WO2014192120A1 - Braking force control device - Google Patents

Braking force control device Download PDF

Info

Publication number
WO2014192120A1
WO2014192120A1 PCT/JP2013/065068 JP2013065068W WO2014192120A1 WO 2014192120 A1 WO2014192120 A1 WO 2014192120A1 JP 2013065068 W JP2013065068 W JP 2013065068W WO 2014192120 A1 WO2014192120 A1 WO 2014192120A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
wheel
vehicle
force control
deceleration
Prior art date
Application number
PCT/JP2013/065068
Other languages
French (fr)
Japanese (ja)
Inventor
好隆 藤田
加藤 英久
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/065068 priority Critical patent/WO2014192120A1/en
Publication of WO2014192120A1 publication Critical patent/WO2014192120A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/92Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action
    • B60T8/94Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action on a fluid pressure regulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/266Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means
    • B60T8/268Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means using the valves of an ABS, ASR or ESP system

Definitions

  • the present invention relates to a braking force control device that controls the braking force applied to each wheel.
  • EBD Electronic Brake force Distribution
  • EBD Electric Brake force Distribution
  • EBD is a technique for optimally allocating braking force to wheels based on the number of rotations of the front and rear wheels and the turning state, and functions by detecting the braking force limit of the rear wheels from the slip difference between the front and rear wheels during braking. To achieve.
  • JP 2010-284990 A describes a braking force control device including a rear wheel slip determination unit that determines whether or not a slip state has occurred in the rear wheel.
  • this braking force control device when the actual rear wheel braking force reaches the rear wheel braking force during light loading in the ideal braking force distribution, the rear wheel braking force is distributed when the rear wheel is not slipping. The ratio is increased.
  • Japanese Patent Laid-Open No. 2001-171502 discloses a technique for calculating a reference value from a measured value of a vehicle speed sensor and limiting the braking force applied to the rear wheel when the deceleration is equal to or higher than the reference value. Has been.
  • an object of the present invention is to provide a braking force control device that can achieve both vehicle stabilization and securing of braking force and can perform appropriate braking force control even when the system fails.
  • the braking force control device is a braking force control device that controls the braking force applied to each wheel of the vehicle, and includes a deceleration detection unit that detects vehicle deceleration, and a system failure in the vehicle. If the braking force to be applied to each wheel is determined using the deviation between the deceleration detected by the deceleration detection unit and the target deceleration, the rear wheel braking force exceeds the determined braking force. And a braking force control unit that maintains the braking force of the rear wheels at a constant value.
  • the braking force control unit determines the braking force to be applied to each wheel from the target deceleration and the detected actual deceleration.
  • the braking force of the rear wheel is maintained at a constant value before the braking force of the rear wheel exceeds the determined braking force. Therefore, the limit of the braking force of the rear wheel that can be realized is obtained, and the braking force of the rear wheel can be effectively used by controlling the braking force of the rear wheel so that it does not exceed the above limit. Can be prevented.
  • the braking force of the rear wheels is controlled so as not to exceed the determined braking force, it is possible to prevent the deterioration of the vehicle stability due to the rear wheel lock. Therefore, appropriate braking force control can be performed even when the system fails, and both vehicle stabilization and securing of the braking force can be achieved.
  • the braking force control unit controls the rear wheel until the braking force of the rear wheel reaches a reference value determined based on a case where the vehicle is in an empty state.
  • the power may be increased. Therefore, since the braking force of the rear wheel is increased until the reference value determined based on the case where the vehicle is in an empty state is reached, the braking force of the rear wheel is effectively used and applied to the wheel. It is possible to control the braking force to be in an optimum state.
  • the braking force control apparatus when the vehicle system has failed, the output of the wheel speed sensor in the vehicle may not be detected. In this case, since the braking force control as described above is performed in a state in which the output of the wheel speed sensor cannot be detected, it is possible to perform the appropriate braking force control at an appropriate timing.
  • FIG. 1 is a schematic configuration diagram of a braking force control device according to an embodiment of the present invention. It is a graph which shows an ideal braking force distribution diagram. It is a flowchart which shows a braking force control process. It is a graph for demonstrating each threshold value. It is a graph for demonstrating a target distribution line. It is a graph for demonstrating a threshold value. It is a graph for demonstrating control of the braking force by a target distribution line.
  • the braking force control device 1 is mounted on a vehicle 100 and controls the braking force applied to the left front wheel 11, the right front wheel 12, the left rear wheel 13, and the right rear wheel 14 of the vehicle 100. To do.
  • the left front wheel 11, the right front wheel 12, the left rear wheel 13 and the right rear wheel 14 are provided with wheel speed sensors 11a, 12a, 13a, 14a, respectively, and the rotational speed of each wheel is determined by the wheel speed sensors 11a, 12a, 13a and 14a.
  • the braking force control device 1 includes a deceleration sensor (deceleration detection unit) 15 that detects the deceleration of the vehicle 100.
  • the braking force control device 1 is configured to detect the deceleration detected by the deceleration sensor 15 and the target deceleration when the system fails to detect the slip difference between the front and rear wheels due to a failure of the wheel speed sensors 11a, 12a, 13a, and 14a.
  • a braking force control unit 22 that determines a braking force to be applied to the left front wheel 11, the right front wheel 12, the left rear wheel 13, and the right rear wheel 14 using a deviation from the speed is provided.
  • the braking force control unit 22 controls the braking force so that the braking force of the rear wheels 13 and 14 is maintained at a constant value before the braking force of the rear wheels 13 and 14 exceeds the braking force determined above.
  • the braking force control unit 22 is provided in an ECU (Electronic Control Unit) 20, for example.
  • the braking force control device 1 electrically controls the distribution of the braking force applied to the front wheels 11 and 12 and the rear wheels 13 and 14 according to the loading state of the vehicle 100 when no system failure has occurred. EBD control is performed. In addition, the braking force control device 1 can distribute the braking force to be applied to the front wheels 11 and 12 and the rear wheels 13 and 14 using the remaining information even when the system of the vehicle 100 fails. Examples of the vehicle 100 on which the braking force control device 1 is mounted include a truck having a loading platform on which a load is mounted.
  • the wheel speed value detected by each wheel speed sensor 11a, 12a, 13a, 14a is output to the ECU 20.
  • the ECU 20 is connected to the deceleration sensor 15 described above and a master cylinder pressure sensor 16 that detects the master cylinder pressure.
  • the deceleration of the vehicle 100 detected by the deceleration sensor 15 and the master cylinder pressure detected by the master cylinder pressure sensor 16 are output to the ECU 20.
  • the ECU20 is provided with the failure detection part 21 which detects failure of the wheel speed sensors 11a, 12a, 13a, 14a other than the braking force control part 22 mentioned above.
  • the failure detection unit 21 determines whether or not each of the wheel speed sensors 11a, 12a, 13a, and 14a has failed based on information on the wheel speeds input from the wheel speed sensors 11a, 12a, 13a, and 14a. .
  • ECU20 controls the braking force of each wheel by controlling the brake actuator 30 according to the deceleration of the vehicle 100 and the master cylinder pressure.
  • a master cylinder 35 is connected to the brake actuator 30.
  • the brake actuator 30 includes a wheel cylinder (not shown) corresponding to each of the left front wheel 11, the right front wheel 12, the left rear wheel 13 and the right rear wheel 14, and a hydraulic circuit for controlling each wheel cylinder. Various valves and pumps are connected to this hydraulic circuit. In the brake actuator 30, the braking force of the corresponding left front wheel 11, right front wheel 12, left rear wheel 13 and right rear wheel 14 is adjusted by pressurizing or depressurizing each wheel cylinder.
  • a brake pedal 41 is connected to the piston shaft of the master cylinder 35.
  • a brake pressure sensor that detects an operation state of the brake pedal 41 is connected to the brake pedal 41.
  • the piston shaft of the master cylinder 35 is pushed, and a hydraulic pressure (master pressure) corresponding to the depression amount of the brake pedal 41 is generated.
  • the hydraulic fluid in the hydraulic circuit of the brake actuator 30 is supplied in parallel to each wheel cylinder through each valve according to the depression amount of the brake pedal 41.
  • the ECU 20 outputs an electrical signal to a valve in the brake actuator 30 to independently control the hydraulic pressure of each wheel cylinder, thereby allowing the left front wheel 11, the right front wheel 12, the left rear wheel 13, and the right rear wheel 14 to be controlled. Control each braking force.
  • the ideal braking force distribution line is different in the loaded state. Since the ideal braking force distribution line is determined according to the weight of the vehicle and the distribution of the front and rear wheels, a plurality of ideal distribution lines C1, C2, C3 and equal G lines g (see FIG. 4) are determined according to the loaded weight of the vehicle. .
  • the width of the equal G line g increases as the weight of the vehicle 100 increases, and decreases as the weight of the vehicle 100 decreases.
  • the straight line A is obtained from the brake specifications of the front and rear wheels set based on the ideal distribution line in the fixed volume state (loading amount as designed) of the vehicle 100.
  • the flowchart shown in FIG. 3 shows the flow of the braking force control process in this embodiment, and is executed by the ECU 20.
  • the braking force control process shown in FIG. 3 is repeatedly executed at regular intervals, for example.
  • step S1 the failure detection unit 21 causes each wheel speed sensor 11a, 12a, 13a, 14a. Is broken and it is determined whether or not the wheel speed is abnormal.
  • the wheel speed abnormality means that the EBD control using the slip difference between the front wheel slip and the rear wheel slip cannot be performed, that is, the ECU 20 cannot detect the outputs of the wheel speed sensors 11a, 12a, 13a, and 14a. Indicates the state.
  • S3 it is determined whether or not the braking force of the left front wheel 11 and the right front wheel 12 is greater than the threshold value TH1.
  • the process proceeds to S4.
  • the braking force control unit 22 maintains the hydraulic pressure of each of the rear wheels 13, 14, so that the braking force of the left rear wheel 13 and the right rear wheel 14 is a constant value as shown by the line segment L1 in FIG. Maintained.
  • the threshold value TH1 indicates, for example, a braking force equivalent to 0.2G in design.
  • the process proceeds to S5.
  • the threshold value TH2 indicates, for example, a braking force equivalent to 0.3 G in design. If it is determined in S5 that the braking force of the left front wheel 11 and the right front wheel 12 is greater than the threshold value TH2, the process proceeds to S6. In S6, the braking force of the left rear wheel 13 and the right rear wheel 14 increases as shown by the line segment L2 in FIG. Is done. On the other hand, when it is determined in S5 that the braking force of the left front wheel 11 and the right front wheel 12 is not greater than the threshold value TH2, the process proceeds to S7.
  • the threshold value TH3 indicates a reference value determined based on the case where the vehicle 100 is in an empty state, and the ideal distribution line C1 when the vehicle 100 is in an empty state. It is the value of the front wheel braking force when slightly lower than the value of the rear wheel braking force at.
  • the threshold value TH3 indicates, for example, a braking force equivalent to 0.5G in design.
  • the target distribution line determination process is executed by the braking force control unit 22. Specifically, as indicated by a line segment L3 in FIG. 5, the braking force of the left rear wheel 13 and the right rear wheel 14 is held at a constant value, and the braking force of the left front wheel 11 and the right front wheel 12 is constant. Increased by the value ⁇ BrkForce_f_const. Then, a target distribution line is obtained from the deceleration of the vehicle 100 when the braking force of the left front wheel 11 and the right front wheel 12 is increased by a constant value ⁇ BrkForce_f_const, the braking force of each wheel, and the equal G line g.
  • the calculated actual vehicle estimated weight m is compared with the weight corresponding to each ideal distribution line C1, C2, C3, and the ideal corresponding to the weight that is heavier than the actual vehicle estimated weight m and closest to the actual vehicle estimated weight m.
  • the distribution line is determined as the target distribution line.
  • the ideal distribution line C2 is determined as the target distribution line.
  • the threshold value TH4 is a value that is arbitrarily set according to the target distribution line determined in S8, and is a value that is set along the target distribution line C2, for example, as shown in FIG.
  • the process proceeds to S10.
  • the braking force control unit 22 maintains the hydraulic pressure of each of the rear wheels 13 and 14, whereby the braking force of the left rear wheel 13 and the right rear wheel 14 is maintained at a constant value, and the series of processes is terminated.
  • the series of processing is ended as it is.
  • the braking force control apparatus 1 is detected by the target deceleration determined based on the equal G line g and the deceleration sensor 15 when a system failure occurs in the vehicle 100.
  • the braking force is determined as a target distribution line from the actual deceleration. As shown in FIG. 7, before the braking force of the rear wheels 13 and 14 exceeds the braking force on the determined target distribution line, the braking force of the rear wheels 13 and 14 is maintained at a constant value. Therefore, the limit of the braking force of the rear wheels 13 and 14 that can be realized is obtained, and the braking force of the rear wheels 13 and 14 is effectively controlled by controlling the braking force of the rear wheels 13 and 14 not to exceed the above limit.
  • the braking force control unit 22 applies the braking force of the rear wheel along the straight line A, for example, until the braking force of the rear wheel reaches a threshold value TH3 determined based on the case where the vehicle 100 is in an empty state. Increase. Therefore, since the braking force of the rear wheel is increased until the threshold value TH3 is reached, the braking force of the rear wheel is effectively used and applied to the left front wheel 11, the right front wheel 12, the left rear wheel 13, and the right rear wheel 14. The braking force applied can be controlled to be in an optimum state.
  • the braking force control device 1 calculates the actual vehicle estimated weight m using the above-described equation (1), and determines the target distribution line from the calculated actual vehicle estimated weight m. Therefore, it is possible to apply the braking force in consideration of the actual vehicle estimated weight m. Further, in the braking force control device 1, since the braking force is applied without using the wheel speed sensors 11a, 12a, 13a, and 14a, the braking force control device 1 is used as a backup when the EBD cannot be operated. Thus, it is possible to suppress a decrease in braking performance when the system fails.
  • braking force control apparatus which concerns on this invention
  • the braking force control apparatus which concerns on this invention is not limited to what was described in this embodiment.
  • the braking force control apparatus according to the present invention may be a modification of the braking force control apparatus according to the present embodiment, or may be applied to other ones without changing the gist described in each claim.
  • the brake actuator 30 is connected to the master cylinder 35 and includes a wheel cylinder.
  • the configuration of the brake actuator can be changed as appropriate without being limited to the above embodiment.
  • the deceleration detection unit that detects the deceleration of the vehicle 100 is not limited to the deceleration sensor 15 of the above embodiment, and various sensors can be used. Further, instead of the detection value of the deceleration sensor 15, for example, a differential value of the detection value of the vehicle speed sensor acquired in advance may be used.
  • a truck having a loading platform on which a load is mounted is cited, but a bus or the like may be used as long as the vehicle can load the load.
  • the present invention can be used as a braking force control device that can achieve both vehicle stabilization and securing of braking force and can be operated without any problem even when the system fails.
  • SYMBOLS 1 DESCRIPTION OF SYMBOLS 1 ... Braking force control apparatus, 11 ... Left front wheel (front wheel), 11a, 12a, 13a, 14a ... Wheel speed sensor, 12 ... Right front wheel (front wheel), 13 ... Left rear wheel (rear wheel), 14 ... Right rear wheel (Rear wheel), 15 ... deceleration sensor (deceleration detection unit), 20 ... ECU, 22 ... braking force control unit, 100 ... vehicle, TH3 ... threshold (reference value).

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

A braking force control device is a braking force control device that controls braking force provided to each wheel of a vehicle and is provided with: a deceleration detection unit that detects deceleration of the vehicle; and a braking force control unit that, when a system failure develops in the vehicle, determines braking force provided to each wheel using a deviation between the deceleration detected by the deceleration detection unit and a target deceleration, and maintains a constant value of braking force for a rear wheel before braking force for the rear wheel exceeds the determined braking force.

Description

制動力制御装置Braking force control device
 本発明は、各車輪に付与する制動力を制御する制動力制御装置に関する。 The present invention relates to a braking force control device that controls the braking force applied to each wheel.
 車両の積載状態に応じて前後輪の制動力配分を制御する際に、実際の制動力配分比をできるだけ理想制動力配分比に近づける手法としてEBD(Electronic Brake force Distribution)による制御が知られている。EBDは、前後輪の回転数や旋回状態に基づいて制動力を車輪に対して最適に配分する手法であり、制動中の前後輪のスリップ差から後輪の制動力限界を検知することで機能を達成する。 When controlling the braking force distribution of the front and rear wheels according to the loading state of the vehicle, control by EBD (Electronic Brake force Distribution) is known as a method for bringing the actual braking force distribution ratio as close as possible to the ideal braking force distribution ratio. . EBD is a technique for optimally allocating braking force to wheels based on the number of rotations of the front and rear wheels and the turning state, and functions by detecting the braking force limit of the rear wheels from the slip difference between the front and rear wheels during braking. To achieve.
 また、特開2010-284990号公報には、後輪におけるスリップ状態の発生有無を判定する後輪スリップ判定部を備えた制動力制御装置が記載されている。この制動力制御装置では、実際の後輪制動力が理想制動力配分における軽積時の後輪制動力に到達した場合において、後輪がスリップ状態となっていないときに後輪制動力の配分比を増加させている。また、特開2001-171502号公報には、車速センサの測定値から基準値を算出し、減速度が当該基準値以上である場合に、後輪に付与される制動力を制限する技術が開示されている。 Also, JP 2010-284990 A describes a braking force control device including a rear wheel slip determination unit that determines whether or not a slip state has occurred in the rear wheel. In this braking force control device, when the actual rear wheel braking force reaches the rear wheel braking force during light loading in the ideal braking force distribution, the rear wheel braking force is distributed when the rear wheel is not slipping. The ratio is increased. Japanese Patent Laid-Open No. 2001-171502 discloses a technique for calculating a reference value from a measured value of a vehicle speed sensor and limiting the braking force applied to the rear wheel when the deceleration is equal to or higher than the reference value. Has been.
特開2010-284990号公報JP 2010-284990 A 特開2001-171502号公報JP 2001-171502 A
 ところで、EBDによって制動力の制御を行うためには、車輪の状態を車輪速センサ等で検出できることが前提となっている。よって、車輪速センサの故障等で車輪の状態を検出できなくなった場合には、スリップの有無を検出できないのでEBDの機能が実現できなくなるという問題が生じる。 Incidentally, in order to control the braking force by EBD, it is assumed that the state of the wheel can be detected by a wheel speed sensor or the like. Therefore, when it becomes impossible to detect the state of the wheel due to a failure of the wheel speed sensor or the like, there is a problem that the EBD function cannot be realized because the presence or absence of slip cannot be detected.
 そこで、本発明の課題は、車両安定化と制動力確保とを両立させると共に、システム失陥時でも適切な制動力制御が行える制動力制御装置を提供することである。 Therefore, an object of the present invention is to provide a braking force control device that can achieve both vehicle stabilization and securing of braking force and can perform appropriate braking force control even when the system fails.
 すなわち、本発明に係る制動力制御装置は、車両の各車輪に付与する制動力を制御する制動力制御装置であって、車両の減速度を検出する減速度検出部と、車両でシステム失陥が発生した場合に、減速度検出部によって検出された減速度と目標減速度との偏差を用いて各車輪に付与する制動力を決定し、後輪の制動力が決定した制動力を超える前に後輪の制動力を一定値に維持する制動力制御部と、を備える。 That is, the braking force control device according to the present invention is a braking force control device that controls the braking force applied to each wheel of the vehicle, and includes a deceleration detection unit that detects vehicle deceleration, and a system failure in the vehicle. If the braking force to be applied to each wheel is determined using the deviation between the deceleration detected by the deceleration detection unit and the target deceleration, the rear wheel braking force exceeds the determined braking force. And a braking force control unit that maintains the braking force of the rear wheels at a constant value.
 本発明に係る制動力制御装置は、制動力制御部によって、車両でシステム失陥が発生した場合には、目標減速度と検出された実減速度とから各車輪に付与する制動力を決定し、後輪の制動力が決定した制動力を超える前に後輪の制動力を一定値に維持させる。よって、実現可能な後輪の制動力の限界を求め、後輪の制動力が上記限界を超えないように制御されることにより後輪の制動力を有効に利用することができるので制動力低下を防止することができる。また、後輪の制動力は、決定した制動力を超えないように制御されるので、後輪ロックによる車両安定性の悪化を防止することもできる。従って、システム失陥時でも適切な制動力制御が行えると共に、車両安定化と制動力確保とを両立させることができる。 In the braking force control device according to the present invention, when a system failure occurs in the vehicle, the braking force control unit determines the braking force to be applied to each wheel from the target deceleration and the detected actual deceleration. The braking force of the rear wheel is maintained at a constant value before the braking force of the rear wheel exceeds the determined braking force. Therefore, the limit of the braking force of the rear wheel that can be realized is obtained, and the braking force of the rear wheel can be effectively used by controlling the braking force of the rear wheel so that it does not exceed the above limit. Can be prevented. Further, since the braking force of the rear wheels is controlled so as not to exceed the determined braking force, it is possible to prevent the deterioration of the vehicle stability due to the rear wheel lock. Therefore, appropriate braking force control can be performed even when the system fails, and both vehicle stabilization and securing of the braking force can be achieved.
 また、本発明に係る制動力制御装置について、制動力制御部は、車両が空荷の状態である場合を基に定められた基準値に後輪の制動力が達するまでは、後輪の制動力を増加させてもよい。よって、車両が空荷の状態である場合を基に定められた基準値に到達するまでは後輪の制動力が増加されるので、後輪の制動力を有効に使用して車輪に付与される制動力を最適な状態となるように制御することができる。 In the braking force control apparatus according to the present invention, the braking force control unit controls the rear wheel until the braking force of the rear wheel reaches a reference value determined based on a case where the vehicle is in an empty state. The power may be increased. Therefore, since the braking force of the rear wheel is increased until the reference value determined based on the case where the vehicle is in an empty state is reached, the braking force of the rear wheel is effectively used and applied to the wheel. It is possible to control the braking force to be in an optimum state.
 また、本発明に係る制動力制御装置について、車両のシステム失陥が発生した場合とは、車両における車輪速センサの出力が検出できない状態であってもよい。この場合、車輪速センサの出力が検出できない状態で上述したような制動力の制御がなされるので、適切なタイミングで適切な制動力制御を行うことが可能となる。 In the braking force control apparatus according to the present invention, when the vehicle system has failed, the output of the wheel speed sensor in the vehicle may not be detected. In this case, since the braking force control as described above is performed in a state in which the output of the wheel speed sensor cannot be detected, it is possible to perform the appropriate braking force control at an appropriate timing.
 本発明によれば、車両安定化と制動力確保とを両立させると共に、システム失陥時でも適切な制動力制御を行うことができる。 According to the present invention, it is possible to achieve both vehicle stabilization and securing of braking force, and appropriate braking force control can be performed even when the system fails.
本発明の実施形態に係る制動力制御装置の概略構成図である。1 is a schematic configuration diagram of a braking force control device according to an embodiment of the present invention. 理想制動力配分線図を示すグラフである。It is a graph which shows an ideal braking force distribution diagram. 制動力制御処理を示すフローチャートである。It is a flowchart which shows a braking force control process. 各閾値を説明するためのグラフである。It is a graph for demonstrating each threshold value. 目標配分線を説明するためのグラフである。It is a graph for demonstrating a target distribution line. 閾値を説明するためのグラフである。It is a graph for demonstrating a threshold value. 目標配分線による制動力の制御を説明するためのグラフである。It is a graph for demonstrating control of the braking force by a target distribution line.
 以下、添付図面を参照して、本発明の好適な実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.
 図1に示されるように、制動力制御装置1は、車両100に搭載されており、車両100の左前輪11、右前輪12、左後輪13及び右後輪14に付与する制動力を制御する。左前輪11、右前輪12、左後輪13及び右後輪14には、それぞれ車輪速センサ11a,12a,13a,14aが設けられており、各車輪の回転速度は車輪速センサ11a,12a,13a,14aによって検出される。 As shown in FIG. 1, the braking force control device 1 is mounted on a vehicle 100 and controls the braking force applied to the left front wheel 11, the right front wheel 12, the left rear wheel 13, and the right rear wheel 14 of the vehicle 100. To do. The left front wheel 11, the right front wheel 12, the left rear wheel 13 and the right rear wheel 14 are provided with wheel speed sensors 11a, 12a, 13a, 14a, respectively, and the rotational speed of each wheel is determined by the wheel speed sensors 11a, 12a, 13a and 14a.
 また、制動力制御装置1は、車両100の減速度を検出する減速度センサ(減速度検出部)15を備えている。制動力制御装置1は、車輪速センサ11a,12a,13a,14aの故障等によって前後輪のスリップ差を検出することができないシステム失陥時に、減速度センサ15によって検出された減速度と目標減速度との偏差を用いて左前輪11、右前輪12、左後輪13及び右後輪14に付与する制動力を決定する制動力制御部22を備えている。制動力制御部22は、後輪13,14の制動力が上記で決定した制動力を超える前に後輪13,14の制動力を一定値に維持するように制動力の制御を行う。また、制動力制御部22は例えばECU(Electronic Control Unit)20に設けられている。 Further, the braking force control device 1 includes a deceleration sensor (deceleration detection unit) 15 that detects the deceleration of the vehicle 100. The braking force control device 1 is configured to detect the deceleration detected by the deceleration sensor 15 and the target deceleration when the system fails to detect the slip difference between the front and rear wheels due to a failure of the wheel speed sensors 11a, 12a, 13a, and 14a. A braking force control unit 22 that determines a braking force to be applied to the left front wheel 11, the right front wheel 12, the left rear wheel 13, and the right rear wheel 14 using a deviation from the speed is provided. The braking force control unit 22 controls the braking force so that the braking force of the rear wheels 13 and 14 is maintained at a constant value before the braking force of the rear wheels 13 and 14 exceeds the braking force determined above. The braking force control unit 22 is provided in an ECU (Electronic Control Unit) 20, for example.
 制動力制御装置1は、システム失陥が発生していない場合には、車両100の積載状態に応じて前輪11,12及び後輪13,14に付与する制動力の配分を電気的に制御するEBD制御を行う。また、制動力制御装置1は、車両100のシステム失陥時においても、残存する情報を用いて前輪11,12及び後輪13,14に付与する制動力の配分が行えるようになっている。制動力制御装置1が搭載される車両100としては、例えば積載物が搭載される荷台を備えたトラックが挙げられる。 The braking force control device 1 electrically controls the distribution of the braking force applied to the front wheels 11 and 12 and the rear wheels 13 and 14 according to the loading state of the vehicle 100 when no system failure has occurred. EBD control is performed. In addition, the braking force control device 1 can distribute the braking force to be applied to the front wheels 11 and 12 and the rear wheels 13 and 14 using the remaining information even when the system of the vehicle 100 fails. Examples of the vehicle 100 on which the braking force control device 1 is mounted include a truck having a loading platform on which a load is mounted.
 各車輪速センサ11a,12a,13a,14aが検出した車輪速の値は、ECU20に出力される。ECU20には、上述した減速度センサ15と、マスタシリンダ圧を検出するマスタシリンダ圧センサ16とが接続されている。減速度センサ15によって検出された車両100の減速度と、マスタシリンダ圧センサ16によって検出されたマスタシリンダ圧はECU20に出力される。 The wheel speed value detected by each wheel speed sensor 11a, 12a, 13a, 14a is output to the ECU 20. The ECU 20 is connected to the deceleration sensor 15 described above and a master cylinder pressure sensor 16 that detects the master cylinder pressure. The deceleration of the vehicle 100 detected by the deceleration sensor 15 and the master cylinder pressure detected by the master cylinder pressure sensor 16 are output to the ECU 20.
 ECU20は、上述した制動力制御部22の他に、車輪速センサ11a,12a,13a,14aの故障を検知する故障検知部21を備えている。故障検知部21は、各車輪速センサ11a,12a,13a,14aから入力される車輪速の情報に基づいて、各車輪速センサ11a,12a,13a,14aが故障しているか否かを判断する。 ECU20 is provided with the failure detection part 21 which detects failure of the wheel speed sensors 11a, 12a, 13a, 14a other than the braking force control part 22 mentioned above. The failure detection unit 21 determines whether or not each of the wheel speed sensors 11a, 12a, 13a, and 14a has failed based on information on the wheel speeds input from the wheel speed sensors 11a, 12a, 13a, and 14a. .
 ECU20は、車両100の減速度とマスタシリンダ圧とに応じてブレーキアクチュエータ30を制御することによって各車輪の制動力を制御する。ブレーキアクチュエータ30にはマスタシリンダ35が接続されている。ブレーキアクチュエータ30は、左前輪11、右前輪12、左後輪13及び右後輪14のそれぞれに対応したホイルシリンダ(不図示)と、各ホイルシリンダを制御するための油圧回路とを備えており、この油圧回路には種々のバルブやポンプが接続されている。ブレーキアクチュエータ30では、各ホイルシリンダが加圧又は減圧されることによって、対応する左前輪11、右前輪12、左後輪13及び右後輪14の制動力が調整される。 ECU20 controls the braking force of each wheel by controlling the brake actuator 30 according to the deceleration of the vehicle 100 and the master cylinder pressure. A master cylinder 35 is connected to the brake actuator 30. The brake actuator 30 includes a wheel cylinder (not shown) corresponding to each of the left front wheel 11, the right front wheel 12, the left rear wheel 13 and the right rear wheel 14, and a hydraulic circuit for controlling each wheel cylinder. Various valves and pumps are connected to this hydraulic circuit. In the brake actuator 30, the braking force of the corresponding left front wheel 11, right front wheel 12, left rear wheel 13 and right rear wheel 14 is adjusted by pressurizing or depressurizing each wheel cylinder.
 マスタシリンダ35のピストン軸にはブレーキペダル41が接続されている。ブレーキペダル41には、例えばブレーキペダル41の操作状態を検出するブレーキ圧センサが接続されている。ここで、運転者によってブレーキペダル41が踏み込まれると、マスタシリンダ35のピストン軸が押されて、ブレーキペダル41の踏み込み量に応じた液圧(マスタ圧)が発生する。そして、ブレーキペダル41の踏み込み量に応じてブレーキアクチュエータ30の油圧回路における作動液が各バルブを経て各ホイルシリンダに並列的に供給される。ここで、ECU20は、ブレーキアクチュエータ30内のバルブに電気信号を出力し各ホイルシリンダの液圧を独立的に制御することによって、左前輪11、右前輪12、左後輪13及び右後輪14のそれぞれの制動力を制御する。 A brake pedal 41 is connected to the piston shaft of the master cylinder 35. For example, a brake pressure sensor that detects an operation state of the brake pedal 41 is connected to the brake pedal 41. Here, when the brake pedal 41 is depressed by the driver, the piston shaft of the master cylinder 35 is pushed, and a hydraulic pressure (master pressure) corresponding to the depression amount of the brake pedal 41 is generated. Then, the hydraulic fluid in the hydraulic circuit of the brake actuator 30 is supplied in parallel to each wheel cylinder through each valve according to the depression amount of the brake pedal 41. Here, the ECU 20 outputs an electrical signal to a valve in the brake actuator 30 to independently control the hydraulic pressure of each wheel cylinder, thereby allowing the left front wheel 11, the right front wheel 12, the left rear wheel 13, and the right rear wheel 14 to be controlled. Control each braking force.
 次に、本実施形態に係る制動力制御装置1の動作について図2~図7を参照して説明する。図2に示されるように、トラック等の積載車両においては、積載の状態において理想制動力配分線が異なる。理想制動力配分線は、車両の重量と前後輪の配分に応じて定まるので、車両の積載重量に応じて理想配分線C1,C2,C3と等G線g(図4参照)が複数定められる。等G線gの幅は、車両100の重量が重いほど広くなり、車両100の重量が軽いほど狭くなる。 Next, the operation of the braking force control apparatus 1 according to this embodiment will be described with reference to FIGS. As shown in FIG. 2, in a loaded vehicle such as a truck, the ideal braking force distribution line is different in the loaded state. Since the ideal braking force distribution line is determined according to the weight of the vehicle and the distribution of the front and rear wheels, a plurality of ideal distribution lines C1, C2, C3 and equal G lines g (see FIG. 4) are determined according to the loaded weight of the vehicle. . The width of the equal G line g increases as the weight of the vehicle 100 increases, and decreases as the weight of the vehicle 100 decreases.
 以下では、図2に示される理想制動力配分線図における直線Aを基にして説明を行う。直線Aは、車両100の定積状態(設計値通りの積載量)における理想配分線に基づいて設定された前後輪のブレーキ諸元から求められる。図3に示されるフローチャートは、本実施形態における制動力制御処理のフローを示しておりECU20によって実行される。図3に示される制動力制御処理は、例えば一定時間ごとに繰り返し実行される。 Hereinafter, description will be made based on the straight line A in the ideal braking force distribution diagram shown in FIG. The straight line A is obtained from the brake specifications of the front and rear wheels set based on the ideal distribution line in the fixed volume state (loading amount as designed) of the vehicle 100. The flowchart shown in FIG. 3 shows the flow of the braking force control process in this embodiment, and is executed by the ECU 20. The braking force control process shown in FIG. 3 is repeatedly executed at regular intervals, for example.
 本実施形態における制動力制御装置において、まず、ステップS1(以下、「S1」という。他のステップにおいても同様とする。)では、故障検知部21によって各車輪速センサ11a,12a,13a,14aが故障し、車輪速異常となっているか否かが判定される。ここで、車輪速異常とは、前輪のスリップと後輪のスリップとのスリップ差を用いたEBD制御が行えない状態、すなわち、車輪速センサ11a,12a,13a,14aの出力をECU20が検出できない状態を示している。 In the braking force control apparatus according to the present embodiment, first, in step S1 (hereinafter referred to as “S1”, the same applies to other steps), the failure detection unit 21 causes each wheel speed sensor 11a, 12a, 13a, 14a. Is broken and it is determined whether or not the wheel speed is abnormal. Here, the wheel speed abnormality means that the EBD control using the slip difference between the front wheel slip and the rear wheel slip cannot be performed, that is, the ECU 20 cannot detect the outputs of the wheel speed sensors 11a, 12a, 13a, and 14a. Indicates the state.
 S1で車輪速異常となっていないと判定された場合には、EBD制御が可能となっているので、図3の制動力制御処理を終了して通常のEBD制御が実行される。一方、S1で車輪速異常となっていると判定された場合にはS2に移行し、ブレーキペダル41が踏まれて制動中となっているか否かが判定される。S2において、制動中でないと判定された場合には一連の処理を終了し、制動中であると判定された場合にはS3に移行する。なお、制動中となっている場合には、左前輪11、右前輪12、左後輪13及び右後輪14のそれぞれの制動力が図2に示されるグラフの直線Aに沿うように直線的に大きくなっている。 If it is determined in S1 that the wheel speed is not abnormal, the EBD control is possible. Therefore, the braking force control process in FIG. 3 is terminated and the normal EBD control is executed. On the other hand, when it is determined in S1 that the wheel speed is abnormal, the process proceeds to S2, and it is determined whether or not the brake pedal 41 is depressed and braking is being performed. If it is determined in S2 that braking is not being performed, the series of processes is terminated, and if it is determined that braking is being performed, the process proceeds to S3. When braking, the braking force of each of the left front wheel 11, the right front wheel 12, the left rear wheel 13 and the right rear wheel 14 is linear so as to follow the straight line A of the graph shown in FIG. Is getting bigger.
 S3では、左前輪11及び右前輪12の制動力が閾値TH1より大きいか否かが判定される。ここで、左前輪11及び右前輪12の制動力が閾値TH1より大きいと判定された場合にはS4に移行する。S4では、制動力制御部22によって各後輪13,14の油圧が保持されることにより、図4の線分L1に示されるように左後輪13及び右後輪14の制動力が一定値に維持される。なお、閾値TH1は、例えば設計上0.2G相当の制動力を示している。一方、S3において、左前輪11及び右前輪12の制動力が閾値TH1よりも大きくないと判定された場合にはS5に移行する。 In S3, it is determined whether or not the braking force of the left front wheel 11 and the right front wheel 12 is greater than the threshold value TH1. Here, when it is determined that the braking force of the left front wheel 11 and the right front wheel 12 is larger than the threshold value TH1, the process proceeds to S4. In S4, the braking force control unit 22 maintains the hydraulic pressure of each of the rear wheels 13, 14, so that the braking force of the left rear wheel 13 and the right rear wheel 14 is a constant value as shown by the line segment L1 in FIG. Maintained. The threshold value TH1 indicates, for example, a braking force equivalent to 0.2G in design. On the other hand, when it is determined in S3 that the braking force of the left front wheel 11 and the right front wheel 12 is not greater than the threshold value TH1, the process proceeds to S5.
 S5では、左前輪11及び右前輪12の制動力が閾値TH2より大きいか否かが判定される。ここで、閾値TH2は、例えば設計上0.3G相当の制動力を示している。S5において、左前輪11及び右前輪12の制動力が閾値TH2より大きいと判定された場合にはS6に移行する。S6では、制動力制御部22によって各後輪13,14の油圧が増圧されることにより、図4の線分L2に示されるように左後輪13及び右後輪14の制動力が増加される。一方、S5において、左前輪11及び右前輪12の制動力が閾値TH2よりも大きくないと判定された場合にはS7に移行する。 In S5, it is determined whether or not the braking force of the left front wheel 11 and the right front wheel 12 is greater than the threshold value TH2. Here, the threshold value TH2 indicates, for example, a braking force equivalent to 0.3 G in design. If it is determined in S5 that the braking force of the left front wheel 11 and the right front wheel 12 is greater than the threshold value TH2, the process proceeds to S6. In S6, the braking force of the left rear wheel 13 and the right rear wheel 14 increases as shown by the line segment L2 in FIG. Is done. On the other hand, when it is determined in S5 that the braking force of the left front wheel 11 and the right front wheel 12 is not greater than the threshold value TH2, the process proceeds to S7.
 S7では、左前輪11及び右前輪12の制動力が閾値TH3より大きいか否かが判定される。図4に示されるように、閾値TH3は、車両100が空荷の状態である場合を基に定められた基準値を示しており、車両100が空荷の状態である場合の理想配分線C1における後輪制動力の値を若干下回るときの前輪制動力の値となっている。ここで、閾値TH3は、例えば設計上0.5G相当の制動力を示している。S7において、左前輪11及び右前輪12の制動力が閾値TH3より大きいと判定された場合にはS8に移行し、左前輪11及び右前輪12の制動力が閾値TH3より大きくないと判定された場合にはS9に移行する。 In S7, it is determined whether or not the braking force of the left front wheel 11 and the right front wheel 12 is greater than the threshold value TH3. As shown in FIG. 4, the threshold value TH3 indicates a reference value determined based on the case where the vehicle 100 is in an empty state, and the ideal distribution line C1 when the vehicle 100 is in an empty state. It is the value of the front wheel braking force when slightly lower than the value of the rear wheel braking force at. Here, the threshold value TH3 indicates, for example, a braking force equivalent to 0.5G in design. In S7, when it is determined that the braking force of the left front wheel 11 and the right front wheel 12 is greater than the threshold value TH3, the process proceeds to S8, where it is determined that the braking force of the left front wheel 11 and the right front wheel 12 is not greater than the threshold value TH3. If so, the process proceeds to S9.
 S8では、制動力制御部22によって目標配分線決定処理が実行される。具体的には、図5の線分L3に示されるように、左後輪13及び右後輪14の制動力が一定値に保持されると共に、左前輪11及び右前輪12の制動力は一定値ΔBrkForce_f_constだけ増加される。そして、一定値ΔBrkForce_f_constだけ左前輪11及び右前輪12の制動力が増加された場合における車両100の減速度と、各車輪の制動力と、等G線gとから目標配分線が求められる。具体的には、左後輪13及び右後輪14の後輪制動力RFと、S8の処理開始時における左前輪11及び右前輪12の前輪制動力FFと、上述した一定値ΔBrkForce_f_constと、減速度センサ15によって検出された減速度Gxとを用いて、下記式(1)から車両100の実車推定重量mが算出される。
   (RF+FF+ΔBrkForce_f_const)/Gx=m ・・・(1)
In S <b> 8, the target distribution line determination process is executed by the braking force control unit 22. Specifically, as indicated by a line segment L3 in FIG. 5, the braking force of the left rear wheel 13 and the right rear wheel 14 is held at a constant value, and the braking force of the left front wheel 11 and the right front wheel 12 is constant. Increased by the value ΔBrkForce_f_const. Then, a target distribution line is obtained from the deceleration of the vehicle 100 when the braking force of the left front wheel 11 and the right front wheel 12 is increased by a constant value ΔBrkForce_f_const, the braking force of each wheel, and the equal G line g. Specifically, the rear wheel braking force RF of the left rear wheel 13 and the right rear wheel 14, the front wheel braking force FF of the left front wheel 11 and the right front wheel 12 at the start of the processing of S8, and the above-described constant value ΔBrkForce_f_const are reduced. The actual vehicle estimated weight m of the vehicle 100 is calculated from the following equation (1) using the deceleration Gx detected by the speed sensor 15.
(RF + FF + ΔBrkForce_f_const) / Gx = m (1)
 そして、算出された実車推定重量mと各理想配分線C1,C2,C3に対応する重量とが比較され、実車推定重量mよりも重く且つ実車推定重量mに最も近い値の重量に対応した理想配分線が目標配分線として決定される。図5では、例えば理想配分線C2が目標配分線として決定されている。目標配分線が決定された後は、目標配分線に沿うように左前輪11、右前輪12、左後輪13及び右後輪14のそれぞれの制動力が増加されてS9に移行する。 Then, the calculated actual vehicle estimated weight m is compared with the weight corresponding to each ideal distribution line C1, C2, C3, and the ideal corresponding to the weight that is heavier than the actual vehicle estimated weight m and closest to the actual vehicle estimated weight m. The distribution line is determined as the target distribution line. In FIG. 5, for example, the ideal distribution line C2 is determined as the target distribution line. After the target distribution line is determined, the braking forces of the left front wheel 11, the right front wheel 12, the left rear wheel 13 and the right rear wheel 14 are increased along the target distribution line, and the process proceeds to S9.
 S9では、左前輪11及び右前輪12の制動力が閾値TH4より大きいか否かが判定される。閾値TH4は、S8で決定された目標配分線に合わせて任意に設定される値であり、図6に示されるように、例えば目標配分線C2に沿うように設定された値である。S9において、左前輪11及び右前輪12の制動力が閾値TH4より大きいと判定された場合にはS10に移行する。S10では、制動力制御部22によって各後輪13,14の油圧が保持されることにより、左後輪13及び右後輪14の制動力が一定値に維持されて一連の処理を終了する。一方、S9において、左前輪11及び右前輪12の制動力が閾値TH4より大きくないと判定された場合には、そのまま一連の処理を終了する。 In S9, it is determined whether or not the braking force of the left front wheel 11 and the right front wheel 12 is greater than the threshold value TH4. The threshold value TH4 is a value that is arbitrarily set according to the target distribution line determined in S8, and is a value that is set along the target distribution line C2, for example, as shown in FIG. In S9, when it is determined that the braking force of the left front wheel 11 and the right front wheel 12 is larger than the threshold value TH4, the process proceeds to S10. In S10, the braking force control unit 22 maintains the hydraulic pressure of each of the rear wheels 13 and 14, whereby the braking force of the left rear wheel 13 and the right rear wheel 14 is maintained at a constant value, and the series of processes is terminated. On the other hand, when it is determined in S9 that the braking force of the left front wheel 11 and the right front wheel 12 is not greater than the threshold value TH4, the series of processing is ended as it is.
 以上のように、本実施形態の制動力制御装置1は、車両100にシステム失陥が発生した場合に、等G線gを基に定められた目標減速度と、減速度センサ15によって検出された実減速度とから制動力を目標配分線として決定する。そして、図7に示されるように、後輪13,14の制動力が、決定した目標配分線上の制動力を超える前に、後輪13,14の制動力を一定値に維持させる。よって、実現可能な後輪13,14の制動力の限界を求め、後輪13,14の制動力が上記限界を超えないように制御されることにより、後輪13,14の制動力を有効に利用することができるので制動力低下を防止することができる。また、後輪13,14の制動力は、目標配分線上における決定した制動力を超えないように制御されるので、後輪ロックによる車両安定性の悪化を防止することもできる。従って、システム失陥時でも適切な制動力制御が行えると共に、車両安定化と制動力確保とを両立させることができる。 As described above, the braking force control apparatus 1 according to the present embodiment is detected by the target deceleration determined based on the equal G line g and the deceleration sensor 15 when a system failure occurs in the vehicle 100. The braking force is determined as a target distribution line from the actual deceleration. As shown in FIG. 7, before the braking force of the rear wheels 13 and 14 exceeds the braking force on the determined target distribution line, the braking force of the rear wheels 13 and 14 is maintained at a constant value. Therefore, the limit of the braking force of the rear wheels 13 and 14 that can be realized is obtained, and the braking force of the rear wheels 13 and 14 is effectively controlled by controlling the braking force of the rear wheels 13 and 14 not to exceed the above limit. Therefore, it is possible to prevent a reduction in braking force. Further, since the braking force of the rear wheels 13 and 14 is controlled so as not to exceed the braking force determined on the target distribution line, the deterioration of the vehicle stability due to the rear wheel lock can be prevented. Therefore, appropriate braking force control can be performed even when the system fails, and both vehicle stabilization and securing of the braking force can be achieved.
 また、制動力制御部22は、車両100が空荷の状態である場合を基に定められた閾値TH3に後輪の制動力が達するまでは、例えば直線Aに沿うように後輪の制動力を増加させる。よって、閾値TH3に到達するまでは後輪の制動力が増加されるので、後輪の制動力を有効に使用して左前輪11、右前輪12、左後輪13及び右後輪14に付与される制動力が最適な状態となるように制御することができる。 Further, the braking force control unit 22 applies the braking force of the rear wheel along the straight line A, for example, until the braking force of the rear wheel reaches a threshold value TH3 determined based on the case where the vehicle 100 is in an empty state. Increase. Therefore, since the braking force of the rear wheel is increased until the threshold value TH3 is reached, the braking force of the rear wheel is effectively used and applied to the left front wheel 11, the right front wheel 12, the left rear wheel 13, and the right rear wheel 14. The braking force applied can be controlled to be in an optimum state.
 更に、制動力制御装置1では、上述した式(1)を用いて実車推定重量mを算出し、算出した実車推定重量mから目標配分線を決定している。よって、実車推定重量mを考慮した制動力の付与を行うことが可能となっている。また、制動力制御装置1では、車輪速センサ11a,12a,13a,14aを用いずに制動力の付与を行っているので、EBDが作動できない場合におけるバックアップとして制動力制御装置1を利用することができ、システム失陥時における制動性能の低下を抑制することが可能となっている。 Furthermore, the braking force control device 1 calculates the actual vehicle estimated weight m using the above-described equation (1), and determines the target distribution line from the calculated actual vehicle estimated weight m. Therefore, it is possible to apply the braking force in consideration of the actual vehicle estimated weight m. Further, in the braking force control device 1, since the braking force is applied without using the wheel speed sensors 11a, 12a, 13a, and 14a, the braking force control device 1 is used as a backup when the EBD cannot be operated. Thus, it is possible to suppress a decrease in braking performance when the system fails.
 なお、上述した実施形態は本発明に係る制動力制御装置の実施形態を説明したものであり、本発明に係る制動力制御装置は本実施形態に記載されたものに限定されない。本発明に係る制動力制御装置は、各請求項に記載した要旨を変更しないように本実施形態に係る制動力制御装置を変形し、又は他のものに適用したものであってもよい。 In addition, embodiment mentioned above demonstrated embodiment of the braking force control apparatus which concerns on this invention, and the braking force control apparatus which concerns on this invention is not limited to what was described in this embodiment. The braking force control apparatus according to the present invention may be a modification of the braking force control apparatus according to the present embodiment, or may be applied to other ones without changing the gist described in each claim.
 例えば、上記実施形態では、ブレーキアクチュエータ30がマスタシリンダ35に接続されると共にホイルシリンダを備えていた。しかしながら、ブレーキアクチュエータの構成は、上記実施形態に限定されることなく適宜変更可能である。 For example, in the above embodiment, the brake actuator 30 is connected to the master cylinder 35 and includes a wheel cylinder. However, the configuration of the brake actuator can be changed as appropriate without being limited to the above embodiment.
 また、車両100の減速度を検出する減速度検出部としては、上記実施形態の減速度センサ15に限られず種々のセンサを用いることができる。また、減速度センサ15の検出値に代えて、例えば予め取得した車速センサの検出値の微分値を用いることも可能である。 Further, the deceleration detection unit that detects the deceleration of the vehicle 100 is not limited to the deceleration sensor 15 of the above embodiment, and various sensors can be used. Further, instead of the detection value of the deceleration sensor 15, for example, a differential value of the detection value of the vehicle speed sensor acquired in advance may be used.
 また、制動力制御装置1による制動力制御処理として、図3のフローチャートに示される処理について説明したが、図3のフローチャートの処理に限られず、適宜処理を削除したり追加したりすることは可能である。 Moreover, although the process shown by the flowchart of FIG. 3 was demonstrated as a braking force control process by the braking force control apparatus 1, it is not restricted to the process of the flowchart of FIG. 3, It is possible to delete or add a process suitably. It is.
 また、制動力制御装置1を搭載する車両100として、積載物が搭載される荷台を備えたトラックを挙げたが、バス等であってもよく、積載物を積載可能な車両であればよい。 In addition, as the vehicle 100 on which the braking force control device 1 is mounted, a truck having a loading platform on which a load is mounted is cited, but a bus or the like may be used as long as the vehicle can load the load.
 本発明は、車両安定化と制動力確保とを両立させると共に、システム失陥時でも問題なく作動させることができる制動力制御装置として利用可能である。 The present invention can be used as a braking force control device that can achieve both vehicle stabilization and securing of braking force and can be operated without any problem even when the system fails.
1…制動力制御装置、11…左前輪(前輪)、11a,12a,13a,14a…車輪速センサ、12…右前輪(前輪)、13…左後輪(後輪)、14…右後輪(後輪)、15…減速度センサ(減速度検出部)、20…ECU、22…制動力制御部、100…車両、TH3…閾値(基準値)。 DESCRIPTION OF SYMBOLS 1 ... Braking force control apparatus, 11 ... Left front wheel (front wheel), 11a, 12a, 13a, 14a ... Wheel speed sensor, 12 ... Right front wheel (front wheel), 13 ... Left rear wheel (rear wheel), 14 ... Right rear wheel (Rear wheel), 15 ... deceleration sensor (deceleration detection unit), 20 ... ECU, 22 ... braking force control unit, 100 ... vehicle, TH3 ... threshold (reference value).

Claims (3)

  1.  車両の各車輪に付与する制動力を制御する制動力制御装置であって、
     前記車両の減速度を検出する減速度検出部と、
     前記車両のシステム失陥が発生した場合に、前記減速度検出部によって検出された減速度と目標減速度との偏差を用いて前記各車輪に付与する制動力を決定し、後輪の制動力が前記決定した制動力を超える前に前記後輪の制動力を一定値に維持する制動力制御部と、
    を備える制動力制御装置。
    A braking force control device for controlling a braking force applied to each wheel of a vehicle,
    A deceleration detector for detecting the deceleration of the vehicle;
    When a system failure of the vehicle occurs, a braking force to be applied to each wheel is determined using a deviation between the deceleration detected by the deceleration detecting unit and the target deceleration, and the braking force of the rear wheel is determined. A braking force control unit for maintaining the braking force of the rear wheel at a constant value before the braking force exceeds the determined braking force;
    A braking force control device comprising:
  2.  前記制動力制御部は、前記車両が空荷の状態である場合を基に定められた基準値に前記後輪の制動力が達するまでは、前記後輪の制動力を増加させる、
    請求項1に記載の制動力制御装置。
    The braking force control unit increases the braking force of the rear wheel until the braking force of the rear wheel reaches a reference value determined based on a case where the vehicle is in an empty state.
    The braking force control apparatus according to claim 1.
  3.  前記車両のシステム失陥が発生した場合とは、前記車両における車輪速センサの出力が検出できない状態である、
    請求項1又は2に記載の制動力制御装置。
    When the system failure of the vehicle occurs, the output of the wheel speed sensor in the vehicle cannot be detected.
    The braking force control apparatus according to claim 1 or 2.
PCT/JP2013/065068 2013-05-30 2013-05-30 Braking force control device WO2014192120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065068 WO2014192120A1 (en) 2013-05-30 2013-05-30 Braking force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065068 WO2014192120A1 (en) 2013-05-30 2013-05-30 Braking force control device

Publications (1)

Publication Number Publication Date
WO2014192120A1 true WO2014192120A1 (en) 2014-12-04

Family

ID=51988192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065068 WO2014192120A1 (en) 2013-05-30 2013-05-30 Braking force control device

Country Status (1)

Country Link
WO (1) WO2014192120A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111923890A (en) * 2020-07-09 2020-11-13 赛格威科技有限公司 Brake system fault detection system and method, vehicle and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341883A (en) * 1993-05-31 1994-12-13 Honda Motor Co Ltd Method for measuring vehicle weight and braking device utilizing the method
JP2008132984A (en) * 2008-01-21 2008-06-12 Toyota Motor Corp Braking control device of vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341883A (en) * 1993-05-31 1994-12-13 Honda Motor Co Ltd Method for measuring vehicle weight and braking device utilizing the method
JP2008132984A (en) * 2008-01-21 2008-06-12 Toyota Motor Corp Braking control device of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111923890A (en) * 2020-07-09 2020-11-13 赛格威科技有限公司 Brake system fault detection system and method, vehicle and storage medium

Similar Documents

Publication Publication Date Title
JP5426674B2 (en) How to maintain optimal braking and skid protection in a two-wheeled vehicle with a single wheel speed sensor failure
US9376119B2 (en) Vehicle-center-of-gravity condition determining apparatus and vehicle behavior control system
US8812211B2 (en) Adapting a braking process
EP2746123B1 (en) Vehicular brake hydraulic pressure control apparatus
EP3393870B1 (en) System and method for independently controlling wheel slip and vehicle acceleration
US9963133B2 (en) Method for controlling braking force of brake devices for two-wheeled vehicle, and device for controlling braking force
KR101732832B1 (en) Vehicle movement dynamics control method
US20160236662A1 (en) Method for operating a braking system and a braking system
JP2009536127A (en) Brake pressure control method and apparatus for motorcycle with motor
US11059467B2 (en) Braking force control apparatus for vehicle
WO2016188612A8 (en) Method and device for electronically controlling a vehicle deceleration in an abs braking system
CN110997383A (en) Method and device for determining wheel slip information of electrically driven wheels of a motor vehicle
US10099668B2 (en) Method and device for operating a vehicle
JP2022504083A (en) How to control a vehicle braking system and its system
WO2014192120A1 (en) Braking force control device
US8538654B2 (en) Systems and methods for improved aircraft braking
WO2017003906A1 (en) Method of traction control for a motor vehicle
CN105142998B (en) The motorcycle and its method of speed of benchmark car body change detection are carried out in 1 passage ABS system
US9421870B2 (en) Regenerative braking setpoint matching
CN102689628B (en) brake system control method and device
KR20130000996A (en) Method for safety braking in vehicle and apparatus thereof
KR100751220B1 (en) The error detecting method and detector of sensor
JP6547603B2 (en) Vehicle braking force control device
CN113734121B (en) Vehicle braking system
US10077038B2 (en) Method for detecting an incorrect installation of brake lines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP