圧力、即ち制動力はブレーキペダル12の踏力に応じて増減される。   In the illustrated embodiment, each control valve and each on-off valve is set to the non-control position shown in FIG. 1 when the drive current is not applied to the corresponding solenoid, thereby causing the wheel cylinders 26FL and 26RR to move. Is supplied with the pressure in the first master cylinder chamber 14A, and the wheel cylinders 26RL and 26FR are supplied with the pressure in the second master cylinder chamber 14B. Therefore, at normal times, the pressure in the wheel cylinder of each wheel, that is, the braking force is increased or decreased according to the depression force of the brake pedal 12.

これに対し連通制御弁22A、22Bが閉弁位置に切り換えられ、開閉弁60A、60Bが開弁され、各車輪の開閉弁が図1に示された位置にある状態にてポンプ42A、42Bが駆動されると、マスタシリンダ14内のオイルがポンプによって汲み上げられ、ホイールシリンダ26FL、26RRにはポンプ42Aによりポンプアップされた圧力が供給され、ホイールシリンダ26RL、26FRにはポンプ42Bによりポンプアップされた圧力が供給されるようになるので、各車輪の制動圧はブレーキペダル12の踏力に関係なく連通制御弁22A、22B及び各車輪の開閉弁(増減圧弁)の開閉により増減される。   On the other hand, the communication control valves 22A and 22B are switched to the closed position, the on-off valves 60A and 60B are opened, and the pumps 42A and 42B are operated with the on-off valves of the wheels at the positions shown in FIG. When driven, the oil in the master cylinder 14 is pumped up by the pump, the pressures pumped up by the pump 42A are supplied to the wheel cylinders 26FL, 26RR, and the wheel cylinders 26RL, 26FR are pumped up by the pump 42B. Since the pressure is supplied, the braking pressure of each wheel is increased or decreased by opening / closing the communication control valves 22A and 22B and the opening / closing valves (increase / decrease valves) of each wheel regardless of the depression force of the brake pedal 12.

この場合、ホイールシリンダ内の圧力は、開閉弁28FL〜28RRが図1に示された非通電時の開位置にあって開閉弁34FL〜34RRが図1に示された非通電時の閉位置にあるときには増圧され(増圧モード)、開閉弁28FL〜28RRが通電時の閉位置に切り換えられ且つ開閉弁34FL〜34RRが図1に示された非通電時の閉位置にあるときには保持され(保持モード)、開閉弁28FL〜28RRが通電時の閉位置にあって開閉弁34FL〜34RRが通電により開弁位置に切り換えられると減圧される(減圧モード)。   In this case, the pressure in the wheel cylinder is such that the on-off valves 28FL to 28RR are in the open position when not energized as shown in FIG. 1, and the on-off valves 34FL to 34RR are in the closed position when not energized as shown in FIG. In some cases, the pressure is increased (pressure increase mode), and the on-off valves 28FL to 28RR are switched to the closed position when energized, and are held when the on-off valves 34FL to 34RR are in the closed position when not energized as shown in FIG. Holding mode), when the on-off valves 28FL to 28RR are in the closed position when energized and the on-off valves 34FL to 34RR are switched to the open position by energization, the pressure is reduced (decompression mode).

連通制御弁22A及び22B、開閉弁28FL〜28RR、開閉弁34FL〜34RR、開閉弁60A及び60Bは、後に説明する如く電子制御装置90により制御される。電子制御装置90はマイクロコンピュータ92と駆動回路94とよりなっており、マイクロコンピュータ92は当技術分野に於いて周知の一般的な構成のものであってよい。   The communication control valves 22A and 22B, the open / close valves 28FL to 28RR, the open / close valves 34FL to 34RR, and the open / close valves 60A and 60B are controlled by the electronic control unit 90 as described later. The electronic control unit 90 includes a microcomputer 92 and a drive circuit 94, and the microcomputer 92 may have a general configuration well known in the art.

マイクロコンピュータ92には圧力センサ96よりマスタシリンダ圧力Pmを示す信号、車速センサ98より車速Vを示す信号、前後加速度センサ100より車輌の前後加速度Gxを示す信号、車輪速度センサ102FL〜102RRにより検出された左右前輪及び左右後輪の車輪速度Vwi(i=fl、fr、rl、rr)を示す信号が入力されるようになっている。またマイクロコンピュータ92は後述の制動制御フローを記憶しており、制動制御フローに従って左右前輪及び左右後輪の目標制動圧Pti(i=fl、fr、rl、rr)を演算すると共に、連通制御弁22A等を制御することにより各車輪の制動圧Pi(i=fl、fr、rl、rr)をそれぞれ対応する目標制動圧Ptiに制御する。   The microcomputer 92 detects a signal indicating the master cylinder pressure Pm from the pressure sensor 96, a signal indicating the vehicle speed V from the vehicle speed sensor 98, a signal indicating the longitudinal acceleration Gx of the vehicle from the longitudinal acceleration sensor 100, and wheel speed sensors 102FL to 102RR. Further, signals indicating wheel speeds Vwi (i = fl, fr, rl, rr) of the left and right front wheels and the left and right rear wheels are input. The microcomputer 92 stores a braking control flow, which will be described later, and calculates the target braking pressure Pti (i = fl, fr, rl, rr) for the left and right front wheels and the left and right rear wheels according to the braking control flow. By controlling 22A and the like, the braking pressure Pi (i = fl, fr, rl, rr) of each wheel is controlled to the corresponding target braking pressure Pti.

特に図示の実施形態に於いては、運転者による制動操作量が小さく制動力の前後配分制御が不要であるときには、連通制御弁22A等は図示の標準位置に維持されポンプ42A及び42Bは駆動されず、これにより各車輪の制動圧、即ちホイールシリンダ26FL〜26RR内の圧力はマスタシリンダ圧力Pmにより制御される。   In particular, in the illustrated embodiment, when the amount of braking operation by the driver is small and the front / rear distribution control of the braking force is unnecessary, the communication control valve 22A and the like are maintained at the illustrated standard position and the pumps 42A and 42B are driven. Accordingly, the braking pressure of each wheel, that is, the pressure in the wheel cylinders 26FL to 26RR is controlled by the master cylinder pressure Pm.

これに対し運転者による制動操作量が大きく制動力の前後配分制御が必要であるときには、まず連通制御弁22A及び22Bが閉弁され、次いで吸入制御弁60A及び60Bが開弁され、しかる後ポンプ42A及び42Bの駆動が開始され、後に詳細に説明する如く車速V及び車輌の減速度Gxb(=−Gx)に基づき後輪の保持圧力Pcが演算されると共に、マスタシリンダ圧力Pm及び後輪の保持圧力Pc等に基づき前輪の増加圧力ΔPfが演算され、連通制御弁22A等が制御されることにより前輪側の上流圧がPm+ΔPfの目標制動圧になるよう制御されることにより左右前輪制動圧が制御され、左右後輪の開閉弁28RL及び28RRが閉弁されることにより左右後輪の制動圧が保持圧力Pcになるよう制御される。   On the other hand, when the amount of braking operation by the driver is large and the front / rear distribution control of the braking force is necessary, the communication control valves 22A and 22B are first closed, then the intake control valves 60A and 60B are opened, and then the pump The driving of 42A and 42B is started, and the holding pressure Pc of the rear wheel is calculated based on the vehicle speed V and the deceleration Gxb (= −Gx) of the vehicle, as will be described in detail later, and the master cylinder pressure Pm and the rear wheel The front wheel increase pressure ΔPf is calculated based on the holding pressure Pc and the like, and the communication control valve 22A and the like are controlled so that the upstream pressure on the front wheel side is controlled to the target braking pressure of Pm + ΔPf. The left and right rear wheel on / off valves 28RL and 28RR are closed so that the braking pressure of the left and right rear wheels becomes the holding pressure Pc.

またマイクロコンピュータ92は、フローチャートとしては示されていないが、各車輪の車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車体速度Vb及び各車輪の制動スリップ量SBi(i=fl、fr、rl、rr)を演算し、何れかの車輪の制動スリップ量SBiがアンチスキッド制御(ABS制御)開始の基準値よりも大きくなり、アンチスキッド制御の開始条件が成立すると、アンチスキッド制御の終了条件が成立するまで、上記制動力の前後配分制御に凌駕して当該車輪について制動スリップ量が所定の範囲内になるようホイールシリンダ内の圧力を増減するアンチスキッド制御を行う。   The microcomputer 92 is not shown as a flow chart, but based on the wheel speed Vwi of each wheel, the vehicle speed Vb and the braking slip amount SBi (i = fl, fr, rl, rr), and when the braking slip amount SBi of any wheel becomes larger than the reference value for starting anti-skid control (ABS control) and the anti-skid control start condition is satisfied, Until the end condition is satisfied, anti-skid control is performed in which the pressure in the wheel cylinder is increased or decreased so that the braking slip amount of the wheel falls within a predetermined range over the braking force front-rear distribution control.

更にマイクロコンピュータ92は、後述の制動制御フローに従って制動力の前後配分制御中に何れかの車輪についてアンチスキッド制御が開始されると、前輪の増加圧力ΔPfを漸減すると共に後輪の制動圧が保持圧力Pcを漸増し、これにより車輌全体の制動力が過大になることを防止して車輌の走行安定性を向上させる。   Further, when the anti-skid control is started for any of the wheels during the front-rear distribution control of the braking force according to the braking control flow described later, the microcomputer 92 gradually decreases the front wheel increase pressure ΔPf and maintains the rear wheel braking pressure. The pressure Pc is gradually increased, thereby preventing the braking force of the entire vehicle from becoming excessive and improving the running stability of the vehicle.

尚図には示されていないが、電磁開閉弁28FL〜28RR及び開閉弁34FL〜34RRは例えば各車輪の制動力を個別に制御することにより車輌の挙動を安定化させる場合に制御される。   Although not shown in the figure, the electromagnetic on-off valves 28FL to 28RR and the on-off valves 34FL to 34RR are controlled, for example, when the behavior of the vehicle is stabilized by individually controlling the braking force of each wheel.

次に図3に示されたフローチャートを参照して図示の実施形態に於ける制動制御ルーチンについて説明する。尚図3に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰り返し実行される。   Next, the braking control routine in the illustrated embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 3 is started by closing an ignition switch not shown in the figure, and is repeatedly executed at predetermined time intervals.

まずステップ10に於いては圧力センサ96により検出されたマスタシリンダ圧力Pmを示す信号等の読み込みが行われ、ステップ20に於いては前後輪の制動力配分制御中であるか否かの判別が行われ、肯定判別が行われたときにはステップ90へ進み、否定判別が行われたときにはステップ30へ進む。   First, in step 10, a signal indicating the master cylinder pressure Pm detected by the pressure sensor 96 is read, and in step 20, it is determined whether or not the braking force distribution control for the front and rear wheels is being performed. If the determination is affirmative, the process proceeds to step 90. If the determination is negative, the process proceeds to step 30.

ステップ30に於いては車速Vに基づき図4に示されたグラフに対応するマップより後輪の基本保持圧力Pcsが演算され、ステップ40に於いては車輌の減速度Gxbに基づき図5に示されたグラフに対応するマップより基本保持圧力Pcsに対する補正圧力ΔPcが演算され、ステップ50に於いては後輪の保持圧力Pcが基本保持圧力Pcsと補正圧力ΔPcとの和として演算される。尚図5のGxboは車輌の制動時に於ける標準的な車輌の減速度である。   In step 30, the basic holding pressure Pcs of the rear wheels is calculated from a map corresponding to the graph shown in FIG. 4 on the basis of the vehicle speed V, and in step 40, it is shown in FIG. 5 based on the deceleration Gxb of the vehicle. The correction pressure ΔPc for the basic holding pressure Pcs is calculated from the map corresponding to the graph, and in step 50, the rear wheel holding pressure Pc is calculated as the sum of the basic holding pressure Pcs and the correction pressure ΔPc. Note that Gxbo in FIG. 5 is a standard vehicle deceleration during vehicle braking.

ステップ60に於いてはマスタシリンダ圧力Pmが後輪の保持圧力Pcを越えているか否かの判別、即ち後輪の制動圧を保持すると共に前輪の制動圧を増加する必要があるか否かの判別が行われ、否定判別が行われたときにはステップ70へ進み、肯定判別が行われたときにはステップ150へ進む。   In step 60, it is determined whether or not the master cylinder pressure Pm exceeds the rear wheel holding pressure Pc, that is, whether or not it is necessary to maintain the rear wheel braking pressure and increase the front wheel braking pressure. If a negative determination is made, the process proceeds to step 70. If an affirmative determination is made, the process proceeds to step 150.

ステップ70に於いては当技術分野に於いて公知の任意の要領にて前後輪の制動力配分制御の他の開始条件が成立したか否かの判別が行われ、否定判別が行われたときにはそのまま図3に示されたルーチンによる制御を一旦終了し、肯定判別が行われたときにはステップ80に於いて後輪の保持圧力Pcがその時のマスタシリンダ圧力Pmに設定され、しかる後ステップ150へ進む。   In step 70, it is determined whether or not other starting conditions for the braking force distribution control for the front and rear wheels are established in any manner known in the art, and when a negative determination is made. The control by the routine shown in FIG. 3 is once terminated, and when an affirmative determination is made, in step 80, the rear wheel holding pressure Pc is set to the master cylinder pressure Pm at that time, and then the routine proceeds to step 150. .

尚前後輪の制動力配分制御の他の開始条件が成立したか否かの判別は、例えば(A)左右前輪の車輪速度の平均値Vwfに対する左右後輪の車輪速度の平均値Vwrの偏差ΔVwが制御開始基準値Vws(正の定数)を超えているか否かの判別、又は(B)車輌の減速度Gxbが制御開始基準値Gxs(正の定数)を超えているか否かの判別により行われてよく、また上記(A)及び(B)の組合せにより行われてもよい。また上記ステップ60及び70の制御開始条件が成立しているか否かが同時に判別され、最初に肯定判別が行われたときにはステップ80へ進み、二回目以降に肯定判別が行われたときにはステップ150へ進み、否定判別が行われたときには図3に示されたルーチンによる制御を終了するよう修正されてもよい。   Whether or not other starting conditions for the braking force distribution control for the front and rear wheels are satisfied is determined by, for example, (A) Deviation ΔVw of the average wheel speed Vwr of the left and right rear wheels with respect to the average wheel speed Vwf of the left and right front wheels. Or (B) by determining whether the vehicle deceleration Gxb exceeds the control start reference value Gxs (positive constant). Or may be performed by a combination of the above (A) and (B). Further, it is simultaneously determined whether or not the control start conditions of the above steps 60 and 70 are satisfied. When the affirmative determination is made for the first time, the process proceeds to step 80, and when the affirmative determination is made for the second time or later, the process proceeds to step 150. If a negative determination is made in advance, the control by the routine shown in FIG. 3 may be corrected to end.

ステップ90に於いては例えばマスタシリンダ圧力Pmが制御終了の基準値Pme(Pcよりも小さい正の定数)以下になったか否かの判別により、前後輪の制動力配分制御の終了条件が成立したか否かの判別が行われ、否定判別が行われたときにはステップ100へ進み、肯定判別が行われたときにはステップ110に於いて前輪の制動圧の増加圧力ΔPfの漸減量ΔPがΔP1(正の定数)に設定され、しかる後ステップ130へ進む。   In step 90, for example, by determining whether or not the master cylinder pressure Pm has become equal to or less than the control end reference value Pme (a positive constant smaller than Pc), the end condition of the braking force distribution control for the front and rear wheels is established. If a negative determination is made, the process proceeds to step 100. If an affirmative determination is made, the gradual decrease amount ΔPf of the front wheel braking pressure increase ΔPf is determined to be ΔP1 (positive) in step 110. Constant), and the process proceeds to step 130.

尚前後輪の制動力配分制御の終了条件が成立したか否かの判別も当技術分野に於いて公知の任意の要領にて行われてよく、例えば制御開始条件の成立判定が車輪速度の偏差ΔVwに基づいて行われた場合には、車輪速度の偏差ΔVwが制御終了基準値Vwe(Vwsよりも小さい正の定数)以下になったか否かの判別により行われてよく、また制御開始条件の成立判定が車輌の減速度Gxbに基づいて行われた場合には車輌の減速度Gxbが制御終了基準値Gxe(Gxsよりも小さい正の定数)以下になったか否かの判別により行われてよく、更には両者の条件が成立したときに制御終了条件が成立したと判定されてもよい。   It should be noted that whether or not the condition for terminating the braking force distribution control for the front and rear wheels has been satisfied may be determined in any manner known in the art. When it is performed based on ΔVw, it may be performed by determining whether or not the wheel speed deviation ΔVw is equal to or less than the control end reference value Vwe (a positive constant smaller than Vws). When the establishment determination is made based on the vehicle deceleration Gxb, it may be performed by determining whether or not the vehicle deceleration Gxb is equal to or less than the control end reference value Gxe (a positive constant smaller than Gxs). Furthermore, it may be determined that the control end condition is satisfied when both conditions are satisfied.

ステップ100に於いては何れかの車輪についてアンチスキッド制御が行われているか否かの判別が行われ、否定判別が行われたときにはステップ150へ進み、肯定判別が行われたときにはステップ120に於いて前輪の制動圧の増加圧力ΔPfの漸減量ΔPがΔP2(ΔP1よりも小さい正の定数)に設定され、しかる後ステップ130へ進む。   In step 100, it is determined whether or not anti-skid control is being performed for any of the wheels. If a negative determination is made, the process proceeds to step 150. If an affirmative determination is made, the process proceeds to step 120. Then, the gradual decrease amount ΔP of the increase pressure ΔPf of the braking pressure of the front wheels is set to ΔP2 (a positive constant smaller than ΔP1), and then the routine proceeds to step 130.

ステップ130に於いては前輪の制動圧の増加圧力ΔPfの前回値をΔPffとして、前輪の制動圧の増加圧力ΔPfがΔPff−ΔPに設定され、ステップ140に於いては増加圧力ΔPfが0以下であるか否かの判別が行われ、否定判別が行われたときにはステップ170へ進み、肯定判別が行われたときにはそのまま図3に示されたルーチンによる制御を一旦終了する。   In step 130, the previous value of the front wheel braking pressure increase pressure ΔPf is set to ΔPff, and the front wheel braking pressure increase pressure ΔPf is set to ΔPff−ΔP. In step 140, the increase pressure ΔPf is 0 or less. If a negative determination is made, the process proceeds to step 170. If an affirmative determination is made, the control by the routine shown in FIG.

ステップ150に於いては前輪及び後輪のホイールシリンダ断面積をそれぞれSf、Sr(正の定数)とし、前輪及び後輪の制動有効半径をそれぞれRf、Rr(正の定数)とし、前輪及び後輪のブレーキ効き係数をそれぞれBEFf、BEFr(正の定数)として下記の式1に従って係数Kbが演算されると共に、下記の式2に従って前輪の制動圧の基本増加圧力ΔPfoが演算される。尚ホイールシリンダ断面積Sf、Sr及び制動有効半径Rf、Rrは制動力発生装置の仕様により定まる値であり、ブレーキ効き係数BEFf、BEFrは例えば実験的に予め求められる。
Kb=(Sr×Rr×BEFr)/(Sf×Rf×BEFf) ……(1)
ΔPfo=(Pm−Pc)Kb ……(2)
In step 150, the wheel cylinder cross-sectional areas of the front and rear wheels are set to Sf and Sr (positive constants), and the braking effective radii of the front and rear wheels are set to Rf and Rr (positive constants), respectively. The coefficient Kb is calculated according to the following equation 1 with the wheel braking effectiveness coefficients being BEFf and BEFr (positive constants), respectively, and the basic increase pressure ΔPfo of the front wheel braking pressure is calculated according to the following equation 2. The wheel cylinder cross-sectional areas Sf and Sr and the effective braking radii Rf and Rr are values determined by the specifications of the braking force generator, and the braking effectiveness coefficients BEFf and BEFr are obtained in advance experimentally, for example.
Kb = (Sr × Rr × BEFr) / (Sf × Rf × BEFf) (1)
ΔPfo = (Pm−Pc) Kb (2)

ステップ160に於いては車速Vに基づき図6に示されたグラフに対応するマップより現在の車速に対応するブレーキ効き係数BEFvが演算され、標準のブレーキ効き係数BEFoと現在のブレーキ効き係数BEFvとの偏差ΔBEF(=BEFo−BEFv)が演算され、更に下記の式3に従って前輪の制動圧の増加圧力ΔPfが演算される。尚図6に示されたグラフに対応するマップも例えば実験的に予め求められる。
ΔPf=ΔPfo(1+ΔBEF/BEFo) ……(3)
In step 160, the braking effectiveness coefficient BEFv corresponding to the current vehicle speed is calculated from the map corresponding to the graph shown in FIG. 6 based on the vehicle speed V, and the standard braking effectiveness coefficient BEFo and the current braking effectiveness coefficient BEFv are calculated. Deviation ΔBEF (= BEFo−BEFv) is calculated, and an increase pressure ΔPf of the braking pressure of the front wheels is calculated according to the following equation 3. A map corresponding to the graph shown in FIG. 6 is also obtained in advance experimentally, for example.
ΔPf = ΔPfo (1 + ΔBEF / BEFo) (3)

ステップ170に於いては左右前輪の目標制動圧Ptfl及びPtfrがマスタシリンダ圧力Pmと増加圧力ΔPfとの和として演算されると共に、左右前輪の制動圧がそれぞれ目標制動圧Ptfl及びPtfrになるよう制動装置10が制御される。   In step 170, the target braking pressures Ptfl and Ptfr for the left and right front wheels are calculated as the sum of the master cylinder pressure Pm and the increased pressure ΔPf, and braking is performed so that the braking pressures for the left and right front wheels become the target braking pressures Ptfl and Ptfr, respectively. The device 10 is controlled.

ステップ180に於いては何れかの車輪についてアンチスキッド制御が行われているか否かの判別が行われ、否定判別が行われたときにステップ190に於いて左右後輪の目標制動圧Ptrl及びPtrrが保持圧力Pcに設定されると共に、左右後輪の制動圧がそれぞれ目標制動圧Ptrl及びPtrrになるよう制動装置10が制御され、肯定判別が行われたときにはステップ200に於いてアンチスキッド制御中の後輪の制動圧の増圧量をΔPcabs(正の定数)として左右後輪の目標制動圧Ptrl及びPtrrが保持圧力Pc+ΔPcabsに設定されると共に、左右後輪の制動圧がそれぞれ目標制動圧Ptrl及びPtrrになるよう制動装置10が制御される。   In step 180, it is determined whether or not anti-skid control is being performed for any of the wheels. When a negative determination is made, in step 190, the target braking pressures Ptrl and Ptrr for the left and right rear wheels are determined. Is set to the holding pressure Pc, and the braking device 10 is controlled so that the braking pressures of the left and right rear wheels become the target braking pressures Ptrl and Ptrr, respectively. The target braking pressures Ptrl and Ptrr for the left and right rear wheels are set to the holding pressure Pc + ΔPcabs, with the amount of increase in the braking pressure for the rear wheels as ΔPcabs (positive constant), and the braking pressures for the left and right rear wheels are set to the target braking pressure Ptrl. And the braking device 10 is controlled to become Ptrr.

尚図3には示されていないが、上述のステップ70に於いて否定判別が行われた場合及びステップ140に於いて肯定判別が行われた場合には、連通制御弁22F等が図1に示された標準位置に設定され、これにより各車輪のホイールシリンダ26FR〜26RRにはマスタシリンダ14の圧力Pmが直接供給され、これにより各車輪の制動圧が運転者の制動操作量に応じて増減される。   Although not shown in FIG. 3, if a negative determination is made in step 70 and an affirmative determination is made in step 140, the communication control valve 22F and the like are shown in FIG. Accordingly, the pressure Pm of the master cylinder 14 is directly supplied to the wheel cylinders 26FR to 26RR of each wheel, whereby the braking pressure of each wheel is increased or decreased according to the braking operation amount of the driver. Is done.

かくして図示の実施形態によれば、前後輪の制動力配分制御が実行されていないときには、ステップ20に於いて否定判別が行われ、ステップ30に於いて車速Vに基づき後輪の基本保持圧力Pcsが演算され、ステップ40に於いて車輌の減速度Gxbに基づき基本保持圧力Pcsに対する補正圧力ΔPcが演算され、ステップ50に於いて後輪の保持圧力Pcが基本保持圧力Pcsと補正圧力ΔPcとの和として演算される。   Thus, according to the illustrated embodiment, when the braking force distribution control for the front and rear wheels is not being executed, a negative determination is made in step 20, and the basic holding pressure Pcs of the rear wheels is determined based on the vehicle speed V in step 30. In step 40, a correction pressure ΔPc for the basic holding pressure Pcs is calculated based on the vehicle deceleration Gxb, and in step 50, the rear wheel holding pressure Pc is calculated as a difference between the basic holding pressure Pcs and the correction pressure ΔPc. Calculated as sum.

マスタシリンダ圧力Pmが後輪の保持圧力Pc以下であり前後輪の制動力配分制御の他の開始条件が成立していないときには、後輪の制動力の抑制は不要であるので、ステップ60及び70に於いて否定判別が行われ、前輪及び後輪のホイールシリンダ26FL〜26RRにはマスタシリンダ14内の圧力が供給され、従って後輪の制動圧の抑制制御及び前輪の制動圧の増加制御は行われない。   When the master cylinder pressure Pm is equal to or lower than the rear wheel holding pressure Pc and the other starting conditions for the braking force distribution control for the front and rear wheels are not satisfied, it is not necessary to suppress the braking force for the rear wheels. In this case, a negative determination is made, and the pressure in the master cylinder 14 is supplied to the front and rear wheel cylinders 26FL to 26RR. Therefore, the control of suppressing the braking pressure of the rear wheel and the control of increasing the braking pressure of the front wheel are performed. I will not.

これに対し運転者による制動操作量が更に増大され、マスタシリンダ圧力Pmが後輪の保持圧力Pcを越えているときには、ステップ60に於いて肯定判別が行われ、マスタシリンダ圧力Pmが後輪の保持圧力Pcを越えていなくても前後輪の制動力配分制御の他の開始条件が成立しているときには、ステップ70に於いて肯定判別が行われ、ステップ80に於いて後輪の保持圧力Pcがその時のマスタシリンダ圧力Pmに設定され、ステップ150に於いてマスタシリンダ圧力Pmと後輪の保持圧力Pcとの偏差Pm−Pcに基づき上記式2に従って前輪の制動圧の基本増加圧力ΔPfoが演算され、ステップ160に於いて車速Vに基づき現在の車速に対応するブレーキ効き係数BEFvが演算され、標準のブレーキ効き係数BEFoと現在のブレーキ効き係数BEFvとの偏差ΔBEFが演算され、上記式3に従って前輪の制動圧の増加圧力ΔPfが演算される。   On the other hand, when the amount of braking operation by the driver is further increased and the master cylinder pressure Pm exceeds the rear wheel holding pressure Pc, an affirmative determination is made in step 60, and the master cylinder pressure Pm is Even if the holding pressure Pc is not exceeded, if another start condition of the braking force distribution control for the front and rear wheels is satisfied, an affirmative determination is made at step 70, and the holding pressure Pc for the rear wheel is determined at step 80. Is set to the master cylinder pressure Pm at that time, and in step 150, the basic increase pressure ΔPfo of the braking pressure of the front wheels is calculated according to the above equation 2 based on the deviation Pm−Pc between the master cylinder pressure Pm and the rear wheel holding pressure Pc. In step 160, the braking effectiveness coefficient BEFv corresponding to the current vehicle speed is calculated based on the vehicle speed V, and the standard braking effectiveness coefficient BEFo and the current braking effectiveness relationship are calculated. A deviation ΔBEF from the number BEFv is calculated, and an increase pressure ΔPf of the braking pressure of the front wheels is calculated according to the above equation 3.

更にステップ170に於いて左右前輪の制動圧がマスタシリンダ圧力Pmと増加圧力ΔPfとの和として演算される目標制動圧Ptfl及びPtfrになるよう制動装置10が制御され、ステップ190に於いて左右後輪の制動圧が左右後輪の目標制動圧Ptrl及びPtrr=保持圧力Pcになるよう制動装置10が制御される。   Further, in step 170, the braking device 10 is controlled so that the braking pressure of the left and right front wheels becomes the target braking pressures Ptfl and Ptfr calculated as the sum of the master cylinder pressure Pm and the increase pressure ΔPf. The braking device 10 is controlled such that the braking pressure of the wheels becomes the target braking pressures Ptrl and Ptrr = holding pressure Pc of the left and right rear wheels.

従って図示の実施形態によれば、前後輪制動力配分制御の開始条件が成立すると、前後輪制動力配分制御の終了条件が成立するまで、マスタシリンダ圧力Pmが後輪の保持圧力Pcを越えている状況に於いて、後輪の制動圧が保持圧力Pcに維持されるので、前輪に先行して後輪がロックすることを確実に防止することができ、また後輪の制動圧が保持圧力Pcに維持されることによる制動力の不足分に対応する前輪の制動圧の増加量ΔPfが演算され、前輪の制動圧がΔPf増圧されるので、後輪の制動圧が保持されることによる車輌全体としての制動力の不足を前輪の制動力の増大によって補填し、これにより前後輪制動力配分制御実行中にも車輌全体としての制動力を確実に運転者の制動操作量に対応する制動力に制御することができる。   Therefore, according to the illustrated embodiment, when the start condition of the front and rear wheel braking force distribution control is satisfied, the master cylinder pressure Pm exceeds the rear wheel holding pressure Pc until the end condition of the front and rear wheel braking force distribution control is satisfied. In this situation, the braking pressure of the rear wheel is maintained at the holding pressure Pc, so that it is possible to reliably prevent the rear wheel from being locked prior to the front wheel, and the braking pressure of the rear wheel is maintained at the holding pressure. An increase amount ΔPf of the front wheel braking pressure corresponding to the shortage of the braking force due to being maintained at Pc is calculated and the front wheel braking pressure is increased by ΔPf, so that the rear wheel braking pressure is maintained. Insufficient braking force for the vehicle as a whole is compensated by an increase in the braking force of the front wheels, so that the braking force of the vehicle as a whole can be reliably controlled to correspond to the amount of braking operation performed by the driver even during execution of front and rear wheel braking force distribution control. Power can be controlled.

図7は図示の実施形態に於ける前輪の制動力Fbfと後輪の制動力Fbrとの間の関係を示しており、特に二点鎖線は理想前後配分線を示し、実線は実施形態に於ける前後配分線を示している。図示の如く、前輪の制動力Fbfが後輪の保持圧力Pcに対応する制動力Fbfc以下の範囲に於いては、前輪の制動力Fbf及び後輪の制動力Fbrはマスタシリンダ圧力Pmの増大につれて互いに他に対し一定の割合にて増大するが、前輪の制動力Fbfが後輪の保持圧力Pcに対応する制動力Fbfcを越える範囲に於いては、制動力の実際の前後配分線が理想前後配分線を越えないよう、後輪の制動力Fbrが保持圧力Pcに対応する制動力Fbrcに維持される。   FIG. 7 shows the relationship between the braking force Fbf of the front wheels and the braking force Fbr of the rear wheels in the illustrated embodiment. In particular, the two-dot chain line indicates the ideal front-rear distribution line, and the solid line indicates the embodiment. The front and rear distribution lines are shown. As shown in the figure, when the braking force Fbf of the front wheel is equal to or less than the braking force Fbfc corresponding to the holding pressure Pc of the rear wheel, the braking force Fbf of the front wheel and the braking force Fbr of the rear wheel increase as the master cylinder pressure Pm increases. Although the front wheel braking force Fbf exceeds the braking force Fbfc corresponding to the rear wheel holding pressure Pc, the actual front / rear distribution line of the braking force is the ideal front / rear distribution line. The braking force Fbr of the rear wheels is maintained at the braking force Fbrc corresponding to the holding pressure Pc so as not to exceed the distribution line.

また図8の実線は図示の実施形態に於けるマスタシリンダ圧力Pmと前輪の制動圧Pf及び後輪の制動圧Prとの間の関係を示しており、二点鎖線は前後輪制動力配分制御が行われない場合のマスタシリンダ圧力Pmと前輪の制動圧Pf及び後輪の制動圧Prとの間の関係を示している。   8 indicates the relationship between the master cylinder pressure Pm, the front wheel braking pressure Pf, and the rear wheel braking pressure Pr in the illustrated embodiment, and the two-dot chain line indicates front and rear wheel braking force distribution control. The relationship between the master cylinder pressure Pm, the front wheel braking pressure Pf, and the rear wheel braking pressure Pr when the control is not performed is shown.

図8に示されている如く、マスタシリンダ圧力Pmが保持圧力Pc以下の範囲に於いては前輪の制動圧Pf及び後輪の制動圧Prはマスタシリンダ圧力Pmであり互いに同一であるが、マスタシリンダ圧力Pmが保持圧力Pcを越える範囲に於いては後輪の制動圧Prは保持圧力Pc(一定)であり、現在のマスタシリンダ圧力PmがPmaであるとすると、後輪の制動圧の抑制量ΔPr(=Pma−Pc)に対応する後輪の制動力の抑制量に相当する前輪の制動圧の増加量ΔPfが演算され、前輪の制動圧PfがPma+ΔPfに制御される。   As shown in FIG. 8, when the master cylinder pressure Pm is less than the holding pressure Pc, the front wheel braking pressure Pf and the rear wheel braking pressure Pr are the master cylinder pressure Pm, which are the same. When the cylinder pressure Pm exceeds the holding pressure Pc, the rear wheel braking pressure Pr is the holding pressure Pc (constant). If the current master cylinder pressure Pm is Pma, the rear wheel braking pressure is suppressed. An increase amount ΔPf of the front wheel braking pressure corresponding to the amount of suppression of the braking force of the rear wheels corresponding to the amount ΔPr (= Pma−Pc) is calculated, and the braking pressure Pf of the front wheels is controlled to Pma + ΔPf.

また図示の実施形態によれば、前後輪制動力配分制御中にアンチスキッド制御が開始されると、ステップ20、90、100に於いてそれぞれ肯定判別、否定判別、肯定判別が行われ、ステップ120及び130に於いて前輪の制動圧の増加量ΔPfが1サイクル毎にΔP2漸減されるので、連通制御弁22Aによりブレーキ油圧制御導管20FL及び20RR内の圧力が漸減されると共に、連通制御弁22Bによりブレーキ油圧制御導管20FR及び20RL内の圧力が漸減されるので、アンチスキッド制御の開始後に後輪の制動圧が急激に高くなって車輌が不安定になったり、ブレーキ油圧制御導管20FL、20RR、20FR及び20RL内の圧力が高い状況にて前輪の電磁開閉弁28FL及び34FL等が制御されることにより前後輪制動力配分制御による前輪の制動圧が過大に増圧されたりすることを確実に防止することができ、これにより車輌の走行安定性を向上させることができる。   Further, according to the illustrated embodiment, when anti-skid control is started during front and rear wheel braking force distribution control, affirmative determination, negative determination, and positive determination are performed in steps 20, 90, and 100, respectively. And 130, the increase amount ΔPf of the braking pressure of the front wheels is gradually decreased by ΔP2 for each cycle, so that the pressure in the brake hydraulic control conduits 20FL and 20RR is gradually decreased by the communication control valve 22A and the communication control valve 22B. Since the pressure in the brake hydraulic control conduits 20FR and 20RL is gradually reduced, the braking pressure of the rear wheels suddenly increases after the start of the anti-skid control, the vehicle becomes unstable, and the brake hydraulic control conduits 20FL, 20RR, 20FR And the front wheel electromagnetic on / off valves 28FL and 34FL are controlled in a situation where the pressure in the 20RL is high, so that the front wheel Dynamic pressure can be reliably prevented from or is boosted to excessive, thereby improving the running stability of the vehicle.

また図示の実施形態によれば、前後輪制動力配分制御の終了条件が成立すると、ステップ90に於いて肯定判別が行われ、ステップ110に於いて前輪の制動圧の増加量ΔPfが1サイクル毎にΔP1漸減されることによりアンチスキッド制御が開始された場合よりも速い漸減速度にて漸減されるので、アンチスキッド制御が行われている際の前輪の制動圧の増大量の漸減速度が過大になることを回避しつつ、前後輪制動力配分制御の終了時に前輪の制動圧を速やかに低下させることができる。   Further, according to the illustrated embodiment, when the termination condition for the front and rear wheel braking force distribution control is satisfied, an affirmative determination is made in step 90, and in step 110, the amount of increase ΔPf in the front wheel braking pressure is increased every cycle. Is gradually reduced at a faster gradual decrease speed than when anti-skid control is started, so that the gradual decrease speed of the amount of increase in the braking pressure of the front wheels during the anti-skid control is excessive. The front-wheel braking pressure can be quickly reduced at the end of the front-rear wheel braking force distribution control.

また図示の実施形態によれば、前後輪制動力配分制御中にアンチスキッド制御が開始された場合及び前後輪制動力配分制御の終了条件が成立した場合の何れの場合にも、ステップ140に於いて肯定判別が行われるまで、換言すれば前輪の制動圧の増加量ΔPfが0になるまで継続されるので、前輪の制動圧の増大量を確実にゼロになるまで漸減することができる。   Further, according to the embodiment shown in the figure, in both cases when the anti-skid control is started during the front and rear wheel braking force distribution control and when the termination condition of the front and rear wheel braking force distribution control is satisfied, Until the affirmative determination is made, in other words, until the increase amount ΔPf of the braking pressure of the front wheels becomes zero, the increase amount of the braking pressure of the front wheels can be gradually decreased until it becomes surely zero.

また図示の実施形態によれば、前後輪制動力配分制御中にアンチスキッド制御が終了したときには、ステップ90及び100に於いて否定判別が行われ、前輪の制動圧の増大量の漸減が中止され、ステップ150以降が実行されるので、アンチスキッド制御が終了したにも拘らず前輪の制動圧の増大量の漸減が不必要に継続されることを確実に防止することができる。   Further, according to the illustrated embodiment, when the anti-skid control is finished during the front and rear wheel braking force distribution control, a negative determination is made in steps 90 and 100, and the gradual decrease in the increase amount of the braking pressure of the front wheels is stopped. Since step 150 and subsequent steps are executed, it is possible to reliably prevent the gradual decrease in the amount of increase in the braking pressure of the front wheels from being unnecessarily continued despite the end of the anti-skid control.

特に図示の実施形態によれば、前輪の制動圧の増加量ΔPfは単純に後輪の制動圧の抑制量ΔPrに設定される訳ではなく、後輪の制動圧の抑制による後輪の制動力の不足分に対応する制動力を前輪の制動力に加算するための値として演算されるので、前輪の制動圧がマスタシリンダ圧力Pma+後輪の制動圧の抑制量ΔPrに設定される場合に比して、確実に且つ正確に車輌全体の制動力が運転者の制動操作量に対応する値になるよう制御することができる。   Particularly, according to the illustrated embodiment, the increase amount ΔPf of the braking pressure of the front wheel is not simply set to the suppression amount ΔPr of the braking pressure of the rear wheel, but the braking force of the rear wheel due to the suppression of the braking pressure of the rear wheel. Is calculated as a value for adding the braking force corresponding to the deficiency of the front wheel to the braking force of the front wheels, so that compared with the case where the braking pressure of the front wheels is set to the master cylinder pressure Pma + the braking pressure suppression amount ΔPr of the rear wheels. Thus, the braking force of the entire vehicle can be controlled reliably and accurately to a value corresponding to the driver's braking operation amount.

また一般に、車速Vが高くなるにつれて後輪に比して前輪のブレーキの効きが低下し、結果的に制動力の前後配分が後輪寄りになるので、車速Vが高いほど後輪の保持圧力Pcは低く設定されることが好ましい。また一般に、車輌の積載荷重が高いほど制動力の理想前後配分線は後輪寄りになり、車輌の積載荷重が高いほど車輌の減速度が低くなると共に車輌の制動に関する前輪の負担が増大するので、制動力前後配分制御開始時に於ける車輌の減速度が低いほど後輪の保持圧力Pcは高く設定されることが好ましい。   In general, as the vehicle speed V increases, the braking effectiveness of the front wheels decreases compared to the rear wheels, and as a result, the front-rear distribution of braking force becomes closer to the rear wheels. Therefore, the higher the vehicle speed V, the higher the holding pressure of the rear wheels. Pc is preferably set low. In general, the higher the vehicle load is, the closer the ideal front-rear distribution line of the braking force is to the rear wheel, and the higher the vehicle load is, the lower the deceleration of the vehicle and the greater the burden on the front wheels related to vehicle braking. It is preferable that the rear wheel holding pressure Pc is set higher as the vehicle deceleration at the start of braking force front-rear distribution control is lower.

図示の実施形態によれば、保持圧力Pcが一定の値に設定される訳ではなく、ステップ30〜50に於いて車速Vが高いほど小さくなり車輌の減速度Gxbが高いほど小さくなるよう車速V及び車輌の減速度Gxbに応じて後輪の保持圧力Pcが可変設定されるので、車速Vや車輌の減速度Gxbが考慮されない場合に比して後輪の保持圧力Pcを適正に設定することができ、これにより車輌の状況に応じて適正に前後輪制動力配分制御を実行することができる。   According to the illustrated embodiment, the holding pressure Pc is not set to a constant value. In steps 30 to 50, the vehicle speed V decreases so that the vehicle speed V decreases as the vehicle speed V increases and the vehicle deceleration Gxb increases. Since the rear wheel holding pressure Pc is variably set according to the vehicle deceleration Gxb, the rear wheel holding pressure Pc should be set appropriately as compared with the case where the vehicle speed V and the vehicle deceleration Gxb are not taken into consideration. Thus, the front and rear wheel braking force distribution control can be appropriately executed in accordance with the situation of the vehicle.

また図示の実施形態によれば、ステップ110に於いて前輪の制動圧の増加圧力ΔPfは車速Vが高いほどブレーキ効き係数BEFが低下することを考慮して演算されるので、ブレーキ効き係数BEFの変動が考慮されない場合に比して前輪の制動圧の増加圧力ΔPfを後輪の制動力の不足分に正確に対応する値に演算することができ、これにより前輪の制動圧を過不足なく適正に制御することができる。   Further, according to the illustrated embodiment, in step 110, the increase pressure ΔPf of the front wheel braking pressure is calculated considering that the braking effectiveness coefficient BEF decreases as the vehicle speed V increases. Compared to the case where fluctuations are not taken into account, the increase pressure ΔPf of the braking pressure of the front wheels can be calculated to a value that accurately corresponds to the shortage of the braking force of the rear wheels. Can be controlled.

以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば図示の実施形態に於いては、後輪の保持圧力Pcは制動力の前後輪配分制御の終了条件が成立するまで一定の値に設定されるようになっているが、例えば前後輪のスリップ状態に応じて後輪の保持圧力Pcが漸減又は漸増されることにより後輪の制動圧が漸減又はパルス増圧により漸増されてもよい。   For example, in the illustrated embodiment, the holding pressure Pc of the rear wheel is set to a constant value until the termination condition of the braking force front / rear wheel distribution control is satisfied. Depending on the state, the rear wheel braking pressure Pc may be gradually decreased or gradually increased, and the rear wheel braking pressure may be gradually decreased or gradually increased by pulse pressure increase.

また上述の実施形態に於いては、ステップ30及び40に於いて車速V及び車輌の減速度Gxbに応じて後輪の保持圧力Pcが可変設定されるようになっているが、後輪の保持圧力Pcは車速V及び車輌の減速度Gxbの一方に応じてのみ可変設定されるよう修正されてもよく、更には後輪の保持圧力Pcは車速V及び車輌の減速度Gxbに応じて可変設定されることなく一定の値に設定されてもよい。   In the embodiment described above, the rear wheel holding pressure Pc is variably set in steps 30 and 40 in accordance with the vehicle speed V and the vehicle deceleration Gxb. The pressure Pc may be modified to be variably set only in accordance with one of the vehicle speed V and the vehicle deceleration Gxb, and the rear wheel holding pressure Pc is variably set in accordance with the vehicle speed V and the vehicle deceleration Gxb. It may be set to a constant value without being performed.

また上述の実施形態に於いては、後輪の保持圧力Pcはステップ150及び160に於いて車速Vに基づき制動力発生装置のブレーキ効き係数の変化を考慮して演算されるようになっているが、このブレーキ効き係数の変化に基づく後輪の保持圧力Pcの補正が省略されてもよい。   In the above-described embodiment, the rear wheel holding pressure Pc is calculated in steps 150 and 160 in consideration of the change in the braking effectiveness coefficient of the braking force generator based on the vehicle speed V. However, the correction of the holding pressure Pc of the rear wheel based on the change in the braking effectiveness coefficient may be omitted.

本発明による制動制御装置の一つの実施形態の油圧回路及び電子制御装置を示す概略構成図である。1 is a schematic configuration diagram showing a hydraulic circuit and an electronic control device of one embodiment of a braking control device according to the present invention. 図1に示された前輪用の連通制御弁を示す解図的断面図である。FIG. 2 is an illustrative sectional view showing a front wheel communication control valve shown in FIG. 1. 図示の実施形態に於ける前後輪の制動力配分制御ルーチンを示すフローチャートである。4 is a flowchart showing a braking force distribution control routine for front and rear wheels in the illustrated embodiment. 車速Vと後輪の基本保持圧力Pcsとの間の関係を示すグラフである。It is a graph which shows the relationship between the vehicle speed V and the basic holding pressure Pcs of a rear wheel. 車輌の減速度Gxbと基本保持圧力Pcsに対する補正圧力ΔPcの間の関係を示すグラフである。It is a graph which shows the relationship between the deceleration Gxb of a vehicle, and correction | amendment pressure (DELTA) Pc with respect to the basic holding pressure Pcs. 車速Vとブレーキ効き係数BEFの間の関係を示すグラフである。It is a graph which shows the relationship between the vehicle speed V and the brake effectiveness coefficient BEF. 理想前後配分線及び図示の実施形態に於ける前輪の制動圧Pfと後輪の制動圧Prとの関係を示すグラフである。It is a graph which shows the relationship between the ideal front-rear distribution line and the braking pressure Pf of the front wheel and the braking pressure Pr of the rear wheel in the illustrated embodiment. 図示の実施形態に於けるマスタシリンダ圧力Pmと前輪の制動圧Pf及び後輪の制動圧Prとの間の関係を示すグラフである。4 is a graph showing a relationship between a master cylinder pressure Pm, a front wheel braking pressure Pf, and a rear wheel braking pressure Pr in the illustrated embodiment.

符号の説明Explanation of symbols

10…制動装置
14…マスタシリンダ
22F、22R…連通制御弁
26FL、26FR、26RL、26RR…ホイールシリンダ
42F、42R…オイルポンプ
28FL〜28RR、34FL〜34RR…開閉弁
42F、42R…ポンプ
60F、60R…吸入制御弁
70…弁室
74…弁要素
84…圧縮コイルばね
88…逆止弁
90…電子制御装置
96…圧力センサ
98…車速センサ
100…前後加速度センサ
102FL〜102RR…車輪速度センサ
DESCRIPTION OF SYMBOLS 10 ... Braking device 14 ... Master cylinder 22F, 22R ... Communication control valve 26FL, 26FR, 26RL, 26RR ... Wheel cylinder 42F, 42R ... Oil pump 28FL-28RR, 34FL-34RR ... Open / close valve 42F, 42R ... Pump 60F, 60R ... Suction control valve 70 ... Valve chamber 74 ... Valve element 84 ... Compression coil spring 88 ... Check valve 90 ... Electronic control device 96 ... Pressure sensor 98 ... Vehicle speed sensor 100 ... Longitudinal acceleration sensor 102FL-102RR ... Wheel speed sensor

Claims (1)

各車輪毎に設けられ対応する車輪の制動圧を制御する増減圧制御弁と、左前輪に対応する前記増減圧制御弁の上流側と右後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁と、右前輪に対応する前記増減圧制御弁の上流側と左後輪に対応する前記増減圧制御弁の上流側とを連通するブレーキ油圧制御導管内の圧力を制御する制御弁とを有する制動装置を備えた車輌の制動制御装置であって、
車輌の運転状態が所定の状態になると後輪の制動圧を前輪の制動圧よりも低くする前後輪制動力配分制御を行い、
前記前後輪制動力配分制御の開始後に運転者による制動操作量が増大されたときには前記制御弁により前記ブレーキ油圧制御導管内の圧力を増大させて前記制動操作量の増大量に応じて前輪の制動圧を増大させる制動力増大制御を行い、
前記前後輪制動力配分制御の実行中に運転者による制動操作量の増大量に応じて前輪の制動圧を増大させているとき前輪についてアンチスキッド制御が行われるときには前記制御弁によ前記ブレーキ油圧制御導管内の圧力を漸減することを特徴とする車輌の制動制御装置。
An increase / decrease control valve provided for each wheel to control the braking pressure of the corresponding wheel; an upstream side of the increase / decrease control valve corresponding to the left front wheel; and an upstream side of the increase / decrease control valve corresponding to the right rear wheel; A brake that communicates the control valve that controls the pressure in the brake hydraulic control conduit that communicates with the upstream side of the pressure increasing / reducing control valve that corresponds to the right front wheel and the upstream side of the pressure increasing / reducing control valve that corresponds to the left rear wheel A vehicle braking control device comprising a braking device having a control valve for controlling a pressure in a hydraulic control conduit,
When the driving state of the vehicle reaches a predetermined state, front / rear wheel braking force distribution control is performed so that the braking pressure of the rear wheels is lower than the braking pressure of the front wheels,
When the amount of braking operation by the driver is increased after the front and rear wheel braking force distribution control is started, the pressure in the brake hydraulic control conduit is increased by the control valve, and braking of the front wheels is performed according to the amount of increase in the braking operation amount. Perform braking force increase control to increase pressure,
The brake Ri by said control valve when the front wheel antiskid control is performed for the time that increases the braking pressure of the front wheels in accordance with the increase amount of braking operation amount by the driver during execution of the front and rear wheel braking force distribution control A braking control device for a vehicle, wherein the pressure in the hydraulic control conduit is gradually reduced.
JP2008009998A 2008-01-21 2008-01-21 Brake control device for vehicle Expired - Lifetime JP4965469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009998A JP4965469B2 (en) 2008-01-21 2008-01-21 Brake control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009998A JP4965469B2 (en) 2008-01-21 2008-01-21 Brake control device for vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003103127A Division JP4099096B2 (en) 2003-04-07 2003-04-07 Brake control device for vehicle

Publications (2)

Publication Number Publication Date
JP2008132984A JP2008132984A (en) 2008-06-12
JP4965469B2 true JP4965469B2 (en) 2012-07-04

Family

ID=39558116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009998A Expired - Lifetime JP4965469B2 (en) 2008-01-21 2008-01-21 Brake control device for vehicle

Country Status (1)

Country Link
JP (1) JP4965469B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333466B2 (en) 2011-01-24 2013-11-06 トヨタ自動車株式会社 Fade determination device and braking device
FR2983437B1 (en) * 2011-12-05 2014-04-11 Renault Sa BRAKE CONTROL
WO2014192120A1 (en) * 2013-05-30 2014-12-04 トヨタ自動車株式会社 Braking force control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497304B2 (en) * 1995-11-17 2004-02-16 本田技研工業株式会社 Vehicle braking force control device
JP3735939B2 (en) * 1996-04-25 2006-01-18 株式会社デンソー Brake device for vehicle
JP2000016259A (en) * 1998-07-01 2000-01-18 Toyota Motor Corp Brake control device

Also Published As

Publication number Publication date
JP2008132984A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US6976741B2 (en) Brake control system for vehicle and method for controlling brake system
JP4077613B2 (en) Brake control device for vehicle
US8567875B2 (en) Anti-skid control device and automatic brake control device
JP4554166B2 (en) Brake control device for vehicle
US8224546B2 (en) ABS control system
EP0698538B1 (en) Automotive brake fluid pressure control apparatus
JP4228555B2 (en) Brake control device for vehicle
JP4099096B2 (en) Brake control device for vehicle
JP4965469B2 (en) Brake control device for vehicle
KR100839708B1 (en) Braking hydraulic circuit for both controling wheel breaking pressure reduction linearly and solving front/rear wheel breaking pressure gradient difference in vehicle
JP3829925B2 (en) Brake control device for vehicle
JP2004306785A (en) Braking control device of vehicle
JP3412519B2 (en) Vehicle braking force control device
JP2000223312A (en) Braking force controlling equipment of vehicle
JP4320976B2 (en) Brake control device for vehicle
JP3829926B2 (en) Brake control device for vehicle
JP4220686B2 (en) Brake control device for vehicle
JP4027617B2 (en) Brake control device for vehicle
JP3726297B2 (en) Brake pressure control device for vehicles
JP3114525B2 (en) Vehicle behavior control device
JP4172153B2 (en) Brake control device for vehicle
JP4176810B2 (en) Brake control device for vehicle
JP2004217131A (en) Braking system
JP4016596B2 (en) Brake control device for vehicle
JPH1071939A (en) Vehicle behavior controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250