JP2005020673A - Method for automatically focusing image recognition camera, and method for manufacturing multilayer ceramic electronic component using the method - Google Patents

Method for automatically focusing image recognition camera, and method for manufacturing multilayer ceramic electronic component using the method Download PDF

Info

Publication number
JP2005020673A
JP2005020673A JP2003186451A JP2003186451A JP2005020673A JP 2005020673 A JP2005020673 A JP 2005020673A JP 2003186451 A JP2003186451 A JP 2003186451A JP 2003186451 A JP2003186451 A JP 2003186451A JP 2005020673 A JP2005020673 A JP 2005020673A
Authority
JP
Japan
Prior art keywords
image recognition
recognition camera
thickness
target mark
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003186451A
Other languages
Japanese (ja)
Inventor
Hiroshi Yagi
弘 八木
Riichi Hirooka
利一 広岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003186451A priority Critical patent/JP2005020673A/en
Publication of JP2005020673A publication Critical patent/JP2005020673A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Studio Devices (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To focus an image recognition camera on a target mark on the upper surface of a recognition object such as a multilayer body by measuring the thickness of the recognition object beforehand to control the distance between the upper surface of the recognition target and the camera. <P>SOLUTION: There are provided: an image recognition camera 10 for picking up an image of the target mark provided on the upper surface of a green sheet multilayer body 5 as a sheet-like recognition object; a thickness measuring means 20 for measuring the thickness of the multilayer body 5; and a cutting means for cutting the multilayer body 5 into chips. The thickness of the multilayer body 5 is measured by the thickness measuring means 20, and the distance between the image recognition camera 10 and the target mark is controlled according to the measurement result to focus the image recognition camera 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、画像認識カメラの自動焦点合わせ方法及びその方法を用いる積層セラミック電子部品の製造方法に係り、とくに積層セラミックコンデンサの製造工程の一部である積層体切断工程で使用される画像認識カメラの自動焦点合わせ方法及びその方法を用いるセラミックコンデンサの製造方法の改良に関する。
【0002】
【従来の技術】
従来より、積層セラミック電子部品、特に積層セラミックコンデンサの製造工程の一部である積層体切断工程で使用される切断機において、セラミックグリーンシートの積層体(認識対象物)上面のターゲットマークを撮像し、画像処理することで、積層体をチップ形状に切断する際の切断位置を補正することが行われている。つまり、セラミックグリーンシートの積層体は、積層体毎に多少の寸法誤差があり、切断する積層体毎にターゲットマークを撮像して切断位置を補正することが必要不可欠である。その場合、切断位置の補正を正確に行うためには、セラミックグリーンシートの積層体の様々な厚みの積層体上のターゲットマークを正確に画像処理する必要がある。
【0003】
様々な厚みの積層体(認識対象物)上のターゲットマークを正確に画像処理する為には積層体の厚さが変わるたびに焦点位置を合わせ、最良のコンディションでマークを認識する必要がある。このため、画像認識カメラにはそれぞれの目的に合わせて固定焦点型のものや自動焦点型のものが用いられている。しかし、高精度に信頼性よく焦点を合わせる為にはどうしても積層体(認識対象物)の厚みの変化に応じて、画像認識カメラを手動でその上下方向に変位させ微調整する必要があった。これに対して、画像認識カメラにレーザー変位計内蔵の光学ユニットによる自動焦点合わせをするものも提案されているが非常に高価である。あるいは、予め同一ロットの認識対象物の厚さを設定し、これに基づいて焦点を合わせる方法もある。しかし、近年、積層体が非常に薄くなることによって、この方法では個々の積層体の厚みばらつきに対応できない。つまり積層体に焦点深度以上の距離(高精度に画像認識する為、近年は非常に狭い自動焦点距離あるいは自動焦点の引き込み範囲となっている)の変位が生じた場合には、手動により画像認識カメラの位置設定をし直さなければならない。
【0004】
なお、撮像手段の自動焦点合わせに関する公知文献としては以下のものがある。
【0005】
【特許文献1】特開2000−133684号公報
【特許文献2】特開平9−64106号公報
【特許文献3】特開平10−232343号公報
【特許文献4】特開平11−283546号公報
【特許文献5】特開平5−28247号公報
【特許文献6】特開2001−36799号公報
【0006】
なお、上記特許文献において、積層体の切断工程に際し、直接的に積層体の厚みを計測する手段を用いてカメラ位置を制御するものは無い。
【0007】
【発明が解決しようとする課題】
自動焦点合わせを採用する画像認識カメラを用いる場合であっても、画像認識カメラは焦点距離・深度の関係で、認識対象物としての積層体の厚さが異なる都度、その積層体の厚さに従って焦点を一度は手動で合わせる必要があり、その段取りに時間がかかるものであった(設備稼働率の低下要因)。
【0008】
また、予め同一ロットの積層体の厚さを画像認識カメラの昇降機構の制御部に入力し、その入力データにより画像認識カメラの位置合わせを図るものもあるが、高精度の画像認識の要求に満足に答えることは出来なかった。つまり、同一ロットの認識対象物(積層体)であってもその固有の厚さばらつきと画像認識カメラの焦点距離・深度のばらつきで満足できる画像が得られない。いいかえれば、従来自動焦点機構を備えた画像認識装置であっても、その機能的な能力範囲内でのみ焦点合わせが行われていた。
【0009】
最近では、積層セラミックコンデンサのような、例えば、長さ方向寸法が0.6mm以下で幅寸法が0.3mm以下、厚み寸法が0.3mm以下といったような小さなものを加工するための画像認識ではカメラ側において微細な焦点合わせを必要とし、その自動焦点の引き込み範囲、すなわち画像認識カメラの認識可能範囲が小さく設計されている。そこで、認識対象物の厚みばらつきなどで、この自動焦点の引き込み範囲(自動焦点機能)を超える場合は作業者により手動での焦点合わせが必要となる。実質上半自動の状態であった。
【0010】
つまり、従来の自動焦点合わせには、自動焦点の引き込み範囲(自動焦点機能)を超えた場合には画像認識が不可能になるという問題があった。さらに、手動による焦点合わせは時間を必要とする上に正確に安定した画像が得難いという問題がある。
【0011】
本発明は、上記の点に鑑み、積層体等の認識対象物の厚さを予め実測し、それによって認識対象物上面と画像認識カメラ間の距離を制御して、認識対象物上面のターゲットマークに前記カメラの焦点を合わせるようにし、実質上認識対象物の厚みの変動による前記カメラの焦点ずれを手動で調整することなく、自動焦点合わせを可能とする画像認識カメラの自動焦点合わせ方法及びその方法を用いる積層セラミック電子部品の製造方法を提供することを目的とする。
【0012】
また、比較的安価な固定焦点型の画像認識カメラでも有効に活用でき、つまり、積層セラミック電子部品の製造工程の一部である積層体切断工程で、比較的安価に画像認識カメラの自動焦点合わせが達成でき、ピンぼけのないシャープな像をもとに、高精度な位置決めと切断加工ができる積層セラミック電子部品の製造方法を提供することにある。
【0013】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明に係る画像認識カメラの自動焦点合わせ方法は、シート状認識対象物の上面に設けられたターゲットマークを撮像する画像認識カメラと、前記シート状認識対象物の厚みを計測する厚さ計測手段とを用い、
前記厚さ計測手段で前記シート状認識対象物の厚みを計測し、その計測結果によって前記画像認識カメラと前記ターゲットマーク間の距離を制御して前記画像認識カメラの焦点合わせを行い、前記ターゲットマークを撮像することを特徴としている。
【0015】
本願請求項2の発明に係る画像認識カメラの自動焦点合わせ方法は、請求項1において、前記計測結果によって、昇降機構により前記画像認識カメラ又は前記認識対象物を載置したテーブルが昇降制御されることを特徴としている。
【0016】
本願請求項3の発明に係る画像認識カメラの自動焦点合わせ方法は、請求項1又は2において、前記画像認識カメラが固定焦点型画像認識カメラであることを特徴としている。
【0017】
本願請求項4の発明に係る積層セラミック電子部品の製造方法は、シート状認識対象物としてのグリーンシート積層体の上面に設けられたターゲットマークを撮像する画像認識カメラと、前記積層体の厚みを計測する厚さ計測手段と、前記積層体をチップ形状に切断する切断手段とを用い、
前記厚さ計測手段で前記積層体の厚みを計測し、その計測結果によって前記画像認識カメラと前記ターゲットマーク間の距離を制御して前記画像認識カメラの焦点合わせを行い、前記ターゲットマークを撮像し、その撮像結果に基づき前記切断手段の切断位置を補正して前記積層体の切断を行うことを特徴としている。
【0018】
【発明の実施の形態】
以下、本発明に係る画像認識カメラの自動焦点合わせ方法及びその方法を用いる積層セラミック電子部品の製造方法の実施の形態を図面に従って説明する。
【0019】
図1及び図2を用いて本発明に係る画像認識カメラの自動焦点合わせ方法、及びその方法を用いる積層セラミック電子部品の1例として、積層セラミックコンデンサの製造方法の実施の形態を説明する。
【0020】
まず、本発明が適用される積層体の切断工程を含む積層セラミックコンデンサの製造工程について図2を用いて説明する。図2(A)の内部電極を設けていないセラミックグリーンシート(未焼成セラミックシート)1を複数枚積層し、その上に、同図(B)にように多数個のチップに対応する内部電極2を印刷等で形成したグリーンシートを所定枚数積層し、さらにその上に、同図(C)のように内部電極の無いグリーンシート1を積層し、最後に同図(D)のようにターゲットマーク3が付いたグリーンシートを最上層に積層し、図2(E)のように加圧プレスしグリーンシート積層体5を形成する。その後、図2(F)のようにグリーンシート積層体5を、コンデンサを構成する内部電極2の位置に合わせて点線Cのように、切断手段としてのダイサー等で個品チップ6に切断するのであるが、グリーンシート積層体5はシート毎に多少伸び縮みがあり、点線Cの切断位置を、積層体四隅のターゲットマーク3を撮像して補正後に、切断処理する必要がある。
【0021】
図1は積層セラミックコンデンサの製造過程における切断工程で使用する画像認識カメラ10、厚さ計測手段20及びその周辺の構成を示し、画像認識カメラ10は昇降機構11で昇降駆動される。12は昇降機構の制御部である。
【0022】
図1(A)では、切断処理前に、切断テーブル30上に載置されたグリーンシート積層体5の上面に対して接触型膜厚計等の厚さ計測手段20を接触させて、グリーンシート積層体5の厚さを実測する(切断テーブル30と積層体上面との高さの差を計測する)。積層体5の厚さの実測値は前記昇降機構11の制御部12に供給(フィードバック)される。なお、積層体5は厚さの一様なシート状認識対象物であり、厚さの計測は1箇所、例えば中央部で行えばよい。
【0023】
厚さの計測が済んだシート状認識対象物としての積層体5は、テーブル30(又はカメラ10)の移動によって、図1(B)の画像認識カメラ10の下方位置に位置決めされ、この位置にて画像認識カメラ10で図2で示したターゲットマーク3が撮像可能な位置関係となる。画像認識カメラ10は昇降機構11で高さ調整自在であり、制御部12に積層体5の厚さの実測値がフィードバックされることにより、積層体5の上面、つまりターゲットマーク3に画像認識カメラ10の焦点を合わせることができる(あるいは自動焦点の引き込み範囲内に設定できる)。
【0024】
これにより、ピンぼけのないシャープなターゲットマーク3の像をもとに、図1(F)の切断工程において、高精度な積層体5の位置決めと切断位置Cの決定が可能であり、高精度の切断加工ができる。切断工程後、図1(G)のように正確に切断されたコンデンサを構成する所望の内部電極2を持つ個品のチップ6が得られ、以後、焼成工程、外部電極形成工程を経て積層セラミックコンデンサが完成する。
【0025】
近年、積層セラミックコンデンサに代表される積層セラミック電子部品の多品種少量生産化が進み、今後もさらにこの傾向は継続するものと考えられている。多品種少量生産が増加するということは、設備の汎用化(1台で様々な品種に対応)が求められていることでもある。本実施の形態によれば、以下に述べるように、設備の汎用化に伴う切断対象となる積層体厚みの変化に対応可能である。また、積層セラミック電子部品として積層セラミックコンデンサを実施の形態で説明したが、セラミックグリーンシートを用いる積層セラミックサーミスタ、積層バリスタ等にも適用される。
【0026】
(1) シート状認識対象物である積層体5の上面に設けられたターゲットマーク3を撮像する画像認識カメラ10と、積層体5の厚みを実測する厚さ計測手段20とを用い、厚さ計測手段20で積層体5の厚みを計測し、その計測結果によって画像認識カメラ10とターゲットマーク3間の距離を制御して画像認識カメラ10の焦点合わせを行った上で、ターゲットマーク3を撮像するため、積層体5の高精度の位置決め、切断処理が可能である。従って、厚みの異なる積層体を切断する場合であっても、画像認識カメラ10の手動による焦点合わせは不要となり、積層セラミックコンデンサの製造設備の稼働率向上を図ることができる。
【0027】
(2) 高精度の画像認識が要求されるものでも比較的安価な固定焦点型画像認識カメラ、あるいは自動焦点の引き込み範囲の狭い画像認識カメラを使用可能であり、認識対象物の厚みが多様であっても低コストの装置で対応可能である。
【0028】
(3) 画像認識カメラにレーザー変位計内蔵の光学ユニットを設ける場合等に比較して自動焦点合わせの構成が簡素で、かつ安価である。
【0029】
なお、上記実施の形態では、昇降機構11及びその制御部12でカメラ10を昇降制御したが、相対的にカメラとターゲットマーク間の距離を制御できればよいので、認識対象物の載置面(切断テーブル)を昇降制御してもよい。
【0030】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0031】
【発明の効果】
以上説明したように、本発明によれば、画像認識カメラの認識対象物の厚みが広い範囲で変わる場合であっても、画像認識カメラの自動焦点合わせが可能であり、画像認識カメラを用いる画像処理を併用した切断工程を含む設備の稼働率向上を図ることができる。また、高精度の画像認識が要求されるものでも比較的安価な固定焦点型画像認識カメラ、あるいは自動焦点の引き込み範囲の狭い画像認識カメラを使用可能であり、自動焦点合わせのための構成も簡素で安価にできる。
【図面の簡単な説明】
【図1】本発明の実施の形態であって、画像認識カメラ、厚さ計測手段及びその周辺の構成を示すブロック図である。
【図2】本発明の実施の形態であって、積層セラミックコンデンサの製造工程を説明する斜視図である。
【符号の説明】
1 セラミックグリーンシート
2 内部電極
3 ターゲットマーク
5 積層体
6 チップ
10 画像認識カメラ
11 昇降機構
12 制御部
20 厚さ計測手段
30 切断テーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic focusing method of an image recognition camera and a method of manufacturing a multilayer ceramic electronic component using the method, and more particularly, to an image recognition camera used in a multilayer cutting process which is a part of a multilayer ceramic capacitor manufacturing process. The present invention relates to an automatic focusing method and an improvement of a method of manufacturing a ceramic capacitor using the method.
[0002]
[Prior art]
Conventionally, in a cutting machine used in a multilayer cutting process that is a part of the manufacturing process of multilayer ceramic electronic components, particularly multilayer ceramic capacitors, the target mark on the top surface of the ceramic green sheet laminate (recognition target) is imaged. Then, by performing image processing, the cutting position when the laminated body is cut into a chip shape is corrected. That is, the laminated body of ceramic green sheets has some dimensional errors for each laminated body, and it is essential to capture the target mark and correct the cutting position for each laminated body to be cut. In that case, in order to correct the cutting position accurately, it is necessary to accurately perform image processing on target marks on the laminates of various thicknesses of the laminate of ceramic green sheets.
[0003]
In order to accurately perform image processing on target marks on a laminated body (recognition target) having various thicknesses, it is necessary to adjust the focal position every time the thickness of the laminated body changes and recognize the mark in the best condition. For this reason, a fixed focus type or an auto focus type is used for the image recognition camera in accordance with each purpose. However, in order to focus with high accuracy and reliability, it is necessary to finely adjust the image recognition camera by manually displacing it in the vertical direction in accordance with the change in the thickness of the laminate (recognition object). On the other hand, an image recognition camera that performs automatic focusing using an optical unit with a built-in laser displacement meter has been proposed, but it is very expensive. Alternatively, there is a method in which the thickness of the recognition object of the same lot is set in advance and the focus is adjusted based on this. However, in recent years, since the laminated body becomes very thin, this method cannot cope with the thickness variation of the individual laminated bodies. In other words, if the stack is displaced by a distance greater than the focal depth (in order to recognize images with high accuracy, it has become a very narrow auto focal length or auto focus pull-in range in recent years), manual image recognition is required. You must reposition the camera.
[0004]
The following documents are known documents relating to the automatic focusing of the image pickup means.
[0005]
[Patent Document 1] JP 2000-133684 A [Patent Document 2] JP 9-64106 [Patent Document 3] JP 10-232343 [Patent Document 4] JP 11-283546 [Patent Document 3] [Patent Document 5] Japanese Patent Laid-Open No. 5-28247 [Patent Document 6] Japanese Patent Laid-Open No. 2001-36799 [0006]
In the above-mentioned patent documents, there is no one that controls the camera position using means for directly measuring the thickness of the laminated body in the cutting process of the laminated body.
[0007]
[Problems to be solved by the invention]
Even when using an image recognition camera that employs autofocusing, the image recognition camera depends on the thickness of the stack as the recognition target differs depending on the focal length and depth. It was necessary to focus manually once, and it took time to set up (factors that lowered the capacity utilization rate).
[0008]
In addition, there are some cases where the thickness of the same lot is input to the control unit of the lifting mechanism of the image recognition camera in advance and the image recognition camera is aligned based on the input data. I couldn't answer satisfaction. That is, even if the recognition object (laminate) of the same lot is used, a satisfactory image cannot be obtained due to the inherent thickness variation and the focal length / depth variation of the image recognition camera. In other words, even an image recognition apparatus having an automatic focusing mechanism has been focused only within the functional capability range.
[0009]
In recent years, in image recognition for processing a small thing such as a multilayer ceramic capacitor, for example, a length dimension of 0.6 mm or less, a width dimension of 0.3 mm or less, and a thickness dimension of 0.3 mm or less. Fine focusing is required on the camera side, and the automatic focus pull-in range, that is, the recognizable range of the image recognition camera is designed to be small. In view of this, when the range of recognition objects exceeds the autofocus pull-in range (autofocus function) due to variations in the thickness of the recognition target, manual focusing is required by the operator. It was virtually semi-automatic.
[0010]
That is, the conventional autofocusing has a problem that image recognition becomes impossible when the autofocus pull-in range (autofocus function) is exceeded. Furthermore, manual focusing requires time and is difficult to obtain an accurate and stable image.
[0011]
In view of the above points, the present invention measures the thickness of a recognition object such as a laminated body in advance, thereby controlling the distance between the upper surface of the recognition object and the image recognition camera, and the target mark on the upper surface of the recognition object. And an automatic focusing method for an image recognition camera capable of performing automatic focusing without manually adjusting defocusing of the camera due to a variation in the thickness of a recognition object. It is an object of the present invention to provide a method for manufacturing a multilayer ceramic electronic component using the method.
[0012]
It can also be used effectively with relatively inexpensive fixed focus type image recognition cameras, that is, automatic focusing of image recognition cameras at a relatively low cost in the multilayer cutting process, which is part of the manufacturing process for multilayer ceramic electronic components. It is an object of the present invention to provide a method for manufacturing a multilayer ceramic electronic component capable of achieving highly accurate positioning and cutting processing based on a sharp image without blur.
[0013]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0014]
[Means for Solving the Problems]
To achieve the above object, an automatic focusing method for an image recognition camera according to the invention of claim 1 includes an image recognition camera for capturing a target mark provided on an upper surface of a sheet-like recognition object, and the sheet-like object. Using a thickness measuring means for measuring the thickness of the recognition object,
The thickness of the sheet-like recognition object is measured by the thickness measuring means, and the distance between the image recognition camera and the target mark is controlled based on the measurement result to perform the focusing of the image recognition camera, and the target mark It is characterized by imaging.
[0015]
The automatic focusing method of the image recognition camera according to the invention of claim 2 is the method according to claim 1, wherein the table on which the image recognition camera or the recognition object is placed is controlled by the lifting mechanism according to the measurement result. It is characterized by that.
[0016]
According to a third aspect of the present invention, there is provided an automatic focusing method for an image recognition camera according to the first or second aspect, wherein the image recognition camera is a fixed focus type image recognition camera.
[0017]
The method for manufacturing a multilayer ceramic electronic component according to the invention of claim 4 includes an image recognition camera that captures an image of a target mark provided on an upper surface of a green sheet laminate as a sheet-like recognition object, and a thickness of the laminate. Using a thickness measuring means for measuring, and a cutting means for cutting the laminate into a chip shape,
The thickness of the laminate is measured by the thickness measuring means, and the distance between the image recognition camera and the target mark is controlled based on the measurement result, and the image recognition camera is focused, and the target mark is imaged. The laminated body is cut by correcting the cutting position of the cutting means based on the imaging result.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an automatic focusing method for an image recognition camera according to the present invention and a method for manufacturing a multilayer ceramic electronic component using the method will be described below with reference to the drawings.
[0019]
As an example of an automatic focusing method for an image recognition camera according to the present invention and a multilayer ceramic electronic component using the method, an embodiment of a method for manufacturing a multilayer ceramic capacitor will be described with reference to FIGS.
[0020]
First, the manufacturing process of the multilayer ceramic capacitor including the cutting process of the laminated body to which this invention is applied is demonstrated using FIG. 2A, a plurality of ceramic green sheets (unfired ceramic sheets) 1 not provided with an internal electrode are stacked, and an internal electrode 2 corresponding to a large number of chips is formed thereon as shown in FIG. A predetermined number of green sheets formed by printing or the like are laminated, and further, a green sheet 1 without internal electrodes is laminated thereon as shown in FIG. 10C, and finally a target mark as shown in FIG. A green sheet with 3 is laminated on the uppermost layer, and press-pressed as shown in FIG. 2 (E) to form a green sheet laminate 5. Thereafter, as shown in FIG. 2 (F), the green sheet laminate 5 is cut into individual chips 6 with a dicer or the like as a cutting means as shown by a dotted line C in accordance with the position of the internal electrode 2 constituting the capacitor. However, the green sheet laminate 5 has some expansion and contraction for each sheet, and the cutting position of the dotted line C needs to be cut after the target marks 3 at the four corners of the laminate are imaged and corrected.
[0021]
FIG. 1 shows a configuration of an image recognition camera 10 and a thickness measuring unit 20 used in a cutting process in the manufacturing process of a multilayer ceramic capacitor, and the peripheral configuration thereof. The image recognition camera 10 is driven up and down by an elevating mechanism 11. Reference numeral 12 denotes a control unit of the lifting mechanism.
[0022]
In FIG. 1 (A), before the cutting process, a thickness measuring means 20 such as a contact-type film thickness meter is brought into contact with the upper surface of the green sheet laminate 5 placed on the cutting table 30, so that the green sheet The thickness of the laminated body 5 is actually measured (the difference in height between the cutting table 30 and the upper surface of the laminated body is measured). The measured value of the thickness of the stacked body 5 is supplied (feedback) to the control unit 12 of the lifting mechanism 11. Note that the laminate 5 is a sheet-like recognition object having a uniform thickness, and the thickness may be measured at one place, for example, at the center.
[0023]
The laminated body 5 as the sheet-like recognition object for which the thickness has been measured is positioned at the lower position of the image recognition camera 10 in FIG. 1B by the movement of the table 30 (or the camera 10). Thus, the image recognition camera 10 has a positional relationship in which the target mark 3 shown in FIG. The height of the image recognition camera 10 can be adjusted by an elevating mechanism 11, and the image recognition camera is applied to the upper surface of the stacked body 5, that is, the target mark 3 by feeding back the measured value of the thickness of the stacked body 5 to the control unit 12. 10 focus points can be set (or can be set within the auto focus pull-in range).
[0024]
Thereby, based on the sharp target mark 3 image without blurring, it is possible to position the laminate 5 and determine the cutting position C with high accuracy in the cutting process of FIG. Can be cut. After the cutting step, an individual chip 6 having a desired internal electrode 2 constituting a capacitor that is accurately cut as shown in FIG. 1G is obtained, and thereafter, a multilayer ceramic is obtained through a firing step and an external electrode formation step. The capacitor is completed.
[0025]
In recent years, low-volume production of various types of multilayer ceramic electronic components represented by multilayer ceramic capacitors has progressed, and this trend is expected to continue in the future. The increase in multi-variety and small-quantity production also means that there is a demand for general-purpose equipment (one unit can handle various varieties). According to the present embodiment, as will be described below, it is possible to cope with a change in the thickness of the laminated body to be cut with the generalization of equipment. Further, although the multilayer ceramic capacitor has been described in the embodiment as the multilayer ceramic electronic component, the present invention is also applicable to a multilayer ceramic thermistor, a multilayer varistor and the like using a ceramic green sheet.
[0026]
(1) Thickness using the image recognition camera 10 which images the target mark 3 provided on the upper surface of the laminated body 5 which is a sheet-like recognition object, and the thickness measuring means 20 which actually measures the thickness of the laminated body 5 The thickness of the laminated body 5 is measured by the measuring unit 20, the distance between the image recognition camera 10 and the target mark 3 is controlled based on the measurement result, and the image recognition camera 10 is focused, and then the target mark 3 is imaged. Therefore, the laminated body 5 can be positioned and cut with high accuracy. Therefore, even when the laminated bodies having different thicknesses are cut, manual focusing of the image recognition camera 10 is not necessary, and the operating rate of the production facility for the laminated ceramic capacitor can be improved.
[0027]
(2) Even if high-accuracy image recognition is required, a relatively inexpensive fixed focus type image recognition camera or an image recognition camera with a narrow autofocus pull-in range can be used, and the thickness of the recognition object varies. Even if it exists, it can respond with a low-cost apparatus.
[0028]
(3) Compared with the case where an optical unit with a built-in laser displacement meter is provided in the image recognition camera, the configuration of automatic focusing is simple and inexpensive.
[0029]
In the above embodiment, the elevation mechanism 11 and the control unit 12 control the elevation of the camera 10. However, since the distance between the camera and the target mark may be relatively controlled, the placement surface (cutting) of the recognition target object is sufficient. The table may be controlled up and down.
[0030]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0031]
【The invention's effect】
As described above, according to the present invention, even when the thickness of the recognition object of the image recognition camera changes in a wide range, the image recognition camera can be automatically focused and an image using the image recognition camera can be used. It is possible to improve the operation rate of the equipment including the cutting process using the treatment. In addition, it is possible to use a relatively inexpensive fixed focus type image recognition camera or an image recognition camera with a narrow autofocus pull-in range even if high accuracy image recognition is required, and the structure for autofocusing is simple. Can be cheap.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of an image recognition camera, a thickness measuring unit, and the periphery thereof according to an embodiment of the present invention.
FIG. 2 is a perspective view for explaining a manufacturing process of the multilayer ceramic capacitor according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic green sheet 2 Internal electrode 3 Target mark 5 Laminated body 6 Chip 10 Image recognition camera 11 Lifting mechanism 12 Control part 20 Thickness measurement means 30 Cutting table

Claims (4)

シート状認識対象物の上面に設けられたターゲットマークを撮像する画像認識カメラと、前記シート状認識対象物の厚みを計測する厚さ計測手段とを用い、
前記厚さ計測手段で前記シート状認識対象物の厚みを計測し、その計測結果によって前記画像認識カメラと前記ターゲットマーク間の距離を制御して前記画像認識カメラの焦点合わせを行い、前記ターゲットマークを撮像することを特徴とする画像認識カメラの自動焦点合わせ方法。
Using an image recognition camera that images a target mark provided on the upper surface of the sheet-like recognition object, and a thickness measurement unit that measures the thickness of the sheet-like recognition object,
The thickness of the sheet-like recognition object is measured by the thickness measuring means, and the distance between the image recognition camera and the target mark is controlled based on the measurement result to perform the focusing of the image recognition camera, and the target mark A method for automatically focusing an image recognition camera, characterized in that
前記計測結果によって、昇降機構により前記画像認識カメラ又は前記認識対象物を載置したテーブルが昇降制御される請求項1記載の画像認識カメラの自動焦点合わせ方法。The automatic focusing method of the image recognition camera according to claim 1, wherein the image recognition camera or the table on which the recognition object is placed is controlled to be moved up and down by the lifting mechanism according to the measurement result. 前記画像認識カメラが固定焦点型画像認識カメラである請求項1又は2記載の画像認識カメラの自動焦点合わせ方法。3. The automatic focusing method for an image recognition camera according to claim 1, wherein the image recognition camera is a fixed focus type image recognition camera. シート状認識対象物としてのグリーンシート積層体の上面に設けられたターゲットマークを撮像する画像認識カメラと、前記積層体の厚みを計測する厚さ計測手段と、前記積層体をチップ形状に切断する切断手段とを用い、
前記厚さ計測手段で前記積層体の厚みを計測し、その計測結果によって前記画像認識カメラと前記ターゲットマーク間の距離を制御して前記画像認識カメラの焦点合わせを行い、前記ターゲットマークを撮像し、その撮像結果に基づき前記切断手段の切断位置を補正して前記積層体の切断を行うことを特徴とする積層セラミック電子部品の製造方法。
An image recognition camera that images a target mark provided on an upper surface of a green sheet laminate as a sheet-like recognition object, a thickness measuring unit that measures the thickness of the laminate, and the laminate is cut into chips. Using cutting means,
The thickness of the laminate is measured by the thickness measuring means, and the distance between the image recognition camera and the target mark is controlled based on the measurement result, and the image recognition camera is focused, and the target mark is imaged. A method of manufacturing a multilayer ceramic electronic component comprising cutting the laminate by correcting the cutting position of the cutting means based on the imaging result.
JP2003186451A 2003-06-30 2003-06-30 Method for automatically focusing image recognition camera, and method for manufacturing multilayer ceramic electronic component using the method Withdrawn JP2005020673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186451A JP2005020673A (en) 2003-06-30 2003-06-30 Method for automatically focusing image recognition camera, and method for manufacturing multilayer ceramic electronic component using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186451A JP2005020673A (en) 2003-06-30 2003-06-30 Method for automatically focusing image recognition camera, and method for manufacturing multilayer ceramic electronic component using the method

Publications (1)

Publication Number Publication Date
JP2005020673A true JP2005020673A (en) 2005-01-20

Family

ID=34185569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186451A Withdrawn JP2005020673A (en) 2003-06-30 2003-06-30 Method for automatically focusing image recognition camera, and method for manufacturing multilayer ceramic electronic component using the method

Country Status (1)

Country Link
JP (1) JP2005020673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101963A (en) * 2006-10-18 2008-05-01 Ono Sokki Co Ltd Laser doppler vibroscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101963A (en) * 2006-10-18 2008-05-01 Ono Sokki Co Ltd Laser doppler vibroscope

Similar Documents

Publication Publication Date Title
US20060218781A1 (en) Electronic-component alignment method and apparatus therefor
JP4311144B2 (en) CUTTING DEVICE AND CUTTING METHOD
JP6250999B2 (en) Alignment method and alignment apparatus
KR101850808B1 (en) Electronic parts mounting device and method for producing electronic parts
JP6271514B2 (en) Production equipment
JP2013000826A (en) Cutting blade, and method and device for manufacturing electronic component
KR101622473B1 (en) Laser processing machine
JP4581329B2 (en) Cutting method and cutting apparatus for ceramic green molded body
WO2020153204A1 (en) Mounting device and mounting method
JP2005197564A (en) Surface mounting machine
JP2005020673A (en) Method for automatically focusing image recognition camera, and method for manufacturing multilayer ceramic electronic component using the method
JP4457712B2 (en) CUTTING DEVICE AND CUTTING METHOD
CN112218517B (en) Mounting device
JPH0964085A (en) Bonding method
TW201804266A (en) Position detection device and position detection method including using at least one camera to obtain image information
JPH10315430A (en) Method for screen printing base plate
CN106937525B (en) Image generation device, installation device, and image generation method
JP3670865B2 (en) Screen printing machine
CN218314459U (en) Cutting device
JP2008171866A (en) Focus adjusting method of camera in mounting machine, and scaling acquiring method thereof
WO2022168275A1 (en) Bonding apparatus and bonding method
JP7013400B2 (en) Mounting device and mounting method
TWI578348B (en) Method for manufacturing ceramic electronic parts, position measuring apparatus and method, and marking forming apparatus and method
JP2008041976A (en) Electronic component mounting apparatus and method for mounting electronic component
JP2022067326A (en) Manufacturing method for liquid ejection head

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905