JP3829925B2 - Brake control device for vehicle - Google Patents

Brake control device for vehicle Download PDF

Info

Publication number
JP3829925B2
JP3829925B2 JP2001360510A JP2001360510A JP3829925B2 JP 3829925 B2 JP3829925 B2 JP 3829925B2 JP 2001360510 A JP2001360510 A JP 2001360510A JP 2001360510 A JP2001360510 A JP 2001360510A JP 3829925 B2 JP3829925 B2 JP 3829925B2
Authority
JP
Japan
Prior art keywords
braking
pressure
vehicle
braking force
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360510A
Other languages
Japanese (ja)
Other versions
JP2003160039A (en
Inventor
千章 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001360510A priority Critical patent/JP3829925B2/en
Publication of JP2003160039A publication Critical patent/JP2003160039A/en
Application granted granted Critical
Publication of JP3829925B2 publication Critical patent/JP3829925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の車輌の制動制御装置に係り、更に詳細には前後輪の制動力配分制御を行う車輌の制動制御装置に係る。
【0002】
【従来の技術】
自動車等の車輌の制動制御装置の一つとして、車輌の制動時に後輪がロックすることを防止して車輌の走行安定性を向上させるべく、車輌の運転状態が所定の状態になると後輪の制動圧を保持又は減圧し或いはパルス増圧して後輪の制動力の上昇を抑制する前後輪制動力配分制御を行うよう構成された制動制御装置が従来より知られている。
【0003】
この種の制動制御装置によれば、前後輪制動力配分制御が行われない場合に比して、後輪が前輪よりも先行してロック状態になること及びこれに起因して車輌の安定性が悪化することを防止して車輌の走行安定性を向上させることができるが、前後輪制動力配分制御が実行されると後輪の制動力の上昇が抑制されるため、運転者が制動力を高くしようとして制動操作量を増大させても車輌全体としての制動力が十分に上昇せず、運転者が制動操作に違和感を感じることがある。
【0004】
かかる問題を解消すべく、例えば本願出願人の出願にかかる特開2001−219834号公報には、運転者の制動操作量を判定し、車輌の運転状態が所定の状態になり前後輪制動力配分制御が実行されている状況に於いて運転者の制動操作量が増大していると判定されると、後輪の制動力を増大させるよう構成された制動制御装置が記載されている。
【0005】
【発明が解決しようとする課題】
上記公開公報に記載された制動制御装置によれば、前後輪制動力配分制御が実行されている状況に於いて運転者の制動操作量が増大される場合には後輪の制動力が増大されるので、運転者が制動力を高くしようとして制動操作量を増大させても車輌全体としての制動力が十分に上昇しないことに起因して運転者が制動操作に違和感を感じる虞れを低減することができる。
【0006】
しかし後輪に許容される制動力の増大範囲は限られているため、上述の如き制動制御装置に於いては、後輪が前輪よりも先行してロック状態になること及びこれに起因して車輌の安定性が悪化することを確実に防止しつつ車輌全体としての制動力を十分に上昇させることができないという問題がある。
【0007】
本発明は、車輌の運転状態が所定の状態になると後輪の制動力の上昇を抑制する前後輪制動力配分制御を行うよう構成された従来の制動制御装置に於ける上述の問題に鑑みてなされたものであり、本発明の主要な課題は、前後輪制動力配分制御により後輪の制動力の上昇が抑制されることによる後輪の制動力の不足分を前輪の制動力の増大によって補填することにより、前後輪配分制御を損なうことなく車輌全体の制動力が不足することを防止すること、即ち後輪が前輪よりも先行してロック状態になること及びこれに起因して車輌の安定性が悪化することを確実に防止しつつ車輌全体としての制動力を運転者の制動操作量に応じた値にすることである。
【0008】
【課題を解決するための手段】
上述の主要な課題は、本発明によれば、請求項1の構成、即ちマスタシリンダの作動液圧を各車輪に対応して設けられた制動力発生装置のホイールシリンダへ供給することにより制動力を発生し、車輌の運転状態が所定の状態になると後輪の制動力の上昇を抑制する前後輪制動力配分制御を行う車輌の制動制御装置にして、前記前後輪制動力配分制御が行われているときには後輪の制動力の上昇抑制量に応じて前輪の制動力を増加させる前輪制動力増加手段を有し、前記前後輪制動力配分制御は車輌の運転状態が所定の状態になった時点に於ける車輌の走行状態に応じて後輪の保持圧力を設定し、前記保持圧力に基づいて後輪のホイールシリンダ圧力の上昇を抑制することにより行われ、前記前輪制動力増加手段は運転者による制動操作量と、前記保持圧力と、前輪及び後輪の制動力発生装置の制動性能を表わすパラメータとに基づき前輪のホイールシリンダ圧力増加量を演算し、該増加量に基づき前輪のホイールシリンダ圧力を増加させることを特徴とする車輌の制動制御装置によって達成される。
【0009】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記所定の状態は前記前後輪制動力配分制御の開始条件が成立した状態であるよう構成される(請求項2の構成)。
【0010】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記パラメータは車速が高いほど制動性能を低く表わすパラメータであるよう構成される(請求項3の構成)。
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項3の構成に於いて、前記パラメータは制動力発生装置のブレーキ効き係数を含むよう構成される(請求項4の構成)。
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項4の構成に於いて、前記ブレーキ効き係数は車速に基づき推定されるよう構成される(請求項5の構成)。
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至5の何れかの構成に於いて、前記制動制御装置は車輌の運転状態が前記所定の状態になった時点に於ける車速に応じて前記保持圧力を可変設定するよう構成される(請求項6の構成)。
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至5の何れかの構成に於いて、前記制動制御装置は車輌の運転状態が前記所定の状態になった時点に於ける車輌の減速度に応じて前記保持圧力を可変設定するよう構成される(請求項7の構成)。
【0011】
【発明の作用及び効果】
上記請求項1の構成によれば、車輌の運転状態が所定の状態になった時点に於ける車輌の走行状態に応じて後輪の保持圧力が設定され、保持圧力に基づいて後輪のホイールシリンダ圧力の上昇が抑制されることにより前後輪制動力配分制御が行われ、前後輪制動力配分制御が行われているときには後輪の保持圧力に応じて前輪の制動力が増加されるので、前後輪制動力配分制御が行われ後輪のホイールシリンダ圧力の上昇が抑制されることによる後輪の制動力の不足分を確実に前輪の制動力の増大によって補填することができ、従って後輪が前輪よりも先行してロック状態になること及びこれに起因して車輌の安定性が悪化することを確実に防止しつつ車輌全体としての制動力を効果的に運転者の制動操作量に応じた制動力に制御することができる。
また上記請求項1の構成によれば、運転者による制動操作量と、後輪の保持圧力と、前輪及び後輪の制動力発生装置の制動性能を表わすパラメータとに基づき前輪のホイールシリンダ圧力増加量が演算され、該増加量に基づき前輪のホイールシリンダ圧力が増加されるので、後輪のホイールシリンダ圧力の上昇を抑制することにより不足する制動力を前輪の制動力の増大によって補填するに必要な増加量にて前輪のホイールシリンダ圧力を増加させ、これにより車輌全体としての制動力を確実に運転者の制動操作量に応じた制動力に制御することができる。
【0013】
一般に、マスタシリンダの作動液圧がホイールシリンダへ供給されることにより制動力を発生する制動力発生装置の制動性能は車速が高くなるほど低下するので、上記請求項1又は2の構成に従って前輪のホイールシリンダ圧力増加量を演算するに際し使用される前輪及び後輪の制動力発生装置の制動性能を表わすパラメータは車速が高いほど制動力発生装置の制動性能を低く表わすパラメータであることが好ましい。
【0014】
上記請求項3の構成によれば、前輪のホイールシリンダ圧力増加量は運転者による制動操作量と、後輪の保持圧力と、前輪及び後輪の制動力発生装置の制動性能を表わすパラメータとに基づき演算され、その場合のパラメータは車速が高いほど制動性能を低く表わすパラメータであるので、車速が高くなるほど低下する制動力発生装置の制動性能を考慮して前輪のホイールシリンダ圧力増加量を演算することができ、これにより車速に拘わらず前輪のホイールシリンダ圧力を適正に増加させることができる。
また上記請求項4の構成によれば、パラメータは制動力発生装置のブレーキ効き係数を含むので、ブレーキ効き係数の変動が考慮されない場合に比して前輪のホイールシリンダ圧力増加量を後輪の制動力の不足分に正確に対応する値に演算することができ、これにより前輪のホイールシリンダ圧力を過不足なく適正に制御することができる。
また上記請求項5の構成によれば、ブレーキ効き係数は車速に基づき推定されるので、車速が高いほどブレーキ効き係数が低下することを考慮して前輪のホイールシリンダ圧力増加量を適正に演算することができる。
また上記請求項6の構成によれば、制動制御装置は車輌の運転状態が所定の状態になった時点に於ける車速に応じて保持圧力が可変設定されるので、車速が考慮されない場合に比して後輪の保持圧力を適正に設定することができ、これにより車輌の状況に応じて適正に前後輪制動力配分制御を実行することができる。
また上記請求項7の構成によれば、制動制御装置は車輌の運転状態が所定の状態になった時点に於ける車輌の減速度に応じて保持圧力が可変設定されるので、車輌の減速度が考慮されない場合に比して後輪の保持圧力を適正に設定することができ、これにより車輌の状況に応じて適正に前後輪制動力配分制御を実行することができる。
【0017】
【課題解決手段の好ましい態様】
本発明の一つの好ましい態様によれば、上記請求項1乃至7の何れかの構成に於いて、前輪制動力増加手段はマスタシリンダ圧力と後輪の保持圧力との偏差と、前輪及び後輪の制動力発生装置の制動性能を表わすパラメータとに基づき前輪のホイールシリンダ圧力増加量を演算するよう構成される(好ましい態様)。
【0019】
本発明の他の一つの好ましい態様によれば、上記請求項1乃至7の何れかの構成に於いて、制動制御装置は車輌の運転状態が所定の状態になった時点に於けるマスタシリンダ圧力を後輪の保持圧力に設定し、後輪の制動圧を保持圧力に維持するよう構成される(好ましい態様2)。
【0022】
【発明の実施の形態】
以下に添付の図面を参照して本発明を好ましい実施形態について詳細に説明する。
【0023】
図1は本発明による制動制御装置の一つの実施形態の油圧回路及び電子制御装置を示す概略構成図、図2は図1に示された前輪用の連通制御弁を示す解図的断面図である。尚図1に於いては、電磁的に駆動される各弁のソレノイドの図示は省略されている。
【0024】
図1に於て、10は油圧式の制動装置を示しており、制動装置10は運転者によるブレーキペダル12の踏み込み操作に応答してブレーキオイルを圧送するマスタシリンダ14を有している。マスタシリンダ14はその両側の圧縮コイルばねにより所定の位置に付勢されたフリーピストン16により画成された第一のマスタシリンダ室14Aと第二のマスタシリンダ室14Bとを有している。
【0025】
第一のマスタシリンダ室14Aには前輪用のブレーキ油圧制御導管18Fの一端が接続され、ブレーキ油圧制御導管18Fの他端には左前輪用のブレーキ油圧制御導管20FL及び右前輪用のブレーキ油圧制御導管20FRの一端が接続されている。ブレーキ油圧制御導管18Fの途中には前輪用の連通制御弁22Fが設けられており、連通制御弁22Fは図示の実施形態に於いては常開型のリニアソレノイド弁である。連通制御弁22Fの両側のブレーキ油圧制御導管18Fには第一のマスタシリンダ室14Aよりブレーキ油圧制御導管20FL又はブレーキ油圧制御導管20FRへ向かうオイルの流れのみを許す逆止バイパス導管24Fが接続されている。
【0026】
図2に解図的に図示されている如く、連通制御弁22Fは内部に弁室70を郭定するハウジング72を有し、弁室70には弁要素74が往復動可能に配置されている。弁室70にはブレーキ油圧制御導管18Fのマスタシリンダ14の側の部分18FAが内部通路76を介して常時連通接続され、またブレーキ油圧制御導管18Fのマスタシリンダ14とは反対側の部分18FBが内部通路78及びポート80を介して連通接続されている。
【0027】
図示の如く、弁要素74の周りにはソレノイド82が配設されており、弁要素74は圧縮コイルばね84により図2に示された開弁位置へ付勢されている。弁要素74はソレノイド82に駆動電圧が印加されると、圧縮コイルばね84のばね力に抗してポート80に対し付勢され、これによりポート80を閉ざすことによって閉弁する。
【0028】
また連通制御弁22Fが閉弁位置にある状況に於いて、ブレーキ油圧制御導管18Fのマスタシリンダ14とは反対側の部分18FB内の圧力による力と圧縮コイルばね84のばね力との合計がソレノイド82による電磁力よりも高くなると、弁要素74はポート80より離れて該ポートを開き、部分18FB内のオイルが内部通路78、ポート80、弁室70、内部通路76を経てブレーキ油圧制御導管18Fの部分18FAへ流れる。そしてこのオイルの流動により部分18FB内のオイルの圧力が低下すると、その圧力による力と圧縮コイルばね84のばね力との合計がソレノイド82による電磁力よりも低くなり、弁要素74はポート80を再度閉ざす。
【0029】
かくして連通制御弁22Fはそのソレノイド82に対する印加電圧に応じてブレーキ油圧制御導管18Fの部分18FB内の圧力を制御するので、ソレノイド82に対する駆動電圧を制御することによって連通制御弁22Fにより部分18FB内の圧力(本明細書に於いては「上流圧」という)を所望の圧力に制御することができる。
【0030】
尚図示の実施形態に於いては、図1に示された逆止バイパス導管24Fは連通制御弁22Fに内蔵されており、内部通路86と、該内部通路の途中に設けられ弁室70より部分18FBへ向かうオイルの流れのみを許す逆止弁88とよりなっている。
【0031】
左前輪用のブレーキ油圧制御導管20FL及び右前輪用のブレーキ油圧制御導管20FRの他端にはそれぞれ左前輪及び右前輪の制動力を発生する図1には示されていない制動力発生装置のホイールシリンダ26FL及び26FRが接続されており、左前輪用のブレーキ油圧制御導管20FL及び右前輪用のブレーキ油圧制御導管20FRの途中にはそれぞれ常開型の電磁開閉弁28FL及び28FRが設けられている。電磁開閉弁28FL及び28FRの両側のブレーキ油圧制御導管20FL及び20FRにはそれぞれホイールシリンダ26FL及び26FRよりブレーキ油圧制御導管18Fへ向かうオイルの流れのみを許す逆止バイパス導管30FL及び30FRが接続されている。
【0032】
電磁開閉弁28FLとホイールシリンダ26FLとの間のブレーキ油圧制御導管20FLにはオイル排出導管32FLの一端が接続され、電磁開閉弁28FRとホイールシリンダ26FRとの間のブレーキ油圧制御導管20FRにはオイル排出導管32FRの一端が接続されている。オイル排出導管32FL及び32FRの途中にはそれぞれ常閉型の電磁開閉弁34FL及び34FRが設けられており、オイル排出導管32FL及び32FRの他端は接続導管36Fにより前輪用のバッファリザーバ38Fに接続されている。
【0033】
以上の説明より解る如く、電磁開閉弁28FL及び28FRはそれぞれホイールシリンダ26FL及び26FR内の圧力を増圧又は保持するための増圧弁であり、電磁開閉弁34FL及び34FRはそれぞれホイールシリンダ26FL及び26FR内の圧力を減圧するための減圧弁であり、従って電磁開閉弁28FL及び34FLは互いに共働して左前輪のホイールシリンダ26FL内の圧力を増減し保持するための増減圧弁を郭定しており、電磁開閉弁28FR及び34FRは互いに共働して右前輪のホイールシリンダ26FR内の圧力を増減し保持するための増減圧弁を郭定している。
【0034】
接続導管36Fは接続導管40Fによりポンプ42Fの吸入側に接続されており、接続導管40Fの途中には接続導管36Fよりポンプ42Fへ向かうオイルの流れのみを許す二つの逆止弁44F及び46Fが設けられている。ポンプ42Fの吐出側は途中にダンパ48Fを有する接続導管50Fによりブレーキ油圧制御導管18Fに接続されている。ポンプ42Fとダンパ48Fとの間の接続導管50Fにはポンプ42Fよりダンパ48Fへ向かうオイルの流れのみを許す逆止弁52Fが設けられている。
【0035】
二つの逆止弁44F及び46Fの間の接続導管40Fには接続導管54Fの一端が接続されており、接続導管54Fの他端は第一のマスタシリンダ室14Aと制御弁22Fとの間のブレーキ油圧制御導管18Fに接続されている。接続導管54Fの途中には常閉型の電磁開閉弁60Fが設けられている。この電磁開閉弁60Fはマスタシリンダ14と制御弁22Fとの間のブレーキ油圧制御導管18Fとポンプ42Fの吸入側との連通を制御する吸入制御弁として機能する。
【0036】
同様に、第二のマスタシリンダ室14Bには後輪用のブレーキ油圧制御導管18Rの一端が接続され、ブレーキ油圧制御導管18Rの他端には左後輪用のブレーキ油圧制御導管20RL及び右後輪用のブレーキ油圧制御導管20RRの一端が接続されている。ブレーキ油圧制御導管18Rの途中には常開型のリニアソレノイド弁である後輪用の連通制御弁22Rが設けられている。
【0037】
連通制御弁22Rは前輪用の連通制御弁22Fについて図2に示された構造と同一の構造を有しており、従って図には示されていないソレノイドに対する駆動電圧を制御することにより、連通制御弁22Rより下流側のブレーキ油圧制御導管18R内の圧力(上流圧)を所望の圧力に制御することができる。更に連通制御弁22Rの両側のブレーキ油圧制御導管18Rには第二のマスタシリンダ室14Bよりブレーキ油圧制御導管20RL又はブレーキ油圧制御導管20RRへ向かうオイルの流れのみを許す逆止バイパス導管24Rが接続されている。
【0038】
左後輪用のブレーキ油圧制御導管20RL及び右後輪用のブレーキ油圧制御導管20RRの他端にはそれぞれ左後輪及び右後輪の制動力を発生する図1には示されていない制動力発生装置のホイールシリンダ26RL及び26RRが接続されており、左後輪用のブレーキ油圧制御導管20RL及び右後輪用のブレーキ油圧制御導管20RRの途中にはそれぞれ常開型の電磁開閉弁28RL及び28RRが設けられている。電磁開閉弁28RL及び28RRの両側のブレーキ油圧制御導管20RL及び20RRにはそれぞれホイールシリンダ26RL及び26RRよりブレーキ油圧制御導管18Rへ向かうオイルの流れのみを許す逆止バイパス導管30RL及び30RRが接続されている。
【0039】
電磁開閉弁28RLとホイールシリンダ26RLとの間のブレーキ油圧制御導管20RLにはオイル排出導管32RLの一端が接続され、電磁開閉弁28RRとホイールシリンダ26RRとの間のブレーキ油圧制御導管20RRにはオイル排出導管32RRの一端が接続されている。オイル排出導管32RL及び32RRの途中にはそれぞれ常閉型の電磁開閉弁34RL及び34RRが設けられており、オイル排出導管32RL及び32RRの他端は接続導管36Rにより後輪用のバッファリザーバ38Rに接続されている。
【0040】
前輪側の場合と同様、電磁開閉弁28RL及び28RRはそれぞれホイールシリンダ26RL及び26RR内の圧力を増圧又は保持するための増圧弁であり、電磁開閉弁34RL及び34RRはそれぞれホイールシリンダ26RL及び26RR内の圧力を減圧するための減圧弁であり、従って電磁開閉弁28RL及び34RLは互いに共働して左後輪のホイールシリンダ26RL内の圧力を増減し保持するための増減圧弁を郭定しており、電磁開閉弁28RR及び34RRは互いに共働して右後輪のホイールシリンダ26RR内の圧力を増減し保持するための増減圧弁を郭定している。
【0041】
接続導管36Rは接続導管40Rによりポンプ42Rの吸入側に接続されており、接続導管40Rの途中には接続導管36Rよりポンプ42Rへ向かうオイルの流れのみを許す二つの逆止弁44R及び46Rが設けられている。ポンプ42Rの吐出側は途中にダンパ48Rを有する接続導管50Rによりブレーキ油圧制御導管18Rに接続されている。ポンプ42Rとダンパ48Rとの間の接続導管50Rにはポンプ42Rよりダンパ48Rへ向かうオイルの流れのみを許す逆止弁52Rが設けられている。尚ポンプ42F及び42Rは図1には示されていない共通の電動機により駆動される。
【0042】
二つの逆止弁44R及び46Rの間の接続導管40Rには接続導管54Rの一端が接続されており、接続導管54Rの他端は第二のマスタシリンダ室14Bと制御弁22Rとの間のブレーキ油圧制御導管18Rに接続されている。接続導管54Rの途中には常閉型の電磁開閉弁60Rが設けられている。この電磁開閉弁60Rもマスタシリンダ14と制御弁22Rとの間のブレーキ油圧制御導管18Rとポンプ42Rの吸入側との連通を制御する吸入制御弁として機能する。
【0043】
図示の実施形態に於いては、各制御弁及び各開閉弁は対応するソレノイドに駆動電流が通電されていないときには図1に示された非制御位置に設定され、これによりホイールシリンダ26FL及び26FRには第一のマスタシリンダ室14A内の圧力が供給され、ホイールシリンダ26RL及び26RRには第二のマスタシリンダ室14B内の圧力が供給される。従って通常時には各車輪のホイールシリンダ内の圧力、即ち制動力はブレーキペダル12の踏力に応じて増減される。
【0044】
これに対し連通制御弁22F、22Rが閉弁位置に切り換えられ、開閉弁60F、60Rが開弁され、各車輪の開閉弁が図1に示された位置にある状態にてポンプ42F、42Rが駆動されると、マスタシリンダ14内のオイルがポンプによって汲み上げられ、ホイールシリンダ26FL、26FRにはポンプ42Fによりポンプアップされた圧力が供給され、ホイールシリンダ26RL、26RRにはポンプ42Rによりポンプアップされた圧力が供給されるようになるので、各車輪の制動圧はブレーキペダル12の踏力に関係なく連通制御弁22F、22R及び各車輪の開閉弁(増減圧弁)の開閉により増減される。
【0045】
この場合、ホイールシリンダ内の圧力は、開閉弁28FL〜28RR及び開閉弁34FL〜34RRが図1に示された非制御位置にあるときには増圧され(増圧モード)、開閉弁28FL〜28RRが閉弁位置に切り換えられ且つ開閉弁34FL〜34RRが図1に示された非制御位置にあるときには保持され(保持モード)、開閉弁28FL〜28RR及び開閉弁34FL〜34RRが開弁位置に切り換えられると減圧される(減圧モード)。
【0046】
連通制御弁22F及び22R、開閉弁28FL〜28RR、開閉弁34FL〜34RR、開閉弁60F及び60Rは、後に説明する如く電子制御装置90により制御される。電子制御装置90はマイクロコンピュータ92と駆動回路94とよりなっており、マイクロコンピュータ92は当技術分野に於いて周知の一般的な構成のものであってよい。
【0047】
マイクロコンピュータ92には圧力センサ96よりマスタシリンダ圧力Pmを示す信号、車速センサ98より車速Vを示す信号、前後加速度センサ100より車輌の前後加速度Gxを示す信号が入力されるようになっている。またマイクロコンピュータ92は後述の制動制御フローを記憶しており、制動制御フローに従って左右前輪及び左右後輪の目標制動圧Pti(i=fl、fr、rl、rr)を演算すると共に、連通制御弁22F等を制御することにより各車輪の制動圧Pi(i=fl、fr、rl、rr)をそれぞれ対応する目標制動圧Ptiに制御する。
【0048】
特に図示の実施形態に於いては、運転者による制動操作量が小さく制動力の前後配分制御が不要であるときには、連通制御弁22F等は図示の標準位置に維持されポンプ42F及び42Rは駆動されず、これにより各車輪の制動圧、即ちホイールシリンダ26FL〜26RR内の圧力はマスタシリンダ圧力Pmにより制御される。
【0049】
これに対し運転者による制動操作量が大きく制動力の前後配分制御が必要であるときには、まず連通制御弁22F及び22Rが閉弁され、次いで吸入制御弁60F及び60Rが開弁され、しかる後ポンプ42F及び42Rの駆動が開始され、後に詳細に説明する如く車速V及び車輌の減速度Gxb(=−Gx)に基づき後輪の保持圧力Pcが演算されると共に、マスタシリンダ圧力Pm及び後輪の保持圧力Pc等に基づき前輪の増加圧力ΔPfが演算され、連通制御弁22Fが制御されることにより前輪側の上流圧がPm+ΔPfの目標制動圧になるよう前輪系統が制御され、左右後輪の開閉弁28RL及び28RRが閉弁されることにより左右後輪の制動圧が保持圧力Pcになるよう後輪系統が制御される。
【0050】
尚図には示されていないが、電磁開閉弁28FL〜28RR及び開閉弁34FL〜34RRは例えば各車輪の制動力を個別に制御することにより車輌の挙動を安定化させる場合に制御される。特にこの場合左右の車輪の高い方の目標制動圧が目標上流圧Ptf、Ptrに設定され、左右の車輪の目標制動圧Ptiが高い方の車輪の制動圧Piは連通制御弁22F又は22Rにより上流圧が目標上流圧Ptf又はPtrに制御されることによって制御され、左右反対側の車輪の制動圧は対応する増圧弁及び減圧弁により対応する目標制動圧に制御される。
【0051】
次に図3に示されたフローチャートを参照して図示の実施形態に於ける制動制御ルーチンについて説明する。尚図3に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰り返し実行される。
【0052】
まずステップ10に於いては圧力センサ96により検出されたマスタシリンダ圧力Pmを示す信号等の読み込みが行われ、ステップ20に於いては前後輪の制動力配分制御中であるか否かの判別、即ち後述のステップ30に於いて肯定判別が行われた後であってステップ0に於いて肯定判別が行われていない状況であるか否かの判別が行われ、肯定判別が行われたときにはステップ90へ進み、否定判別が行われたときにはステップ30へ進む。
【0053】
ステップ30に於いては車速Vに基づき図4に示されたグラフに対応するマップより後輪の基本保持圧力Pcsが演算され、ステップ40に於いては車輌の減速度Gxbに基づき図5に示されたグラフに対応するマップより基本保持圧力Pcsに対する補正圧力ΔPcが演算され、ステップ50に於いては後輪の保持圧力Pcが基本保持圧力Pcsと補正圧力ΔPcとの和として演算される。尚図5のGxboは車輌の制動時に於ける標準的な車輌の減速度である。
【0054】
ステップ60に於いてはマスタシリンダ圧力Pmが後輪の保持圧力Pcを越えており、前後輪の制動力配分制御の開始条件が成立しているか否かの判別、即ち後輪の制動圧を保持すると共に前輪の制動圧を増加する必要があるか否かの判別が行われ、否定判別が行われたときにはステップ70へ進み、肯定判別が行われたときにはステップ100へ進む。
【0055】
ステップ70に於いては当技術分野に於いて公知の任意の要領にて前後輪の制動力配分制御の他の開始条件が成立したか否かの判別が行われ、否定判別が行われたときにはそのまま図3に示されたルーチンによる制御を一旦終了し、肯定判別が行われたときにはステップ80に於いて後輪の保持圧力Pcがその時のマスタシリンダ圧力Pmに設定され、しかる後ステップ100へ進む。
【0056】
尚前後輪の制動力配分制御の他の開始条件が成立したか否かの判別は、例えば(A)左右前輪の車輪速度の平均値Vwfに対する左右後輪の車輪速度の平均値Vwrの偏差ΔVwが制御開始基準値Vws(正の定数)以上になったか否かの判別、又は(B)車輌の減速度Gxbが制御開始基準値Gxs(正の定数)以上になったか否かの判別により行われてよく、また上記(A)及び(B)の組合せにより行われてもよい。
【0057】
ステップ90に於いては例えばマスタシリンダ圧力Pmが制御終了の基準値Pme(Pcよりも小さい正の定数)以下になったか否かの判別により、前後輪の制動力配分制御の終了条件が成立したか否かの判別が行われ、肯定判別が行われたときにはそのまま図3に示されたルーチンによる制御を一旦終了し、否定判別が行われたときにはステップ100へ進む。
【0058】
尚前後輪の制動力配分制御の終了条件が成立したか否かの判別も当技術分野に於いて公知の任意の要領にて行われてよく、例えば制御開始条件の成立判定が車輪速度の偏差ΔVwに基づいて行われた場合には、車輪速度の偏差ΔVwが制御終了基準値Vwe(Vwsよりも小さい正の定数)以下になったか否かの判別により行われてよく、また制御開始条件の成立判定が車輌の減速度Gxbに基づいて行われた場合には車輌の減速度Gxbが制御終了基準値Gxe(Gxsよりも小さい正の定数)以下になったか否かの判別により行われてよい。
【0059】
ステップ100に於いては前輪及び後輪のホイールシリンダ断面積をそれぞれSf、Sr(正の定数)とし、前輪及び後輪の制動有効半径をそれぞれRf、Rr(正の定数)とし、前輪及び後輪のブレーキ効き係数をそれぞれBEFf、BEFr(正の定数)として下記の式1に従って前輪の制動圧の基本増加圧力ΔPfoが演算される。尚ホイールシリンダ断面積Sf、Sr及び制動有効半径Rf、Rrは制動力発生装置の仕様により定まる値であり、ブレーキ効き係数BEFf、BEFrは例えば実験的に予め求められる。
ΔPfo=(Pm−Pc)(Sr×Rr×BEFr)/(Sf×Rf×BEFf)……(1)
【0060】
ステップ110に於いては車速Vに基づき図6に示されたグラフに対応するマップより現在の車速に対応するブレーキ効き係数BEFvが演算され、標準のブレーキ効き係数BEFoと現在のブレーキ効き係数BEFvとの偏差ΔBEF(=BEFo−BEFv)が演算され、更に下記の式2に従って前輪の制動圧の増加圧力ΔPfが演算される。尚図6に示されたグラフに対応するマップも例えば実験的に予め求められる。
ΔPf=ΔPfo(1+ΔBEF/BEFo) ……(2)
【0061】
ステップ120に於いては左右前輪の目標制動圧Ptfl及びPtfrがマスタシリンダ圧力Pmと増加圧力ΔPfとの和として演算されると共に、左右前輪の制動圧がそれぞれ目標制動圧Ptfl及びPtfrになるよう制動装置10の前輪系統が制御され、ステップ130に於いては左右後輪の目標制動圧Ptrl及びPtrrが保持圧力Pcに設定されると共に、左右後輪の制動圧がそれぞれ目標制動圧Ptrl及びPtrrになるよう制動装置10の後輪系統が制御される。
【0062】
尚図3には示されていないが、上述のステップ70に於いて否定判別が行われた場合及びステップ90に於いて肯定判別が行われた場合には、連通制御弁22F等が図1に示された標準位置に設定され、これにより各車輪のホイールシリンダ26FR〜26RRにはマスタシリンダ14の圧力Pmが直接供給され、これにより各車輪の制動圧が運転者の制動操作量に応じて増減される。
【0063】
かくして図示の実施形態によれば、前後輪の制動力配分制御が実行されていないときには、ステップ20に於いて否定判別が行われ、ステップ30に於いて車速Vに基づき後輪の基本保持圧力Pcsが演算され、ステップ40に於いて車輌の減速度Gxbに基づき基本保持圧力Pcsに対する補正圧力ΔPcが演算され、ステップ50に於いて後輪の保持圧力Pcが基本保持圧力Pcsと補正圧力ΔPcとの和として演算される。
【0064】
マスタシリンダ圧力Pmが後輪の保持圧力Pc以下であり前後輪の制動力配分制御の他の開始条件が成立していないときには、後輪の制動力の抑制は不要であるので、ステップ60及び70に於いて否定判別が行われ、前輪及び後輪のホイールシリンダ26FL〜26RRにはマスタシリンダ14内の圧力が供給され、従って後輪の制動圧の抑制制御及び前輪の制動圧の増加制御は行われない。
【0065】
これに対し運転者による制動操作量が更に増大され、マスタシリンダ圧力Pmが後輪の保持圧力Pcを越えており、前後輪の制動力配分制御の開始条件が成立しているときには、ステップ60に於いて肯定判別が行われ、マスタシリンダ圧力Pmが後輪の保持圧力Pcを越えていなくても前後輪の制動力配分制御の他の開始条件が成立しているときには、ステップ70に於いて肯定判別が行われ、ステップ80に於いて後輪の保持圧力Pcがその時のマスタシリンダ圧力Pmに設定され、ステップ100に於いてマスタシリンダ圧力Pmと後輪の保持圧力Pcとの偏差Pm−Pcに基づき上記式1に従って前輪の制動圧の基本増加圧力ΔPfoが演算され、ステップ110に於いて車速Vに基づき現在の車速に対応するブレーキ効き係数BEFvが演算され、標準のブレーキ効き係数BEFoと現在のブレーキ効き係数BEFvとの偏差ΔBEFが演算され、上記式2に従って前輪の制動圧の増加圧力ΔPfが演算される。
【0066】
更にステップ120に於いて左右前輪の制動圧がマスタシリンダ圧力Pmと増加圧力ΔPfとの和として演算される目標制動圧Ptfl及びPtfrになるよう制動装置10の前輪系統が制御され、ステップ130に於いて左右後輪の制動圧が左右後輪の目標制動圧Ptrl及びPtrr=保持圧力Pcになるよう制動装置10の後輪系統が制御される。
【0067】
従って図示の実施形態によれば、前後輪制動力配分制御の開始条件が成立すると、前後輪制動力配分制御の終了条件が成立するまで、マスタシリンダ圧力Pmが後輪の保持圧力Pcを越えている状況に於いて、後輪の制動圧が保持圧力Pcに維持されるので、前輪に先行して後輪がロックすることを確実に防止することができ、また後輪の制動圧が保持圧力Pcに維持されることによる制動力の不足分に対応する前輪の制動圧の増加量ΔPfが演算され、前輪の制動圧がΔPf増圧されるので、後輪の制動圧が保持されることによる車輌全体としての制動力の不足を前輪の制動力の増大によって補填し、これにより前後輪制動力配分制御実行中にも車輌全体としての制動力を確実に運転者の制動操作量に対応する制動力に制御することができる。
【0068】
図7は図示の実施形態に於ける前輪の制動力Fbfと後輪の制動力Fbrとの間の関係を示しており、特に二点鎖線は理想前後配分線を示し、実線は実施形態に於ける前後配分線を示している。図示の如く、前輪の制動力Fbfが後輪の保持圧力Pcに対応する制動力Fbfc以下の範囲に於いては、前輪の制動力Fbf及び後輪の制動力Fbrはマスタシリンダ圧力Pmの増大につれて互いに他に対し一定の割合にて増大するが、前輪の制動力Fbfが後輪の保持圧力Pcに対応する制動力Fbfcを越える範囲に於いては、制動力の実際の前後配分線が理想前後配分線を越えないよう、後輪の制動力Fbrが保持圧力Pcに対応する制動力Fbrcに維持される。
【0069】
また図8の実線は図示の実施形態に於けるマスタシリンダ圧力Pmと前輪の制動圧Pf及び後輪の制動圧Prとの間の関係を示しており、二点鎖線は前後輪制動力配分制御が行われない場合のマスタシリンダ圧力Pmと前輪の制動圧Pf及び後輪の制動圧Prとの間の関係を示している。
【0070】
図8に示されている如く、マスタシリンダ圧力Pmが保持圧力Pc以下の範囲に於いては前輪の制動圧Pf及び後輪の制動圧Prはマスタシリンダ圧力Pmであり互いに同一であるが、マスタシリンダ圧力Pmが保持圧力Pcを越える範囲に於いては後輪の制動圧Prは保持圧力Pc(一定)であり、現在のマスタシリンダ圧力PmがPmaであるとすると、後輪の制動圧の抑制量ΔPr(=Pma−Pc)に対応する後輪の制動力の抑制量に相当する前輪の制動圧の増加量ΔPfが演算され、前輪の制動圧PfがPma+ΔPfに制御される。
【0071】
特に図示の実施形態によれば、前輪の制動圧の増加量ΔPfは単純に後輪の制動圧の抑制量ΔPrに設定される訳ではなく、後輪の制動圧の抑制による後輪の制動力の不足分に対応する制動力を前輪の制動力に加算するための値として演算されるので、前輪の制動圧がマスタシリンダ圧力Pma+後輪の制動圧の抑制量ΔPrに設定される場合に比して、確実に且つ正確に車輌全体の制動力が運転者の制動操作量に対応する値になるよう制御することができる。
【0072】
また一般に、車速Vが高くなるにつれて後輪に比して前輪のブレーキの効きが低下し、結果的に制動力の前後配分が後輪寄りになるので、車速Vが高いほど後輪の保持圧力Pcは低く設定されることが好ましい。また一般に、車輌の積載荷重が高いほど制動力の理想前後配分線は後輪寄りになり、車輌の積載荷重が高いほど車輌の減速度が低くなると共に車輌の制動に関する前輪の負担が増大するので、制動力前後配分制御開始時に於ける車輌の減速度が低いほど後輪の保持圧力Pcは高く設定されることが好ましい。
【0073】
図示の実施形態によれば、保持圧力Pcが一定の値に設定される訳ではなく、ステップ0〜0に於いて車速Vが高いほど小さくなり車輌の減速度Gxbが高いほど小さくなるよう車速V及び車輌の減速度Gxbに応じて後輪の保持圧力Pcが可変設定されるので、車速Vや車輌の減速度Gxbが考慮されない場合に比して後輪の保持圧力Pcを適正に設定することができ、これにより車輌の状況に応じて適正に前後輪制動力配分制御を実行することができる。
【0074】
また図示の実施形態によれば、ステップ110に於いて前輪の制動圧の増加圧力ΔPfは車速Vが高いほどブレーキ効き係数BEFが低下することを考慮して演算されるので、ブレーキ効き係数BEFの変動が考慮されない場合に比して前輪の制動圧の増加圧力ΔPfを後輪の制動力の不足分に正確に対応する値に演算することができ、これにより前輪の制動圧を過不足なく適正に制御することができる。
【0075】
以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
【0076】
例えば図示の実施形態に於いては、後輪の保持圧力Pcは制動力の前後輪配分制御の終了条件が成立するまで一定の値に設定されるようになっているが、例えば前後輪のスリップ状態に応じて後輪の保持圧力Pcが漸減又は漸増されることにより後輪の制動圧が漸減又はパルス増圧により漸増されてもよい。
【0077】
また上述の実施形態に於いては、ステップ50及び60に於いて車速V及び車輌の減速度Gxbに応じて後輪の保持圧力Pcが可変設定されるようになっているが、後輪の保持圧力Pcは車速V及び車輌の減速度Gxbの一方に応じてのみ可変設定されるよう修正されてもよく、更には図9に修正例として図示されている如く、後輪の保持圧力Pcは車速V及び車輌の減速度Gxbに応じて可変設定されることなく一定の値に設定されてもよい。
【0078】
また上述の実施形態に於いては、後輪の保持圧力Pcはステップ100及び110に於いて車速Vに基づき制動力発生装置のブレーキ効き係数の変化を考慮して演算されるようになっているが、このブレーキ効き係数の変化に基づく後輪の保持圧力Pcの補正が省略されてもよい。
【0079】
また上述の実施形態に於いては、制動力の前後輪配分制御中には左右前輪及び左右後輪はそれぞれ互いに同一の圧力に制御されるようになっているが、例えば車輌の旋回状況や車輌の挙動に応じて左右前輪の制動圧若しくは左右後輪の制動圧が相互に異なる値に制御されるよう修正されてもよい。
【0080】
更に上述の実施形態に於いては、左右前輪及び左右後輪がそれぞれ1系統をなし各系統の制動圧が主として連通制御弁22F、22Rにより制御される制動装置であるが、本発明の制動制御装置が適用される制動装置は前輪の制動圧をマスタシリンダ圧力よりも高い値に制御することができ、後輪の制動圧をマスタシリンダ圧力よりも低い値に制御することができるものである限り、当技術分野に於いて公知の任意の構成のものであってよい。
【図面の簡単な説明】
【図1】本発明による制動制御装置の一つの実施形態の油圧回路及び電子制御装置を示す概略構成図である。
【図2】図1に示された前輪用の連通制御弁を示す解図的断面図である。
【図3】図示の実施形態に於ける前後輪の制動力配分制御ルーチンを示すフローチャートである。
【図4】車速Vと後輪の基本保持圧力Pcsとの間の関係を示すグラフである。
【図5】車輌の減速度Gxbと基本保持圧力Pcsに対する補正圧力ΔPcの間の関係を示すグラフである。
【図6】車速Vとブレーキ効き係数BEFの間の関係を示すグラフである。
【図7】理想前後配分線及び図示の実施形態に於ける前輪の制動圧Pfと後輪の制動圧Prとの関係を示すグラフである。
【図8】図示の実施形態に於けるマスタシリンダ圧力Pmと前輪の制動圧Pf及び後輪の制動圧Prとの間の関係を示すグラフである。
【図9】図示の実施形態の修正例に於ける前後輪の制動力配分制御ルーチンを示すフローチャートである。
【符号の説明】
10…制動装置
14…マスタシリンダ
22F、22R…連通制御弁
26FL、26FR、26RL、26RR…ホイールシリンダ
42F、42R…オイルポンプ
28FL〜28RR、34FL〜34RR…開閉弁
42F、42R…ポンプ
60F、60R…吸入制御弁
70…弁室
74…弁要素
84…圧縮コイルばね
88…逆止弁
90…電子制御装置
96…圧力センサ
98…車速センサ
100…前後加速度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a braking control device for a vehicle such as an automobile, and more particularly to a braking control device for a vehicle that performs braking force distribution control of front and rear wheels.
[0002]
[Prior art]
As one of the braking control devices for vehicles such as automobiles, when the driving state of the vehicle reaches a predetermined state in order to prevent the rear wheels from locking when the vehicle is braked and to improve the running stability of the vehicle, 2. Description of the Related Art Conventionally, a braking control device configured to perform front and rear wheel braking force distribution control that suppresses an increase in braking force of a rear wheel by holding or reducing a braking pressure or increasing a pulse is known.
[0003]
According to this type of braking control device, the rear wheels are locked before the front wheels and the stability of the vehicle due to this compared to the case where front and rear wheel braking force distribution control is not performed. However, when the front and rear wheel braking force distribution control is executed, the increase in the braking force of the rear wheels is suppressed, so that the driver can increase the braking force. Even if the amount of braking operation is increased to increase the braking force, the braking force of the vehicle as a whole is not sufficiently increased, and the driver may feel uncomfortable with the braking operation.
[0004]
In order to solve such a problem, for example, in Japanese Patent Application Laid-Open No. 2001-219434, which is filed by the applicant of the present application, the amount of braking operation by the driver is determined, and the driving state of the vehicle becomes a predetermined state, and the front and rear wheel braking force distribution is determined. A braking control device is described that is configured to increase the braking force of the rear wheel when it is determined that the amount of braking operation by the driver is increasing in a situation where the control is being executed.
[0005]
[Problems to be solved by the invention]
According to the braking control device described in the above publication, the braking force of the rear wheels is increased when the amount of braking operation by the driver is increased in a situation where the front and rear wheel braking force distribution control is being executed. Therefore, even if the driver increases the amount of braking operation to increase the braking force, the possibility that the driver feels uncomfortable with the braking operation due to the fact that the braking force of the vehicle as a whole does not increase sufficiently is reduced. be able to.
[0006]
However, since the increase range of the braking force allowed for the rear wheels is limited, in the braking control device as described above, the rear wheels are locked before the front wheels, and this is caused by this. There is a problem that the braking force of the entire vehicle cannot be sufficiently increased while reliably preventing the stability of the vehicle from deteriorating.
[0007]
The present invention has been made in view of the above-described problems in the conventional braking control device configured to perform front and rear wheel braking force distribution control that suppresses an increase in the braking force of the rear wheels when the driving state of the vehicle becomes a predetermined state. The main problem of the present invention is that the increase in the braking force of the front wheels is reduced by the shortage of the braking force of the rear wheels by suppressing the increase in the braking force of the rear wheels by the front and rear wheel braking force distribution control. By supplementing, it is possible to prevent the braking force of the entire vehicle from being insufficient without impairing the front and rear wheel distribution control, that is, the rear wheel is locked before the front wheel, and the vehicle That is, the braking force of the entire vehicle is set to a value corresponding to the braking operation amount of the driver while reliably preventing the deterioration of the stability.
[0008]
[Means for Solving the Problems]
  According to the present invention, the above-mentioned main problem is that the braking force is generated by supplying the hydraulic fluid pressure of the master cylinder to the wheel cylinder of the braking force generator provided corresponding to each wheel. When the driving state of the vehicle reaches a predetermined state, the front and rear wheel braking force distribution control is performed using a vehicle braking control device that performs front and rear wheel braking force distribution control that suppresses an increase in the braking force of the rear wheels. The front wheel braking force increasing means for increasing the braking force of the front wheel according to the amount of restraint of the increase in braking force of the rear wheel.The front and rear wheel braking force distribution control sets the rear wheel holding pressure according to the running state of the vehicle at the time when the driving state of the vehicle becomes a predetermined state, and based on the holding pressure, The front wheel braking force increasing means is configured to control the amount of braking operation by the driver, the holding pressure, and the parameter representing the braking performance of the braking force generator for the front and rear wheels. Based on this, the front wheel wheel cylinder pressure increase is calculated, and based on the increase, the front wheel wheel cylinder pressure is increased.This is achieved by a vehicle brake control device.
[0009]
  According to the present invention, in order to effectively achieve the above-mentioned main problems,The predetermined state isFront and rear wheel braking force distribution controlThe start condition of(Structure of claim 2).
[0010]
  According to the present invention, in order to effectively achieve the main problems described above,1 orIn the configuration of 2, the parameter is configured such that the higher the vehicle speed, the lower the braking performance (the configuration of claim 3).
  According to the present invention, in order to effectively achieve the above-mentioned main problem, in the configuration of claim 3, the parameter is configured to include a braking effectiveness coefficient of a braking force generator. 4 configuration).
  Further, according to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 4, the brake effectiveness coefficient is estimated based on the vehicle speed (claim 5). Constitution).
  According to the present invention, in order to effectively achieve the above main problem, in the structure according to any one of claims 1 to 5, the braking control device causes the vehicle operating state to be in the predetermined state. The holding pressure is configured to be variably set according to the vehicle speed at that time.
  According to the present invention, in order to effectively achieve the above main problem, in the structure according to any one of claims 1 to 5, the braking control device causes the vehicle operating state to be in the predetermined state. The holding pressure is variably set according to the deceleration of the vehicle at the time point (the configuration of claim 7).
[0011]
[Action and effect of the invention]
  According to the configuration of claim 1 above,The holding pressure of the rear wheel is set according to the running state of the vehicle when the driving state of the vehicle becomes a predetermined state, and the increase in the wheel cylinder pressure of the rear wheel is suppressed based on the holding pressure. Front and rear wheel braking force distribution control is performed,When the front / rear wheel braking force distribution control is being performed,RetentionSince the braking force of the front wheels increases according to the pressure, the front and rear wheel braking force distribution control is performed and the rear wheelsWheel cylinder pressureThe shortage of the braking force of the rear wheel due to the suppression of the increase in the force can be reliably compensated by increasing the braking force of the front wheel, so that the rear wheel is locked before the front wheel and this Thus, the braking force of the entire vehicle can be effectively controlled to the braking force corresponding to the amount of braking operation by the driver while reliably preventing the vehicle stability from deteriorating.
  According to the first aspect of the present invention, the wheel cylinder pressure increase of the front wheel is based on the amount of braking operation by the driver, the holding pressure of the rear wheel, and the parameter representing the braking performance of the braking force generator for the front wheel and the rear wheel. Since the amount is calculated and the wheel cylinder pressure of the front wheel is increased based on the increased amount, it is necessary to compensate the insufficient braking force by increasing the braking force of the front wheel by suppressing the increase of the wheel cylinder pressure of the rear wheel The wheel cylinder pressure of the front wheels is increased by a small increase amount, so that the braking force of the entire vehicle can be reliably controlled to the braking force according to the driver's braking operation amount.
[0013]
  Generally, the braking performance of a braking force generator that generates a braking force by supplying the hydraulic fluid pressure of the master cylinder to the wheel cylinder decreases as the vehicle speed increases.1 or 2The parameter representing the braking performance of the braking force generating device for the front wheels and the rear wheels used in calculating the amount of increase in the wheel cylinder pressure for the front wheels according to the configuration of the above is a parameter representing the braking performance of the braking force generating device as the vehicle speed increases. It is preferable.
[0014]
  According to the above configuration of the third aspect, the amount of increase in the wheel cylinder pressure of the front wheel is determined by the amount of braking operation by the driver,RetentionThe calculation is based on the pressure and a parameter representing the braking performance of the braking force generators for the front and rear wheels. In this case, the parameter is a parameter representing a lower braking performance as the vehicle speed is higher. The amount of increase in the wheel cylinder pressure of the front wheels can be calculated in consideration of the braking performance of the power generation device, and thus the wheel cylinder pressure of the front wheels can be appropriately increased regardless of the vehicle speed.
  According to the fourth aspect of the invention, since the parameter includes the braking effectiveness coefficient of the braking force generator, the amount of increase in the wheel cylinder pressure of the front wheel is controlled as compared with the case where the variation of the braking effectiveness coefficient is not taken into consideration. It is possible to calculate a value that accurately corresponds to the shortage of power, and thereby to properly control the wheel cylinder pressure of the front wheels without excess or deficiency.
  According to the fifth aspect of the present invention, since the braking effectiveness coefficient is estimated based on the vehicle speed, the amount of increase in the wheel cylinder pressure of the front wheels is appropriately calculated in consideration of the fact that the braking effectiveness coefficient decreases as the vehicle speed increases. be able to.
  Further, according to the configuration of the sixth aspect, since the holding pressure is variably set according to the vehicle speed when the driving state of the vehicle becomes a predetermined state, the braking control device is compared with the case where the vehicle speed is not considered. Thus, the holding pressure of the rear wheels can be set appropriately, and accordingly, the front and rear wheel braking force distribution control can be properly executed according to the situation of the vehicle.
  According to the seventh aspect of the present invention, the braking control device variably sets the holding pressure in accordance with the deceleration of the vehicle when the driving state of the vehicle becomes a predetermined state. The rear wheel holding pressure can be set appropriately as compared with the case where the above is not taken into consideration, and accordingly, the front and rear wheel braking force distribution control can be appropriately executed in accordance with the situation of the vehicle.
[0017]
[Preferred embodiment of the problem solving means]
  The present inventionOneAccording to one preferred embodiment, the above claimsAny one of 1-7The front wheel braking force increasing means is the master cylinder pressure and the rear wheelRetentionIt is configured to calculate a wheel cylinder pressure increase amount of the front wheels based on a deviation from the pressure and a parameter representing the braking performance of the braking force generating device for the front wheels and the rear wheels (preferred embodiment)1).
[0019]
  According to another preferred embodiment of the invention, the above claimsAny one of 1-7In this configuration, the braking control device sets the master cylinder pressure at the time when the vehicle operation state reaches a predetermined state to the holding pressure of the rear wheel, and maintains the braking pressure of the rear wheel at the holding pressure. (Preferred aspect 2)
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0023]
FIG. 1 is a schematic configuration diagram showing a hydraulic circuit and an electronic control device of one embodiment of a braking control device according to the present invention, and FIG. 2 is an illustrative sectional view showing a front wheel communication control valve shown in FIG. is there. In FIG. 1, the solenoid of each valve that is electromagnetically driven is not shown.
[0024]
In FIG. 1, reference numeral 10 denotes a hydraulic braking device, and the braking device 10 has a master cylinder 14 that pumps brake oil in response to a depression operation of a brake pedal 12 by a driver. The master cylinder 14 has a first master cylinder chamber 14A and a second master cylinder chamber 14B defined by free pistons 16 biased to predetermined positions by compression coil springs on both sides thereof.
[0025]
One end of a front wheel brake hydraulic control conduit 18F is connected to the first master cylinder chamber 14A, and the other brake brake control conduit 18F is connected to the left front wheel brake hydraulic control conduit 20FL and the right front wheel brake hydraulic control. One end of the conduit 20FR is connected. A communication control valve 22F for the front wheels is provided in the middle of the brake hydraulic control conduit 18F, and the communication control valve 22F is a normally open linear solenoid valve in the illustrated embodiment. Connected to the brake hydraulic control conduits 18F on both sides of the communication control valve 22F are check bypass conduits 24F that permit only the flow of oil from the first master cylinder chamber 14A toward the brake hydraulic control conduit 20FL or the brake hydraulic control conduit 20FR. Yes.
[0026]
As shown schematically in FIG. 2, the communication control valve 22F has a housing 72 that defines a valve chamber 70 therein, and a valve element 74 is disposed in the valve chamber 70 so as to be capable of reciprocating. . A portion 18FA of the brake hydraulic pressure control conduit 18F on the master cylinder 14 side is always connected to the valve chamber 70 via an internal passage 76, and a portion 18FB of the brake hydraulic pressure control conduit 18F opposite to the master cylinder 14 is internally connected. A communication connection is established via a passage 78 and a port 80.
[0027]
As shown in the figure, a solenoid 82 is disposed around the valve element 74, and the valve element 74 is urged to a valve opening position shown in FIG. 2 by a compression coil spring 84. When a drive voltage is applied to the solenoid 82, the valve element 74 is urged against the port 80 against the spring force of the compression coil spring 84, thereby closing the port 80.
[0028]
In the situation where the communication control valve 22F is in the closed position, the sum of the force of the pressure in the portion 18FB on the opposite side of the master cylinder 14 of the brake hydraulic control conduit 18F and the spring force of the compression coil spring 84 is the solenoid. When the electromagnetic force is increased by the pressure 82, the valve element 74 opens away from the port 80, and the oil in the portion 18FB passes through the internal passage 78, the port 80, the valve chamber 70, the internal passage 76, and the brake hydraulic control conduit 18F. To the part 18FA. When the oil pressure in the portion 18FB decreases due to this oil flow, the sum of the force by the pressure and the spring force of the compression coil spring 84 becomes lower than the electromagnetic force by the solenoid 82, and the valve element 74 causes the port 80 to Close again.
[0029]
Thus, since the communication control valve 22F controls the pressure in the portion 18FB of the brake hydraulic pressure control conduit 18F according to the voltage applied to the solenoid 82, the communication control valve 22F controls the pressure in the portion 18FB by controlling the driving voltage for the solenoid 82. The pressure (referred to herein as “upstream pressure”) can be controlled to a desired pressure.
[0030]
In the illustrated embodiment, the check bypass conduit 24F shown in FIG. 1 is built in the communication control valve 22F, and is provided with an internal passage 86 and a part from the valve chamber 70 provided in the middle of the internal passage. It consists of a check valve 88 that allows only the flow of oil toward 18FB.
[0031]
A brake force generator wheel not shown in FIG. 1 generates braking force for the left front wheel and right front wheel at the other ends of the brake hydraulic control conduit 20FL for the left front wheel and the brake hydraulic control conduit 20FR for the right front wheel, respectively. Cylinders 26FL and 26FR are connected, and normally open electromagnetic on-off valves 28FL and 28FR are provided in the middle of the brake hydraulic control conduit 20FL for the left front wheel and the brake hydraulic control conduit 20FR for the right front wheel, respectively. Connected to the brake hydraulic control conduits 20FL and 20FR on both sides of the electromagnetic on-off valves 28FL and 28FR are check bypass conduits 30FL and 30FR that permit only the flow of oil from the wheel cylinders 26FL and 26FR toward the brake hydraulic control conduit 18F, respectively. .
[0032]
One end of an oil discharge conduit 32FL is connected to the brake hydraulic control conduit 20FL between the electromagnetic on-off valve 28FL and the wheel cylinder 26FL, and oil is discharged to the brake hydraulic control conduit 20FR between the electromagnetic on-off valve 28FR and the wheel cylinder 26FR. One end of the conduit 32FR is connected. Normally closed solenoid valves 34FL and 34FR are provided in the middle of the oil discharge conduits 32FL and 32FR, respectively, and the other ends of the oil discharge conduits 32FL and 32FR are connected to a front wheel buffer reservoir 38F by a connection conduit 36F. ing.
[0033]
As understood from the above description, the electromagnetic on-off valves 28FL and 28FR are pressure-increasing valves for increasing or maintaining the pressure in the wheel cylinders 26FL and 26FR, respectively, and the electromagnetic on-off valves 34FL and 34FR are in the wheel cylinders 26FL and 26FR, respectively. Therefore, the electromagnetic on-off valves 28FL and 34FL cooperate with each other to define an increasing / decreasing valve for increasing and decreasing the pressure in the wheel cylinder 26FL of the left front wheel, The electromagnetic open / close valves 28FR and 34FR cooperate with each other to define a pressure increasing / reducing valve for increasing and decreasing the pressure in the wheel cylinder 26FR of the right front wheel.
[0034]
The connection conduit 36F is connected to the suction side of the pump 42F by the connection conduit 40F, and two check valves 44F and 46F that allow only the flow of oil from the connection conduit 36F to the pump 42F are provided in the connection conduit 40F. It has been. The discharge side of the pump 42F is connected to the brake hydraulic control conduit 18F by a connection conduit 50F having a damper 48F on the way. A connection conduit 50F between the pump 42F and the damper 48F is provided with a check valve 52F that allows only the flow of oil from the pump 42F toward the damper 48F.
[0035]
One end of a connection conduit 54F is connected to the connection conduit 40F between the two check valves 44F and 46F, and the other end of the connection conduit 54F is a brake between the first master cylinder chamber 14A and the control valve 22F. It is connected to the hydraulic control conduit 18F. A normally closed electromagnetic on-off valve 60F is provided in the middle of the connecting conduit 54F. The electromagnetic on-off valve 60F functions as a suction control valve that controls communication between the brake hydraulic pressure control conduit 18F between the master cylinder 14 and the control valve 22F and the suction side of the pump 42F.
[0036]
Similarly, one end of a brake oil pressure control conduit 18R for the rear wheel is connected to the second master cylinder chamber 14B, and the brake oil pressure control conduit 20RL for the left rear wheel and the right rear wheel are connected to the other end of the brake oil pressure control conduit 18R. One end of a brake hydraulic control conduit 20RR for the wheel is connected. A rear wheel communication control valve 22R, which is a normally open linear solenoid valve, is provided in the middle of the brake hydraulic control conduit 18R.
[0037]
The communication control valve 22R has the same structure as that shown in FIG. 2 with respect to the front wheel communication control valve 22F. Therefore, the communication control valve 22R is controlled by controlling the drive voltage for the solenoid not shown in the figure. The pressure (upstream pressure) in the brake hydraulic pressure control conduit 18R downstream of the valve 22R can be controlled to a desired pressure. Further, a check bypass conduit 24R allowing only the flow of oil from the second master cylinder chamber 14B to the brake hydraulic control conduit 20RL or the brake hydraulic control conduit 20RR is connected to the brake hydraulic control conduit 18R on both sides of the communication control valve 22R. ing.
[0038]
A braking force not shown in FIG. 1 is generated at the other ends of the brake hydraulic control conduit 20RL for the left rear wheel and the brake hydraulic control conduit 20RR for the right rear wheel, respectively. The wheel cylinders 26RL and 26RR of the generator are connected, and normally open type electromagnetic on-off valves 28RL and 28RR are provided in the middle of the brake hydraulic control conduit 20RL for the left rear wheel and the brake hydraulic control conduit 20RR for the right rear wheel, respectively. Is provided. Connected to the brake hydraulic control conduits 20RL and 20RR on both sides of the electromagnetic on-off valves 28RL and 28RR are check bypass conduits 30RL and 30RR that permit only the flow of oil from the wheel cylinders 26RL and 26RR toward the brake hydraulic control conduit 18R, respectively. .
[0039]
One end of an oil discharge conduit 32RL is connected to the brake hydraulic control conduit 20RL between the electromagnetic on-off valve 28RL and the wheel cylinder 26RL, and oil is discharged to the brake hydraulic control conduit 20RR between the electromagnetic on-off valve 28RR and the wheel cylinder 26RR. One end of the conduit 32RR is connected. In the middle of the oil discharge conduits 32RL and 32RR, normally closed electromagnetic on-off valves 34RL and 34RR are provided, respectively, and the other ends of the oil discharge conduits 32RL and 32RR are connected to a rear wheel buffer reservoir 38R by a connection conduit 36R. Has been.
[0040]
As in the case of the front wheel side, the electromagnetic on-off valves 28RL and 28RR are pressure-increasing valves for increasing or maintaining the pressure in the wheel cylinders 26RL and 26RR, respectively. The electromagnetic on-off valves 34RL and 34RR are in the wheel cylinders 26RL and 26RR, respectively. Therefore, the electromagnetic on-off valves 28RL and 34RL cooperate with each other to define an increase / decrease valve for increasing and decreasing the pressure in the wheel cylinder 26RL of the left rear wheel. The electromagnetic on-off valves 28RR and 34RR cooperate with each other to define an increasing / decreasing valve for increasing and decreasing the pressure in the wheel cylinder 26RR of the right rear wheel.
[0041]
The connecting conduit 36R is connected to the suction side of the pump 42R by a connecting conduit 40R, and two check valves 44R and 46R that allow only the flow of oil from the connecting conduit 36R to the pump 42R are provided in the connecting conduit 40R. It has been. The discharge side of the pump 42R is connected to the brake hydraulic control conduit 18R by a connection conduit 50R having a damper 48R on the way. A connection conduit 50R between the pump 42R and the damper 48R is provided with a check valve 52R that allows only an oil flow from the pump 42R to the damper 48R. The pumps 42F and 42R are driven by a common electric motor not shown in FIG.
[0042]
One end of a connection conduit 54R is connected to the connection conduit 40R between the two check valves 44R and 46R, and the other end of the connection conduit 54R is a brake between the second master cylinder chamber 14B and the control valve 22R. It is connected to the hydraulic control conduit 18R. A normally closed electromagnetic on-off valve 60R is provided in the middle of the connecting conduit 54R. This electromagnetic on-off valve 60R also functions as a suction control valve that controls communication between the brake hydraulic pressure control conduit 18R between the master cylinder 14 and the control valve 22R and the suction side of the pump 42R.
[0043]
In the illustrated embodiment, each control valve and each on-off valve is set to the non-control position shown in FIG. 1 when the drive current is not applied to the corresponding solenoid, whereby the wheel cylinders 26FL and 26FR are set. The pressure in the first master cylinder chamber 14A is supplied, and the pressure in the second master cylinder chamber 14B is supplied to the wheel cylinders 26RL and 26RR. Therefore, at normal times, the pressure in the wheel cylinder of each wheel, that is, the braking force is increased or decreased according to the depression force of the brake pedal 12.
[0044]
On the other hand, the communication control valves 22F and 22R are switched to the closed position, the on-off valves 60F and 60R are opened, and the pumps 42F and 42R are operated in a state where the on-off valves of the wheels are at the positions shown in FIG. When driven, the oil in the master cylinder 14 is pumped up by the pump, the pressure pumped up by the pump 42F is supplied to the wheel cylinders 26FL, 26FR, and the pumping up by the pump 42R is supplied to the wheel cylinders 26RL, 26RR. Since the pressure is supplied, the braking pressure of each wheel is increased / decreased by opening / closing the communication control valves 22F, 22R and the opening / closing valves (increasing / reducing valves) of each wheel regardless of the depression force of the brake pedal 12.
[0045]
In this case, the pressure in the wheel cylinder is increased when the on-off valves 28FL to 28RR and the on-off valves 34FL to 34RR are in the non-control position shown in FIG. 1 (pressure increasing mode), and the on-off valves 28FL to 28RR are closed. When it is switched to the valve position and the on-off valves 34FL to 34RR are in the non-control position shown in FIG. 1, it is held (holding mode), and the on-off valves 28FL to 28RR and the on-off valves 34FL to 34RR are switched to the open position. The pressure is reduced (pressure reduction mode).
[0046]
The communication control valves 22F and 22R, the open / close valves 28FL to 28RR, the open / close valves 34FL to 34RR, and the open / close valves 60F and 60R are controlled by the electronic control unit 90 as described later. The electronic control unit 90 includes a microcomputer 92 and a drive circuit 94, and the microcomputer 92 may have a general configuration well known in the art.
[0047]
The microcomputer 92 receives a signal indicating the master cylinder pressure Pm from the pressure sensor 96, a signal indicating the vehicle speed V from the vehicle speed sensor 98, and a signal indicating the longitudinal acceleration Gx of the vehicle from the longitudinal acceleration sensor 100. The microcomputer 92 stores a braking control flow, which will be described later, and calculates the target braking pressure Pti (i = fl, fr, rl, rr) for the left and right front wheels and the left and right rear wheels according to the braking control flow. By controlling 22F and the like, the braking pressure Pi (i = fl, fr, rl, rr) of each wheel is controlled to the corresponding target braking pressure Pti.
[0048]
  In particular, in the illustrated embodiment, when the amount of braking operation by the driver is small and the front / rear distribution control of the braking force is unnecessary, the communication control valve 22F and the like are maintained in the illustrated standard position and the pumps 42F and 42R are driven. Thus, the braking pressure of each wheel, that is, the wheel cylinder 26FL~ 2The pressure in 6RR is controlled by the master cylinder pressure Pm.
[0049]
On the other hand, when the amount of braking operation by the driver is large and the front / rear distribution control of the braking force is necessary, the communication control valves 22F and 22R are first closed, then the intake control valves 60F and 60R are opened, and then the pump The driving of 42F and 42R is started, and the holding pressure Pc of the rear wheel is calculated based on the vehicle speed V and the deceleration Gxb (= −Gx) of the vehicle, as will be described in detail later, and the master cylinder pressure Pm and the rear wheel The front wheel increase pressure ΔPf is calculated based on the holding pressure Pc and the like, and the communication control valve 22F is controlled to control the front wheel system so that the upstream pressure on the front wheel side becomes the target braking pressure of Pm + ΔPf. By closing the valves 28RL and 28RR, the rear wheel system is controlled so that the braking pressure of the left and right rear wheels becomes the holding pressure Pc.
[0050]
Although not shown in the figure, the electromagnetic on-off valves 28FL to 28RR and the on-off valves 34FL to 34RR are controlled, for example, when the behavior of the vehicle is stabilized by individually controlling the braking force of each wheel. Particularly in this case, the higher target braking pressure of the left and right wheels is set to the target upstream pressure Ptf, Ptr, and the braking pressure Pi of the wheel having the higher target braking pressure Pti of the left and right wheels is upstream by the communication control valve 22F or 22R. The pressure is controlled by controlling to the target upstream pressure Ptf or Ptr, and the braking pressure of the left and right wheels is controlled to the corresponding target braking pressure by the corresponding pressure increasing valve and the pressure reducing valve.
[0051]
Next, the braking control routine in the illustrated embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 3 is started by closing an ignition switch not shown in the figure, and is repeatedly executed at predetermined time intervals.
[0052]
  First, in step 10, a signal indicating the master cylinder pressure Pm detected by the pressure sensor 96 is read, and in step 20, it is determined whether or not the braking force distribution control of the front and rear wheels is being performed. That is, after an affirmative determination is made in step 30 to be described later,9It is determined whether or not an affirmative determination is made at 0. If an affirmative determination is made, the process proceeds to step 90. If a negative determination is made, the process proceeds to step 30.
[0053]
In step 30, the basic holding pressure Pcs of the rear wheels is calculated from a map corresponding to the graph shown in FIG. 4 on the basis of the vehicle speed V, and in step 40, it is shown in FIG. 5 based on the deceleration Gxb of the vehicle. The correction pressure ΔPc for the basic holding pressure Pcs is calculated from the map corresponding to the graph, and in step 50, the rear wheel holding pressure Pc is calculated as the sum of the basic holding pressure Pcs and the correction pressure ΔPc. Note that Gxbo in FIG. 5 is a standard vehicle deceleration during vehicle braking.
[0054]
  In step 60, the master cylinder pressure Pm exceeds the rear wheel holding pressure Pc.The start condition for braking force distribution control for the front and rear wheels is satisfied.Is determined, that is, whether it is necessary to maintain the braking pressure of the rear wheels and increase the braking pressure of the front wheels. If a negative determination is made, the process proceeds to step 70, where an affirmative determination is made. If so, go to Step 100.
[0055]
In step 70, it is determined whether or not other starting conditions for the braking force distribution control for the front and rear wheels are established in any manner known in the art, and when a negative determination is made. If the control by the routine shown in FIG. 3 is once finished and an affirmative determination is made, the rear wheel holding pressure Pc is set to the master cylinder pressure Pm at step 80, and then the routine proceeds to step 100. .
[0056]
Whether or not other starting conditions for the braking force distribution control for the front and rear wheels are satisfied is determined by, for example, (A) Deviation ΔVw of the average wheel speed Vwr of the left and right rear wheels with respect to the average wheel speed Vwf of the left and right front wheels. Or (B) by determining whether the vehicle deceleration Gxb is equal to or greater than the control start reference value Gxs (positive constant). Or may be performed by a combination of the above (A) and (B).
[0057]
In step 90, for example, by determining whether or not the master cylinder pressure Pm has become equal to or less than the control end reference value Pme (a positive constant smaller than Pc), the end condition of the braking force distribution control for the front and rear wheels is established. 3 is determined. If the determination is affirmative, the control according to the routine shown in FIG. 3 is temporarily terminated. If the determination is negative, the process proceeds to step 100.
[0058]
It should be noted that whether or not the condition for terminating the braking force distribution control for the front and rear wheels has been satisfied may be determined in any manner known in the art. When it is performed based on ΔVw, it may be performed by determining whether or not the wheel speed deviation ΔVw is equal to or less than the control end reference value Vwe (a positive constant smaller than Vws). When the establishment determination is made based on the vehicle deceleration Gxb, it may be performed by determining whether or not the vehicle deceleration Gxb is equal to or less than a control end reference value Gxe (a positive constant smaller than Gxs). .
[0059]
In step 100, the wheel cylinder cross-sectional areas of the front and rear wheels are set to Sf and Sr (positive constants), and the braking effective radii of the front and rear wheels are set to Rf and Rr (positive constants), respectively. The basic increase pressure ΔPfo of the braking pressure of the front wheels is calculated according to the following equation 1 with the wheel braking effectiveness coefficients being BEFf and BEFr (positive constants), respectively. The wheel cylinder cross-sectional areas Sf and Sr and the effective braking radii Rf and Rr are values determined by the specifications of the braking force generator, and the braking effectiveness coefficients BEFf and BEFr are obtained in advance experimentally, for example.
ΔPfo = (Pm−Pc) (Sr × Rr × BEFr) / (Sf × Rf × BEFf) (1)
[0060]
In step 110, the braking effectiveness coefficient BEFv corresponding to the current vehicle speed is calculated from the map corresponding to the graph shown in FIG. 6 based on the vehicle speed V, and the standard braking effectiveness coefficient BEFo and the current braking effectiveness coefficient BEFv are calculated. Deviation ΔBEF (= BEFo−BEFv) is calculated, and an increase pressure ΔPf of the braking pressure of the front wheels is calculated according to the following equation 2. A map corresponding to the graph shown in FIG. 6 is also obtained in advance experimentally, for example.
ΔPf = ΔPfo (1 + ΔBEF / BEFo) (2)
[0061]
In step 120, the target braking pressures Ptfl and Ptfr for the left and right front wheels are calculated as the sum of the master cylinder pressure Pm and the increased pressure ΔPf, and braking is performed so that the braking pressures for the left and right front wheels become the target braking pressures Ptfl and Ptfr, respectively. The front wheel system of the apparatus 10 is controlled, and in step 130, the target braking pressures Ptrl and Ptrr for the left and right rear wheels are set to the holding pressure Pc, and the braking pressures for the left and right rear wheels are set to the target braking pressures Ptrl and Ptrr, respectively. Thus, the rear wheel system of the braking device 10 is controlled.
[0062]
Although not shown in FIG. 3, if a negative determination is made in step 70 and an affirmative determination is made in step 90, the communication control valve 22F and the like are shown in FIG. Accordingly, the pressure Pm of the master cylinder 14 is directly supplied to the wheel cylinders 26FR to 26RR of each wheel, whereby the braking pressure of each wheel is increased or decreased according to the braking operation amount of the driver. Is done.
[0063]
Thus, according to the illustrated embodiment, when the braking force distribution control for the front and rear wheels is not being executed, a negative determination is made in step 20, and the basic holding pressure Pcs of the rear wheels is determined based on the vehicle speed V in step 30. In step 40, the correction pressure ΔPc for the basic holding pressure Pcs is calculated based on the vehicle deceleration Gxb. In step 50, the rear wheel holding pressure Pc is calculated as a difference between the basic holding pressure Pcs and the correction pressure ΔPc. Calculated as sum.
[0064]
When the master cylinder pressure Pm is equal to or lower than the rear wheel holding pressure Pc and the other starting conditions for the braking force distribution control for the front and rear wheels are not satisfied, it is not necessary to suppress the braking force for the rear wheels. In this case, a negative determination is made, and the pressure in the master cylinder 14 is supplied to the front and rear wheel cylinders 26FL to 26RR. Therefore, the control of suppressing the braking pressure of the rear wheel and the control of increasing the braking pressure of the front wheel are performed. I will not.
[0065]
  On the other hand, the braking operation amount by the driver is further increased, and the master cylinder pressure Pm exceeds the rear wheel holding pressure Pc.The start condition for braking force distribution control for the front and rear wheels is satisfied.If a positive determination is made in step 60 and the master cylinder pressure Pm does not exceed the rear wheel holding pressure Pc, another start condition of the front and rear wheel braking force distribution control is satisfied. In step 70, an affirmative determination is made. In step 80, the holding pressure Pc of the rear wheel is set to the current master cylinder pressure Pm. In step 100, the master cylinder pressure Pm and the holding pressure Pc of the rear wheel are determined. The basic increase pressure ΔPfo of the front wheel braking pressure is calculated according to the above equation 1 based on the deviation Pm−Pc of the vehicle, and the brake effectiveness coefficient BEFv corresponding to the current vehicle speed is calculated based on the vehicle speed V in step 110 to obtain the standard brake. A deviation ΔBEF between the effectiveness coefficient BEFo and the current braking effectiveness coefficient BEFv is calculated, and an increase pressure ΔPf of the braking pressure of the front wheels is calculated according to the above equation 2.
[0066]
Further, in step 120, the front wheel system of the braking device 10 is controlled so that the braking pressure of the left and right front wheels becomes the target braking pressures Ptfl and Ptfr calculated as the sum of the master cylinder pressure Pm and the increased pressure ΔPf. The rear wheel system of the braking device 10 is controlled so that the braking pressures of the left and right rear wheels become the target braking pressures Ptrl and Ptrr = holding pressure Pc of the left and right rear wheels.
[0067]
Therefore, according to the illustrated embodiment, when the start condition of the front and rear wheel braking force distribution control is satisfied, the master cylinder pressure Pm exceeds the rear wheel holding pressure Pc until the end condition of the front and rear wheel braking force distribution control is satisfied. In this situation, the braking pressure of the rear wheel is maintained at the holding pressure Pc, so that it is possible to reliably prevent the rear wheel from being locked prior to the front wheel, and the braking pressure of the rear wheel is maintained at the holding pressure. An increase amount ΔPf of the front wheel braking pressure corresponding to the shortage of the braking force due to being maintained at Pc is calculated and the front wheel braking pressure is increased by ΔPf, so that the rear wheel braking pressure is maintained. Insufficient braking force for the vehicle as a whole is compensated by an increase in the braking force of the front wheels, so that the braking force of the vehicle as a whole can be reliably controlled to correspond to the amount of braking operation performed by the driver even during execution of front and rear wheel braking force distribution control. Power can be controlled.
[0068]
FIG. 7 shows the relationship between the braking force Fbf of the front wheels and the braking force Fbr of the rear wheels in the illustrated embodiment. In particular, the two-dot chain line indicates the ideal front-rear distribution line, and the solid line indicates the embodiment. The front and rear distribution lines are shown. As shown in the figure, when the braking force Fbf of the front wheel is equal to or less than the braking force Fbfc corresponding to the holding pressure Pc of the rear wheel, the braking force Fbf of the front wheel and the braking force Fbr of the rear wheel increase as the master cylinder pressure Pm increases. Although the front wheel braking force Fbf exceeds the braking force Fbfc corresponding to the rear wheel holding pressure Pc, the actual front / rear distribution line of the braking force is the ideal front / rear distribution line. The braking force Fbr of the rear wheels is maintained at the braking force Fbrc corresponding to the holding pressure Pc so as not to exceed the distribution line.
[0069]
8 indicates the relationship between the master cylinder pressure Pm, the front wheel braking pressure Pf, and the rear wheel braking pressure Pr in the illustrated embodiment, and the two-dot chain line indicates front and rear wheel braking force distribution control. The relationship between the master cylinder pressure Pm, the front wheel braking pressure Pf, and the rear wheel braking pressure Pr when the control is not performed is shown.
[0070]
As shown in FIG. 8, when the master cylinder pressure Pm is less than the holding pressure Pc, the front wheel braking pressure Pf and the rear wheel braking pressure Pr are the master cylinder pressure Pm, which are the same. When the cylinder pressure Pm exceeds the holding pressure Pc, the rear wheel braking pressure Pr is the holding pressure Pc (constant). If the current master cylinder pressure Pm is Pma, the rear wheel braking pressure is suppressed. An increase amount ΔPf of the front wheel braking pressure corresponding to the amount of suppression of the braking force of the rear wheels corresponding to the amount ΔPr (= Pma−Pc) is calculated, and the braking pressure Pf of the front wheels is controlled to Pma + ΔPf.
[0071]
Particularly, according to the illustrated embodiment, the increase amount ΔPf of the braking pressure of the front wheel is not simply set to the suppression amount ΔPr of the braking pressure of the rear wheel, but the braking force of the rear wheel due to the suppression of the braking pressure of the rear wheel. Is calculated as a value for adding the braking force corresponding to the deficiency of the front wheel to the braking force of the front wheels, so that compared with the case where the braking pressure of the front wheels is set to the master cylinder pressure Pma + the braking pressure suppression amount ΔPr of the rear wheels. Thus, the braking force of the entire vehicle can be controlled reliably and accurately to a value corresponding to the driver's braking operation amount.
[0072]
In general, as the vehicle speed V increases, the braking effectiveness of the front wheels decreases compared to the rear wheels, and as a result, the front-rear distribution of braking force becomes closer to the rear wheels. Therefore, the higher the vehicle speed V, the higher the holding pressure of the rear wheels. Pc is preferably set low. In general, the higher the vehicle load is, the closer the ideal front-rear distribution line of the braking force is to the rear wheel, and the higher the vehicle load is, the lower the deceleration of the vehicle and the greater the burden on the front wheels related to vehicle braking. It is preferable that the rear wheel holding pressure Pc is set higher as the vehicle deceleration at the start of braking force front-rear distribution control is lower.
[0073]
  According to the illustrated embodiment, the holding pressure Pc is not set to a constant value,305Since the rear wheel holding pressure Pc is variably set according to the vehicle speed V and the vehicle deceleration Gxb so as to decrease as the vehicle speed V increases at 0 and decrease as the vehicle deceleration Gxb increases. The rear wheel holding pressure Pc can be appropriately set as compared with the case where the deceleration Gxb is not taken into consideration, and accordingly, the front and rear wheel braking force distribution control can be appropriately executed in accordance with the state of the vehicle.
[0074]
Further, according to the illustrated embodiment, in step 110, the increase pressure ΔPf of the front wheel braking pressure is calculated considering that the braking effectiveness coefficient BEF decreases as the vehicle speed V increases. Compared to the case where fluctuations are not taken into account, the increase pressure ΔPf of the braking pressure of the front wheels can be calculated to a value that accurately corresponds to the shortage of the braking force of the rear wheels. Can be controlled.
[0075]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.
[0076]
For example, in the illustrated embodiment, the holding pressure Pc of the rear wheel is set to a constant value until the termination condition of the braking force front / rear wheel distribution control is satisfied. Depending on the state, the rear wheel braking pressure Pc may be gradually decreased or gradually increased, and the rear wheel braking pressure may be gradually decreased or gradually increased by pulse pressure increase.
[0077]
In the above embodiment, the rear wheel holding pressure Pc is variably set in steps 50 and 60 according to the vehicle speed V and the vehicle deceleration Gxb. The pressure Pc may be modified so as to be variably set only in accordance with one of the vehicle speed V and the vehicle deceleration Gxb. Further, as shown in FIG. 9 as a modified example, the rear wheel holding pressure Pc is It may be set to a constant value without being variably set according to V and vehicle deceleration Gxb.
[0078]
In the above-described embodiment, the rear wheel holding pressure Pc is calculated in steps 100 and 110 in consideration of the change in the braking effectiveness coefficient of the braking force generator based on the vehicle speed V. However, the correction of the holding pressure Pc of the rear wheel based on the change in the braking effectiveness coefficient may be omitted.
[0079]
In the above-described embodiment, the left and right front wheels and the left and right rear wheels are controlled to the same pressure during the front and rear wheel distribution control of the braking force. For example, the turning situation of the vehicle and the vehicle The braking pressure of the left and right front wheels or the braking pressure of the left and right rear wheels may be modified so as to be controlled to different values depending on the behavior.
[0080]
Further, in the above-described embodiment, the left and right front wheels and the left and right rear wheels form one system, and the braking pressure of each system is controlled mainly by the communication control valves 22F and 22R. As long as the braking device to which the device is applied can control the braking pressure of the front wheels to a value higher than the master cylinder pressure, and can control the braking pressure of the rear wheels to a value lower than the master cylinder pressure. Any configuration known in the art may be used.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a hydraulic circuit and an electronic control device of one embodiment of a braking control device according to the present invention.
FIG. 2 is an illustrative sectional view showing a front wheel communication control valve shown in FIG. 1;
FIG. 3 is a flowchart showing a braking force distribution control routine for front and rear wheels in the illustrated embodiment.
FIG. 4 is a graph showing a relationship between a vehicle speed V and a rear wheel basic holding pressure Pcs.
FIG. 5 is a graph showing a relationship between a vehicle deceleration Gxb and a correction pressure ΔPc with respect to a basic holding pressure Pcs.
FIG. 6 is a graph showing a relationship between a vehicle speed V and a brake effectiveness coefficient BEF.
FIG. 7 is a graph showing an ideal front / rear distribution line and a relationship between a braking pressure Pf for a front wheel and a braking pressure Pr for a rear wheel in the illustrated embodiment.
FIG. 8 is a graph showing a relationship between a master cylinder pressure Pm, a front wheel braking pressure Pf, and a rear wheel braking pressure Pr in the illustrated embodiment;
FIG. 9 is a flowchart showing a braking force distribution control routine for front and rear wheels in a modification of the illustrated embodiment.
[Explanation of symbols]
10 ... Brake device
14 ... Master cylinder
22F, 22R ... Communication control valve
26FL, 26FR, 26RL, 26RR ... Wheel cylinder
42F, 42R ... Oil pump
28FL-28RR, 34FL-34RR ... Open / close valve
42F, 42R ... Pump
60F, 60R ... Suction control valve
70 ... Valve
74 ... Valve element
84 ... Compression coil spring
88 ... Check valve
90 ... Electronic control unit
96 ... Pressure sensor
98 ... Vehicle speed sensor
100: longitudinal acceleration sensor

Claims (7)

マスタシリンダの作動液圧を各車輪に対応して設けられた制動力発生装置のホイールシリンダへ供給することにより制動力を発生し、車輌の運転状態が所定の状態になると後輪の制動力の上昇を抑制する前後輪制動力配分制御を行う車輌の制動制御装置にして、前記前後輪制動力配分制御が行われているときには後輪の制動力の上昇抑制量に応じて前輪の制動力を増加させる前輪制動力増加手段を有し、前記前後輪制動力配分制御は車輌の運転状態が所定の状態になった時点に於ける車輌の走行状態に応じて後輪の保持圧力を設定し、前記保持圧力に基づいて後輪のホイールシリンダ圧力の上昇を抑制することにより行われ、前記前輪制動力増加手段は運転者による制動操作量と、前記保持圧力と、前輪及び後輪の制動力発生装置の制動性能を表わすパラメータとに基づき前輪のホイールシリンダ圧力増加量を演算し、該増加量に基づき前輪のホイールシリンダ圧力を増加させることを特徴とする車輌の制動制御装置。A braking force is generated by supplying the hydraulic pressure of the master cylinder to a wheel cylinder of a braking force generator provided corresponding to each wheel, and when the driving state of the vehicle reaches a predetermined state, the braking force of the rear wheel is reduced. In a vehicle braking control device that performs front / rear wheel braking force distribution control that suppresses the increase, when the front / rear wheel braking force distribution control is being performed, the braking force of the front wheels is adjusted according to the amount of increase in the rear wheel braking force. have a front wheel braking force increasing means for increasing, to set the holding pressure of the rear wheels according to the running state of the at vehicle at the time the front and rear wheel braking force distribution control is the operation state of the vehicle becomes a predetermined state, The front wheel braking force increasing means generates the braking operation amount by the driver, the holding pressure, and the front and rear wheel braking force generation based on the holding pressure. Device braking performance It calculates the wheel cylinder pressure increase of the front wheel based on the parameter representing the braking control device of the vehicle, characterized in Rukoto increasing the wheel cylinder pressure of the front wheel on the basis of the increase. 前記所定の状態は前記前後輪制動力配分制御の開始条件が成立した状態であることを特徴とする請求項1に記載の車輌の制動制御装置。 Wherein the predetermined condition is vehicle brake control device according to claim 1, wherein the state der Rukoto the starting condition of the front and rear wheel braking force distribution control is satisfied. 前記パラメータは車速が高いほど制動性能を低く表わすパラメータであることを特徴とする請求項1又は2に記載の車輌の制動制御装置。The parameter is vehicle brake control device according to claim 1 or 2, characterized in that the vehicle speed is a parameter representing low higher braking performance. 前記パラメータは制動力発生装置のブレーキ効き係数を含むことを特徴とする請求項3に記載の車輌の制動制御装置。The vehicle braking control device according to claim 3, wherein the parameter includes a braking effectiveness coefficient of the braking force generation device. 前記ブレーキ効き係数は車速に基づき推定されることを特徴とする請求項4に記載の車輌の制動制御装置。5. The vehicle braking control apparatus according to claim 4, wherein the braking effectiveness coefficient is estimated based on a vehicle speed. 前記制動制御装置は車輌の運転状態が前記所定の状態になった時点に於ける車速に応じて前記保持圧力を可変設定することを特徴とする請求項1乃至5の何れかに記載の車輌の制動制御装置。6. The vehicle according to claim 1, wherein the braking control device variably sets the holding pressure in accordance with a vehicle speed at a time when the driving state of the vehicle becomes the predetermined state. Braking control device. 前記制動制御装置は車輌の運転状態が前記所定の状態になった時点に於ける車輌の減速度に応じて前記保持圧力を可変設定することを特徴とする請求項1乃至5の何れかに記載の車輌の制動制御装置。6. The braking control device according to claim 1, wherein the braking control device variably sets the holding pressure in accordance with the deceleration of the vehicle at the time when the driving state of the vehicle becomes the predetermined state. Vehicle brake control device.
JP2001360510A 2001-11-27 2001-11-27 Brake control device for vehicle Expired - Fee Related JP3829925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360510A JP3829925B2 (en) 2001-11-27 2001-11-27 Brake control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360510A JP3829925B2 (en) 2001-11-27 2001-11-27 Brake control device for vehicle

Publications (2)

Publication Number Publication Date
JP2003160039A JP2003160039A (en) 2003-06-03
JP3829925B2 true JP3829925B2 (en) 2006-10-04

Family

ID=19171302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360510A Expired - Fee Related JP3829925B2 (en) 2001-11-27 2001-11-27 Brake control device for vehicle

Country Status (1)

Country Link
JP (1) JP3829925B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554166B2 (en) 2003-04-07 2010-09-29 トヨタ自動車株式会社 Brake control device for vehicle
JP2004306785A (en) 2003-04-07 2004-11-04 Toyota Motor Corp Braking control device of vehicle
JP4099096B2 (en) 2003-04-07 2008-06-11 トヨタ自動車株式会社 Brake control device for vehicle
JP4742778B2 (en) * 2004-12-22 2011-08-10 株式会社アドヴィックス Brake control device for vehicle
CN100381315C (en) * 2004-12-22 2008-04-16 株式会社爱德克斯 Vehicle brake control apparatus
JP5041024B2 (en) * 2010-04-20 2012-10-03 トヨタ自動車株式会社 Brake control device and brake control method

Also Published As

Publication number Publication date
JP2003160039A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP4554166B2 (en) Brake control device for vehicle
JP3118191B2 (en) Electric vehicle braking control device
JP3939936B2 (en) Brake control device for vehicle
US9586488B2 (en) Brake apparatus
US7571967B2 (en) Brake control apparatus for vehicle
JP4077613B2 (en) Brake control device for vehicle
JP4228555B2 (en) Brake control device for vehicle
JP3287259B2 (en) Braking force control device
EP0698538B1 (en) Automotive brake fluid pressure control apparatus
JP4099096B2 (en) Brake control device for vehicle
JP3724053B2 (en) Braking force control device
US20050110343A1 (en) Vehicle brake system with active hydraulic brake force reinforcement
JP3829925B2 (en) Brake control device for vehicle
JP4965469B2 (en) Brake control device for vehicle
JP2004306785A (en) Braking control device of vehicle
JP3738584B2 (en) Brake control device for vehicle
JP4320976B2 (en) Brake control device for vehicle
JP3721834B2 (en) Negative pressure control device for brake booster
JP3829926B2 (en) Brake control device for vehicle
JP4083563B2 (en) Anti-lock control device for vehicle
JP5196203B2 (en) Braking force control device for vehicle
JP4172153B2 (en) Brake control device for vehicle
JP4220686B2 (en) Brake control device for vehicle
JP4759864B2 (en) Brake control device for vehicle
JP4016596B2 (en) Brake control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees