JP4963587B2 - Laser Doppler vibrometer - Google Patents

Laser Doppler vibrometer Download PDF

Info

Publication number
JP4963587B2
JP4963587B2 JP2006283414A JP2006283414A JP4963587B2 JP 4963587 B2 JP4963587 B2 JP 4963587B2 JP 2006283414 A JP2006283414 A JP 2006283414A JP 2006283414 A JP2006283414 A JP 2006283414A JP 4963587 B2 JP4963587 B2 JP 4963587B2
Authority
JP
Japan
Prior art keywords
optical system
laser light
measurement target
target surface
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006283414A
Other languages
Japanese (ja)
Other versions
JP2008101963A (en
Inventor
信俊 吉田
宏明 舩津
良太 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP2006283414A priority Critical patent/JP4963587B2/en
Publication of JP2008101963A publication Critical patent/JP2008101963A/en
Application granted granted Critical
Publication of JP4963587B2 publication Critical patent/JP4963587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、レーザドップラ振動計などの、レーザ光を用いて測定を行うレーザ測定装置に関するものである。   The present invention relates to a laser measuring apparatus that performs measurement using laser light, such as a laser Doppler vibrometer.

レーザ光を用いて測定を行うレーザ測定装置としては、測定対象物の振動や変位を、測定対象物で反射したレーザ光にドップラ効果によって生じるドップラシフトを利用して測定するレーザドップラ振動計が知られている(たとえば、特許文献1)。
特開平7-120304号公報
A laser Doppler vibrometer that measures the vibration and displacement of a measurement object using a Doppler shift generated by the Doppler effect on the laser light reflected by the measurement object is known as a laser measurement apparatus that performs measurement using laser light. (For example, Patent Document 1).
JP-A-7-120304

一般的に、レーザドップラ振動計では、空間分解能を高めるためなどに、レーザ光を集光光学系を用いて、測定対象物の測定対象面上に微少なスポットが照射されるように集光した状態で測定を行う。また、集光光学系の焦点距離を可変に構成し、当該集光光学系の焦点距離を測定対象面までの距離に応じて変更することにより、測定対象面までの距離によらずに、レーザ光を良好に集光できるようにするのが一般的であった。   In general, in a laser Doppler vibrometer, laser light is condensed using a condensing optical system so as to irradiate a minute spot on the measurement target surface of the measurement target in order to increase spatial resolution. Measure in the state. In addition, the focal length of the condensing optical system is configured to be variable, and the focal length of the condensing optical system is changed according to the distance to the measurement target surface, so that the laser can be used regardless of the distance to the measurement target surface. It was common to allow light to be collected well.

しかしながら、このような焦点距離を変更すると、当該変更に伴う集光角度の変化のために、レーザドップラ振動計で観測できる反射光の光量が変化してしまう場合があった。
また、たとえば、図3aに示すように焦点距離が小さくなると、図3bに示すように焦点距離が大きいに比べ、光軸方向の変位に対する測定対象面300上に照射されるスポットの径の変化が大きくなるために、このスポット径を所望の範囲内に設定したり、測定中維持することが困難となる。
However, when such a focal length is changed, the amount of reflected light that can be observed with the laser Doppler vibrometer may change due to a change in the condensing angle accompanying the change.
Further, for example, when the focal length becomes small as shown in FIG. 3a, the change in the diameter of the spot irradiated on the measurement target surface 300 with respect to the displacement in the optical axis direction is changed compared to the case where the focal length is large as shown in FIG. 3b. Since it becomes large, it becomes difficult to set this spot diameter within a desired range or to maintain it during measurement.

そして、これらのことは、安定的にレーザドップラ振動計の測定精度を良好に維持する上で不利益となる。
そこで、本発明は、レーザドップラ振動計から測定対象面までの距離の如何に関わらずに、集光光学系の焦点距離を変化させることなく高精度に測定を行うことのできるレーザドップラ振動計を提供することを課題とする。
These are disadvantageous for stably maintaining the measurement accuracy of the laser Doppler vibrometer stably.
Therefore, the present invention provides a laser Doppler vibrometer that can perform measurement with high accuracy without changing the focal length of the condensing optical system regardless of the distance from the laser Doppler vibrometer to the measurement target surface. The issue is to provide.

前記課題達成のために、本発明は、測定対象面の振動を計測するレーザドップラ振動計であって、レーザ光を出射するレーザ光源と、焦点距離が固定の集光光学系と、前記レーザ光源が出射したレーザ光を、第1のレーザ光と第2のレーザ光に分岐し、第1のレーザ光を前記集光光学系に出射する干渉光学系と、集光光学系を光軸方向に移動する移動機構と、前記測定定対象面までの距離を測定する距離測定手段と、測定対象面の振動の計測の開始に先立って、前記距離測定手段が測定した測定対象面までの距離に基づいて、集光光学系と測定対象物の測定対象面との間の距離が、前記集光光学系の焦点距離に一致するように、前記移動機構に集光光学系を光軸方向に移動させる移動制御部とより構成したものである。ただし、前記集光光学系は、前記干渉光学系から入射する第1のレーザ光を前記測定対象面上に集光すると共に、前記測定対象面で反射した反射光を前記干渉光学系に導入するであり、前記干渉光学系は、前記第2のレーザ光の周波数を所定量シフトすると共に、周波数をシフトした第2のレーザ光と、前記集光光学系から導入された前記反射光とを干渉させた干渉光を生成するものである。   In order to achieve the above object, the present invention provides a laser Doppler vibrometer that measures vibration of a measurement target surface, a laser light source that emits laser light, a condensing optical system having a fixed focal length, and the laser light source. The laser beam emitted from the laser beam is branched into a first laser beam and a second laser beam, and an interference optical system that emits the first laser beam to the condensing optical system, and the condensing optical system in the optical axis direction. Based on the distance to the measurement target surface measured by the distance measurement unit prior to the start of the measurement of the vibration of the measurement target surface, the moving mechanism that moves, the distance measurement unit that measures the distance to the measurement target surface Thus, the moving mechanism moves the condensing optical system in the optical axis direction so that the distance between the condensing optical system and the measurement target surface of the measurement object matches the focal length of the condensing optical system. It consists of a movement control unit. However, the condensing optical system condenses the first laser light incident from the interference optical system on the measurement target surface and introduces the reflected light reflected by the measurement target surface into the interference optical system. The interference optical system shifts the frequency of the second laser light by a predetermined amount, and also interferes with the second laser light whose frequency is shifted and the reflected light introduced from the condensing optical system. The generated interference light is generated.

このようなレーザドップラ振動計によれば、集光光学系を光軸方向に移動することにより、レーザドップラ振動計から測定対象面までの距離によらずに、集光光学系と測定対象面との間の距離を一定に保ち、集光光学系の焦点距離したがって集光角度を変化させることなく、測定対象面にレーザ光を良好に集光させることができる。よって、本発明によれば、レーザドップラ振動計から測定対象面までの距離の如何に関わらずに、集光光学系の焦点距離を変化させることなく高精度に測定を行うことができる。   According to such a laser Doppler vibrometer, by moving the condensing optical system in the optical axis direction, regardless of the distance from the laser Doppler vibrometer to the measurement target surface, The laser beam can be favorably condensed on the measurement target surface without changing the distance between the two, and without changing the focal length of the condensing optical system and hence the condensing angle. Therefore, according to the present invention, measurement can be performed with high accuracy without changing the focal length of the condensing optical system regardless of the distance from the laser Doppler vibrometer to the measurement target surface.

以上のように、本発明によれば、レーザドップラ振動計から測定対象面までの距離の如何に関わらずに、集光光学系の焦点距離を変化させることなく高精度に測定を行うことのできるレーザドップラ振動計を提供することができる。   As described above, according to the present invention, measurement can be performed with high accuracy without changing the focal length of the focusing optical system regardless of the distance from the laser Doppler vibrometer to the measurement target surface. A laser Doppler vibrometer can be provided.

以下、本発明の実施形態をレーザドップラ振動計への適用を例にとり説明する。
まず、図1に、本実施形態に係るレーザドップラ振動計の基本構成を示す。
図示するように、レーザドップラ振動計は、レーザ光源1、干渉光学系2、集光光学系3、参照信号生成部4、光電変換器5、信号処理部6、移動ステージ7、距離センサ8、移動制御部9とを備えている。
そして、干渉光学系2は、第1ビームスプリッタ21、第2ビームスプリッタ22、音響光学素子23、ミラー24、第3ビームスプリッタ25とより構成されている。
ここで、このようなレーザドップラ振動計は、測定対象物100の表面を測定対象面として、その振動や変移の測定を、たとえば、測定対象物100を回転させながら行うものである。
さて、このような構成において、レーザ光源1から射出された周波数f0のレーザービームは、干渉光学系2に入射し、第1ビームスプリッタ21で二分され、二分された一方のビームは、音響光学素子23で、参照信号生成部4が生成する周波数fMの参照信号を用いて周波数fM分周波数がシフトされ、周波数f0+fMの参照ビームとして、ミラー24を介して第3ビームスプリッタ25に入射する。
Hereinafter, an embodiment of the present invention will be described taking application to a laser Doppler vibrometer as an example.
First, FIG. 1 shows a basic configuration of a laser Doppler vibrometer according to the present embodiment.
As illustrated, the laser Doppler vibrometer includes a laser light source 1, an interference optical system 2, a condensing optical system 3, a reference signal generation unit 4, a photoelectric converter 5, a signal processing unit 6, a moving stage 7, a distance sensor 8, And a movement control unit 9.
The interference optical system 2 includes a first beam splitter 21, a second beam splitter 22, an acoustooptic device 23, a mirror 24, and a third beam splitter 25.
Here, such a laser Doppler vibrometer uses the surface of the measurement object 100 as a measurement object surface, and measures the vibration and transition of the measurement object 100 while rotating the measurement object 100, for example.
In such a configuration, the laser beam having the frequency f0 emitted from the laser light source 1 enters the interference optical system 2 and is divided into two by the first beam splitter 21, and one of the two divided beams is an acoustooptic device. 23, the frequency is shifted by the frequency fM using the reference signal of the frequency fM generated by the reference signal generator 4, and enters the third beam splitter 25 through the mirror 24 as a reference beam of the frequency f0 + fM.

一方、第1ビームスプリッタ21で二分された他方のビームは、第2ビームスプリッタ22を介して、焦点距離が固定の集光光学系3に出射され、集光光学系3で、測定対象物100の測定対象面上に集光される。そして、測定対象物100の表面で反射され集光光学系3に入射した反射光が、集光光学系3によって干渉光学系2に導入され、第2ビームスプリッタ22を介して第3ビームスプリッタ25に入射する。   On the other hand, the other beam divided into two by the first beam splitter 21 is emitted to the condensing optical system 3 having a fixed focal length via the second beam splitter 22, and the object 100 to be measured is collected by the condensing optical system 3. It is condensed on the measurement target surface. Then, the reflected light reflected from the surface of the measurement object 100 and incident on the condensing optical system 3 is introduced into the interference optical system 2 by the condensing optical system 3, and the third beam splitter 25 is passed through the second beam splitter 22. Is incident on.

第3ビームスプリッタ25は、このようにして入射する参照ビームと反射光を結合し光電変換器5に出力する。
ここで、測定対象物100による反射光の周波数には、測定対象物100の測定対象面の振動速度に応じたドップラシフトfDが生じており、反射光の周波数はf0+fDとなる。したがって、光電変換器5において、第3ビームスプリッタ25からの入射光を光電変換した電気信号中には、参照ビームと反射光との干渉によるfM±fDのビート信号が観測される。そこで、信号処理部6において、入力するビート信号を参照信号の周波数fMでFM復調することにより、測定対象物100の測定対象面の振動に応じた速度信号Vが得られ、この速度信号Vを解析することにより測定対象物100の測定対象面の変位が求められる。または、信号処理部6において、反射光と参照ビームの光路長の差によって生じる参照信号とビート信号との位相差より測定対象物100の測定対象面の変位を求めるようにすることもできる。
The third beam splitter 25 combines the incident reference beam and the reflected light in this way, and outputs them to the photoelectric converter 5.
Here, a Doppler shift fD corresponding to the vibration speed of the measurement target surface of the measurement target 100 is generated in the frequency of the reflected light by the measurement target 100, and the frequency of the reflected light is f0 + fD. Therefore, in the photoelectric converter 5, a beat signal of fM ± fD due to the interference between the reference beam and the reflected light is observed in the electric signal obtained by photoelectrically converting the incident light from the third beam splitter 25. Therefore, the signal processing unit 6 performs FM demodulation on the input beat signal at the frequency fM of the reference signal, thereby obtaining a speed signal V corresponding to the vibration of the measurement target surface of the measurement object 100. By analyzing, the displacement of the measurement object surface of the measurement object 100 is obtained. Alternatively, in the signal processing unit 6, the displacement of the measurement target surface of the measurement target 100 can be obtained from the phase difference between the reference signal and the beat signal generated by the difference between the optical path lengths of the reflected light and the reference beam.

一方、以上のような測定に先立って、移動制御部9は、距離センサ8を用いて、測定対象物100の測定対象面までの距離を測定すると共に、距離センサ8で測定される距離より求まる集光光学系3と測定対象物100の測定対象面との間の距離が、集光光学系3の焦点距離に一致するように、移動ステージ7を用いて集光光学系3を光軸方向に移動する。ここで、移動ステージ7は、集光光学系3を保持するホルダと、ステップモータと、ステップモータで駆動される、ホルダを光軸方向に移動するボールネジ機構などを用いて構成することができる。   On the other hand, prior to the measurement as described above, the movement control unit 9 uses the distance sensor 8 to measure the distance to the measurement target surface of the measurement object 100 and is obtained from the distance measured by the distance sensor 8. The converging optical system 3 is moved in the optical axis direction using the moving stage 7 so that the distance between the condensing optical system 3 and the measurement target surface of the measuring object 100 coincides with the focal length of the condensing optical system 3. Move to. Here, the moving stage 7 can be configured using a holder that holds the condensing optical system 3, a step motor, and a ball screw mechanism that is driven by the step motor and moves the holder in the optical axis direction.

また、距離センサ8は、たとえば、図2aに示すように、干渉光学系2と集光光学系3の間に配置して、集光光学系3から出力される反射光を分岐する光路分岐器81と、光路分岐器81と集光光学系3を介して、測定対象物100の測定対象面300を撮影するカメラ82を用いて構成することができる。この場合、移動制御部9は、カメラ82によって撮影される測定対象面300上に形成されるレーザ光によるスポットの径が所望の大きさとなるように位相ステージによる集光光学系3の移動量及び移動方向を制御することにより、集光光学系3と測定対象物100の測定対象面との間の距離が、集光光学系3の焦点距離に一致するように集光光学系3を光軸方向に移動する。ただし、距離センサ8は、測定対象面までの距離を測定できるものであれば任意の方式のセンサを用いてよい。   Further, the distance sensor 8 is disposed between the interference optical system 2 and the condensing optical system 3, for example, as shown in FIG. 2a, and splits the reflected light output from the condensing optical system 3. 81, the optical path branching device 81, and the condensing optical system 3 can be used to configure a camera 82 that photographs the measurement target surface 300 of the measurement target 100. In this case, the movement control unit 9 determines the amount of movement of the condensing optical system 3 by the phase stage so that the spot diameter of the laser beam formed on the measurement target surface 300 photographed by the camera 82 becomes a desired size. By controlling the moving direction, the condensing optical system 3 is placed on the optical axis so that the distance between the condensing optical system 3 and the measurement target surface of the measuring object 100 coincides with the focal length of the condensing optical system 3. Move in the direction. However, the distance sensor 8 may be any type of sensor as long as it can measure the distance to the measurement target surface.

さて、このようなレーザドップラ振動計によれば、図2a、bに示すように、集光光学系3を光軸方向に移動することにより、集光光学系3の焦点距離Fしたがって集光角度を変化させることなく、レーザドップラ振動計から測定対象面までの距離によらずに、集光光学系3と測定対象面300との間の距離を一定に保ち、測定対象面にレーザ光を良好に集光させることができる。   Now, according to such a laser Doppler vibrometer, as shown in FIGS. 2A and 2B, by moving the condensing optical system 3 in the optical axis direction, the focal length F of the condensing optical system 3 and thus the converging angle. Without changing the distance, the distance between the condensing optical system 3 and the measurement target surface 300 is kept constant regardless of the distance from the laser Doppler vibrometer to the measurement target surface, and the laser light is excellent on the measurement target surface. Can be condensed.

よって、本実施形態によれば、レーザドップラ振動計から測定対象面までの距離の如何に関わらずに、集光光学系3の焦点距離を変化させることなく高精度に測定を行うことができる。   Therefore, according to the present embodiment, measurement can be performed with high accuracy without changing the focal length of the condensing optical system 3 regardless of the distance from the laser Doppler vibrometer to the measurement target surface.

本発明の実施形態に係るレーザドップラ振動計の構成を示すブロック図である。It is a block diagram which shows the structure of the laser Doppler vibrometer which concerns on embodiment of this invention. 本発明の実施形態に係るレーザドップラ振動計の焦点移動のようすを示す図である。It is a figure which shows the appearance of the focus movement of the laser Doppler vibrometer which concerns on embodiment of this invention. 従来のレーザドップラ振動計の焦点移動のようすを示す図である。It is a figure which shows the appearance of the focus movement of the conventional laser Doppler vibrometer.

符号の説明Explanation of symbols

1…レーザ光源、2…干渉光学系、3…集光光学系、4…参照信号生成部、5…光電変換器、6…信号処理部、7…移動ステージ、8…距離センサ、9…移動制御部、21…第1ビームスプリッタ、22…第2ビームスプリッタ、23…音響光学素子、24…ミラー、25…第3ビームスプリッタ、81…光路分岐器、82…カメラ、100…測定対象物、300…測定対象面。   DESCRIPTION OF SYMBOLS 1 ... Laser light source, 2 ... Interference optical system, 3 ... Condensing optical system, 4 ... Reference signal production | generation part, 5 ... Photoelectric converter, 6 ... Signal processing part, 7 ... Moving stage, 8 ... Distance sensor, 9 ... Movement Control unit, 21 ... first beam splitter, 22 ... second beam splitter, 23 ... acoustic optical element, 24 ... mirror, 25 ... third beam splitter, 81 ... optical path splitter, 82 ... camera, 100 ... measurement object, 300 ... surface to be measured.

Claims (1)

測定対象面の振動を計測するレーザドップラ振動計であって、
レーザ光を出射するレーザ光源と、
焦点距離が固定の集光光学系と、
前記レーザ光源が出射したレーザ光を、第1のレーザ光と第2のレーザ光に分岐し、第1のレーザ光を前記集光光学系に出射する干渉光学系と、
集光光学系を光軸方向に移動する移動機構と、
前記測定対象面を撮影するカメラと、
前記移動機構に集光光学系を光軸方向に移動させる移動制御部とを有し、
前記集光光学系は、前記干渉光学系から入射する第1のレーザ光を前記測定対象面上に集光すると共に、前記測定対象面で反射した反射光を前記干渉光学系に導入し、
前記干渉光学系は、前記第2のレーザ光の周波数を所定量シフトすると共に、周波数をシフトした第2のレーザ光と、前記集光光学系から導入された前記反射光とを干渉させた干渉光を生成し、
前記移動制御部は、前記測定対象面の振動の計測の開始に先立って、前記カメラの出力に基づいて、前記カメラによって撮影される前記測定対象面上に前記集光光学系によって集光された前記第1のレーザ光によるスポットの径が所定の大きさとなるように前記移動機構に集光光学系を光軸方向に移動させることを特徴とするレーザドップラ振動計。
A laser Doppler vibrometer that measures the vibration of the surface to be measured,
A laser light source for emitting laser light;
A focusing optical system with a fixed focal length;
An interference optical system for branching the laser light emitted from the laser light source into a first laser light and a second laser light, and emitting the first laser light to the condensing optical system;
A moving mechanism for moving the condensing optical system in the optical axis direction;
A camera for photographing the measurement target surface;
A movement control unit for moving the condensing optical system in the optical axis direction in the moving mechanism;
The condensing optical system condenses the first laser light incident from the interference optical system on the measurement target surface, and introduces reflected light reflected by the measurement target surface into the interference optical system,
The interference optical system shifts the frequency of the second laser light by a predetermined amount, and interferes with the second laser light whose frequency is shifted and the reflected light introduced from the condensing optical system. Produce light,
Prior to the start of measurement of vibration of the measurement target surface, the movement control unit is condensed by the condensing optical system on the measurement target surface photographed by the camera based on the output of the camera. A laser Doppler vibrometer, wherein the converging optical system is moved in the optical axis direction by the moving mechanism so that a spot diameter of the first laser beam becomes a predetermined size.
JP2006283414A 2006-10-18 2006-10-18 Laser Doppler vibrometer Active JP4963587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283414A JP4963587B2 (en) 2006-10-18 2006-10-18 Laser Doppler vibrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283414A JP4963587B2 (en) 2006-10-18 2006-10-18 Laser Doppler vibrometer

Publications (2)

Publication Number Publication Date
JP2008101963A JP2008101963A (en) 2008-05-01
JP4963587B2 true JP4963587B2 (en) 2012-06-27

Family

ID=39436400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283414A Active JP4963587B2 (en) 2006-10-18 2006-10-18 Laser Doppler vibrometer

Country Status (1)

Country Link
JP (1) JP4963587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220016403A (en) * 2020-07-31 2022-02-09 한국광기술원 sleeve still surface temperature measuring apparatus and measuring method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203860A (en) * 2009-03-02 2010-09-16 Optical Comb Inc Vibration measuring device and vibration measuring method
JP5336921B2 (en) * 2009-05-11 2013-11-06 株式会社 光コム Vibration measuring apparatus and vibration measuring method
JP5363231B2 (en) * 2009-07-28 2013-12-11 株式会社 光コム Vibration measuring apparatus and vibration measuring method
JP5531171B2 (en) * 2009-09-11 2014-06-25 学校法人福岡大学 MEMS measuring device
JP5669182B2 (en) * 2010-10-14 2015-02-12 大学共同利用機関法人 高エネルギー加速器研究機構 Vibration measuring apparatus and vibration measuring method by white interference method
JP5680476B2 (en) * 2011-04-28 2015-03-04 公益財団法人鉄道総合技術研究所 Method and apparatus for measuring vibration and dimensions of structures by non-contact measurement
JP6417186B2 (en) * 2014-10-29 2018-10-31 シャープ株式会社 Optical scanning device and image forming apparatus provided with optical scanning device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120304A (en) * 1993-10-21 1995-05-12 Mitsubishi Electric Corp Laser doppler vibration meter
JP2943040B2 (en) * 1993-11-04 1999-08-30 セイコーインスツルメンツ株式会社 Vibration measuring device
JPH10249557A (en) * 1997-03-12 1998-09-22 Mitsubishi Chem Corp Texture device and texture working method
JP2002372496A (en) * 2001-06-15 2002-12-26 Bando Chem Ind Ltd Outer shape inspection system
JP2005020673A (en) * 2003-06-30 2005-01-20 Tdk Corp Method for automatically focusing image recognition camera, and method for manufacturing multilayer ceramic electronic component using the method
JP3996561B2 (en) * 2003-08-26 2007-10-24 株式会社小野測器 Laser Doppler vibrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220016403A (en) * 2020-07-31 2022-02-09 한국광기술원 sleeve still surface temperature measuring apparatus and measuring method thereof
KR102493099B1 (en) * 2020-07-31 2023-01-30 한국광기술원 sleeve still surface temperature measuring apparatus and measuring method thereof

Also Published As

Publication number Publication date
JP2008101963A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4963587B2 (en) Laser Doppler vibrometer
KR101845187B1 (en) Laser dicing device and dicing method
JP5149486B2 (en) Interferometer, shape measurement method
JP4897572B2 (en) Oblique incidence interferometer
JP5536983B2 (en) Optical measuring device
CN102575926B (en) Determine and the equipment of surface measurement and method for position
JP5403972B2 (en) Dimension measuring device
JP4452815B2 (en) Depth measuring device
JP4909244B2 (en) Interference measurement device
WO2013084557A1 (en) Shape-measuring device
CN112904526B (en) High-precision automatic focusing method and device with anti-noise capability based on differential confocal detection
JP4997406B1 (en) Shape measuring device, depth measuring device and film thickness measuring device
JP4501000B2 (en) Laser interference displacement measuring method and laser interference displacement measuring apparatus
JP4880519B2 (en) Interference measurement device
JP2010025732A (en) Oblique incidence interferometer
JP2010014656A (en) Noncontact side-surface shape measuring apparatus
JP2007333469A (en) Interferometric measuring apparatus
JP2007003333A (en) Distance measuring device
JP2009109628A (en) Depth measuring device
KR101620594B1 (en) spectroscopy apparatus
JP6413596B2 (en) Resonance frequency measurement system, resonance frequency measurement method
JPH11173821A (en) Optical inspecting device
JP2004177502A (en) Laser scanning device
JP2009258089A (en) Shape measuring apparatus
JP2007003200A (en) Laser measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R150 Certificate of patent or registration of utility model

Ref document number: 4963587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250