JP4963090B2 - Gain phase calibration device - Google Patents

Gain phase calibration device Download PDF

Info

Publication number
JP4963090B2
JP4963090B2 JP2007214663A JP2007214663A JP4963090B2 JP 4963090 B2 JP4963090 B2 JP 4963090B2 JP 2007214663 A JP2007214663 A JP 2007214663A JP 2007214663 A JP2007214663 A JP 2007214663A JP 4963090 B2 JP4963090 B2 JP 4963090B2
Authority
JP
Japan
Prior art keywords
voltage
phase
output
gain
calibrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007214663A
Other languages
Japanese (ja)
Other versions
JP2009047579A (en
Inventor
孝 臼田
安宏 中村
明博 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007214663A priority Critical patent/JP4963090B2/en
Publication of JP2009047579A publication Critical patent/JP2009047579A/en
Application granted granted Critical
Publication of JP4963090B2 publication Critical patent/JP4963090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、増幅器等の電気変換器の利得と位相を正確に校正することを可能にした利得位相校正装置に関する。   The present invention relates to a gain phase calibration apparatus that can accurately calibrate the gain and phase of an electrical converter such as an amplifier.

センサ等からの微小な信号を増幅する増幅器の利得と位相の校正は、正弦波状の信号を増幅器に入力し、入力信号と出力信号との振幅と位相を比較することによって行うことができる。
図7は、従来技術に係る利得位相校正装置の一例を示す図である。
同図において、101は正弦波発振器、102は十分な振幅および時間分解能をもつ波形記録器、103は利得および位相を校正しようとする校正対象の増幅器である。
同図に示すように、この装置は、正弦波発振器101からの出力電圧と、この出力電圧を増幅器103で増幅して出力された出力電圧とを、それぞれ波形記録器102で同時に記録する。ここで、正弦波発振器101からの出力電圧の振幅をA1、増幅器103からの出力電圧の振幅をA2、正弦波発振器101の発振周波数をf、後者の出力電圧の前者の出力電圧に対する遅延時間をdとすると、利得A(無次元)は数式1により、位相D(ラジアン)は数式2により得られる。

Figure 0004963090
Figure 0004963090
この得られた利得Aおよび位相Dに基づいて増幅器103の利得と位相を校正することができる。 Calibration of the gain and phase of an amplifier that amplifies a minute signal from a sensor or the like can be performed by inputting a sinusoidal signal to the amplifier and comparing the amplitude and phase of the input signal and the output signal.
FIG. 7 is a diagram illustrating an example of a gain-phase calibration apparatus according to the prior art.
In the figure, 101 is a sine wave oscillator, 102 is a waveform recorder having sufficient amplitude and time resolution, and 103 is an amplifier to be calibrated to calibrate gain and phase.
As shown in the figure, this apparatus simultaneously records an output voltage from the sine wave oscillator 101 and an output voltage output by amplifying the output voltage by an amplifier 103 by a waveform recorder 102. Here, the amplitude of the output voltage from the sine wave oscillator 101 is A1, the amplitude of the output voltage from the amplifier 103 is A2, the oscillation frequency of the sine wave oscillator 101 is f, and the delay time of the latter output voltage with respect to the former output voltage is set. Assuming that d, gain A (dimensionless) is obtained by Equation 1, and phase D (radian) is obtained by Equation 2.
Figure 0004963090
Figure 0004963090
Based on the obtained gain A and phase D, the gain and phase of the amplifier 103 can be calibrated.

また、引用文献1および引用文献2には、デジタル化したアッテネータや遅延回路を用いた校正装置が示されている。   Further, cited document 1 and cited document 2 show a calibration apparatus using a digitized attenuator and a delay circuit.

また、従来技術の改善策として、利得に関しては分圧器(アッテネータ)を用いた利得校正装置がある。
図8は、分圧器(アッテネータ)を用いた利得校正装置の一例を示す図である。
同図において、104は分圧器(アッテネータ)、105は電圧計、なお、その他の構成は図に示した同符号の構成に対応する。
同図に示すように、正弦波発振器101から分岐された一方の出力電圧は、分圧器104に入力され、分圧器104によって1/Aに減圧され、減圧後、増幅器103に入力され、増幅器103から出力された電圧を電圧計105によって測定する。また、正弦波発振器101から分岐された他方の出力電圧は、電圧計105によって測定される。ここで、電圧計105の指示値が、増幅器103から出力された電圧値と正弦波発振器101から出力された電圧値とが同一値を示すように分圧器104の設定を調整したとき、分圧器104の分圧比Aが増幅器103の利得に相当する。この利得Aに基づいて増幅器103の利得を校正することができる。このような校正方法は一般的に置換法と呼ばれ、電圧計105は比較器としてのみ用いられるため絶対的な精度が問われないこと、および分圧器104は極めて安定なため一般には定期的校正が不要であること等の利点がある。
As a measure for improving the prior art, there is a gain calibration device using a voltage divider (attenuator) for gain.
FIG. 8 is a diagram illustrating an example of a gain calibration apparatus using a voltage divider (attenuator).
In the figure, 104 is a voltage divider (attenuator), 105 voltmeter, Other configurations corresponds to the configuration of the code shown in FIG.
As shown in the figure, one output voltage branched from the sine wave oscillator 101 is input to the voltage divider 104, reduced to 1 / A by the voltage divider 104, and after being reduced, input to the amplifier 103. The voltage output from is measured by a voltmeter 105. The other output voltage branched from the sine wave oscillator 101 is measured by the voltmeter 105. Here, when the setting value of the voltage divider 104 is adjusted so that the indicated value of the voltmeter 105 shows the same value as the voltage value output from the amplifier 103 and the voltage value output from the sine wave oscillator 101, the voltage divider A voltage division ratio A of 104 corresponds to the gain of the amplifier 103. Based on the gain A, the gain of the amplifier 103 can be calibrated. Such a calibration method is generally referred to as a substitution method, and the voltmeter 105 is used only as a comparator, so that absolute accuracy is not questioned. In addition, since the voltage divider 104 is extremely stable, a periodic calibration is generally performed. There is an advantage that is unnecessary.

しかし、図7に示した利得位相校正装置では、正確な校正を行うためには波形記録器102は十分な振幅、時間分解能、チャンネル間の同期性、および精度を有すること等が要求される。特に、高周波域になるほど高い時間分解能が要求されるが、通常、波形記録器102の振幅分解能と時間分解能は相反する関係にある。さらに波形記録器102は定期的な校正を必要とするため、さらに精度の高い電圧源や周波数カウンタ等が必要となる問題がある。
また、特許文献1および特許文献2に記載の校正装置も、図7に示した利得校正装置と同様に定期的校正とより上位の精度を有する標準機器が不可欠であるという問題がある。
また、図8に示した利得校正装置は、校正できるのは利得のみで、位相は校正できない。分圧器104を用いた置換法で位相も校正しようとすると、波形記録器を併用する必要がある。この際、波形記録器の電圧分解能と絶対精度は利得校正に影響しないが、時間分解能と絶対精度は位相校正結果に直接影響する。従って十分な時間分解能を有し、かつ精度上より上位の発振器、カウンタ等で定期的に校正する必要がある。
However, in the gain phase calibration apparatus shown in FIG. 7, the waveform recorder 102 is required to have sufficient amplitude, time resolution, synchronism between channels, accuracy, etc. in order to perform accurate calibration. In particular, a higher time resolution is required as the frequency becomes higher. Usually, the amplitude resolution and the time resolution of the waveform recorder 102 are in a contradictory relationship. Furthermore, since the waveform recorder 102 requires periodic calibration, there is a problem that a more accurate voltage source, frequency counter, and the like are required.
Further, the calibration devices described in Patent Document 1 and Patent Document 2 also have a problem that a standard instrument having periodic calibration and higher accuracy is indispensable, like the gain calibration apparatus shown in FIG.
Further, the gain calibration apparatus shown in FIG. 8 can only calibrate the gain and cannot calibrate the phase. If the phase is also calibrated by the replacement method using the voltage divider 104, it is necessary to use a waveform recorder together. At this time, the voltage resolution and absolute accuracy of the waveform recorder do not affect the gain calibration, but the time resolution and absolute accuracy directly affect the phase calibration result. Therefore, it is necessary to periodically calibrate with a higher-order oscillator and counter having sufficient time resolution and higher accuracy.

本発明の目的は、上記の従来技術の問題点に鑑みて、増幅器等の電気変換器の利得と位相の校正を、長期間に渡り安定して正確かつ簡単に行えることを可能にした利得位相校正装置を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to enable the gain and phase calibration of an electrical converter such as an amplifier to be performed stably and accurately over a long period of time. It is to provide a calibration device.

本発明は、上記の課題を解決するために、次のような手段を採用した。
第1の手段は、基準電圧と、該基準電圧に対して電圧振幅と位相を任意に調整可能な交流電圧を出力する信号生成器と、該信号生成器からの前記交流電圧を入力する校正対象の電気変換器と、一方の入力端子に前記基準電圧、他方の入力端子に前記校正対象の電気変換器からの出力電圧を入力する差動増幅器と、該差動増幅器からの出力電圧を入力する零点検出器と、からなり、前記零点検出器が零となるように前記信号生成器の前記電圧振幅と前記位相を調整することにより、前記校正対象の電気変換器の利得および/または位相を把握し校正することを可能にしたことを特徴とする利得位相校正装置である。
第2の手段は、基準電圧と、該基準電圧に対して電圧振幅と位相を任意に調整可能な交流電圧を出力する信号生成器と、前記基準電圧に直流電圧を重畳した電圧を出力する第1の電圧変換器と、前記信号生成器から出力する交流電圧に前記直流電圧と同電圧の直流電圧を重畳した電圧を出力する第2の電圧変換器と、該第2の電圧変換器からの出力電圧を入力する校正対象の電気変換器と、一方の入力端子に前記第1の電圧変換器からの出力電圧、他方の入力端子に前記校正対象の電気変換器からの出力電圧を入力する差動増幅器と、該差動増幅器からの出力電圧を入力する零点検出器と、からなり、前記零点検出器が零となるように前記信号生成器の前記電圧振幅と前記位相を調整することにより、前記校正対象の電気変換器の利得および/または位相を把握し校正することを可能にしたことを特徴とする利得位相校正装置である。
第3の手段は、基準電圧と、該基準電圧に対して電圧振幅と位相を任意に調整可能な交流電圧を出力する信号生成器と、前記信号生成器から出力された交流電圧によって充電されるコンデンサと、該コンデンサの出力電圧を入力する校正対象の電気変換器と、一方の入力端子に前記基準電圧、他方の入力端子に前記校正対象の電気変換器からの出力電圧を入力する差動増幅器と、該差動増幅器からの出力電圧を入力する零点検出器と、からなり、前記零点検出器が零となるように前記信号生成器の前記電圧振幅と前記位相を調整することにより、前記校正対象の電気変換器の利得および/または位相を把握し校正することを可能にしたことを特徴とする利得位相校正装置である。
第4の手段は、第1の手段ないし第3の手段のいずれか1つの手段において、前記信号生成器から出力される交流電圧は、調整可能な分圧電圧を出力する第1の誘導分圧器と、前記分圧電圧に対して位相が90度異なり調整可能な分圧電圧を出力する第2の誘導分圧器と、該第2の誘導分圧器からの分圧電圧を変圧する注入用トランスとからなり、前記第1の誘導分圧器からの分圧電圧に前記注入用トランスからの出力電圧を重畳した電圧であることを特徴とする請求項1ないし請求項3のいずれか1つの請求項に記載の利得位相校正装置である
The present invention employs the following means in order to solve the above problems.
The first means includes a reference voltage, a signal generator that outputs an AC voltage whose voltage amplitude and phase can be arbitrarily adjusted with respect to the reference voltage, and a calibration target that inputs the AC voltage from the signal generator. An electric converter, a differential amplifier for inputting the reference voltage to one input terminal, an output voltage from the electric converter to be calibrated to the other input terminal, and an output voltage from the differential amplifier The gain and / or phase of the electrical converter to be calibrated is determined by adjusting the voltage amplitude and the phase of the signal generator so that the zero detector becomes zero. The gain phase calibration apparatus is characterized in that it can be calibrated.
The second means outputs a reference voltage, a signal generator that outputs an AC voltage whose voltage amplitude and phase can be arbitrarily adjusted with respect to the reference voltage, and a voltage obtained by superimposing the DC voltage on the reference voltage. 1 of the voltage converter, a second voltage converter which outputs a voltage obtained by superimposing a DC voltage of the DC voltage and the voltage into an AC voltage outputted from the signal generator, the second from the voltage converter electrical converters to be calibrated for receiving the output voltage, the difference for receiving the output voltage, the output voltage from the electrical converter of the calibration target to the other input terminal from the first voltage converter to one input terminal A dynamic amplifier and a zero point detector for inputting an output voltage from the differential amplifier, and adjusting the voltage amplitude and the phase of the signal generator so that the zero point detector becomes zero, The gain of the electrical converter to be calibrated and Or gain and phase calibration apparatus being characterized in that it possible to calibrate to grasp the phase.
Third means includes a reference voltage, is charged by the voltage amplitude and the signal generator for outputting a freely adjustable AC voltage phase AC voltage output from the signal generator with respect to the reference voltage A capacitor, an electric converter to be calibrated for inputting the output voltage of the capacitor, and a differential amplifier for inputting the reference voltage to one input terminal and the output voltage from the electric converter to be calibrated to the other input terminal And a zero point detector for inputting an output voltage from the differential amplifier, and adjusting the voltage amplitude and the phase of the signal generator so that the zero point detector becomes zero. A gain phase calibration apparatus characterized in that the gain and / or phase of a target electrical converter can be grasped and calibrated.
The fourth means is the first inductive voltage divider that outputs the adjustable divided voltage as the AC voltage output from the signal generator in any one of the first means to the third means. A second induction voltage divider that outputs an adjustable divided voltage that is 90 degrees out of phase with the divided voltage, and an injection transformer that transforms the divided voltage from the second induced voltage divider. 4. The voltage according to claim 1, wherein the output voltage from the injection transformer is superimposed on the divided voltage from the first induction voltage divider. 5. It is a gain phase calibration apparatus of description.

本発明によれば、位相差が90°異なる2つの正弦波発振器は、シンセサイザ技術の進歩により高精度なものが容易に入手可能であり、また、誘導分圧器は高分解能で長期間に渡り安定なものが容易に入手可能である。また、注入トランスも同様である。また、差動増幅器や零点検出器は比較器のみとして作用するため、校正を必要としない。従って、本実施形態の各発明によれば、簡便な構成で高精度の利得位相校正装置が実現可能である。   According to the present invention, two sine wave oscillators having a phase difference of 90 ° are easily available with high precision due to the advancement of synthesizer technology, and the induction voltage divider is stable over a long period of time with high resolution. Are readily available. The same applies to the injection transformer. Further, since the differential amplifier and the zero point detector function only as a comparator, no calibration is required. Therefore, according to each invention of this embodiment, a highly accurate gain phase calibration apparatus with a simple configuration can be realized.

本発明の第1の実施形態を図1から図3を用いて説明する。
図1は、本実施形態の発明に係る利得位相校正装置の構成を示す図である。
同図において、1は正弦波交流電圧を出力する正弦波発振器、2は正弦波発振器1の出力電圧と振幅Vinおよび周波数fが同じで、位相が90°進んだ正弦波交流電圧を出力する正弦波発振器、3は正弦波発振器1の出力端間に接続される誘導分圧器、4は正弦波発振器2の出力端間に接続される誘導分圧器、5は、誘導分圧器3の端子a、b間に誘起した交流電圧に、誘導分圧器4の端子d、間に誘起した電圧を変圧して2次側の端子b、e間に誘起した電圧を、重畳するための注入用トランス、6は利得および位相の校正対象となる交流増幅器や位相差計等の電気変換器、7は差動増幅器、8は、一般にロックインアンプ等により実現可能な零点検出器である。ここで、a、bは誘導分圧器3から分圧電圧を取り出すための端子、c、dは誘導分圧器4から分圧電圧を取り出すための端子、b、eは注入用トランス5の2次側に誘起した電圧を取り出すための端子、fは電気変換器6の出力側の端子である。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing a configuration of a gain phase calibration apparatus according to the invention of this embodiment.
In the figure, 1 is a sine wave oscillator for outputting a sinusoidal AC voltage, 2 is the output voltage amplitude V in and the frequency f of the sine wave oscillator 1 is the same, the phase outputs a sine-wave AC voltage advanced 90 ° A sine wave oscillator, 3 is an induction voltage divider connected between the output terminals of the sine wave oscillator 1, 4 is an induction voltage divider connected between the output terminals of the sine wave oscillator 2, and 5 is a terminal a of the induction voltage divider 3. , B between the terminals d, c of the induction voltage divider 4 is transformed into an alternating voltage induced between the terminals b, e on the secondary side to superimpose the voltage induced between the terminals b, e , 6 is an electric converter such as an AC amplifier or phase difference meter to be calibrated for gain and phase, 7 is a differential amplifier, and 8 is a zero point detector that can be generally realized by a lock-in amplifier or the like. Here, a and b are terminals for taking out the divided voltage from the induction voltage divider 3, c and d are terminals for taking out the divided voltage from the induction voltage divider 4, and b and e are secondary terminals of the injection transformer 5. A terminal for taking out a voltage induced on the side, f is a terminal on the output side of the electric converter 6.

ここで、誘導分圧器3、4および注入用トランス5に誘起する電圧の極性を図示矢印の方向とし、正弦波発振器1、2の出力電圧をVin、誘導分圧器3、4の分圧比をそれぞれR、Rとし、注入用トランス5の巻線比(1次側を1として)をPとすると、誘導分圧器3の端子a、b間に誘起する電圧、誘導分圧器4の端子c、d間に誘起する電圧、注入用トランス5の2次側の端子b、e間に誘起する電圧、および電気変換器6に入力される電圧は、それぞれRin、Rin、Rin/P、V(t)となる。 Here, the polarity of the voltage induced in the induction voltage dividers 3 and 4 and the injecting transformer 5 is the direction of the arrow in the figure, the output voltage of the sine wave oscillators 1 and 2 is V in , and the voltage division ratio of the induction voltage dividers 3 and 4 is R 1 and R 2 respectively, and the winding ratio of the injecting transformer 5 (where the primary side is 1) is P, the voltage induced between the terminals a and b of the induction voltage divider 3 and the terminals of the induction voltage divider 4 The voltage induced between c and d, the voltage induced between the terminals b and e on the secondary side of the injection transformer 5, and the voltage input to the electric converter 6 are R 1 V in and R 2 V in , respectively. , R 2 V in / P, V (t).

図2は、誘導分圧器3の出力電圧波形Rin、注入トランス5の出力電圧波形Rin/P、および電気変換器6に入力される入力電圧波形V(t)を示す図である。同図において、横軸は時間、縦軸は振幅(電圧)、実線は誘導分圧器3の出力電圧波形Rin、波線は注入用トランス5の出力電圧波形Rin/P、一点鎖線は電気変換器6に入力される入力電圧波形V(t)である。
図3は、校正対象とする電気変換器6の入力側の端子e点における端子a(基準電位)に対するV(t)のベクトル図である。
同図に示すように、電気変換器6の入力側端子e点における電圧V(t)は数式3で示される。

Figure 0004963090
そこで、校正対象の電気変換器6の利得Aおよび位相Dを求めると以下のとおりとなる。
差動増幅器7の一方の端子には、誘導分圧器3の端子aにおける基準電位(接地電位)が入力され、差動増幅器7の他方の端子には、電気変換器6の端子eの交流電圧V(t)を増幅した電圧が入力される。ここで、誘導分圧器3の分圧比R、誘導分圧器4の分圧比R、注入用トランス5の巻線比Pをそれぞれ調整して、差動増幅器7から出力される電圧が零となるように零点検出器8を観察する。
零点検出器8が零を指示したときの電気変換器6の利得Aおよび位相Dはそれぞれ数式4および数式5から求められる。
Figure 0004963090
Figure 0004963090
上式において、分圧比R、Rおよび巻線比Pは既知であるので、電気変換器6の利得Aおよび位相Dを容易に求めることができ、求められた利得Aおよび位相Dに基づいて電気変換器6の利得、位相を校正することができる。 FIG. 2 is a diagram showing an output voltage waveform R 1 V in of the induction voltage divider 3, an output voltage waveform R 2 V in / P of the injection transformer 5, and an input voltage waveform V (t) input to the electric converter 6. It is. In the figure, horizontal axis represents time and the vertical axis the amplitude (voltage), the solid line is the output voltage waveform R 1 V in the induction voltage divider 3, the output voltage waveform R 2 V in / P of wavy injection transformer 5, single point A chain line is an input voltage waveform V (t) input to the electrical converter 6.
FIG. 3 is a vector diagram of V (t) with respect to the terminal a (reference potential) at the terminal e point on the input side of the electrical converter 6 to be calibrated.
As shown in the figure, the voltage V (t) at the input side terminal e of the electric converter 6 is expressed by Equation 3.
Figure 0004963090
Accordingly, the gain A and the phase D of the electrical converter 6 to be calibrated are as follows.
The reference potential (ground potential) at the terminal a of the induction voltage divider 3 is input to one terminal of the differential amplifier 7, and the AC voltage at the terminal e of the electrical converter 6 is input to the other terminal of the differential amplifier 7. A voltage obtained by amplifying V (t) is input. Here, inductive component partial pressure ratio R 1 of the intensifier 3, inductive component partial pressure ratio R 2 of the voltage divider 4, the winding ratio P of the injection transformer 5 by adjusting each voltage output from the differential amplifier 7 is zero Observe the zero detector 8 so that
The gain A and phase D of the electrical converter 6 when the zero detector 8 indicates zero are obtained from Equation 4 and Equation 5, respectively.
Figure 0004963090
Figure 0004963090
In the above equation, since the voltage division ratios R 1 and R 2 and the winding ratio P are known, the gain A and the phase D of the electric converter 6 can be easily obtained, and based on the obtained gain A and the phase D. Thus, the gain and phase of the electrical converter 6 can be calibrated.

次に、本発明の第2の実施形態を図4および図5を用いて説明する。
図4は本実施形態の発明に係る利得位相校正装置の構成を示す図である。
同図において、9は端子aの電位(基準電位)に対して直流電圧Vbがバイアスされて出力される電圧変換器、10は端子eの電位に対して直流電圧Vbがバイアスされて出力される電圧変換器、11は利得および位相の校正対象となる直流増幅器等の電気変換器、gは電圧変換器9の出力側の端子、hは電圧変換器10の出力側の端子である。なお、その他の構成は、図1に示した同符号の構成に対応するので説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 4 is a diagram showing the configuration of the gain phase calibration apparatus according to the invention of this embodiment.
In the figure, 9 is a voltage converter in which the DC voltage Vb is biased and outputted with respect to the potential (reference potential) of the terminal a, and 10 is outputted with the DC voltage Vb biased with respect to the potential of the terminal e. The voltage converter 11 is an electrical converter such as a DC amplifier to be calibrated for gain and phase, g is an output side terminal of the voltage converter 9, and h is an output side terminal of the voltage converter 10. Other configurations correspond to the configurations of the same reference numerals shown in FIG.

ここで、誘導分圧器3、4および注入用トランス5に誘起する電圧の極性を図示矢印の方向とし、正弦波発振器1、2の出力電圧をVin、誘導分圧器3、4の分圧比をそれぞれR、Rとし、注入用トランス5の巻線比(1次側を1として)をPとすると、誘導分圧器3の端子a、b間に誘起する電圧、誘導分圧器4の端子c、d間に誘起する電圧、注入用トランス5の2次側の端子b、e間に誘起する電圧、および電気変換器11に入力される電圧は、それぞれRin、Rin、Rin/P、V(t)+Vbとなる。 Here, the polarity of the voltage induced in the induction voltage dividers 3 and 4 and the injecting transformer 5 is the direction of the arrow in the figure, the output voltage of the sine wave oscillators 1 and 2 is V in , and the voltage division ratio of the induction voltage dividers 3 and 4 is R 1 and R 2 respectively, and the winding ratio of the injecting transformer 5 (where the primary side is 1) is P, the voltage induced between the terminals a and b of the induction voltage divider 3 and the terminals of the induction voltage divider 4 The voltage induced between c and d, the voltage induced between the terminals b and e on the secondary side of the injection transformer 5, and the voltage input to the electrical converter 11 are R 1 V in and R 2 V in , respectively. , R 2 V in / P, V (t) + Vb.

図5は、誘導分圧器3の出力電圧波形Rin、注入トランス5の出力電圧波形Rin/P、電圧変換器10に入力される入力電圧波形V(t)を示す図である。同図において、横軸は時間、縦軸は振幅(電圧)、実線は誘導分圧器3の出力電圧波形Rin、波線は注入用トランス5の出力電圧波形Rin/P、一点鎖線は電圧変換器10に入力される入力電圧波形V(t)であり、電気変換器11に入力される入力電圧波形はV(t)+Vbとなる。即ち、電気変換器11に入力される入力電圧波形は、直流電圧Vbに3式に示した電圧V(t)を重畳した電圧波形となる。 FIG. 5 is a diagram illustrating an output voltage waveform R 1 V in of the induction voltage divider 3, an output voltage waveform R 2 V in / P of the injection transformer 5, and an input voltage waveform V (t) input to the voltage converter 10. is there. In the figure, horizontal axis represents time and the vertical axis the amplitude (voltage), the solid line is the output voltage waveform R 1 V in the induction voltage divider 3, the output voltage waveform R 2 V in / P of wavy injection transformer 5, single point A chain line is an input voltage waveform V (t) input to the voltage converter 10, and an input voltage waveform input to the electric converter 11 is V (t) + Vb. That is, the input voltage waveform input to the electric converter 11 is a voltage waveform in which the voltage V (t) shown in the three formulas is superimposed on the DC voltage Vb.

そこで、校正対象の電気変換器11の利得Aおよび位相Dを求めると以下のとおりとなる。
差動増幅器7の一方の端子には、電圧変換器9の出力側の端子gにおける電圧Vbが入力され、差動増幅器7の他方の端子には、電圧変換器10の出力側の端子eの電圧V(t)+Vbが校正対象の電気変換器11で増幅された出力側の端子fの電圧が入力される。ここで、誘導分圧器3の分圧比R、誘導分圧器4の分圧比R、注入用トランス5の巻線比Pをそれぞれ調整して、差動増幅器7から出力される電圧が零となるように零点検出器8を観察する。
零点検出器8が零を指示したときの校正対象の電気変換器11の利得Aおよび位相Dはそれぞれ4式および5式で求められ、分圧比R、Rおよび巻線比Pは既知であるので、電気変換器11の利得Aおよび位相Dを容易に求めることができ、求められた利得Aおよび位相Dに基づいて電気変換器11の利得、位相を校正することができる。
Therefore, the gain A and phase D of the electrical converter 11 to be calibrated are as follows.
The voltage Vb at the terminal g on the output side of the voltage converter 9 is input to one terminal of the differential amplifier 7, and the terminal e of the output side of the voltage converter 10 is input to the other terminal of the differential amplifier 7. The voltage at the output side terminal f obtained by amplifying the voltage V (t) + Vb by the electrical converter 11 to be calibrated is input. Here, inductive component partial pressure ratio R 1 of the intensifier 3, inductive component partial pressure ratio R 2 of the voltage divider 4, the winding ratio P of the injection transformer 5 by adjusting each voltage output from the differential amplifier 7 is zero Observe the zero detector 8 so that
When the zero point detector 8 indicates zero, the gain A and the phase D of the electric converter 11 to be calibrated are obtained by the equations 4 and 5, respectively, and the voltage dividing ratios R 1 and R 2 and the winding ratio P are known. Therefore, the gain A and phase D of the electric converter 11 can be easily obtained, and the gain and phase of the electric converter 11 can be calibrated based on the obtained gain A and phase D.

次に、本発明の第3の実施形態を図6を用いて説明する。
図6は本実施形態の発明に係る利得位相校正装置の構成を示す図である。
同図において、12は容量Cで、注入トランス5と校正対象の電気変換器13間に直列に接続されるコンデンサ、13は校正対象の電荷増幅器等の電気変換器である。なお、その他の構成は、図1に示した同符号の構成に対応するので説明を省略する。
Next, a third embodiment of the present invention will be described with reference to FIG.
FIG. 6 is a diagram showing the configuration of the gain phase calibration apparatus according to the invention of this embodiment.
In the figure, 12 is a capacitor C, a capacitor connected in series between the injection transformer 5 and the electrical converter 13 to be calibrated, and 13 is an electrical converter such as a charge amplifier to be calibrated. Other configurations correspond to the configurations of the same reference numerals shown in FIG.

ここで、誘導分圧器3、4および注入用トランス5に誘起する電圧の極性を図示矢印の方向とし、正弦波発振器1、2の出力電圧をVin、誘導分圧器3、4の分圧比をそれぞれR、Rとし、注入用トランス5の巻線比(1次側を1として)をPとすると、誘導分圧器3の端子a、b間に誘起する電圧、誘導分圧器4の端子c、d間に誘起する電圧、および注入用トランス5の2次側の端子b、e間に誘起する電圧、および校正対象の電気変換器13に入力される電圧は、それぞれRin、Rin、Rin/Pとなる。この結果、コンデンサ12と校正対象の電気変換器13との接続端には、印加電圧Vに応じた電荷Q=VCが発生するので、校正対象の電気変換器13の入力電荷Qに対する利得と位相を校正することが可能である。 Here, the polarity of the voltage induced in the induction voltage dividers 3 and 4 and the injecting transformer 5 is the direction of the arrow in the figure, the output voltage of the sine wave oscillators 1 and 2 is V in , and the voltage division ratio of the induction voltage dividers 3 and 4 is R 1 and R 2 respectively, and the winding ratio of the injecting transformer 5 (where the primary side is 1) is P, the voltage induced between the terminals a and b of the induction voltage divider 3 and the terminals of the induction voltage divider 4 The voltage induced between c and d, the voltage induced between the terminals b and e on the secondary side of the injecting transformer 5, and the voltage input to the electrical converter 13 to be calibrated are respectively R 1 V in , R 2 V in and R 2 V in / P. As a result, since a charge Q = VC corresponding to the applied voltage V is generated at the connection end between the capacitor 12 and the electrical converter 13 to be calibrated, the gain and phase with respect to the input charge Q of the electrical converter 13 to be calibrated are generated. Can be calibrated.

そこで、校正対象の電気変換器13の利得Aおよび位相Dを求めると以下のとおりとなる。
差動増幅器7の一方の端子には、誘導分圧器3の端子aにおける基準電位(接地電位)が入力され、差動増幅器7の他方の端子には、コンデンサ12からの出力電圧が校正対象の電気変換器13で変換された端子fの電圧が入力される。
ここで、誘導分圧器3の分圧比R、誘導分圧器4の分圧比R、注入用トランス5の巻線比Pをそれぞれ調整して、差動増幅器7から出力される電圧が零となるように零点検出器8を観察する。
零点検出器8が零を指示したときの電気変換器13の利得Aおよび位相Dはそれぞれ4式および5式で求められ、分圧比R、Rおよび巻線比Pは既知であるので、電気変換器13の利得Aおよび位相Dを容易に求めることができ、求められた利得Aおよび位相Dに基づいて電気変換器13の利得、位相を校正することができる。
Therefore, the gain A and phase D of the electrical converter 13 to be calibrated are as follows.
The reference potential (ground potential) at the terminal a of the induction voltage divider 3 is input to one terminal of the differential amplifier 7, and the output voltage from the capacitor 12 is to be calibrated to the other terminal of the differential amplifier 7. The voltage of the terminal f converted by the electric converter 13 is input.
Here, inductive component partial pressure ratio R 1 of the intensifier 3, inductive component partial pressure ratio R 2 of the voltage divider 4, the winding ratio P of the injection transformer 5 by adjusting each voltage output from the differential amplifier 7 is zero Observe the zero detector 8 so that
Since the gain A and the phase D of the electric converter 13 when the zero point detector 8 indicates zero are obtained by the equations 4 and 5, respectively, the voltage dividing ratios R 1 and R 2 and the winding ratio P are known. The gain A and phase D of the electrical converter 13 can be easily obtained, and the gain and phase of the electrical converter 13 can be calibrated based on the obtained gain A and phase D.

なお、本発明の校正対象の電気変換器は、上記の各実施形態に示した電気変換器に限定されず、同様にして、入力信号生成器から出力される電圧を、光、電荷、磁気等の任意の物理量に変換し、これらの物理量を入力して所望の電圧に変換し増幅する電気変換器にも適用可能である。   The electric converter to be calibrated according to the present invention is not limited to the electric converter shown in each of the above embodiments, and similarly, the voltage output from the input signal generator is changed to light, electric charge, magnetism, etc. The present invention can also be applied to an electrical converter that converts the physical quantity into an arbitrary physical quantity, converts the physical quantity into a desired voltage, and amplifies it.

第1の実施形態の発明に係る利得位相校正装置の構成を示す図である。It is a figure which shows the structure of the gain phase calibration apparatus which concerns on invention of 1st Embodiment. 図1に示した利得位相校正装置における、誘導分圧器3の出力電圧波形Rin、注入トランス5の出力電圧波形Rin/P、および電気変換器6に入力される入力電圧波形V(t)を示す図である。In the gain phase calibration device shown in FIG. 1, the output voltage waveform R 1 V in of the induction voltage divider 3, the output voltage waveform R 2 V in / P of the injection transformer 5, and the input voltage waveform input to the electrical converter 6. It is a figure which shows V (t). 図1に示した利得位相校正装置における、端子a(基準電位)に対する校正対象とする電気変換器6の入力側の端子e点における電圧V(t)のベクトル図である。2 is a vector diagram of a voltage V (t) at a terminal e point on the input side of an electrical converter 6 to be calibrated with respect to a terminal a (reference potential) in the gain phase calibration apparatus shown in FIG. 第2の実施形態の発明に係る利得位相校正装置の構成を示す図である。It is a figure which shows the structure of the gain phase calibration apparatus which concerns on invention of 2nd Embodiment. 図4に示した利得位相校正装置における、誘導分圧器3の出力電圧波形Rin、注入トランス5の出力電圧波形Rin/P、電圧変換器10に入力される入力電圧波形V(t)を示す図である。In the gain phase calibration apparatus shown in FIG. 4, the output voltage waveform R 1 V in of the induction voltage divider 3, the output voltage waveform R 2 V in / P of the injection transformer 5, and the input voltage waveform V input to the voltage converter 10. It is a figure which shows (t). 第3の実施形態の発明に係る利得位相校正装置の構成を示す図である。It is a figure which shows the structure of the gain phase calibration apparatus which concerns on invention of 3rd Embodiment. 従来技術に係る利得位相校正装置の一例を示す図である。It is a figure which shows an example of the gain phase calibration apparatus which concerns on a prior art. 従来技術に係る分圧器(アッテネータ)を用いた利得校正装置の一例を示す図である。It is a figure which shows an example of the gain calibration apparatus using the voltage divider (attenuator) which concerns on a prior art.

符号の説明Explanation of symbols

1、2 正弦波発振器
3、4 誘導分圧器
5 注入用トランス
6、11、13 校正対象の電気変換器
7 差動増幅器
8 零点検出器
9、10 電圧変換器
12 コンデンサ
a、b、c、d、e、f、g 端子
1, 2 sine wave oscillator 3, 4 induction voltage divider 5 injection transformer 6, 11, 13 electric converter 7 to be calibrated 7 differential amplifier 8 zero detector 9, 10 voltage converter 12 capacitors a, b, c, d , E, f, g terminals

Claims (4)

基準電圧と、
該基準電圧に対して電圧振幅と位相を任意に調整可能な交流電圧を出力する信号生成器と、
該信号生成器からの前記交流電圧を入力する校正対象の電気変換器と、
一方の入力端子に前記基準電圧、他方の入力端子に前記校正対象の電気変換器からの出力電圧を入力する差動増幅器と、
該差動増幅器からの出力電圧を入力する零点検出器と、
からなり、前記零点検出器が零となるように前記信号生成器の前記電圧振幅と前記位相を調整することにより、前記校正対象の電気変換器の利得および/または位相を把握し校正することを可能にしたことを特徴とする利得位相校正装置。
A reference voltage;
A signal generator that outputs an alternating voltage whose voltage amplitude and phase can be arbitrarily adjusted with respect to the reference voltage;
An electrical converter to be calibrated for inputting the AC voltage from the signal generator;
A differential amplifier that inputs the reference voltage to one input terminal and the output voltage from the electrical converter to be calibrated to the other input terminal;
A zero detector for inputting an output voltage from the differential amplifier;
Adjusting the voltage amplitude and the phase of the signal generator so that the zero point detector becomes zero, and grasping and calibrating the gain and / or phase of the electric converter to be calibrated. A gain phase calibration apparatus characterized by being made possible.
基準電圧と、
該基準電圧に対して電圧振幅と位相を任意に調整可能な交流電圧を出力する信号生成器と、
前記基準電圧に直流電圧を重畳した電圧を出力する第1の電圧変換器と
前記信号生成器から出力する交流電圧に前記直流電圧と同電圧の直流電圧を重畳した電圧を出力する第2の電圧変換器と、
該第2の電圧変換器からの出力電圧を入力する校正対象の電気変換器と、
一方の入力端子に前記第1の電圧変換器からの出力電圧、他方の入力端子に前記校正対象の電気変換器からの出力電圧を入力する差動増幅器と、
該差動増幅器からの出力電圧を入力する零点検出器と、
からなり、前記零点検出器が零となるように前記信号生成器の前記電圧振幅と前記位相を調整することにより、前記校正対象の電気変換器の利得および/または位相を把握し校正することを可能にしたことを特徴とする利得位相校正装置。
A reference voltage;
A signal generator that outputs an alternating voltage whose voltage amplitude and phase can be arbitrarily adjusted with respect to the reference voltage;
A first voltage converter that outputs a voltage obtained by superimposing a DC voltage on the reference voltage; and a second voltage that outputs a voltage obtained by superimposing a DC voltage equal to the DC voltage on the AC voltage output from the signal generator . A converter,
An electrical converter to be calibrated for inputting an output voltage from the second voltage converter;
A differential amplifier that inputs an output voltage from the first voltage converter to one input terminal and an output voltage from the electrical converter to be calibrated to the other input terminal;
A zero detector for inputting an output voltage from the differential amplifier;
Adjusting the voltage amplitude and the phase of the signal generator so that the zero point detector becomes zero, and grasping and calibrating the gain and / or phase of the electric converter to be calibrated. A gain phase calibration apparatus characterized by being made possible.
基準電圧と、
該基準電圧に対して電圧振幅と位相を任意に調整可能な交流電圧を出力する信号生成器と、
前記信号生成器から出力された交流電圧によって充電されるコンデンサと、
該コンデンサの出力電圧を入力する校正対象の電気変換器と、
一方の入力端子に前記基準電圧、他方の入力端子に前記校正対象の電気変換器からの出力電圧を入力する差動増幅器と、
該差動増幅器からの出力電圧を入力する零点検出器と、
からなり、前記零点検出器が零となるように前記信号生成器の前記電圧振幅と前記位相を調整することにより、前記校正対象の電気変換器の利得および/または位相を把握し校正することを可能にしたことを特徴とする利得位相校正装置。
A reference voltage;
A signal generator that outputs an alternating voltage whose voltage amplitude and phase can be arbitrarily adjusted with respect to the reference voltage;
A capacitor charged by an alternating voltage output from the signal generator ;
An electrical converter to be calibrated for inputting the output voltage of the capacitor;
A differential amplifier that inputs the reference voltage to one input terminal and the output voltage from the electrical converter to be calibrated to the other input terminal;
A zero detector for inputting an output voltage from the differential amplifier;
Adjusting the voltage amplitude and the phase of the signal generator so that the zero point detector becomes zero, and grasping and calibrating the gain and / or phase of the electric converter to be calibrated. A gain phase calibration apparatus characterized by being made possible.
前記信号生成器から出力される交流電圧は、調整可能な分圧電圧を出力する第1の誘導分圧器と、前記分圧電圧に対して位相が90度異なり調整可能な分圧電圧を出力する第2の誘導分圧器と、該第2の誘導分圧器からの分圧電圧を変圧する注入用トランスとからなり、前記第1の誘導分圧器からの分圧電圧に前記注入用トランスからの出力電圧を重畳した電圧であることを特徴とする請求項1ないし請求項3のいずれか1つの請求項に記載の利得位相校正装置。 The AC voltage output from the signal generator outputs a first adjustable voltage divider that outputs an adjustable divided voltage, and an adjustable divided voltage that is 90 degrees out of phase with the divided voltage. A second induction voltage divider and an injection transformer that transforms the divided voltage from the second induction voltage divider, and the divided voltage output from the first induction voltage divider is output from the injection transformer. The gain phase calibration apparatus according to any one of claims 1 to 3, wherein the voltage is a superimposed voltage.
JP2007214663A 2007-08-21 2007-08-21 Gain phase calibration device Expired - Fee Related JP4963090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214663A JP4963090B2 (en) 2007-08-21 2007-08-21 Gain phase calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214663A JP4963090B2 (en) 2007-08-21 2007-08-21 Gain phase calibration device

Publications (2)

Publication Number Publication Date
JP2009047579A JP2009047579A (en) 2009-03-05
JP4963090B2 true JP4963090B2 (en) 2012-06-27

Family

ID=40499936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214663A Expired - Fee Related JP4963090B2 (en) 2007-08-21 2007-08-21 Gain phase calibration device

Country Status (1)

Country Link
JP (1) JP4963090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941208A (en) * 2014-03-31 2014-07-23 国家电网公司 Method and device for calibrating high-voltage charged display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872004B (en) * 2010-03-04 2012-08-29 国网电力科学研究院 Calibrating test device of electronic type transformer checking instrument

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492497B1 (en) * 1968-11-17 1974-01-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941208A (en) * 2014-03-31 2014-07-23 国家电网公司 Method and device for calibrating high-voltage charged display
CN103941208B (en) * 2014-03-31 2017-01-18 国家电网公司 Method and device for calibrating high-voltage charged display

Also Published As

Publication number Publication date
JP2009047579A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4767907B2 (en) Transformer test equipment
Mochizuki et al. A high-resolution, linear resistance-to-frequency converter
Overney et al. $ RLC $ bridge based on an automated synchronous sampling system
US20080116880A1 (en) Harmonics measurement instrument with in-situ calibration
JP2012154786A (en) Flux gate sensor and flux gate type magnetic field detection method
JP2016133355A (en) Iron loss measuring method and iron loss measuring apparatus
CN110596633A (en) Calibration system and calibration method of analog input type electronic transformer calibrator
US20220163605A1 (en) Electronic circuit for measuring an angle and an intensity of an external magnetic field
Siegenthaler et al. A computer-controlled calibrator for instrument transformer test sets
Igarashi et al. An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids
JP4963090B2 (en) Gain phase calibration device
JP4707161B2 (en) AC power measuring apparatus and program
Van Den Brom et al. Voltage dependence of the reference system in medium-and high-voltage current transformer calibrations
Mohns et al. Calibration of commercial test sets for non-conventional instrument transformers
Volkers et al. The influence of source impedance on charge amplifiers
Budovsky Standard of electrical power at frequencies up to 200 kHz
JPS6234067A (en) Method and device for measuring active current and reactive current in alternating current system
Aristoy et al. Measuring system for calibrating high voltage instrument transformers at distorted waveforms
KR940002720B1 (en) Method and equipment for calibrating output levels of wave form analyzing apparatus
JP7080757B2 (en) Impedance measuring device and impedance measuring method
Met et al. Vector voltmeter for high-precision unbalanced comparator bridge
GB2305248A (en) Induction well logging instruments
Djokić A Dual-Channel Calibration System for AC Currents and Small AC Voltages
Leniček Realization and traceability of AC power standard at frequency of 50 Hz
WO2023085057A1 (en) Measurement device and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees