JP2016133355A - Iron loss measuring method and iron loss measuring apparatus - Google Patents

Iron loss measuring method and iron loss measuring apparatus Download PDF

Info

Publication number
JP2016133355A
JP2016133355A JP2015007128A JP2015007128A JP2016133355A JP 2016133355 A JP2016133355 A JP 2016133355A JP 2015007128 A JP2015007128 A JP 2015007128A JP 2015007128 A JP2015007128 A JP 2015007128A JP 2016133355 A JP2016133355 A JP 2016133355A
Authority
JP
Japan
Prior art keywords
voltage
current
measured
measurement
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015007128A
Other languages
Japanese (ja)
Other versions
JP6296452B2 (en
Inventor
清水 敏久
Toshihisa Shimizu
敏久 清水
耕至 高野
Yasushi Takano
耕至 高野
石井 仁
Hitoshi Ishii
仁 石井
泰典 齋藤
Yasunori Saito
泰典 齋藤
仁 長島
Hitoshi Nagashima
仁 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Iwatsu Test Instruments Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Iwatsu Test Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp, Iwatsu Test Instruments Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2015007128A priority Critical patent/JP6296452B2/en
Publication of JP2016133355A publication Critical patent/JP2016133355A/en
Application granted granted Critical
Publication of JP6296452B2 publication Critical patent/JP6296452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for accurately measuring an amplitude of a current flowing through a coil having a soft magnetic material core, and a relative phase difference of the current flowing through the coil to end-to-end voltage of the coil, thereby accurately measuring iron loss.SOLUTION: Provided is an iron loss measuring method for measuring iron loss of a measurement target sample 7 by using a voltage measurement circuit 1, a current detection element 3 and a current measurement circuit 2, which includes: a preparation step of storing frequency characteristics of impedance magnitude of the current detection element, and frequency characteristics of a relative measurement phase difference for the current detection element and the current measurement circuit with respect to the voltage measurement circuit; a first measurement step of applying periodic signals to a series circuit comprising the measurement target sample 7 and the current detection element, measuring end-to-end voltage and current of the measurement target sample and decomposing the measured voltage and current into frequency components; a second measurement step of correcting an amplitude of the current flowing through the measurement target sample for each frequency component and correcting the relative phase difference of the current to the end-to-end voltage for each frequency component, by using the data stored in the preparation step; and a third measurement step of calculating the iron loss.SELECTED DRAWING: Figure 6

Description

本発明は、軟磁性体を鉄心とするコイル部品の鉄損測定方法および鉄損測定装置に関する。   The present invention relates to an iron loss measuring method and an iron loss measuring apparatus for a coil component having a soft magnetic material as an iron core.

軟磁性体は、モーター、トランス、インダクタ等のコイル部品の鉄心として広く使用されている。近年は電力の省力化の流れで、これらコイル部品はその鉄心の電力損失である鉄損の低減が強く求められている。鉄損を低減した材料を開発・製造するため、鉄損をより正確に測定する鉄損測定装置の提供が強く望まれている。   Soft magnetic materials are widely used as iron cores for coil parts such as motors, transformers, and inductors. In recent years, with the trend of power saving, these coil components are strongly required to reduce the iron loss, which is the power loss of the iron core. In order to develop and manufacture a material with reduced iron loss, it is strongly desired to provide an iron loss measuring device that measures iron loss more accurately.

一般の鉄損測定装置は、電圧測定回路と、シャント抵抗またはカレントセンサーを含む電流測定回路と、を有する。測定を行う場合には、被測定物であるコイル部品とシャント抵抗またはカレントセンサーを直列に接続した直列回路を形成し、外部信号発生器から直列回路の両端に周期信号を印加し、周期信号の少なくとも1周期分、コイル部品の両端電圧およびシャント抵抗またはカレントセンサーの両端電圧を測定する。測定は、周期より十分に短い時間間隔で行う。シャント抵抗またはカレントセンサーの両端電圧から直列路に流れる電流を算出し、コイル部品の両端電圧と電流の積を1周期時間積分し、1周期の時間で除することにより、コイル部品の電力損失である鉄損を算出する。   A general iron loss measuring apparatus has a voltage measuring circuit and a current measuring circuit including a shunt resistor or a current sensor. When performing measurement, form a series circuit in which a coil component as a device under test and a shunt resistor or current sensor are connected in series, apply a periodic signal from the external signal generator to both ends of the series circuit, The voltage across the coil component and the voltage across the shunt resistor or current sensor are measured for at least one cycle. Measurement is performed at time intervals sufficiently shorter than the cycle. The current flowing through the series circuit is calculated from the voltage across the shunt resistor or current sensor, and the product of the voltage across the coil component and the current is integrated for one cycle time, and divided by the time of one cycle. Calculate a certain iron loss.

特公平6−60913号公報Japanese Patent Publication No. 6-60913

しかし、上記の測定では、シャント抵抗を使用するとコイル部品に流れる電流の振幅が正確に測定できていないという第1の問題と、コイル部品の両端電圧とコイル部品に流れる電流との相対位相差が正確に測定できていないという第2の問題がある。   However, in the above measurement, if the shunt resistor is used, the first problem that the amplitude of the current flowing through the coil component cannot be measured accurately and the relative phase difference between the voltage across the coil component and the current flowing through the coil component is There is a second problem that it cannot be measured accurately.

第1の問題は、シャント抵抗が、直流抵抗値だけでなく、寄生静電容量と寄生インダクタンスとで構成される寄生リアクタンスを有することに起因し、直流抵抗値が小さなシャント抵抗を使用すると、より影響が大きくなる。一方、印加信号の波形を良好に維持し、発熱を小さくする上では、シャント抵抗の直流抵抗値は小さいことが望ましく、特に自動車関連の大電流のコイル部品を測定する場合には、直流抵抗値が小さいことが望ましい。そのため、大電流用のコイル部品を測定する場合に、第1の問題は、大きな問題になる。   The first problem is that the shunt resistor has not only a direct current resistance value but also a parasitic reactance composed of a parasitic capacitance and a parasitic inductance. When a shunt resistor having a small direct current resistance value is used, The impact will increase. On the other hand, in order to maintain a good waveform of the applied signal and to reduce heat generation, it is desirable that the DC resistance value of the shunt resistor is small, especially when measuring high current coil components related to automobiles. Is desirable to be small. Therefore, the first problem becomes a big problem when measuring a coil component for a large current.

第2の問題は、高力率の場合に大きな問題になる。第2の問題を解消する手法として、オシロスコープのチャンネル間の測定信号の遅延時間の補正に古くから用いられているデスキューと呼ばれる手法があり、近年では一部のパワーメータにも使用されている。しかし、シャント抵抗またはカレントセンサーを含む電流測定回路の周波数位相特性は直線でないため、デスキューでは、周波数の全範囲について相対測定位相誤差を正確に取り除くことができない。   The second problem becomes a big problem in the case of a high power factor. As a technique for solving the second problem, there is a technique called deskew, which has been used for a long time to correct the delay time of a measurement signal between channels of an oscilloscope, and has recently been used in some power meters. However, since the frequency phase characteristic of the current measurement circuit including the shunt resistor or the current sensor is not a straight line, the deskew cannot accurately remove the relative measurement phase error for the entire frequency range.

以上のような理由で、従来の鉄損測定装置は、上記の第1および第2の問題のため、鉄損を正確に測定できなかった。   For the reasons as described above, the conventional iron loss measuring apparatus cannot accurately measure the iron loss due to the first and second problems.

本発明は、軟磁性体を鉄心とするコイル部品に流れる電流の振幅、およびコイル部品の両端電圧に対するコイル部品に流れる電流の相対位相差を正確に測定し、コイル部品の鉄損を正確に測定する鉄損測定装置を提供することを目的とする。   The present invention accurately measures the amplitude of the current flowing in the coil component whose core is a soft magnetic material and the relative phase difference of the current flowing in the coil component with respect to the voltage across the coil component, and accurately measures the iron loss of the coil component. An object of the present invention is to provide an iron loss measuring apparatus.

上記目的を実現するため、本発明の鉄損測定方法および装置は、準備工程および計測工程を実行する。
準備工程では、予めトレーサビリティが保証されているインピーダンスアナライザ等の本発明の鉄損測定装置とは別のインピーダンス測定器でインピーダンスの大きさの周波数特性と周波数位相特性を測定し記憶された基準試料を用いて、電流検出用素子の正確なインピーダンスの大きさの周波数特性と、電圧測定回路に対する電流検出用素子を含む電流測定回路の正確な相対測定位相誤差の周波数特性を、あらかじめ測定し、記憶しておく。
In order to achieve the above object, the iron loss measurement method and apparatus of the present invention execute a preparation process and a measurement process.
In the preparation step, the frequency reference and the frequency phase characteristic of the magnitude of the impedance are measured by an impedance measuring device different from the iron loss measuring device of the present invention such as an impedance analyzer whose traceability is guaranteed in advance, and a stored reference sample is prepared. The frequency characteristics of the accurate impedance magnitude of the current detection element and the frequency characteristics of the accurate relative measurement phase error of the current measurement circuit including the current detection element with respect to the voltage measurement circuit are measured and stored in advance. Keep it.

計測工程では、被測定試料と電流検出用素子を直列に接続した直列回路に周期信号を印加し、被測定試料の両端電圧と電流検出用素子の両端電圧をそれぞれ測定し、準備工程で記憶しておいた電流検出用素子の正確なインピーダンスの大きさの周波数特性を用いて、被測定試料に流れる正確な電流の振幅を算出する。また、同じく準備工程で記憶しておいた電圧測定回路に対する電流検出用素子を含む電流測定回路の正確な相対測定位相誤差の周波数特性を用いて、被測定試料の両端電圧に対する被測定試料に流れる電流の相対位相差を補正し、正確な相対位相差を算出し、正確な被測定試料に流れる電流、正確な被測定試料の両端電圧、および正確な被測定試料の両端電圧に対する被測定試料に流れる電流の相対位相差からコイル部品の鉄損を求める。   In the measurement process, a periodic signal is applied to a series circuit in which the sample to be measured and the current detection element are connected in series, and the voltage across the sample to be measured and the voltage across the current detection element are measured and stored in the preparation process. The accurate amplitude of the current flowing in the sample to be measured is calculated using the frequency characteristic of the magnitude of the accurate impedance of the current detecting element. In addition, using the frequency characteristic of the accurate relative measurement phase error of the current measurement circuit including the current detection element for the voltage measurement circuit stored in the preparation process, the current flows to the measurement sample with respect to the voltage across the measurement sample. Corrects the relative phase difference of the current, calculates the correct relative phase difference, and corrects the current flowing in the correct sample to be measured, the correct voltage across the sample to be measured, and the sample to be measured with respect to the correct voltage across the sample to be measured. The iron loss of the coil component is obtained from the relative phase difference of the flowing current.

1つの電流検出用素子について準備工程で記憶した、電流検出用素子の正確なインピーダンスの大きさの周波数特性と、電圧測定回路に対する電流検出用素子を含む電流測定回路の正確な相対測定位相誤差の周波数特性は、同じ電流検出用素子であれば、繰り返し使用可能である。したがって、同じ電流検出用素子を使用するのであれば、異なる被測定試料について、準備工程無しで測定工程を実行できる。ただし、電流検出用素子の特性が変化する可能性がある場合には、適宜準備工程を行うことが望ましい。   The frequency characteristics of the accurate impedance magnitude of the current detection element stored in the preparation step for one current detection element and the accurate relative measurement phase error of the current measurement circuit including the current detection element with respect to the voltage measurement circuit The frequency characteristics can be used repeatedly as long as they are the same current detection element. Therefore, if the same current detection element is used, it is possible to execute the measurement process for different samples to be measured without a preparation process. However, when there is a possibility that the characteristics of the current detection element may change, it is desirable to perform a preparation process as appropriate.

本発明を適用した鉄損測定装置は、電圧測定回路、電流測定回路、シャント抵抗またはカレントセンサー、および制御演算部を有する。制御演算部は、電流検出用素子のインピーダンスの大きさの周波数特性と、電圧測定回路に対する電流検出用素子および電流測定回路の相対測定位相誤差の周波数特性と、を記憶する記憶部を有する。制御演算部は、各部を制御して計測工程を実行し、被測定試料の鉄損を測定する計測工程を行う。さらに、制御演算部が、各部を制御して準備工程を実行するようにしてもよい。   The iron loss measuring apparatus to which the present invention is applied has a voltage measuring circuit, a current measuring circuit, a shunt resistor or current sensor, and a control calculation unit. The control calculation unit includes a storage unit that stores the frequency characteristic of the magnitude of the impedance of the current detection element and the frequency characteristic of the relative measurement phase error of the current detection element and the current measurement circuit with respect to the voltage measurement circuit. The control calculation unit controls each unit to execute a measurement process, and performs a measurement process for measuring the iron loss of the sample to be measured. Furthermore, the control calculation unit may control each unit to execute the preparation process.

本発明によれば、軟磁性体を鉄心とする被測定試料の鉄損測定の確度が向上する。   According to the present invention, the accuracy of iron loss measurement of a sample to be measured using a soft magnetic material as an iron core is improved.

図1は、一般的な鉄損測定装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a general iron loss measuring apparatus. 図2は、相対測定位相誤差が鉄損の値に与える影響を示す図である。FIG. 2 is a diagram illustrating the influence of the relative measurement phase error on the iron loss value. 図3は、従来のデスキューが前提とする電圧測定回路およびシャント抵抗を含む電流測定回路の周波数位相特性を示す図であり、(A)が2つの特性を、(B)および(C)は2つの特性を一致させる手法を示す。FIG. 3 is a diagram illustrating frequency phase characteristics of a voltage measurement circuit and a current measurement circuit including a shunt resistor, which are assumed for conventional deskewing. (A) shows two characteristics, and (B) and (C) show two characteristics. A technique for matching two characteristics is shown. 図4は、デスキューの問題点を説明する図であり、(A)が2つの特性を、(B)および(C)は2つの特性を一致させる手法を示す。FIG. 4 is a diagram for explaining the problem of deskew, in which (A) shows two characteristics, and (B) and (C) show a technique for matching the two characteristics. 図5は、シャント抵抗の代わりにカレントセンサーを使用した鉄損測定装置の概略構成を示すブロック図である。FIG. 5 is a block diagram showing a schematic configuration of an iron loss measuring apparatus using a current sensor instead of a shunt resistor. 図6は、実施形態の鉄損測定装置が、被測定試料であるコイル部品の鉄損を測定するために実行する処理を示すフローチャートである。FIG. 6 is a flowchart illustrating processing executed by the iron loss measuring apparatus according to the embodiment to measure the iron loss of a coil component that is a sample to be measured. 図7は、第2準備工程を実行する時の実施形態の鉄損測定装置の状態を示す図である。FIG. 7 is a diagram illustrating a state of the iron loss measuring apparatus according to the embodiment when the second preparation step is executed. 図8は、第1準備工程で測定した基準試料の周波数位相特性、第2準備工程で算出したα(ω)およびβ(ω)の周波数特性の関係を示す図であり、横軸をリニアスケールで描画した図である。FIG. 8 is a diagram showing the relationship between the frequency phase characteristics of the reference sample measured in the first preparation process and the frequency characteristics of α (ω) and β (ω) calculated in the second preparation process. The horizontal axis represents the linear scale. FIG. 図9は、第1準備工程で測定した基準試料の周波数位相特性、第2準備工程で算出したα(ω)およびβ(ω)の周波数特性の関係を示す図であり、横軸を対数で描画した図であり、(A)は全周波数範囲を、(B)は周波数範囲の一部を拡大して示している。FIG. 9 is a diagram showing the relationship between the frequency phase characteristics of the reference sample measured in the first preparation process and the frequency characteristics of α (ω) and β (ω) calculated in the second preparation process. It is the figure drawn, (A) shows the whole frequency range, (B) has expanded and shown a part of frequency range. 図10は、第2準備工程で算出した相対測定位相誤差の周波数特性Δφ(ω)およびシャント抵抗のインピーダンスの大きさの周波数特性|Zs(ω)|を示す図であり、(A)がΔφ(ω)を、(B)が|Zs(ω)|を示す。FIG. 10 is a diagram illustrating the frequency characteristic Δφ (ω) of the relative measurement phase error calculated in the second preparation step and the frequency characteristic | Z s (ω) | of the magnitude of the impedance of the shunt resistor. Δφ (ω) and (B) indicate | Z s (ω) |. 図11は、第1計測工程を実行する時の実施形態の鉄損測定装置の状態を示す図である。Drawing 11 is a figure showing the state of the iron loss measuring device of an embodiment at the time of performing the 1st measurement process. 図12は、準備工程で使用した基準試料を、実施形態における測定対象とした場合に得られた基本波の位相差の周波数特性θ'std(ω)と、第1準備工程で測定した周波数位相特性θstd(ω)との差異Δθstd(ω)を示す図である。FIG. 12 shows the frequency characteristic θ ′ std (ω) of the phase difference of the fundamental wave obtained when the reference sample used in the preparation process is the measurement object in the embodiment, and the frequency phase measured in the first preparation process. It is a figure which shows difference (DELTA) (theta) std ((omega)) with characteristic (theta) std ((omega)). 図13は、準備工程で使用した基準試料を、実施形態における測定対象とした場合に得られた試料の両端電圧の基本波の振幅を、試料に流れる電流の基本波の振幅で除して得られる試料のインピーダンスの大きさの周波数特性|Z'std(ω)|と、第1準備工程で測定したインピーダンスの大きさの周波数特性|Zstd(ω)|との差異|ΔZstd(ω)|を示す図である。FIG. 13 is obtained by dividing the amplitude of the fundamental wave of the voltage across the sample obtained when the reference sample used in the preparation process is the measurement object in the embodiment by the amplitude of the fundamental wave of the current flowing through the sample. is the magnitude of the frequency characteristic of the impedance of the sample | Z 'std (ω) | and the magnitude of the frequency characteristic of the impedance measured in the first preparation step | Z std (ω) | and the difference | ΔZ std (ω) It is a figure which shows |. 図14は、2次巻線を有するコイル部品を測定する時の実施形態の鉄損測定装置の状態を示す図である。FIG. 14 is a diagram illustrating a state of the iron loss measuring apparatus according to the embodiment when measuring a coil component having a secondary winding.

実施形態の鉄損測定装置を説明する前に、一般的な鉄損測定技術について説明する。
一般に、コイル部品の鉄損を測定するには、パワーメータやパワーアナライザが使用されており、これら従来の測定器を使用してコイル部品の鉄損を測定する方法を説明する。
Before describing the iron loss measuring apparatus of the embodiment, a general iron loss measuring technique will be described.
In general, a power meter or a power analyzer is used to measure the iron loss of the coil component. A method of measuring the iron loss of the coil component using these conventional measuring devices will be described.

図1は、一般的な鉄損測定装置の概略構成を示すブロック図である。
鉄損測定装置10は、電圧測定回路1と、電流測定回路2と、シャント抵抗3と、制御演算部4と、表示装置5と、を有する。制御演算部4は、例えば、CPU、ROM、RAMなどから形成される。
FIG. 1 is a block diagram showing a schematic configuration of a general iron loss measuring apparatus.
The iron loss measuring device 10 includes a voltage measuring circuit 1, a current measuring circuit 2, a shunt resistor 3, a control calculation unit 4, and a display device 5. The control calculation unit 4 is formed from, for example, a CPU, a ROM, a RAM, and the like.

電圧測定回路1は、増幅器(アンプ)11と、A/D変換器(コンバーター)12と、記憶装置13と、を有する。電流測定回路2は、増幅器21と、A/D変換器(コンバーター)22と、記憶装置23と、を有する。   The voltage measurement circuit 1 includes an amplifier 11, an A / D converter (converter) 12, and a storage device 13. The current measurement circuit 2 includes an amplifier 21, an A / D converter (converter) 22, and a storage device 23.

測定を行う場合には、外部信号発生器6と、被測定物であるコイル部品7と、シャント抵抗3を図示のように接続し、外部信号発生器6から角周波数ω0の周期信号を出力し、コイル部品7に印加する。この時、電圧測定回路1は、少なくとも1周期分(周期T0=2π/ω0)、コイル部品7の両端電圧VL(t)を測定し、A/Dコンバーター12でデジタル信号に変換し、記憶装置13に記憶する。電流測定回路2は、少なくとも1周期分、シャント抵抗3の両端電圧Vs(t)を測定し、A/Dコンバーター22でデジタル信号に変換し、記憶装置23に記憶する。(t)は時間tの関数であることを示している。このように、電圧測定回路1および電流測定回路2は、それぞれ、VL(t)およびVs(t)を離散データとして保持する。制御演算部4は、電圧測定回路1および電流測定回路2の制御を行うとともに、記憶装置13および23に保持された離散データを使って数値演算等のデータ処理を行う。表示装置5はデ−タ処理の結果を表示する。 When performing measurement, the external signal generator 6, the coil component 7 to be measured, and the shunt resistor 3 are connected as shown in the figure, and a periodic signal with an angular frequency ω 0 is output from the external signal generator 6. And applied to the coil component 7. At this time, the voltage measurement circuit 1 measures the voltage V L (t) across the coil component 7 for at least one period (period T 0 = 2π / ω 0 ) and converts it into a digital signal by the A / D converter 12. And stored in the storage device 13. The current measurement circuit 2 measures the voltage V s (t) across the shunt resistor 3 for at least one cycle, converts it into a digital signal by the A / D converter 22, and stores it in the storage device 23. (t) is a function of time t. As described above, the voltage measurement circuit 1 and the current measurement circuit 2 hold V L (t) and V s (t) as discrete data, respectively. The control calculation unit 4 controls the voltage measurement circuit 1 and the current measurement circuit 2 and performs data processing such as numerical calculation using discrete data held in the storage devices 13 and 23. The display device 5 displays the result of the data processing.

Vs(t)は、シャント抵抗3の(直流)抵抗値Rsを用いて、次の式(1)でコイル部品7に流れる電流IL(t)に変換される。 V s (t) is converted into a current I L (t) flowing through the coil component 7 by the following equation (1) using the (direct current) resistance value R s of the shunt resistor 3.

Figure 2016133355
Figure 2016133355

そして、コイル部品7の電力損失である鉄損Pcは、次の式(2)に従って数値積分で算出される。 And the iron loss Pc which is the power loss of the coil component 7 is calculated by numerical integration according to the following equation (2).

Figure 2016133355
Figure 2016133355

ところが、この従来の測定方法で得られる鉄損の値は、以下に記述する2つの問題があり、鉄損を正確に測定しているとはいえない。
第1の問題は、コイル部品7に流れる電流IL(t)の振幅が正確に測定できていないということである。
However, the value of the iron loss obtained by this conventional measuring method has the following two problems, and it cannot be said that the iron loss is accurately measured.
The first problem is that the amplitude of the current I L (t) flowing through the coil component 7 cannot be measured accurately.

シャント抵抗3は、直流抵抗値Rsだけで構成されているわけではなく、寄生静電容量Csと寄生インダクタンスLsとで構成される寄生リアクタンスXsを必ず有するので、シャント抵抗3のインピーダンスZsは、次の式(3)で表される。 The shunt resistor 3 is not composed only of the DC resistance value R s, but always has the parasitic reactance X s composed of the parasitic capacitance C s and the parasitic inductance L s, and thus the impedance of the shunt resistor 3 Z s is expressed by the following equation (3).

Figure 2016133355
Figure 2016133355

シャント抵抗3は、コイル部品7に流れる電流IL(t)を測定するために設けるものであり、シャント抵抗3の抵抗値Rsは、外部信号発生器6から見ると本来は不要な負荷である。特に、外部信号発生器6から出力される周期信号が方形波の場合は、抵抗値Rsが小さくないとコイル部品7に流れる電流が三角波状にならないという印加信号の劣化を生じる。また、シャント抵抗3の電力損失による発熱により、シャント抵抗3の抵抗値Rsそのものの変動の原因ともなることから、抵抗値Rsは、シャント抵抗3の両端電圧Vs(t)が検出できる範囲で、できる限り小さい値のものを使用することが望ましい。特に、自動車関連などで使用されるコイル部品7は大電流用であり、シャント抵抗3での電力損失が大きくなる。 The shunt resistor 3 is provided for measuring the current I L (t) flowing through the coil component 7, and the resistance value R s of the shunt resistor 3 is an originally unnecessary load when viewed from the external signal generator 6. is there. In particular, when the periodic signal output from the external signal generator 6 is a square wave, the applied signal deteriorates such that the current flowing through the coil component 7 does not become a triangular wave unless the resistance value R s is small. Further, the heat generated by power loss in the shunt resistor 3, since it also causes variation in the resistance value R s themselves the shunt resistor 3, the resistance value R s may be detected across the voltage V s of the shunt resistor 3 (t) is It is desirable to use the smallest possible range. In particular, the coil component 7 used for automobiles and the like is for a large current, and the power loss at the shunt resistor 3 increases.

一方、シャント抵抗3の寄生静電容量や寄生インダクタンスは、シャント抵抗3固有のものであり、意図的に付加されたものではないので、寄生リアクタンスXsを小さくするには限界がある。 On the other hand, the parasitic capacitance and parasitic inductance of the shunt resistor 3 is of the shunt resistor 3 specific, since it has been intentionally added, in order to reduce the parasitic reactance X s is limited.

上記の理由でシャント抵抗3の直流抵抗値Rsを小さくすることが望ましい。すると、シャント抵抗3のインピーダンスZsに占める寄生リアクタンスXsの直流抵抗値Rsに対する比率が高くなる。特に、外部信号発生器6から出力される周期信号の角周波数ω0が高くなると、さらにその比率が高くなる。 For the above reason, it is desirable to reduce the DC resistance value R s of the shunt resistor 3. As a result, the ratio of the parasitic reactance X s to the DC resistance value R s in the impedance Z s of the shunt resistor 3 increases. In particular, when the angular frequency ω 0 of the periodic signal output from the external signal generator 6 is increased, the ratio is further increased.

例えば、あるシャント抵抗3が、抵抗値Rs=100[mΩ]と寄生インダクタンスLs=10[nH]の直列回路と等価とみなされる場合、周波数ω0/2π=100[kHz]で、リアクタンスXsは6.3[mΩ]である。周波数ω0/2π=1[MHz]で、Xsは63[mΩ]にもなってしまう。外部信号発生器6から出力される周期信号の角周波数ω0が高くなるに従って、リアクタンスXsはさらに大きくなり、式(1)を用いてシャント抵抗3の両端電圧Vs(t)をコイル部品7に流れる電流IL(t)に変換するのは正確ではなくなる。 For example, when a certain shunt resistor 3 is regarded as equivalent to a series circuit having a resistance value R s = 100 [mΩ] and a parasitic inductance L s = 10 [nH], reactance is obtained at a frequency ω 0 / 2π = 100 [kHz]. X s is 6.3 [mΩ]. At the frequency ω 0 / 2π = 1 [MHz], X s becomes 63 [mΩ]. As the angular frequency ω 0 of the periodic signal output from the external signal generator 6 increases, the reactance X s further increases, and the voltage V s (t) across the shunt resistor 3 is expressed as a coil component using equation (1). Conversion to the current I L (t) flowing through 7 is not accurate.

第2の問題は、コイル部品7の両端電圧VL(t)とコイル部品7に流れる電流IL(t)との相対位相差が正確に測定できていないということである。 The second problem is that the relative phase difference between the voltage V L (t) across the coil component 7 and the current I L (t) flowing through the coil component 7 cannot be measured accurately.

コイル部品7の両端電圧VL(t)とコイル部品7に流れる電流IL(t)を、それぞれ直流成分がないとしてフーリエ級数で表すと次の式(4)および(5)となる。式(4)および(5)において、VLkおよびILkは、それぞれVL(t)とIL(t)の角周波数ω0のk次高調波の振幅(k:自然数)、θkはVL(t)に対するIL(t)の角周波数ω0のk次高調波の相対位相差である。 When the both-ends voltage V L (t) of the coil component 7 and the current I L (t) flowing through the coil component 7 are expressed by Fourier series assuming that there is no DC component, the following equations (4) and (5) are obtained. In Equations (4) and (5), V Lk and I Lk are the amplitudes (k: natural number) of k-order harmonics of angular frequency ω 0 of V L (t) and I L (t), respectively, and θ k is is the angular frequency ω relative phase difference k-th harmonic of 0 I L (t) for V L (t).

Figure 2016133355
Figure 2016133355

Figure 2016133355
Figure 2016133355

これらを式(2)に代入すると、鉄損Pcは、次の式(6)で表される。 When these are substituted into equation (2), the iron loss P c is expressed by the following equation (6).

Figure 2016133355
Figure 2016133355

この式(6)から、鉄損Pcを正確に求めるためには、角周波数ω0、およびそのk次高調波kω0に対するコイル部品7の両端電圧の振幅VLk、コイル部品7に流れる電流の振幅ILk、およびこれらの相対位相差θkを正確に測定することが重要であることが分かる。 From this equation (6), in order to accurately determine the iron loss P c , the angular frequency ω 0 , the amplitude V Lk of the voltage across the coil component 7 with respect to the k-order harmonic kω 0 , the current flowing through the coil component 7 It can be seen that it is important to accurately measure the amplitude I Lk and the relative phase difference θ k thereof.

ところが従来の測定方法では、この相対位相差θkは、本来測定したいθkからずれてしまい相対測定位相誤差Δφkが生じ、コイル部品7に流れる電流IL(t)は式(5)ではなく、次の式(7)で表されるようになってしまうことが知られている。 However, in the conventional measurement method, this relative phase difference θ k is deviated from θ k to be originally measured, resulting in a relative measurement phase error Δφ k , and the current I L (t) flowing through the coil component 7 is expressed by Equation (5). However, it is known that the following expression (7) is obtained.

Figure 2016133355
Figure 2016133355

この相対位相測定誤差Δφkが生じる原因は、電圧測定回路1とシャント抵抗3を含む電流測定回路2との間で測定信号の遅延時間に差異が必ず生じるためである。
従って、この場合の鉄損は、式(6)ではなく、次の式(8)のPc'で表わされることになる。
The reason why the relative phase measurement error Δφ k occurs is that there is always a difference in the delay time of the measurement signal between the voltage measurement circuit 1 and the current measurement circuit 2 including the shunt resistor 3.
Therefore, the iron loss in this case is represented not by the equation (6) but by P c ′ in the following equation (8).

Figure 2016133355
Figure 2016133355

ここで、この相対測定位相誤差Δφkが鉄損の値に与える影響を見てみるために、鉄損誤差ΔPcを次の式(9)で定義する。なお、式(9)は説明を簡単にするため、ある特定の角周波数ωx(k=x)成分のみ記述した。 Here, in order to see the effect of the relative measurement phase error Δφ k on the value of the iron loss, the iron loss error ΔP c is defined by the following equation (9). In order to simplify the description, Equation (9) describes only a specific angular frequency ω x (k = x) component.

Figure 2016133355
Figure 2016133355

図2は、相対測定位相誤差が鉄損の値に与える影響を示す図である。図2では、式(9)を用いて、力率角θxが89.1[deg]〜89.7[deg]、相対測定位相誤差Δφxが±0.2[deg]の範囲で変化した時の鉄損誤差ΔPcを求めた結果が示される。この図から、相対測定位相誤差Δφxがいかに鉄損の値に影響を及ぼすかが分かる。例えば、被測定物の力率角θxが89.7[deg]の高力率角の場合、相対測定位相誤差Δφxが±0.1[deg]生じただけで、鉄損誤差ΔPcが33.3[%]にもなってしまう。 FIG. 2 is a diagram illustrating the influence of the relative measurement phase error on the iron loss value. In FIG. 2, using formula (9), the iron loss error when the power factor angle θ x is changed in the range of 89.1 [deg] to 89.7 [deg] and the relative measurement phase error Δφ x is ± 0.2 [deg]. The result of obtaining ΔP c is shown. From this figure, it can be seen how the relative measurement phase error Δφ x affects the iron loss value. For example, if a high power factor angle of the power factor angle theta x of the object to be measured is 89.7 [deg], only relative measured phase error [Delta] [phi x occurs ± 0.1 [deg], the iron loss error [Delta] P c 33.3% It will also become.

従って、何らかの方法で相対測定位相誤差Δφkを取り除かなければ、コイル部品7の両端電圧VL(t)とコイル部品7に流れる電流の振幅IL(t)との相対位相差θkは正確に測定できず、鉄損Pcも正確に測定できないことが分かる。 Therefore, if the relative measurement phase error Δφ k is not removed by any method, the relative phase difference θ k between the voltage V L (t) across the coil component 7 and the amplitude I L (t) of the current flowing through the coil component 7 is accurate. It can be seen that the iron loss Pc cannot be measured accurately.

この相対測定位相誤差Δφkを取り除く方法として、オシロスコープのチャンネル間の測定信号の遅延時間の補正に古くから用いられているデスキューと呼ばれる手法があり、近年では一部のパワーメータにも使用されている。 As a method of removing this relative measurement phase error Δφ k , there is a method called deskew that has been used for a long time to correct the delay time of the measurement signal between channels of the oscilloscope, and in recent years it has also been used for some power meters. Yes.

デスキューは、2つの特性を一致させるように補正して、相対測定位相誤差を除去する手法である。しかし、このデスキューの手法を用いても相対測定位相誤差Δφkを正確に取り除くことはできない。以下、この理由を説明する。
まず、デスキューで相対測定位相誤差Δφkを取り除く原理を説明する。
Deskew is a method of removing relative measurement phase errors by correcting two characteristics so as to match. However, even if this deskew method is used, the relative measurement phase error Δφ k cannot be removed accurately. Hereinafter, the reason will be described.
First, the principle of removing a relative measurement phase error [Delta] [phi k in deskew.

図3は、従来のデスキューが前提とする電圧測定回路およびシャント抵抗を含む電流測定回路の周波数位相特性を示す図であり、(A)が2つの特性を、(B)および(C)は2つの特性を一致させる手法を示す。   FIG. 3 is a diagram illustrating frequency phase characteristics of a voltage measurement circuit and a current measurement circuit including a shunt resistor, which are assumed for conventional deskewing. (A) shows two characteristics, and (B) and (C) show two characteristics. A technique for matching two characteristics is shown.

図3の(A)に示すように、デスキューは、電圧測定回路1とシャント抵抗3を含む電流測定回路2のそれぞれの周波数位相特性が、電気回路として理想的な直線P、および直線Qであると想定している。この場合、図3の(B)および(C)に示すように、デスキューを行う前の相対測定位相誤差Δφkは、直線Pと直線Qとの差異であり、直線Rで表される。図3の(A)から(C)では、角周波数ωxで直線Pと直線Qとの差異が、相対測定位相誤差Δφxであるとしている。 As shown in FIG. 3A, the deskew is a straight line P and a straight line Q, which are ideal as electrical circuits, in terms of frequency phase characteristics of the voltage measurement circuit 1 and the current measurement circuit 2 including the shunt resistor 3, respectively. Is assumed. In this case, as shown in FIGS. 3B and 3C, the relative measurement phase error Δφ k before the deskew is the difference between the straight line P and the straight line Q, and is represented by the straight line R. In FIGS. 3A to 3C, the difference between the straight line P and the straight line Q at the angular frequency ω x is the relative measurement phase error Δφ x .

デスキューでは、ある特定の角周波数ωxにて電圧測定回路1とシャント抵抗3を含む電流測定回路2のそれぞれに入力する電圧信号と電流信号の相対位相差θxが0、あるいは既知であるように、一方(または両方)の信号の位相を調整する。説明を簡単にするため、図3の(B)および(C)では、相対位相差θxが0の信号を入力した場合で説明する。θx=0が正しく測定できるためには、図3の(B)に示すように、角周波数ωxに対する直線Qの点Aが直線Pの点Bに重なるように、あるいは図3の(C)に示すように、その逆で点Bが点Aに重なるように、電圧測定回路1、あるいはシャント抵抗3を含む電流測定回路2の周波数位相特性を補正しなければならない。 The deskew, as is the relative phase difference theta x specific voltage signal to be input to each of the current measuring circuit 2 at the angular frequency omega x including a voltage measurement circuit 1 and the shunt resistor 3 and the current signal is 0, or a known In addition, the phase of one (or both) signals is adjusted. In order to simplify the description, in FIGS. 3B and 3C, a case where a signal having a relative phase difference θ x of 0 is input will be described. In order to correctly measure θ x = 0, as shown in FIG. 3B, the point A of the straight line Q with respect to the angular frequency ω x overlaps the point B of the straight line P, or (C ), The frequency phase characteristics of the voltage measurement circuit 1 or the current measurement circuit 2 including the shunt resistor 3 must be corrected so that the point B overlaps the point A.

上記の補正は、次のように行われる。直線P、直線Qとは別に、次の式(10)で表される角周波数ωxで位相がΔφxである直線Rを作る。次に図3の(B)に示すように、直線Qに直線Rを加える、もしくは、図3の(C)に示すように、直線Pから直線Rを差し引く補正を行う。 The above correction is performed as follows. Apart from the straight line P and the straight line Q, a straight line R having an angular frequency ω x and a phase of Δφ x expressed by the following equation (10) is created. Next, as shown in FIG. 3B, a straight line R is added to the straight line Q, or correction is performed by subtracting the straight line R from the straight line P as shown in FIG.

Figure 2016133355
Figure 2016133355

前者の場合は、電圧VL(t)は式(4)のままであり、式(7)の電流IL(t)の各周波数成分の位相に対して、次の式(11)の位相補正を施すことであり、後者の場合は、電流IL(t)は式(7)のままであり、式(4)の電圧VL(t)の各周波数成分の位相に対して、次の式(12)の位相補正を施すことである。 In the former case, the voltage V L (t) remains as in Expression (4), and the phase of the following expression (11) with respect to the phase of each frequency component of the current I L (t) in Expression (7). In the latter case, the current I L (t) remains as in the equation (7), and the phase of each frequency component of the voltage V L (t) in the equation (4) is The phase correction of equation (12) is performed.

Figure 2016133355
Figure 2016133355

Figure 2016133355
Figure 2016133355

どちらの場合も式(2)に代入すると、相対測定位相誤差Δφkが取り除かれ、鉄損Pcは式(6)で表されるようになり、一見正しそうに見える。 In either case, when substituting into the equation (2), the relative measurement phase error Δφ k is removed, and the iron loss P c is expressed by the equation (6), which seems to be correct at first glance.

ところが、電気計測の分野では周知であるように、電圧測定回路1、および電流測定回路2の周波数位相特性を電気回路として理想的な直線に近づけることは可能であるが、シャント抵抗3を含んだ電流測定回路2の周波数位相特性を、理想的な直線にすることは不可能である。シャント抵抗3は、前述したように直流抵抗Rsだけで構成されているわけではなく、寄生静電容量Csと寄生インダクタンスLsとで構成される寄生リアクタンスXsを必ず有するからである。このため、デスキューでは相対測定位相誤差Δφkを正確に取り除くことができない。 However, as is well known in the field of electrical measurement, the frequency phase characteristics of the voltage measurement circuit 1 and the current measurement circuit 2 can be brought close to an ideal straight line as an electrical circuit, but include a shunt resistor 3. It is impossible to make the frequency phase characteristic of the current measurement circuit 2 an ideal straight line. This is because the shunt resistor 3 is not composed of only the DC resistor R s as described above, but necessarily has a parasitic reactance X s composed of a parasitic capacitance C s and a parasitic inductance L s . Therefore, it is impossible to accurately remove the relative measured phase error [Delta] [phi k is deskew.

図4は、デスキューの問題点を説明する図であり、(A)が2つの特性を、(B)および(C)は2つの特性を一致させる手法を示す。
図4を参照して、デスキューでは相対測定位相誤差Δφkを正確に取り除くことができない理由をさらに説明する。図4では、説明を簡単にするために、電圧測定回路1の周波数位相特性が、図4の(A)に示す直線Sであり、シャント抵抗3を含む電流測定回路2の周波数位相特性が折れ線Tであるとする。デスキューを行う前の相対測定位相誤差Δφkは、直線Sと折れ線Tとの差異となる。ここでは、角周波数ωxで直線Sと折れ線Tとの差異が、相対測定位相誤差Δφxであるとしている。
FIG. 4 is a diagram for explaining the problem of deskew, in which (A) shows two characteristics, and (B) and (C) show a technique for matching the two characteristics.
With reference to FIG. 4, the reason why the relative measurement phase error Δφ k cannot be accurately removed by deskew will be further described. In FIG. 4, for simplicity of explanation, the frequency phase characteristic of the voltage measurement circuit 1 is a straight line S shown in FIG. 4A, and the frequency phase characteristic of the current measurement circuit 2 including the shunt resistor 3 is broken. Let T be. The relative measurement phase error Δφ k before the deskew is a difference between the straight line S and the broken line T. Here, it is assumed that the difference between the straight line S and the broken line T at the angular frequency ω x is the relative measurement phase error Δφ x .

この場合のデスキューについて、図4の(B)および(C)を用いて説明する。デスキューでは、電圧測定回路1とシャント抵抗3を含む電流測定回路2のそれぞれに、角周波数ωxで相対位相差θxが0である電圧信号と電流信号を入力する。θx=0が正しく測定できるようにするためには、図4の(B)に示すように、角周波数ωxに対する折れ線Tの点Aが直線Sの点Bに重なるように、あるいは図4の(C)に示すように、その逆で点Bが点Aに重なるように、電圧測定回路1、あるいはシャント抵抗3を含む電流測定回路3の周波数位相特性を補正する。 The deskew in this case will be described with reference to FIGS. 4B and 4C. In deskew, a voltage signal and a current signal having an angular frequency ω x and a relative phase difference θ x of 0 are input to the voltage measurement circuit 1 and the current measurement circuit 2 including the shunt resistor 3, respectively. In order to correctly measure θ x = 0, the point A of the polygonal line T with respect to the angular frequency ω x overlaps the point B of the straight line S as shown in FIG. As shown in (C), the frequency phase characteristics of the voltage measurement circuit 1 or the current measurement circuit 3 including the shunt resistor 3 are corrected so that the point B overlaps the point A on the contrary.

この補正は次のように行われる。図4の(B)に示すように、直線S、折れ線Tとは別に、角周波数ωxで位相がΔφxである直線Uを作る。次に、折れ線Tに直線Uを加える、もしくは、図4の(C)に示すように、直線Sから直線Uを差し引く補正を行う。前者の場合、折れ線Tは折れ線Vとなり、角周波数ωxを除いて直線Sとは重ならない。後者の場合は、直線Sが直線Wとなり、やはり角周波数ωxを除いて折れ線Tとは重ならない。これはいずれも、デスキューでは、角周波数ωxを除いて他の角周波数では相対測定位相誤差Δφkが取り除かれていないことを意味する。 This correction is performed as follows. As shown in FIG. 4B, apart from the straight line S and the broken line T, a straight line U having an angular frequency ω x and a phase Δφ x is formed. Next, the straight line U is added to the broken line T, or correction is performed to subtract the straight line U from the straight line S as shown in FIG. In the former case, the broken line T becomes a broken line V and does not overlap with the straight line S except for the angular frequency ω x . In the latter case, the straight line S do not overlap the fold line T except straight W becomes, again angular frequency omega x. Both this, the deskew means that except for the angular frequency omega x no relative measured phase error [Delta] [phi k is removed in another angular frequency.

以上の通り、デスキューでは、角周波数の1点では相対測定位相誤差を取り除けるが、それ以外の角周波数では相対測定位相誤差Δφkを正確に取り除くことができない。
以上説明したように、一般の鉄損測定装置は、第1および第2の問題を有し、鉄損PCを正確に測定できない。
As described above, the deskew can remove the relative measurement phase error at one point of the angular frequency, but cannot accurately remove the relative measurement phase error Δφ k at the other angular frequencies.
As described above, generally the core loss measurement apparatus has first and second problems, can not accurately measure the iron loss P C.

上記の例では、シャント抵抗3を使用する鉄損測定装置の例を説明したが、パワーメータやパワーアナライザは、コイル部品7に流れる電流IL(t)の検出手段として、シャント抵抗を用いるのではなく、カレントトランスや電流プローブ等のカレントセンサーを用いる場合がある。 In the above example, the example of the iron loss measuring device using the shunt resistor 3 has been described. However, the power meter and the power analyzer use the shunt resistor as a means for detecting the current I L (t) flowing through the coil component 7. Instead, a current sensor such as a current transformer or a current probe may be used.

図5は、シャント抵抗の代わりにカレントセンサー16を使用した鉄損測定装置の概略構成を示すブロック図である。
図5の鉄損測定装置10Aは、カレントセンサー16を使用した以外、図1の鉄損測定装置10と同じであり、説明は省略する。カレントセンサー16を含む電流測定回路17も、周波数位相特性が理想的な直線にならないことが知られている。従って、デスキューでは、図1のシャント抵抗3を用いた装置と同様に、相対測定位相誤差Δφkを正確に取り除くことはできない。言い換えれば、カレントセンサー16を使用した場合も、シャント抵抗3を使用した場合と同様に、上記の第2の問題があり、鉄損は正確に測定できない。
FIG. 5 is a block diagram showing a schematic configuration of the iron loss measuring apparatus using the current sensor 16 instead of the shunt resistor.
The iron loss measuring apparatus 10A in FIG. 5 is the same as the iron loss measuring apparatus 10 in FIG. 1 except that the current sensor 16 is used, and a description thereof will be omitted. It is also known that the current measurement circuit 17 including the current sensor 16 does not have an ideal straight line in frequency and phase characteristics. Therefore, in the deskew, the relative measurement phase error Δφ k cannot be accurately removed, as in the device using the shunt resistor 3 in FIG. In other words, when the current sensor 16 is used, there is the second problem as in the case where the shunt resistor 3 is used, and the iron loss cannot be measured accurately.

以下に説明する実施形態の鉄損測定装置は、コイル部品の鉄損を正確に測定することができる。
実施形態の鉄損測定装置は、図1の鉄損測定装置10または図5の鉄損測定装置10Aと類似の構成を有するが、制御演算部4の構成が異なる。以下、シャント抵抗3を有する図1の鉄損測定装置10を例として説明するが、カレントセンサー16を有する図5の鉄損測定装置10Aについても同様である。
The iron loss measuring apparatus according to the embodiment described below can accurately measure the iron loss of a coil component.
The iron loss measuring apparatus according to the embodiment has a similar configuration to the iron loss measuring apparatus 10 in FIG. 1 or the iron loss measuring apparatus 10A in FIG. 5, but the configuration of the control calculation unit 4 is different. Hereinafter, the iron loss measuring apparatus 10 of FIG. 1 having the shunt resistor 3 will be described as an example, but the same applies to the iron loss measuring apparatus 10A of FIG.

実施形態の鉄損測定装置は、測定周波数が10[kHz]〜1[MHz]である。シャント抵抗3の直流抵抗値Rs=100mΩである。前述のように、制御演算部4は、コンピュータ等で実現され、電圧測定回路1および電流測定回路2の制御を行うとともに、データの記憶および数値演算等のデータ処理を行う。表示装置5、デ−タ処理の結果の表示や、オペレータへの情報・指示を表示する。 In the iron loss measuring apparatus of the embodiment, the measurement frequency is 10 [kHz] to 1 [MHz]. The DC resistance value R s of the shunt resistor 3 is 100 mΩ. As described above, the control calculation unit 4 is realized by a computer or the like, and controls the voltage measurement circuit 1 and the current measurement circuit 2 and performs data processing such as data storage and numerical calculation. The display device 5 displays the data processing result and information / instruction to the operator.

図6は、実施形態の鉄損測定装置が、被測定試料であるコイル部品7の鉄損を測定するために実行する処理を示すフローチャートである。
図6に示すように、処理は、装置設定工程S10と、第1準備工程S11と、第2準備工程S12と、第1計測工程S13と、第2計測工程S14と、第3計測工程S15と、を有する。第1準備工程S11と第2準備工程S12を合わせて準備工程と、第1計測工程S13から第3計測工程S15を合わせて計測工程と、称する場合がある。
FIG. 6 is a flowchart illustrating processing executed by the iron loss measuring apparatus according to the embodiment to measure the iron loss of the coil component 7 that is the sample to be measured.
As shown in FIG. 6, the process includes an apparatus setting step S10, a first preparation step S11, a second preparation step S12, a first measurement step S13, a second measurement step S14, and a third measurement step S15. Have. The first preparation step S11 and the second preparation step S12 may be collectively referred to as a preparation step, and the first measurement step S13 to the third measurement step S15 may be collectively referred to as a measurement step.

装置設定工程S10では、鉄損測定装置を、測定を行うのに適した状態に設定する。もし鉄損測定装置が測定を行うのに適した状態にあれば、装置設定工程S10を行う必要はない。また、後述するように、準備工程で取得した情報が既に記憶されており、準備工程無しで計測工程を開始する場合には、装置設定工程S10を行う。この場合も、鉄損測定装置が測定を行うのに適した状態にあれば、装置設定工程S10を行う必要はない。準備工程では、シャント抵抗3のインピーダンスの大きさの周波数特性|Zs(ω)|と、電圧測定回路に対するシャント抵抗を含む電流測定回路の相対測定位相誤差Δφ(ω)の周波数特性をあらかじめ算出し記憶しておく。計測工程では、実際の被測定試料であるコイル部品を測定し、準備工程で記憶しておいた|Zs(ω)|とΔφ(ω)を用いて補正処理を行って鉄損を求める。 In the apparatus setting step S10, the iron loss measuring apparatus is set to a state suitable for performing the measurement. If the iron loss measuring apparatus is in a state suitable for measurement, the apparatus setting step S10 need not be performed. As will be described later, when the information acquired in the preparation process is already stored and the measurement process is started without the preparation process, the apparatus setting process S10 is performed. Also in this case, if the iron loss measuring apparatus is in a state suitable for measurement, the apparatus setting step S10 need not be performed. In the preparation step, the frequency characteristic of the magnitude of the impedance of the shunt resistor 3 | Z s (ω) | and the frequency characteristic of the relative measurement phase error Δφ (ω) of the current measurement circuit including the shunt resistance with respect to the voltage measurement circuit are calculated in advance. And remember. In the measurement process, the coil component, which is an actual sample to be measured, is measured, and correction processing is performed using | Z s (ω) | and Δφ (ω) stored in the preparation process to determine the iron loss.

以下、各工程について詳細に説明する。
装置設定工程S10では、電圧測定回路1と、シャント抵抗3を含まない電流測定回路2のそれぞれについて、周波数振幅特性を公知のガウシアン特性あるいは最大平坦特性に、周波数位相特性を直線に調整し、遮断周波数が測定周波数の上限の1[MHz]の10倍である10[MHz]になるようにする。
Hereinafter, each step will be described in detail.
In the device setting step S10, for each of the voltage measurement circuit 1 and the current measurement circuit 2 that does not include the shunt resistor 3, the frequency amplitude characteristic is adjusted to a known Gaussian characteristic or the maximum flat characteristic, and the frequency phase characteristic is adjusted to a straight line to cut off. The frequency is set to 10 [MHz], which is 10 times the upper limit of the measurement frequency, 1 [MHz].

電気計測の分野で周知されているように、遮断周波数がこの程度あれば、測定周波数の上限でも、電圧測定回路1およびシャント抵抗3を含まない電流測定回路2のそれぞれ単独での電圧測定値は正確である。   As is well known in the field of electrical measurement, if the cut-off frequency is about this level, the voltage measurement value of each of the voltage measurement circuit 1 and the current measurement circuit 2 that does not include the shunt resistor 3 is independent even at the upper limit of the measurement frequency. Is accurate.

第1準備工程S11では、抵抗(代表抵抗値(直流抵抗値)Rd=0.5[Ω])とインダクタ(代表インダクタンス値Ld=0.5[μH])を直列に接続した基準試料を準備し、インピーダンスの大きさの周波数特性|Zstd(ω)|、および周波数位相特性θstd(ω)を、トレーサビリティが保証されているインピーダンスアナライザ等のインピーダンス測定器で、測定周波数の下限の10[kHz]から上限の1[MHz]の100倍である100[MHz]まで測定し、記憶装置に記憶しておく。基準試料の抵抗、およびインダクタは、温度係数が可能な限り小さいものを使うことが推奨される。実施形態で用いたものは、抵抗は100[ppm/℃]、インダクタは35[ppm/℃]である。 In the first preparation step S11, a reference sample in which a resistor (representative resistance value (DC resistance value) R d = 0.5 [Ω]) and an inductor (representative inductance value L d = 0.5 [μH]) are connected in series is prepared. Impedance measurement frequency characteristic | Z std (ω) | and frequency phase characteristic θ std (ω) are measured with an impedance analyzer such as an impedance analyzer that guarantees traceability. To 100 [MHz], which is 100 times the upper limit of 1 [MHz], and is stored in the storage device. It is recommended that the reference sample resistance and inductor have the lowest possible temperature coefficient. The resistors used in the embodiment have a resistance of 100 [ppm / ° C.] and an inductor of 35 [ppm / ° C.].

図7は、第2準備工程S12を実行する時の実施形態の鉄損測定装置10の状態を示す図である。
第2準備工程S12では、図7に示すように、上記の基準試料24を実施形態の鉄損測定装置10の被測定試料として配置する。そして、以下に詳細に述べる測定と演算を測定周波数の下限の10[kHz]から上限の100倍である100[MHz]まで繰り返し行い、シャント抵抗3のインピーダンスの大きさの周波数特性|Zs(ω)|と、電圧測定回路1に対するシャント抵抗3を含む電流測定回路2の相対測定位相誤差の周波数特性Δφ(ω)を求めて記憶しておく。
FIG. 7 is a diagram illustrating a state of the iron loss measuring apparatus 10 according to the embodiment when the second preparation step S12 is performed.
In 2nd preparation process S12, as shown in FIG. 7, said reference | standard sample 24 is arrange | positioned as a to-be-measured sample of the iron loss measuring apparatus 10 of embodiment. Then, the measurement and calculation described in detail below are repeated from the lower limit 10 [kHz] of the measurement frequency to 100 [MHz] which is 100 times the upper limit, and the frequency characteristic of the magnitude of the impedance of the shunt resistor 3 | Z s ( ω) | and the frequency characteristic Δφ (ω) of the relative measurement phase error of the current measurement circuit 2 including the shunt resistor 3 with respect to the voltage measurement circuit 1 are obtained and stored.

第2準備工程S12を具体的に説明する。信号発生器6から角周波数ωxの正弦波を出力し基準試料24に印加する。このとき、基準試料の両端電圧Vstd(t)とシャント抵抗3の両端電圧Vs(t)を少なくとも1周期分取込み記憶する。Vstd(t)とVs(t)をフーリエ級数展開し、それぞれ次の式(13)および(14)で表わされる基本波ωx成分のみを取り出す。Vstd1、Vs1はそれぞれVstd(t)、Vs(t)の基本波ωx成分の振幅である。またα(ωx)、β(ωx)は、それぞれVstd(t)、Vs(t)の基本波ωx成分の位相である。(ωx)は角周波数ωxの関数であることを示している。 The second preparation step S12 will be specifically described. And it outputs a sine wave of angular frequency omega x from the signal generator 6 is applied to the reference sample 24. At this time, the voltage V std (t) across the reference sample and the voltage V s (t) across the shunt resistor 3 are captured and stored for at least one cycle. V std (t) and V s (t) are expanded by Fourier series, and only the fundamental wave ω x component expressed by the following equations (13) and (14) is extracted. V std1 and V s1 are the amplitudes of the fundamental wave ω x components of V std (t) and V s (t), respectively. Α (ω x ) and β (ω x ) are the phases of the fundamental wave ω x component of V std (t) and V s (t), respectively. (ω x ) indicates a function of the angular frequency ω x .

Figure 2016133355
Figure 2016133355

Figure 2016133355
Figure 2016133355

まず、角周波数ωxに対するシャント抵抗3のインピーダンスの大きさ|Zsx)|を求める。
第1準備工程で基準試料24の角周波数ωxに対するインピーダンスの大きさ|Zstdx)|は、既知なので、基準試料24に流れている最大電流Istd1は、式(13)の結果から次の式(15)で求めることができる。
First, the impedance magnitude | Z sx ) | of the shunt resistor 3 with respect to the angular frequency ω x is obtained.
Since the magnitude of the impedance | Z stdx ) | with respect to the angular frequency ω x of the reference sample 24 is known in the first preparation step, the maximum current I std1 flowing through the reference sample 24 is the result of the equation (13). From the following equation (15).

Figure 2016133355
Figure 2016133355

また、シャント抵抗3の未知であるインピーダンスを|Zsx)|とすると、Istd1は式(14)の結果から、次の式(16)で表すこともできる。 Further, assuming that the unknown impedance of the shunt resistor 3 is | Z sx ) |, I std1 can also be expressed by the following equation (16) from the result of the equation (14).

Figure 2016133355
Figure 2016133355

従って、式(15)および(16)のそれぞれの右辺が等しいことから、未知であったシャント抵抗3のインピーダンスの大きさ|Zsx)|は、次の式(17)から求めることができる。 Therefore, since the right sides of the equations (15) and (16) are equal, the unknown impedance magnitude | Z sx ) | of the shunt resistor 3 is obtained from the following equation (17). Can do.

Figure 2016133355
Figure 2016133355

次に、電圧測定回路1に対するシャント抵抗3を含む電流測定回路2の角周波数ωxに対する相対測定位相誤差Δφ(ωx)を求める。
基準試料24の両端電圧Vstd(t)の基本波に対するシャント抵抗3の両端電圧Vs(t)の基本波の位相、即ち基準試料24に流れる電流Istd(t)の基本波の位相γ(ωx)は式(13)および(14)より次の式(18)で求めることができる。
Next, a relative measurement phase error Δφ (ω x ) with respect to the angular frequency ω x of the current measurement circuit 2 including the shunt resistor 3 with respect to the voltage measurement circuit 1 is obtained.
The phase of the fundamental wave of the voltage V s (t) across the shunt resistor 3 with respect to the fundamental wave of the voltage V std (t) across the reference sample 24, that is, the phase γ of the fundamental wave of the current I std (t) flowing through the reference sample 24 (ω x ) can be obtained by the following equation (18) from equations (13) and (14).

Figure 2016133355
Figure 2016133355

本来、このγ(ωx)が、第1準備工程で測定した基準試料24の角周波数ωxに対する位相θstdx)に一致しなければならないが、相対測定位相誤差Δφ(ωx)があるために一致しない。従って、相対測定位相誤差Δφ(ωx)は、第1準備工程で測定し記憶しておいた位相θstdx)とγ(ωx)との位相差となり、次の式(19)で与えられる。 Originally, this γ (ω x ) must match the phase θ stdx ) with respect to the angular frequency ω x of the reference sample 24 measured in the first preparation step, but the relative measurement phase error Δφ (ω x ). Does not match because there is. Accordingly, the relative measurement phase error Δφ (ω x ) is a phase difference between the phase θ stdx ) and γ (ω x ) measured and stored in the first preparation step, and the following equation (19) Given in.

Figure 2016133355
Figure 2016133355

実際には、式(14)のVs(t)の基本波の位相-β(ωx)に、このΔφ(ωx)を加え位相補正を施すと、Vs(t)の基本波の位相は次の式(20)で表される。 Actually, if this Δφ (ω x ) is added to the phase −β (ω x ) of the fundamental wave of V s (t) in equation (14) and phase correction is performed, the fundamental wave of V s (t) The phase is expressed by the following equation (20).

Figure 2016133355
Figure 2016133355

したがって、Vstd(t)の基本波に対するVs(t)の基本波の位相、即ちIstd(t)の基本波の位相は、次の式(21)で表される。 Therefore, the fundamental wave of the phase of V s (t) with respect to the fundamental wave of V std (t), i.e., the fundamental wave of the phase of the I std (t) is expressed by the following equation (21).

Figure 2016133355
Figure 2016133355

このように、第1準備工程で測定し記憶しておいた、正確な基準試料24の位相θstdx)と一致することが分かる。 Thus, it can be seen that the phase θ stdx ) of the reference sample 24 measured and stored in the first preparation step coincides with the accurate phase θ stdx ).

以上の測定と演算を、周波数を変えながら、測定周波数の下限の10[kHz]から上限の1[MHz]の100倍である100[MHz]まで繰り返し行い、シャント抵抗3のインピーダンスの大きさの周波数特性|Zs(ω)|と、相対測定位相誤差の周波数特性Δφ(ω)を求めて記憶しておくことで、第2準備工程が終了する。 The above measurement and calculation are repeated while changing the frequency from the lower limit of 10 [kHz] to 100 [MHz], which is 100 times the upper limit of 1 [MHz], and the impedance of the shunt resistor 3 is changed. The second preparation step is completed by obtaining and storing the frequency characteristic | Z s (ω) | and the frequency characteristic Δφ (ω) of the relative measurement phase error.

図8は、第1準備工程で測定した基準試料24の周波数位相特性θstd(ω)、第2準備工程で算出したα(ω)およびβ(ω)の周波数特性の関係を示す図であり、横軸をリニアスケールで描画した図である。 FIG. 8 is a diagram showing the relationship between the frequency phase characteristic θ std (ω) of the reference sample 24 measured in the first preparation process and the frequency characteristics of α (ω) and β (ω) calculated in the second preparation process. FIG. 6 is a diagram in which the horizontal axis is drawn with a linear scale.

図9は、図8と同様に、第1準備工程で測定した基準試料24の周波数位相特性θstd(ω)、第2準備工程で算出したα(ω)およびβ(ω)の周波数特性の関係を示す図であり、位相補正の説明が把握し易いように横軸を対数で描画し、(A)は全周波数範囲を、(B)は周波数範囲の一部を拡大して示している。図9の(B)では、さらに、γ(ωx)およびθstdx)の関係も示している。 FIG. 9 shows the frequency phase characteristic θ std (ω) of the reference sample 24 measured in the first preparation step and the frequency characteristics of α (ω) and β (ω) calculated in the second preparation step, as in FIG. It is a figure which shows a relationship, a horizontal axis is drawn logarithmically so that description of phase correction may be easy to grasp, (A) shows the whole frequency range, (B) shows a part of frequency range enlarged. . FIG. 9B further shows the relationship between γ (ω x ) and θ stdx ).

図10は、第2準備工程で算出した相対測定位相誤差の周波数特性Δφ(ω)およびシャント抵抗3のインピーダンスの大きさの周波数特性|Zs(ω)|を示す図であり、(A)がΔφ(ω)を、(B)が|Zs(ω)|を示す。 FIG. 10 is a diagram showing the frequency characteristic Δφ (ω) of the relative measurement phase error calculated in the second preparation step and the frequency characteristic | Z s (ω) | of the magnitude of the impedance of the shunt resistor 3. Indicates Δφ (ω), and (B) indicates | Z s (ω) |.

例えば、特許文献1に記載された鉄損の算出ではないが、被測定物の電流のみを算出する方法が提案されている。特許文献1によれば、シャント抵抗3のインピーダンスの大きさの周波数特性、あるいは周波数位相特性を、基準試料24の時と同様にトレーサビリティが保証されたインピーダンスアナライザ等の鉄損測定装置とは別のインピーダンス測定器で予め測定することが提案されている。しかし、実施形態では、特許文献1のように、シャント抵抗3のインピーダンスの大きさの周波数特性、あるいは周波数位相特性を、別のインピーダンス測定器で予め測定することは行わない。その理由は、実施形態のシャント抵抗3の抵抗値が100[mΩ]と小さいため、これを別のインピーダンス測定器で測定しても、大きな測定誤差が生じるためである。   For example, although it is not the calculation of the iron loss described in patent document 1, the method of calculating only the electric current of a to-be-measured object is proposed. According to Patent Document 1, the frequency characteristic or the frequency phase characteristic of the magnitude of the impedance of the shunt resistor 3 is different from that of an iron loss measuring apparatus such as an impedance analyzer in which traceability is ensured as in the case of the reference sample 24. It has been proposed to measure in advance with an impedance measuring instrument. However, in the embodiment, unlike Patent Document 1, the frequency characteristic or the frequency phase characteristic of the magnitude of the impedance of the shunt resistor 3 is not measured in advance by another impedance measuring device. The reason is that since the resistance value of the shunt resistor 3 of the embodiment is as small as 100 [mΩ], even if this is measured by another impedance measuring device, a large measurement error occurs.

シャント抵抗は本来不要な負荷であり、また、電力損失による発熱により抵抗値そのものの変動の原因ともなることから、抵抗値はシャント抵抗両端電圧が検出できる範囲で、できる限り小さい値を選択し、数十[mΩ]〜数百[mΩ]の範囲ものを使用するが一般的である。ところがこれら別のインピーダンス測定器は、インピーダンスの大きさが200〜300[mΩ]未満、あるいは4〜5[MΩ]を超えると測定確度が非常に悪く、インピーダンスの大きさで数[%]〜数10[%]、位相で数[deg]もの大きな測定誤差が生じることが知られている。これだけ測定誤差が生じると、図2で説明したが、もはや鉄損の正確な測定には到底利用できない。特許文献1の実施例に記載された例では、シャント抵抗の抵抗値が1[Ω]のものが使用されており、シャント抵抗の抵抗値としては大きいものを使用しているのは、この問題を回避するためと考えられる。   The shunt resistor is an essentially unnecessary load, and it also causes the fluctuation of the resistance value itself due to heat generation due to power loss, so the resistance value is selected as small as possible within the range where the voltage across the shunt resistor can be detected, A material in the range of several tens [mΩ] to several hundreds [mΩ] is generally used. However, these other impedance measuring instruments have very poor measurement accuracy when the impedance magnitude is less than 200 to 300 [mΩ] or more than 4 to 5 [MΩ]. It is known that a large measurement error of 10 [%] and several [deg] in phase occurs. When such a measurement error occurs, as explained in FIG. 2, it can no longer be used for accurate measurement of iron loss. In the example described in the example of Patent Document 1, a shunt resistor having a resistance value of 1 [Ω] is used, and this is because a large shunt resistor having a resistance value is used. It is thought to avoid this.

以上、準備工程について説明した。前述のように、準備工程は、実施形態の鉄損測定装置を使用してコイル部品の鉄損を測定する度に行う必要はない。鉄損測定装置の調整作業の中で、一度、シャント抵抗3のインピーダンスの大きさの周波数特性|Zs(ω)|と、相対測定位相誤差の周波数特性Δφ(ω)を求めて記憶しておけば、再度行う必要はない。 The preparation process has been described above. As described above, the preparation process does not have to be performed every time the iron loss of the coil component is measured using the iron loss measuring apparatus of the embodiment. During the adjustment of the iron loss measuring device, the frequency characteristic | Z s (ω) | of the magnitude of the impedance of the shunt resistor 3 and the frequency characteristic Δφ (ω) of the relative measurement phase error are obtained and stored. If you do, you don't have to do it again.

図11は、第1計測工程S13を実行する時の実施形態の鉄損測定装置10の状態を示す図である。
以下、図11を参照して計測工程について説明する。
FIG. 11 is a diagram illustrating a state of the iron loss measuring apparatus 10 according to the embodiment when the first measurement step S13 is performed.
Hereinafter, the measurement process will be described with reference to FIG.

第1計測工程では、被測定物であるコイル部品7を、実施形態の鉄損測定装置10の被測定試料として配置し、シャント抵抗3と直列回路を形成する。外部の信号発生器6から角周波数ω0の周期信号を出力させ、直列回路の両端に印加する。これにより、コイル部品7およびシャント抵抗3に周期信号に応じた電流が流れる。このとき、コイル部品7の両端電圧VL(t)とシャント抵抗3の両端電圧Vs(t)を少なくとも1周期分取込み記憶する。VL(t)とVs(t)をそれぞれ次の式(22)、(23)で表わされる100次高調波までフーリエ展開する。VLk、VskはそれぞれVL(t)、Vs(t)のω0のk次高調波の振幅であり、α(kω0)、β(kω0)はそれぞれVL(t)、Vs(t)のω0のk次高調波の位相である。100次高調波まで展開したのは、フーリエ級数では周知のように60次程度以上あれば、コイル部品7の両端電圧VL(t)、あるいはシャント抵抗3の両端電圧Vs(t)が方形波であっても再現できるからである。 In the first measurement step, the coil component 7 that is the object to be measured is arranged as a sample to be measured of the iron loss measuring apparatus 10 of the embodiment, and a series circuit is formed with the shunt resistor 3. A periodic signal having an angular frequency ω 0 is output from the external signal generator 6 and applied to both ends of the series circuit. As a result, a current corresponding to the periodic signal flows through the coil component 7 and the shunt resistor 3. At this time, the voltage V L (t) across the coil component 7 and the voltage V s (t) across the shunt resistor 3 are captured and stored for at least one cycle. V L (t) and V s (t) are Fourier-expanded to the 100th harmonics represented by the following equations (22) and (23), respectively. V Lk and V sk are the amplitudes of the k-order harmonics of ω 0 of V L (t) and V s (t), respectively, and α (kω 0 ) and β (kω 0 ) are V L (t) and This is the phase of the kth harmonic of ω 0 of V s (t). As is well known in the Fourier series, the voltage up to the 100th harmonic is about the 60th order or higher. The voltage V L (t) across the coil component 7 or the voltage V s (t) across the shunt resistor 3 is square. This is because even waves can be reproduced.

Figure 2016133355
Figure 2016133355

Figure 2016133355
Figure 2016133355

第2計測工程で、次の式(24)で表すようにVs(t)の各周波数成分の振幅Vskを、準備工程で記憶しておいたシャント抵抗3のインピーダンスの大きさの周波数特性|Zs(kω0)|で除して、コイル部品7に流れる電流IL(t)の各周波数成分の振幅を正確な振幅に補正する。また、Vs(t)の各周波数成分の位相β(kω0)に、同じく準備工程で記憶しておいた相対測定位相誤差の周波数特性Δφ(kω0)を加えて、電流IL(t)の各周波数成分の位相を正確な位相に補正し、正確な電流IL(t)を求める。 In the second measurement step, the frequency characteristic of the magnitude of the impedance of the shunt resistor 3 stored in the preparation step is stored as the amplitude V sk of each frequency component of V s (t) as expressed by the following equation (24). Dividing by | Z s (kω 0 ) |, the amplitude of each frequency component of the current I L (t) flowing through the coil component 7 is corrected to an accurate amplitude. Further, by adding the frequency characteristic Δφ (kω 0 ) of the relative measurement phase error stored in the preparation step to the phase β (kω 0 ) of each frequency component of V s (t), the current I L (t ) To correct the phase of each frequency component to obtain an accurate current I L (t).

Figure 2016133355
Figure 2016133355

準備工程で記憶しておいたシャント抵抗3のインピーダンスの大きさの周波数特性|Zs(ω)|に、角周波数kω0に対応するものがない場合は、周波数特性|Zs(ω)|を1次関数による内挿によって求めたものを使用する。相対測定位相誤差の周波数特性Δφ(ω)についても、角周波数kω0に対応するものがない場合は、同様な処理を行う。 If there is no frequency characteristic | Z s (ω) | corresponding to the angular frequency kω 0 in the frequency characteristic | Z s (ω) | stored in the preparation process, the frequency characteristic | Z s (ω) | Is obtained by interpolation using a linear function. Similar processing is performed for the frequency characteristic Δφ (ω) of the relative measurement phase error when there is no frequency characteristic corresponding to the angular frequency kω 0 .

第3計測工程で、式(24)のコイル部品7に流れる電流IL(t)、式(22)のコイル部品7の両端電圧VL(t)を用いて、前述の式(2)に従って数値積分して鉄損Pcを求める。 In the third measurement step, using the current I L (t) flowing through the coil component 7 of equation (24) and the voltage V L (t) across the coil component 7 of equation (22), according to the above equation (2) The iron loss P c is obtained by numerical integration.

コイル部品7に流れる電流の振幅、およびコイル部品7の両端電圧に対するコイル部品7に流れる電流の相対位相差を正確に補正することができているので、本発明の鉄損測定装置によれば正確な鉄損Pcを求めることができる。 Since the amplitude of the current flowing through the coil component 7 and the relative phase difference of the current flowing through the coil component 7 with respect to the voltage across the coil component 7 can be accurately corrected, the iron loss measuring device of the present invention can accurately The iron loss P c can be obtained.

実施形態の鉄損測定装置10によるコイル部品7の両端電圧に対するコイル部品7に流れる電流の相対位相差とコイル部品7に流れる電流の振幅が正確であることを証明する具体例を示す。   The specific example which proves that the relative phase difference of the electric current which flows into the coil component 7 with respect to the both-ends voltage of the coil component 7 by the iron loss measuring apparatus 10 of embodiment and the amplitude of the electric current which flows into the coil component 7 is correct is shown.

図12は、準備工程で使用した基準試料24を、あらためて被測定試料として配置し、信号発生器6から周波数を10[kHz]〜1[MHz]まで変化させながら正弦波を出力して印加し、各周波数ごとに前述の計測工程を実施したときに得られた、式(22)の試料の両端電圧VL(t)の基本波に対する、式(24)の試料に流れる電流IL(t)の基本波の位相差の周波数特性θ'std(ω)と、第1準備工程で測定した基準試料24の周波数位相特性θstd(ω)との、次の式(25)で表す差異Δθstd(ω)を示したものである。これが全周波数に渡り0.00[deg]であることが理想ではあるが、本発明により±0.02[deg]という非常に高い確度で、第1準備工程で測定した基準試料24の周波数位相特性θstd(ω)と一致し、試料両端電圧に対する試料に流れる電流の相対位相差が測定されていることが分かる。 In FIG. 12, the reference sample 24 used in the preparation process is arranged again as a sample to be measured, and a sine wave is output and applied while changing the frequency from 10 [kHz] to 1 [MHz] from the signal generator 6. The current I L (t (t) flowing in the sample of the equation (24) with respect to the fundamental wave of the both-ends voltage V L (t) of the sample of the equation (22) obtained when the above measurement process is performed for each frequency. the frequency characteristic of the phase difference of the fundamental wave theta 'std (omega)) of, and the frequency phase characteristics of the reference sample 24 measured in the first preparation step theta std (omega), the difference Δθ expressed by the following equation (25) std (ω) is shown. Ideally, this is 0.00 [deg] over the entire frequency, but the frequency phase characteristic θstd (ω of the reference sample 24 measured in the first preparation step with very high accuracy of ± 0.02 [deg] according to the present invention. ) And the relative phase difference of the current flowing through the sample with respect to the voltage across the sample is measured.

Figure 2016133355
Figure 2016133355

図13は、図12同様に、各周波数ごとに計測工程を実施したときに得られた、式(22)の試料の両端電圧VL(t)の基本波の振幅を、式(24)の試料に流れる電流IL(t)の基本波の振幅で除して得られる試料のインピーダンスの大きさの周波数特性|Z'std(ω)|と、第1準備工程で測定した基準試料24のインピーダンスの大きさの周波数特性|Zstd(ω)|との、次の式(26)で表す差異|ΔZstd(ω)| を示したものである。これも全周波数に渡り0.00[%]であることが理想ではあるが、本発明により最大0.16[%]未満という非常に高い確度で、第1準備工程で測定した基準試料24のインピーダンスの大きさの周波数特性|Zstd(ω)|と一致し、試料のインピーダンスの大きさ、即ち試料に流れる電流が測定されていることが分かる。 FIG. 13 shows the amplitude of the fundamental wave of the both-ends voltage V L (t) of the sample of Expression (22) obtained when the measurement process is performed for each frequency, as in FIG. The frequency characteristic of the magnitude of the impedance of the sample obtained by dividing by the amplitude of the fundamental wave of the current I L (t) flowing through the sample | Z ′ std (ω) | and the reference sample 24 measured in the first preparation step The difference | ΔZ std (ω) | represented by the following equation (26) with respect to the frequency characteristic | Z std (ω) | of the magnitude of the impedance is shown. Ideally, this is 0.00 [%] over the entire frequency, but according to the present invention, the magnitude of the impedance of the reference sample 24 measured in the first preparation step with very high accuracy of less than 0.16 [%] at the maximum. frequency characteristic | Z std (ω) | consistent with, it can be seen that the magnitude of the impedance of the sample, i.e., the current flowing through the sample being measured.

Figure 2016133355
Figure 2016133355

上記の実施形態の説明では、単コイルのコイル部品7を測定する場合について説明したが、2次巻線(巻数N2)を有するコイル部品を測定することも可能である。
図14は、2次巻線を有するコイル部品を測定する時の実施形態の鉄損測定装置の状態を示す図である。
In the description of the above embodiment, the case of measuring the coil component 7 of a single coil has been described, but it is also possible to measure a coil component having a secondary winding (the number of turns N 2 ).
FIG. 14 is a diagram illustrating a state of the iron loss measuring apparatus according to the embodiment when measuring a coil component having a secondary winding.

図14に示すように、2次巻線を有するコイル部品26の1次巻線の一方の端子をシャント抵抗3に接続し、1次巻線の他方の端子とシャント抵抗3の他の端部に、外部の信号発生器6から角周波数ω0の周期信号を出力させ、1次巻線に信号を印加する。これにより、1次巻線およびシャント抵抗3に周期信号に応じた電流が流れ、2次巻線に信号が誘起される。電圧測定回路1は、1次巻線(巻数N1)の両端電圧ではなく、2次巻線の両端電圧を測定する。 As shown in FIG. 14, one terminal of the primary winding of the coil component 26 having the secondary winding is connected to the shunt resistor 3, and the other terminal of the primary winding and the other end of the shunt resistor 3. Then, a periodic signal having an angular frequency ω 0 is output from the external signal generator 6 and a signal is applied to the primary winding. As a result, a current corresponding to the periodic signal flows through the primary winding and the shunt resistor 3, and a signal is induced in the secondary winding. The voltage measurement circuit 1 measures the voltage across the secondary winding, not the voltage across the primary winding (the number of turns N 1 ).

図11の状態で示した単コイルのコイル部品7は、2次巻線を巻くことができないコイル部品、例えばパッケージされたインダクタ部品の銅損を含む鉄損を測定するのに用いられる。これに対して、図14のように、2次巻線を有するコイル部品26を測定する場合は、1次巻線の銅損が含まれない鉄損が測定できるので、コイル部品の鉄心である軟磁性体そのものの純粋な鉄損が測定できる利点がある。   The single-coil coil component 7 shown in the state of FIG. 11 is used to measure iron loss including copper loss of a coil component that cannot be wound with a secondary winding, for example, a packaged inductor component. On the other hand, when measuring the coil component 26 having the secondary winding as shown in FIG. 14, the iron loss not including the copper loss of the primary winding can be measured. There is an advantage that the pure iron loss of the soft magnetic material itself can be measured.

図14のように、2次巻線を有するコイル部品26を測定する構成では、鉄損Pcを式(2)で算出する代わりに次の式(27)で算出する。しかし、準備工程および計測工程の手順とデータ処理は、鉄損Pcの算出以外は同じなので、詳細な説明は省略する。 As shown in FIG. 14, in the configuration in which the coil component 26 having the secondary winding is measured, the iron loss P c is calculated by the following equation (27) instead of the equation (2). However, since the procedure and data processing of the preparation process and the measurement process are the same except for the calculation of the iron loss P c , detailed description is omitted.

Figure 2016133355
Figure 2016133355

実施形態では、式(23)のVs(t)の各周波数成分の位相β(kω0)に、相対測定位相誤差の周波数特性Δφ(kω0)を加えて補正しているが、式(22)のVL(t)の各周波数成分の位相α(kω0)の方にΔφ(kω0)を加えて補正しても、式(2)で求められる鉄損Pcの正確さに影響はない。しかしながら、VL(t)の各周波数成分の位相α(kω0)の方にΔφ(kω0)を加える位相補正は、鉄損Pc以外の測定値に問題を生じさせる。この位相補正は、周波数位相特性が直線ではないシャント抵抗を含む電流測定回路2で測定したVs(t)を基準に、周波数位相特性が直線である電圧測定回路で測定したVL(t)の各周波数成分の位相を補正してしまうことになるので、Vs(t)、およびVL(t)の信号波形は真の信号波形とは異なるものに変化してしまう。そのため、実施形態のように、Vs(t)の各周波数成分の位相β(kω0)に、相対測定位相誤差の周波数特性Δφ(kω0)を加えて補正することが望ましい。ただし、シャント抵抗を含む電流測定回路2の周波数位相特性が直線に近ければ、VL(t)の各周波数成分の位相α(kω0)の方にΔφ(kω0)を加える位相補正でも問題はない。 In the embodiment, correction is performed by adding the frequency characteristic Δφ (kω 0 ) of the relative measurement phase error to the phase β (kω 0 ) of each frequency component of V s (t) in Expression (23). 22) Even if the phase α (kω 0 ) of each frequency component of V L (t) is corrected by adding Δφ (kω 0 ), the accuracy of the iron loss P c obtained by the equation (2) can be improved. There is no effect. However, phase correction in which Δφ (kω 0 ) is added to the phase α (kω 0 ) of each frequency component of V L (t) causes a problem in measured values other than the iron loss P c . This phase correction is based on V s (t) measured by the current measurement circuit 2 including the shunt resistor whose frequency phase characteristic is not linear, and V L (t) measured by the voltage measurement circuit whose frequency phase characteristic is linear. Therefore, the signal waveforms of V s (t) and V L (t) are changed to those different from the true signal waveform. Therefore, as in the embodiment, it is desirable to correct by adding the frequency characteristic Δφ (kω 0 ) of the relative measurement phase error to the phase β (kω 0 ) of each frequency component of V s (t). However, if the frequency phase characteristics of the current measurement circuit 2 including the shunt resistor are close to a straight line, phase correction by adding Δφ (kω 0 ) to the phase α (kω 0 ) of each frequency component of V L (t) is also a problem. There is no.

実施形態では、準備工程、および計測工程での信号の取込みは1周期分としているが、1周期に限定されるわけではない。できるだけ多くの整数周期分を取込み、平均処理を行った1周期を演算対象とすれば、より測定確度は向上する。   In the embodiment, the signal acquisition in the preparation process and the measurement process is performed for one period, but is not limited to one period. If as many integer cycles as possible are taken in and one cycle in which the averaging process is performed is taken as a calculation target, the measurement accuracy is further improved.

さらに実施形態では、基準試料として抵抗とインダクタを直列に接続したものを採用しているが、基準試料は特にこの素子構成に限定されるわけではない。測定周波数の下限から上限の100倍まで、トレーサビリティが保証されているインピーダンスアナライザ等の本発明の鉄損測定装置とは別のインピーダンス測定器で、インピーダンスの大きさの周波数特性と周波数位相特性が高確度に測定できる0.5[Ω]〜数[Ω] のインピーダンスを有する素子構成であれば良い。   Further, in the embodiment, a reference sample in which a resistor and an inductor are connected in series is adopted, but the reference sample is not particularly limited to this element configuration. This is an impedance measuring instrument different from the iron loss measuring device of the present invention, such as an impedance analyzer, whose traceability is guaranteed from the lower limit to the upper limit of 100 times, and has high impedance frequency characteristics and frequency phase characteristics. Any element configuration having an impedance of 0.5 [Ω] to several [Ω] that can be accurately measured is acceptable.

さらに、実施形態では、電流IL(t)の検出手段としてシャント抵抗を用いた場合について説明したが、これに限定されるわけではなく、カレントトランスや電流プローブ等のカレントセンサーを用いてもよい。
以上説明してきたように、本発明の鉄損測定装置によれば、コイル部品に流れる電流の振幅、およびコイル部品両端電圧に対するコイル部品に流れる電流の相対位相差を正確に補正することができるので、正確なコイル部品に流れる電流、正確なコイル部品両端電圧、および正確なコイル部品両端電圧に対するコイル部品に流れる電流の相対位相差からコイル部品の正確な鉄損を求めることができる。
Furthermore, in the embodiment, the case where the shunt resistor is used as the means for detecting the current I L (t) has been described. However, the present invention is not limited to this, and a current sensor such as a current transformer or a current probe may be used. .
As described above, according to the iron loss measuring apparatus of the present invention, the amplitude of the current flowing through the coil component and the relative phase difference of the current flowing through the coil component with respect to the voltage across the coil component can be accurately corrected. The accurate iron loss of the coil component can be obtained from the current flowing through the accurate coil component, the accurate voltage across the coil component, and the relative phase difference of the current flowing through the coil component with respect to the accurate voltage across the coil component.

1 電圧測定回路
2 電流測定回路
3 シャント抵抗(電流検出用素子)
4 制御演算部
5 表示装置
6 信号発生器
7 被測定試料
16 カレントセンサー
24 基準試料
26 2次巻線を有するコイル部品
1 Voltage measurement circuit 2 Current measurement circuit 3 Shunt resistance (current detection element)
DESCRIPTION OF SYMBOLS 4 Control calculating part 5 Display apparatus 6 Signal generator 7 Sample to be measured 16 Current sensor 24 Reference sample 26 Coil component which has secondary winding

Claims (16)

電圧測定回路、電流検出用素子および電流測定回路を使用して被測定試料の鉄損を測定する鉄損測定方法であって、
前記電流検出用素子のインピーダンスの大きさの周波数特性と、前記電圧測定回路に対する前記電流検出用素子および前記電流測定回路の相対測定位相誤差の周波数特性を記憶する準備工程と、
被測定試料と前記電流検出用素子を直列に接続した直列回路に周期信号を印加し、前記被測定試料の両端電圧を前記電圧測定回路で、前記被測定試料に流れる電流を前記電流検出用素子および前記電流測定回路で測定し、前記被測定試料の両端電圧と前記被測定試料に流れる電流を周波数成分に分解する第1計測工程と、
前記準備工程で記憶しておいたデータを用いて、前記被測定試料に流れる電流の振幅を周波数成分ごとに補正し、前記被測定試料の両端電圧に対する前記被測定試料に流れる電流の相対位相差を周波数成分ごとに補正する第2計測工程と、
前記被測定試料の両端電圧と前記振幅と前記測定試料の両端電圧に対する相対位相差が補正された前記被測定試料に流れる電流とを用いて、被測定試料の鉄損を算出する第3計測工程と、を有することを特徴とする鉄損測定方法。
An iron loss measurement method for measuring iron loss of a sample to be measured using a voltage measurement circuit, a current detection element, and a current measurement circuit,
A preparatory step of storing a frequency characteristic of the magnitude of impedance of the current detection element and a frequency characteristic of a relative measurement phase error of the current detection element and the current measurement circuit with respect to the voltage measurement circuit;
A periodic signal is applied to a series circuit in which the sample to be measured and the element for current detection are connected in series, and the voltage flowing across the sample to be measured is applied to the voltage across the voltage of the sample to be measured by the voltage measuring circuit. And a first measurement step of measuring with the current measurement circuit, and decomposing the voltage across the sample to be measured and the current flowing through the sample to be measured into frequency components;
Using the data stored in the preparation step, the amplitude of the current flowing in the sample to be measured is corrected for each frequency component, and the relative phase difference of the current flowing in the sample to be measured with respect to the voltage across the sample to be measured A second measurement step for correcting each frequency component,
Third measurement step of calculating the iron loss of the sample to be measured using the voltage and the amplitude of the sample to be measured and the current flowing through the sample to be measured in which the relative phase difference with respect to the voltage across the sample is corrected. An iron loss measuring method comprising:
前記準備工程は、
基準試料のインピーダンスの大きさの周波数特性と周波数位相特性を測定し記憶する第1準備工程と、
前記基準試料の両端電圧を前記電圧測定回路で、前記基準試料に流れる電流を前記電流検出用素子および前記電流測定回路で測定し、前記第1準備工程で記憶しておいた測定データを用いて、前記電流検出用素子のインピーダンスの大きさの周波数特性と、前記電圧測定回路に対する前記電流検出用素子および前記電流測定回路の相対測定位相誤差の周波数特性を算出し、記憶する第2準備工程と、を有する請求項1に記載の鉄損測定方法。
The preparation step includes
A first preparatory step of measuring and storing the frequency characteristic and frequency phase characteristic of the magnitude of the impedance of the reference sample;
The voltage across the reference sample is measured by the voltage measurement circuit, the current flowing through the reference sample is measured by the current detection element and the current measurement circuit, and the measurement data stored in the first preparation step is used. Calculating and storing a frequency characteristic of the magnitude of impedance of the current detection element and a frequency characteristic of a relative measurement phase error of the current detection element and the current measurement circuit with respect to the voltage measurement circuit; The iron loss measuring method according to claim 1, comprising:
前記第1測定工程または前記準備工程を実行する前に、
前記電圧測定回路および前記電流測定回路の周波数振幅特性を、ガウシアン特性あるいは最大平坦特性に調整し、前記電圧測定回路および前記電流測定回路の周波数位相特性を直線に調整し、遮断周波数を測定周波数の上限の10倍以上にする装置設定工程を、有する請求項2に記載の鉄損測定方法。
Before performing the first measurement step or the preparation step,
The frequency amplitude characteristics of the voltage measurement circuit and the current measurement circuit are adjusted to a Gaussian characteristic or a maximum flat characteristic, the frequency phase characteristics of the voltage measurement circuit and the current measurement circuit are adjusted to a straight line, and the cutoff frequency is adjusted to the measurement frequency. The iron loss measuring method according to claim 2, further comprising a device setting step of setting the upper limit to 10 times or more of the upper limit.
前記第2計測工程では、前記被測定試料に流れる電流の位相が、前記被測定試料の両端電圧の位相に合わせるように補正する請求項1から3のいずれか1項に記載の鉄損測定方法。   The iron loss measuring method according to any one of claims 1 to 3, wherein in the second measuring step, the phase of the current flowing through the sample to be measured is corrected so as to match the phase of the voltage across the sample to be measured. . 前記電流検出用素子は、シャント抵抗である請求項1から4のいずれか1項に記載の鉄損測定方法。   The iron loss measurement method according to claim 1, wherein the current detection element is a shunt resistor. 前記電流検出用素子は、カレントセンサー抵抗である請求項1から4のいずれか1項に記載の鉄損測定方法。   The iron loss measurement method according to claim 1, wherein the current detection element is a current sensor resistance. 前記被測定試料が1次巻線および2次巻線を有する場合には、前記第1計測工程において、前記1次巻線に前記周期信号を印加し、前記2次巻線の両端電圧を測定する請求項1から6のいずれか1項に記載の鉄損測定方法。   When the sample to be measured has a primary winding and a secondary winding, in the first measurement step, the periodic signal is applied to the primary winding and the voltage across the secondary winding is measured. The iron loss measuring method according to any one of claims 1 to 6. 電圧測定回路、電流検出用素子および電流測定回路を使用して被測定試料の鉄損を測定するための、前記電流検出用素子のインピーダンスの大きさの周波数特性と、前記電圧測定回路に対する前記電流検出用素子および前記電流測定回路の相対測定位相誤差の周波数特性を測定する方法であって、
基準試料のインピーダンスの大きさの周波数特性と周波数位相特性を測定し記憶する第1準備工程と、
前記基準試料の両端電圧を前記電圧測定回路で、前記基準試料に流れる電流を前記電流検出用素子および前記電流測定回路で測定し、前記第1準備工程で記憶しておいた測定データを用いて、前記電流検出用素子のインピーダンスの大きさの周波数特性と、前記電圧測定回路に対する前記電流検出用素子および前記電流測定回路の相対測定位相誤差の周波数特性を算出する第2準備工程と、を有する方法。
Frequency characteristics of the magnitude of impedance of the current detection element for measuring the iron loss of the sample to be measured using the voltage measurement circuit, the current detection element, and the current measurement circuit, and the current with respect to the voltage measurement circuit A method of measuring a frequency characteristic of a relative measurement phase error of a detection element and the current measurement circuit,
A first preparatory step of measuring and storing the frequency characteristic and frequency phase characteristic of the magnitude of the impedance of the reference sample;
The voltage across the reference sample is measured by the voltage measurement circuit, the current flowing through the reference sample is measured by the current detection element and the current measurement circuit, and the measurement data stored in the first preparation step is used. And a second preparatory step for calculating a frequency characteristic of the magnitude of the impedance of the current detection element and a frequency characteristic of a relative measurement phase error of the current detection element and the current measurement circuit with respect to the voltage measurement circuit. Method.
被測定試料の両端電圧を測定する電圧測定回路と、
電流検出用素子と、
前記電流検出用素子に流れる電流を検出する電流測定回路と、
制御演算部と、を備え、
前記制御演算部は、
前記電流検出用素子のインピーダンスの大きさの周波数特性と、前記電圧測定回路に対する前記電流検出用素子および前記電流測定回路の相対測定位相誤差の周波数特性と、を記憶する記憶部を有することを特徴とする鉄損測定装置。
A voltage measurement circuit for measuring the voltage across the sample to be measured;
A current detection element;
A current measurement circuit for detecting a current flowing in the current detection element;
A control operation unit,
The control calculation unit is
A storage unit that stores a frequency characteristic of an impedance magnitude of the current detection element and a frequency characteristic of a relative measurement phase error of the current detection element and the current measurement circuit with respect to the voltage measurement circuit; Iron loss measuring device.
前記制御演算部は、
被測定試料と前記電流検出用素子を直列に接続した直列回路に周期信号を印加し、前記被測定試料の両端電圧を前記電圧測定回路で、前記被測定試料に流れる電流を前記電流検出用素子および前記電流測定回路で測定し、前記被測定試料の両端電圧と前記被測定試料に流れる電流を周波数成分に分解する第1計測工程と、
前記準備工程で記憶しておいたデータを用いて、前記被測定試料に流れる電流の振幅を周波数成分ごとに補正し、前記被測定試料の両端電圧に対する前記被測定試料に流れる電流の相対位相差を周波数成分ごとに補正する第2計測工程と、
前記被測定試料の両端電圧と前記振幅と前記測定試料の両端電圧に対する相対位相差が補正された前記被測定試料に流れる電流とを用いて、被測定試料の鉄損を算出する第3計測工程と、実行する請求項9に記載の鉄損測定装置。
The control calculation unit is
A periodic signal is applied to a series circuit in which the sample to be measured and the element for current detection are connected in series, and the voltage flowing across the sample to be measured is applied to the voltage across the voltage of the sample to be measured by the voltage measuring circuit. And a first measurement step of measuring with the current measurement circuit, and decomposing the voltage across the sample to be measured and the current flowing through the sample to be measured into frequency components;
Using the data stored in the preparation step, the amplitude of the current flowing in the sample to be measured is corrected for each frequency component, and the relative phase difference of the current flowing in the sample to be measured with respect to the voltage across the sample to be measured A second measurement step for correcting each frequency component,
Third measurement step of calculating the iron loss of the sample to be measured using the voltage and the amplitude of the sample to be measured and the current flowing through the sample to be measured in which the relative phase difference with respect to the voltage across the sample is corrected. And the iron loss measuring apparatus of Claim 9 performed.
前記制御演算部は、
基準試料のインピーダンスの大きさの周波数特性と周波数位相特性を測定し記憶する第1準備工程と、
前記基準試料の両端電圧を前記電圧測定回路で、前記基準試料に流れる電流を前記電流検出用素子および前記電流測定回路で測定し、前記第1準備工程で記憶しておいた測定データを用いて、前記電流検出用素子のインピーダンスの大きさの周波数特性と、前記電圧測定回路に対する前記電流検出用素子および前記電流測定回路の相対測定位相誤差の周波数特性を算出し、記憶する第2準備工程と、を実行する請求項10に記載の鉄損測定装置。
The control calculation unit is
A first preparatory step of measuring and storing the frequency characteristic and frequency phase characteristic of the magnitude of the impedance of the reference sample;
The voltage across the reference sample is measured by the voltage measurement circuit, the current flowing through the reference sample is measured by the current detection element and the current measurement circuit, and the measurement data stored in the first preparation step is used. Calculating and storing a frequency characteristic of the magnitude of impedance of the current detection element and a frequency characteristic of a relative measurement phase error of the current detection element and the current measurement circuit with respect to the voltage measurement circuit; The iron loss measuring device according to claim 10, wherein
前記電圧測定回路および前記電流測定回路は、周波数振幅特性がガウシアン特性あるいは最大平坦特性に調整され、周波数位相特性が直線に調整され、遮断周波数が測定周波数の上限の10倍以上である請求項10または11に記載の鉄損測定装置。   11. The voltage measurement circuit and the current measurement circuit each have a frequency amplitude characteristic adjusted to a Gaussian characteristic or a maximum flat characteristic, a frequency phase characteristic adjusted to a straight line, and a cutoff frequency equal to or more than 10 times the upper limit of the measurement frequency. Or the iron loss measuring apparatus of 11. 前記制御演算部は、
前記第2計測工程で、前記被測定試料に流れる電流の位相が、前記被測定試料の両端電圧の位相に一致するように補正する請求項10から12のいずれか1項に記載の鉄損測定装置。
The control calculation unit is
The iron loss measurement according to any one of claims 10 to 12, wherein in the second measurement step, the phase of the current flowing through the sample to be measured is corrected so as to coincide with the phase of the voltage across the sample to be measured. apparatus.
前記電流検出用素子は、シャント抵抗である請求項9から13のいずれか1項に記載の鉄損測定装置。   The iron loss measuring apparatus according to claim 9, wherein the current detection element is a shunt resistor. 前記電流検出用素子は、カレントセンサー抵抗である請求項9から13のいずれか1項に記載の鉄損測定装置。   The iron loss measuring apparatus according to claim 9, wherein the current detection element is a current sensor resistance. 前記被測定試料が1次巻線および2次巻線を有する場合には、前記第1計測工程において、前記1次巻線に前記周期信号を印加し、前記2次巻線の両端電圧を測定する請求項10から12のいずれか1項に記載の鉄損測定装置。   When the sample to be measured has a primary winding and a secondary winding, in the first measurement step, the periodic signal is applied to the primary winding and the voltage across the secondary winding is measured. The iron loss measuring apparatus according to any one of claims 10 to 12.
JP2015007128A 2015-01-16 2015-01-16 Iron loss measuring method and iron loss measuring apparatus Active JP6296452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015007128A JP6296452B2 (en) 2015-01-16 2015-01-16 Iron loss measuring method and iron loss measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015007128A JP6296452B2 (en) 2015-01-16 2015-01-16 Iron loss measuring method and iron loss measuring apparatus

Publications (2)

Publication Number Publication Date
JP2016133355A true JP2016133355A (en) 2016-07-25
JP6296452B2 JP6296452B2 (en) 2018-03-20

Family

ID=56437768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015007128A Active JP6296452B2 (en) 2015-01-16 2015-01-16 Iron loss measuring method and iron loss measuring apparatus

Country Status (1)

Country Link
JP (1) JP6296452B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918978A (en) * 2018-05-14 2018-11-30 全球能源互联网研究院有限公司 A kind of measuring system and method for transformer iron core loss distribution
CN109188103A (en) * 2018-10-12 2019-01-11 福州大学 A method of core loss is measured based on impedance analyzer
JP2019120547A (en) * 2017-12-28 2019-07-22 岩崎通信機株式会社 Iron loss measurement method, test fixture of impedance analyzer, and sample stand of iron loss measurement device
JP2021025799A (en) * 2019-07-31 2021-02-22 岩崎通信機株式会社 Iron loss measuring method and iron loss measuring device
CN113203893A (en) * 2021-04-29 2021-08-03 福州大学 Inductor and method for extracting alternating current resistance of coil winding of loosely coupled transformer
CN113419125A (en) * 2021-06-17 2021-09-21 哈尔滨理工大学 Method and system for measuring frequency characteristics of dry-type voltage transformer iron core
WO2022130583A1 (en) * 2020-12-17 2022-06-23 日新電機株式会社 Temperature increase testing method for reactors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285881A (en) * 1988-05-12 1989-11-16 Tokin Corp Apparatus for measuring iron loss of magnetic body
JPH0261574A (en) * 1988-08-26 1990-03-01 Ryowa Denshi Kk Calibration of iron loss measuring system
JPH0660913B2 (en) * 1987-03-19 1994-08-10 凌和電子株式会社 High frequency current measurement method
US5659232A (en) * 1994-09-26 1997-08-19 Vogelsang & Benning Prozessdatentechnik Gmbh Method of determining the efficiency of asynchronous motors and apparatus for carrying out the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660913B2 (en) * 1987-03-19 1994-08-10 凌和電子株式会社 High frequency current measurement method
JPH01285881A (en) * 1988-05-12 1989-11-16 Tokin Corp Apparatus for measuring iron loss of magnetic body
JPH0261574A (en) * 1988-08-26 1990-03-01 Ryowa Denshi Kk Calibration of iron loss measuring system
US5659232A (en) * 1994-09-26 1997-08-19 Vogelsang & Benning Prozessdatentechnik Gmbh Method of determining the efficiency of asynchronous motors and apparatus for carrying out the method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120547A (en) * 2017-12-28 2019-07-22 岩崎通信機株式会社 Iron loss measurement method, test fixture of impedance analyzer, and sample stand of iron loss measurement device
CN108918978A (en) * 2018-05-14 2018-11-30 全球能源互联网研究院有限公司 A kind of measuring system and method for transformer iron core loss distribution
CN109188103A (en) * 2018-10-12 2019-01-11 福州大学 A method of core loss is measured based on impedance analyzer
JP2021025799A (en) * 2019-07-31 2021-02-22 岩崎通信機株式会社 Iron loss measuring method and iron loss measuring device
WO2022130583A1 (en) * 2020-12-17 2022-06-23 日新電機株式会社 Temperature increase testing method for reactors
JPWO2022130583A1 (en) * 2020-12-17 2022-06-23
JP7328601B2 (en) 2020-12-17 2023-08-17 日新電機株式会社 Reactor temperature rise test method
EP4266067A4 (en) * 2020-12-17 2024-02-14 Nissin Electric Co Ltd Temperature increase testing method for reactors
CN113203893A (en) * 2021-04-29 2021-08-03 福州大学 Inductor and method for extracting alternating current resistance of coil winding of loosely coupled transformer
CN113419125A (en) * 2021-06-17 2021-09-21 哈尔滨理工大学 Method and system for measuring frequency characteristics of dry-type voltage transformer iron core
CN113419125B (en) * 2021-06-17 2024-04-05 哈尔滨理工大学 Method and system for measuring frequency characteristics of iron core of dry voltage transformer

Also Published As

Publication number Publication date
JP6296452B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6296452B2 (en) Iron loss measuring method and iron loss measuring apparatus
Brandolini et al. A simple method for the calibration of traditional and electronic measurement current and voltage transformers
Crotti et al. Frequency response of MV voltage transformer under actual waveforms
Cataliotti et al. A novel approach to current transformer characterization in the presence of harmonic distortion
Mohns et al. A wideband current transformer bridge
Cataliotti et al. Characterization and error compensation of a Rogowski coil in the presence of harmonics
Cataliotti et al. Improvement of Hall effect current transducer metrological performances in the presence of harmonic distortion
EP2397864A1 (en) Electricity meter and method for determining a quantity
CN106324356A (en) Precise AC resistance measuring instrument and measuring method thereof
JP2007003407A (en) Method and apparatus for measuring impedance
CN106199285B (en) Capacitance characteristic measuring equipment and method under any alternating current carrier
Cataliotti et al. Characterization of clamp-on current transformers under nonsinusoidal conditions
Aristoy et al. Measuring system for calibrating high voltage instrument transformers at distorted waveforms
Hayashi Measurement of loss in high-frequency reactors
JP6840618B2 (en) Transformer loss measuring device and transformer loss measuring method
Gallo et al. Large bandwidth compensation of current transformers
Fortuné et al. Measurement method of AC current up to 1 MHz
JP4225651B2 (en) Phase error correction method for circuit element measuring instrument
Crotti et al. Set-up of calibration systems for inductive and electronic measurement transformers
Crotti et al. Frequency calibration of MV voltage transformer under actual waveforms
CN106019072A (en) Method for measuring lumped parameter of Rogowski coil
Marais et al. Reduction of static electricity meter errors by broadband compensation of voltage and current channel differences
JP2019120547A (en) Iron loss measurement method, test fixture of impedance analyzer, and sample stand of iron loss measurement device
JP2016031327A (en) High-frequency measuring device and high-frequency measuring device calibration method
JP2021025799A (en) Iron loss measuring method and iron loss measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R150 Certificate of patent or registration of utility model

Ref document number: 6296452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250