JP4963036B2 - INORGANIC COMPOSITE MATERIAL COMPRISING GOLD ULTRAFINE PARTICLES AND Apatite, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR OXIDATION AND REMOVAL OF MICROCOAL MONOXIDE USING THE SAME - Google Patents

INORGANIC COMPOSITE MATERIAL COMPRISING GOLD ULTRAFINE PARTICLES AND Apatite, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR OXIDATION AND REMOVAL OF MICROCOAL MONOXIDE USING THE SAME Download PDF

Info

Publication number
JP4963036B2
JP4963036B2 JP2006127181A JP2006127181A JP4963036B2 JP 4963036 B2 JP4963036 B2 JP 4963036B2 JP 2006127181 A JP2006127181 A JP 2006127181A JP 2006127181 A JP2006127181 A JP 2006127181A JP 4963036 B2 JP4963036 B2 JP 4963036B2
Authority
JP
Japan
Prior art keywords
gold
apatite
composite material
inorganic composite
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006127181A
Other languages
Japanese (ja)
Other versions
JP2007297245A (en
Inventor
直樹 三村
年 坪田
知樹 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006127181A priority Critical patent/JP4963036B2/en
Publication of JP2007297245A publication Critical patent/JP2007297245A/en
Application granted granted Critical
Publication of JP4963036B2 publication Critical patent/JP4963036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、生活空間の快適化、無害化技術、或いは水素を用いる燃料電池の高性能技術である、微量一酸化炭素の酸化除去に関し、特に、そのための、金の超微粒子を用いた高性能触媒に関するものである。   The present invention relates to a technology for making living space comfortable and harmless, or a high-performance technology for a fuel cell using hydrogen, which is a high-performance technology using gold ultrafine particles. It relates to a catalyst.

一酸化炭素は有害なガスで、人体に対する毒性は1000ppmで頭痛、頭重、吐き気、めまいなどがあらわれ、継続した曝露により自力脱出が困難になり、死亡に至るものであって(非特許文献1)、米国産業衛生専門官会議が定めている時間加重平均曝露限界閾値(TLV-TWA)は25ppmであり、また、米国国立安全衛生研究所が定めている、30分間曝露で生命・健康危険レベル(IDLH)は1200ppmである(非特許文献1)。
生活空間では、石油やガス、木炭、練炭などの燃焼を利用した暖房器具、調理器具が広く普及し、燃料の不完全燃焼により前記の安全基準に達しない程度の微量な一酸化炭素が発生している。一酸化炭素は、微量であっても、血液中のヘモグロビンと結合し、心肺機能の低下、高血圧、動脈硬化、不整脈など健康を害する可能性が高まる。また、健康増進法の施行により公共機関や企業等で喫煙室を設置し、分煙を図ることが義務化されているが、狭い空間内で喫煙をすることにより、局所的に一酸化炭素濃度が高まり、健康に悪影響を及ぼす可能性が生じる。
上記の事情により、一酸化炭素除去触媒が塗布された空気浄化フィルターなどを用いて一酸化炭素を空気中の酸素と反応させて二酸化炭素に変換し除去することが切望されているが、要求を満たす高性能な触媒は開発途上である。
Carbon monoxide is a harmful gas, toxicity to the human body is 1000 ppm, headache, headache, nausea, dizziness, etc. appear, and continuous exposure makes it difficult to escape by itself and leads to death (Non-patent Document 1) , The time-weighted average exposure threshold (TLV-TWA) set by the National Council of Occupational Health and Safety is 25 ppm, and the Life and Health Risk Level (30-minute exposure) set by the National Institute of Health and Safety ( IDLH) is 1200 ppm (Non-Patent Document 1).
In living spaces, heating appliances and cooking utensils that use combustion of oil, gas, charcoal, briquettes, etc. have become widespread, and incomplete combustion of the fuel generates a trace amount of carbon monoxide that does not meet the above safety standards. ing. Even in a trace amount, carbon monoxide binds to hemoglobin in the blood and increases the possibility of harming health such as decreased cardiopulmonary function, hypertension, arteriosclerosis, and arrhythmia. In addition, the enforcement of the Health Promotion Act has made it mandatory to set up smoking rooms in public institutions and companies and to separate smoke, but by smoking in a narrow space, the concentration of carbon monoxide is locally increased. Increased, with potential for adverse health effects.
Due to the above circumstances, there is a strong desire to convert carbon monoxide to carbon dioxide by reacting it with oxygen in the air using an air purification filter coated with a carbon monoxide removal catalyst. A high-performance catalyst to satisfy is under development.

また、近年において燃料電池が次世代のエネルギー発生システムとして注目されており、水素が燃料として用いられることが多いが、水素は炭化水素ガスの改質などで製造され、反応途中に副生する一酸化炭素が水素中に微量残留する。その残留一酸化炭素は、電極材と反応し電極を不活性化し、電極の寿命を大幅に短くする。そのため、水素ガス中の微量の一酸化炭素だけを酸素と反応させて二酸化炭素に転換させることにより、水素の酸化を少量に防ぎつつ一酸化炭素だけを除去しうる触媒の開発が切望されているが、該要求を満たす高性能な触媒は開発途上であって、まだ得られていない。   In recent years, fuel cells have attracted attention as a next-generation energy generation system, and hydrogen is often used as a fuel. Hydrogen is produced by reforming hydrocarbon gas or the like, and is produced as a by-product during the reaction. A small amount of carbon oxide remains in the hydrogen. The residual carbon monoxide reacts with the electrode material to inactivate the electrode and significantly shorten the life of the electrode. Therefore, the development of a catalyst that can remove only carbon monoxide while reacting only a small amount of carbon monoxide in hydrogen gas with oxygen to convert it to carbon dioxide while preventing the oxidation of hydrogen to a small amount is eagerly desired. However, a high-performance catalyst that satisfies this requirement is still under development and has not yet been obtained.

従来、一酸化炭素の酸化除去には貴金属触媒が使われることが多い。貴金属は、一般的には、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウムの8種を称するが、その中でも、粒子サイズを精密にコントロールされ、適切な担体と複合化した金(Au)触媒が、低温、室温での一酸化炭素の酸化除去触媒に好ましく用いられている(非特許文献2、3、特許文献1〜3)。また、白金(Pt)も単独または他の金属類と複合化されて水素ガス中の微量一酸化炭素の酸化除去に好ましく用いられることが多い(非特許文献5、6、特許文献4、5)。   Conventionally, a precious metal catalyst is often used for oxidative removal of carbon monoxide. Precious metals generally refer to eight types of gold, silver, platinum, palladium, rhodium, iridium, ruthenium, and osmium. Among them, the particle size is precisely controlled, and gold (complexed with an appropriate carrier) Au) catalyst is preferably used as an oxidation removal catalyst for carbon monoxide at low temperature and room temperature (Non-patent Documents 2 and 3, Patent Documents 1 to 3). In addition, platinum (Pt) is often used alone or in combination with other metals and is preferably used for oxidative removal of a small amount of carbon monoxide in hydrogen gas (Non-patent Documents 5 and 6, Patent Documents 4 and 5). .

これらの金触媒又は白金触媒は、通常、金属酸化物からなる担体に担持されるか(特許文献1、特許文献2、特許文献4)、或いは、活性炭、シリカゲル、アルミナ等の多孔質体に担持されて(特許文献3、特許文献5)用いられるが、いまだに、前記のごとき空気又は水素ガス中の微量な一酸化炭素だけを効率的に除去しうる高性能な触媒を得るには至っていないのが現状である。
高圧ガス保安技術 第二次改訂版 高圧ガス保安協会編 Masatake Haruta, Catalysis Today 36 (1997) 153-166 Masakazu Date,他、Catalysis Today 72 (2002) 89-94 Masakazu Date, 他, Angewandte Chemie International Edition Volume 43,Issue 16, Date: April 13, 2004, Pages: 2129-2132 Attila Wootsch,他Journal of Catalysis 225 (2004) 259-266 I. H. Son, 他 Journal of Catalysis 210, 460-465 (2002) 特許公開平8−295502号公報 特許公開2004−188243号公報 特許公開平11−235169号公報 特許公開2003−48702号公報 特許公開2005−246116号公報
These gold catalysts or platinum catalysts are usually supported on a carrier made of a metal oxide (Patent Document 1, Patent Document 2, Patent Document 4), or supported on a porous body such as activated carbon, silica gel, and alumina. (Patent Document 3 and Patent Document 5) have not yet been used to obtain a high-performance catalyst that can efficiently remove only a small amount of carbon monoxide in air or hydrogen gas as described above. Is the current situation.
High Pressure Gas Safety Technology Second Revised Edition High Pressure Gas Safety Association Masatake Haruta, Catalysis Today 36 (1997) 153-166 Masakazu Date, et al., Catalysis Today 72 (2002) 89-94 Masakazu Date, et al., Angewandte Chemie International Edition Volume 43, Issue 16, Date: April 13, 2004, Pages: 2129-2132 Attila Wootsch, et al. Journal of Catalysis 225 (2004) 259-266 IH Son, et al. Journal of Catalysis 210, 460-465 (2002) Japanese Patent Publication No. 8-295502 Japanese Patent Publication No. 2004-188243 Japanese Patent Publication No. 11-235169 Japanese Patent Publication No. 2003-48702 Japanese Patent Publication No. 2005-246116

本発明は、以上のような事情に鑑みてなされたものであって、その目的は、空気中又は水素ガス中の微量な一酸化炭素を効率的に除去しうる高性能な触媒を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-performance catalyst capable of efficiently removing a small amount of carbon monoxide in air or hydrogen gas. It is in.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、金の超微粒子を、特定の担体に担持させた新規な無機複合物が一酸化炭素を効率的に除去する触媒機能を有することを見出し、本発明の完成に至ったものである。
本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
(1)カルシウムとリンのモル比率を示すCa/Pの原子比の値が、アパタイトの化学式Ca10(PO(OH)から導かれる理論値である5/3を下回るように調製したカルシウムとリンからなるアパタイトを担体とし、該アパタイト担体に、金の超微粒子を担持させた無機複合材料の製造方法であって、
塩素配位子を持つ金錯体の水溶液にアルカリ溶液を添加してpHを7.0以上に調整することにより、前記塩素配位子が水酸化物配位子に交換された金の水酸化物錯体を得、得られた金の水酸化物錯体と前記アパタイト担体の表面の電気的親和力により、或いは得られた金の水酸化物錯体と前記アパタイトの構成元素とのイオン交換により、前記アパタイト担体の表面に金の水酸化物錯体を担持させる工程を有することを特徴とする無機複合材料の製造方法。
(2)前記アパタイト担体を調製するに際し、金の超微粒子を担持させる以前には、50℃を超える温度に加熱しないことを特徴とする上記(1)の無機複合材料の製造方法。
(3)上記(1)又は(2)の製造方法で製造された無機複合材料であって、前記金の超微粒子の平均粒径が、10ナノメートル以下であることを特徴とする無機複合材料。
(4)前記金の超微粒子を担持させた複合材料の比表面積が、50m /gを超えることを特徴とする上記(3)の無機複合材料。
(5)一酸化炭素を酸素と反応させて二酸化炭素に転換することにより一酸化炭素を除去するのに用いる触媒であって、上記(3)又は(4)の無機複合材料からなることを特徴とする触媒。
(6)触媒存在下、ガス中の微量の一酸化炭素を酸素と反応させて二酸化炭素に転換することにより酸化除去し、ガスを無害化する方法であって、該触媒として上記(3)又は(4)の無機複合材料を用いることを特徴とする微量一酸化炭素の酸化除去方法。
(7)前記ガスが、空気又は水素である上記(6)の微量一酸化炭素の酸化除去方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have a catalytic function that a novel inorganic composite in which gold ultrafine particles are supported on a specific carrier efficiently remove carbon monoxide. As a result, the present invention has been completed.
The present invention has been completed based on these findings, and is as follows.
(1) Prepared so that the value of the atomic ratio of Ca / P indicating the molar ratio of calcium and phosphorus is less than 5/3, which is a theoretical value derived from the chemical formula Ca 10 (PO 4 ) 6 (OH) 2 of apatite. A method for producing an inorganic composite material in which apatite composed of calcium and phosphorus is used as a carrier, and gold ultrafine particles are supported on the apatite carrier ,
Gold hydroxide in which the chlorine ligand is replaced with a hydroxide ligand by adding an alkaline solution to an aqueous solution of a gold complex having a chlorine ligand and adjusting the pH to 7.0 or higher The apatite support is obtained by obtaining an electric affinity of the obtained gold hydroxide complex and the surface of the apatite support, or by ion exchange between the obtained gold hydroxide complex and the constituent elements of the apatite. A method for producing an inorganic composite material, comprising a step of supporting a gold hydroxide complex on the surface of a metal.
(2) The method for producing an inorganic composite material according to (1) above, wherein the apatite support is not heated to a temperature exceeding 50 ° C. before the gold ultrafine particles are supported.
(3) An inorganic composite material produced by the production method of (1) or (2 ) above, wherein the gold ultrafine particles have an average particle size of 10 nanometers or less. .
(4) The inorganic composite material according to (3) above , wherein a specific surface area of the composite material supporting the gold ultrafine particles exceeds 50 m 2 / g.
(5) A catalyst used for removing carbon monoxide by reacting carbon monoxide with oxygen to convert it to carbon dioxide, which comprises the inorganic composite material of (3) or (4) above. And a catalyst.
(6) A method of oxidizing and removing a trace amount of carbon monoxide in a gas by reacting with oxygen and converting it to carbon dioxide in the presence of a catalyst, thereby detoxifying the gas, wherein the catalyst is the above (3) or (4) A method for oxidizing and removing traces of carbon monoxide, characterized by using the inorganic composite material.
(7) The method for oxidizing and removing trace carbon monoxide according to the above (6), wherein the gas is air or hydrogen.

本発明の無機複合材料は、ガス中の微量の一酸化炭素を効率的に除去しうる高性能な触媒作用を提供するものであり、特に、(1)空気中の微量の一酸化炭素を酸化して二酸化炭素に転換して無害化しうる触媒作用、(2)水素ガス中の微量の一酸化炭素だけを酸素と反応させて二酸化炭素に転換させることにより、水素の酸化を少量に防ぎつつ一酸化炭素だけを除去しうる触媒作用を提供するものである。また、本発明の無機複合材料の製造方法によれば、金担持後の前記複合材料の比表面積が50m/gを超える高比表面積を有する無機複合材料、すなわち金の超微粒子が効率よく担持され、反応ガスとの接触効率が高い無機複合材料を得ることができる。さらに、本発明の無機複合材料の製造方法は、リンとカルシウムの原子比であるCa/Pの値が5/3を下回るアパタイト担体に、金の超微粒子を担持させる方法として優れた方法を提供するものである。 The inorganic composite material of the present invention provides a high-performance catalytic action that can efficiently remove a minute amount of carbon monoxide in a gas, and in particular, (1) oxidizes a minute amount of carbon monoxide in air. (2) Only a small amount of carbon monoxide in hydrogen gas reacts with oxygen to convert it to carbon dioxide, thereby preventing hydrogen oxidation in a small amount. It provides a catalytic action capable of removing only carbon oxide. In addition, according to the method for producing an inorganic composite material of the present invention, an inorganic composite material having a high specific surface area in which the specific surface area of the composite material after supporting gold exceeds 50 m 2 / g, that is, ultrafine particles of gold are efficiently supported. Thus, an inorganic composite material having high contact efficiency with the reaction gas can be obtained. Furthermore, the method for producing an inorganic composite material according to the present invention provides an excellent method for supporting gold ultrafine particles on an apatite support having a Ca / P value of 5/3, which is an atomic ratio of phosphorus and calcium. To do.

以下、本発明の特定のカルシウムとリンの原子比を有するアパタイトからなる担体と、金の超微粒子とを複合化した無機複合材料について、詳細に説明する。   Hereinafter, the inorganic composite material obtained by combining the support made of apatite having a specific calcium / phosphorus atomic ratio and ultrafine gold particles according to the present invention will be described in detail.

本発明における担体としてのアパタイトは、文献などで公知になっている手法を用いて調製したものを用いることができるが、代表的な調製法は、前駆体に硝酸カルシウムとリン酸二水素アンモニウムを用いた湿式合成法(Sugiyama, S.; Minami, T.; Hayashi, H.; Tanaka, M.;higemoto, N.;Moffat, J. B. J. Chem Soc., Faraday Trans. 1996年, 92巻, 293頁参照)や、塩化カルシウム水溶液とリン酸水素カリウム水溶液を混合する方法(http://www.ab11.yamanashi.ac.jp/oneday/2.pdf)などが良く知られている。本発明のアパルタイトの調製法は、これらの方法に限定されず、公知の方法であれば、すべて適用可能である。
以下に、化学式Ca10(PO(OH)で表される、カルシウムとリンからなるアパルタイトについて詳述するが、構成元素が異なっている全てのアパタイト系無機化合物に適用可能である。
The apatite used as the carrier in the present invention can be prepared using a method known in the literature, but a typical preparation method includes calcium nitrate and ammonium dihydrogen phosphate as a precursor. Wet synthesis method used (Sugiyama, S .; Minami, T .; Hayashi, H .; Tanaka, M .; higemoto, N .; Moffat, JBJ Chem Soc., Faraday Trans. 1996, 92, 293) ) And a method of mixing an aqueous calcium chloride solution and an aqueous potassium hydrogen phosphate solution (http://www.ab11.yamanashi.ac.jp/oneday/2.pdf) are well known. The method for preparing the apartite of the present invention is not limited to these methods, and any known method can be applied.
Hereinafter, the apartite composed of calcium and phosphorus represented by the chemical formula Ca 10 (PO 4 ) 6 (OH) 2 will be described in detail.

好ましい調製法の一つである、前駆体に硝酸カルシウムとリン酸二水素アンモニウムを用いた湿式合成法は、アンモニア水などでpHを適切な値に調製した硝酸カルシウム水溶液と、同様にpHを調製したリン酸二水素アンムニウム水溶液とを混合して沈殿を得て、その沈殿を洗浄、乾燥処理を行って担体を得る。真空乾燥や室温で放置などの乾燥処理の後、300℃以上の高温で加熱焼成する調製法もあるが、本発明においては、金の超微粒子の担持前に不必要な加熱を行うことは、結晶化の進行により表面積の低下が起こりやすく、特に50℃以上の加熱は避けたほうが好ましい。低温での調製により、金担持後の前記複合材料が、触媒として好ましい大きな比表面積、たとえば50m/g以上、更に好ましくは(請求項3に合致する記載にしました。)80m/g以上の比表面積を有するものが得られる。このことは、得られた無機複合材料が、金の超微粒子を効率よく担持し、反応ガスとの接触効率が高いことを意味している。 A wet synthesis method using calcium nitrate and ammonium dihydrogen phosphate as a precursor, which is one of the preferred preparation methods, adjusts the pH in the same way as an aqueous calcium nitrate solution adjusted to an appropriate value with ammonia water or the like. The obtained ammonium dihydrogen phosphate aqueous solution is mixed to obtain a precipitate, which is washed and dried to obtain a carrier. There is also a preparation method of heating and baking at a high temperature of 300 ° C. or higher after drying treatment such as vacuum drying or standing at room temperature, but in the present invention, performing unnecessary heating before supporting gold ultrafine particles, The surface area is likely to decrease due to the progress of crystallization, and it is particularly preferable to avoid heating at 50 ° C. or higher. Due to the preparation at a low temperature, the composite material after supporting the gold has a large specific surface area preferable as a catalyst, for example, 50 m 2 / g or more, more preferably (described in accordance with claim 3) 80 m 2 / g or more. A product having a specific surface area of 5% is obtained. This means that the obtained inorganic composite material efficiently supports ultrafine gold particles and has high contact efficiency with the reaction gas.

リンとカルシウムからなるアパタイトは化学式ではCa10(PO(OH)で表され、リンとカルシウムの理論的な原子比はCa/P=5/3である。このアパタイトは比較的自由にCa/Pの比率を変化させることが出来るので、本発明においては、金を担持する担体として用いる場合は、そのCa/Pの原子比が5/3を下回るように調製したものを用いる。すなわち、本発明において、金の超微粒子を担持する担体として用いる前記アパタイトは、そのCa/Pの原子比が5/3を下回ることが必要であるが、その理由は、アパタイトの表面の電位が、金の水酸化物錯体が好ましく吸着する条件になるからであると推測される。本発明において、特に好ましい原子比は1.0〜1.6である。 Apatite composed of phosphorus and calcium is represented by the chemical formula Ca 10 (PO 4 ) 6 (OH) 2 , and the theoretical atomic ratio of phosphorus and calcium is Ca / P = 5/3. Since this apatite can change the ratio of Ca / P relatively freely, in the present invention, when used as a carrier for supporting gold, the atomic ratio of Ca / P is set to be less than 5/3. Use the prepared one. That is, in the present invention, the apatite used as a carrier for supporting gold ultrafine particles needs to have an Ca / P atomic ratio of less than 5/3 because the potential of the surface of the apatite is It is presumed that this is because the gold hydroxide complex is preferably adsorbed. In the present invention, a particularly preferred atomic ratio is 1.0 to 1.6.

本発明において、前記アパタイト担体に担持されている金の超微粒子の平均粒径は、これまでに公知になっている酸化チタン、酸化ケイ素、アルミナ、水酸化マグネシウムなどの担体上に担持された金触媒では10ナノメートル以下、好ましくは5ナノメートル以下の状態で高い一酸化炭素の酸化活性を示しているという事実より、10ナノメートル以下、好ましくは、5ナノメートル以下であることが望ましい。   In the present invention, the average particle size of the ultrafine gold particles supported on the apatite support is such that the gold supported on supports such as titanium oxide, silicon oxide, alumina, and magnesium hydroxide that have been known so far. In view of the fact that the catalyst exhibits high carbon monoxide oxidizing activity in a state of 10 nanometers or less, preferably 5 nanometers or less, it is desirable that the catalyst be 10 nanometers or less, preferably 5 nanometers or less.

次に、一酸化炭素除去に効果的な金の複合化方法について詳述する。
金の超微粒子の担持方法としては、前述の担体の表面に均一に直径10nm以下の粒子を担持することができる析出沈殿法が最も好ましい。
以下、析出沈殿法の概要を述べる。なお、この析沈殿法は、酸化チタン担体に金を担持する手法としてすでに公知であるが、リンとカルシウムの原子比であるCa/Pの値が5/3を下回るアパタイト担体に適用して成功した例はまだ知られていない。
Next, a gold compounding method effective for removing carbon monoxide will be described in detail.
As the method for supporting the ultrafine gold particles, the precipitation method that can uniformly support particles having a diameter of 10 nm or less on the surface of the carrier is most preferable.
The outline of the precipitation method is described below. This precipitation method is already known as a technique for supporting gold on a titanium oxide support, but has been successfully applied to an apatite support in which the value of Ca / P, which is the atomic ratio of phosphorus and calcium, is less than 5/3. The examples that have been made are not yet known.

水溶性の塩化金酸(テトラクロロ金酸)をイオン交換水などに溶解し酸性の水溶液を調製する。その溶液にアルカリを添加して中和しpHの値が中性〜アルカリ性である7.0以上に調整する。この場合、pHの値が7.0未満である酸性側では、アパタイトの溶解の恐れがあり、あまり好ましくはない。ここで用いることができるアルカリは特に限定されるものではないが、水酸化ナトリウムがもっとも好ましく、それ以外にはアンモニア水、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウム、炭酸ナトリウム、炭酸水素ナトリウムなども好ましく用いられる。この際、金原子に配位している塩素配位子(Cl)が水酸化物配位子(OH)に交換される。金に水酸化物イオンが配位している状態になると、アパタイトの表面との電気的親和力が働き、金錯体はアパタイト表面に高分散状態で吸着する。pHの調整後のスラリー液を30〜80℃に保ち、好ましくは1分〜24時間、さらに好ましくは1時間〜5時間撹拌し、吸着状態を安定化させるのが好ましい。金錯体が十分吸着した後に、蒸留水、イオン交換水などで十分に洗浄し、残留している塩素や、吸着しきれなかった金錯体を洗浄除去して、真空乾燥などの方法で乾燥処理を行う。その後、金属の担持後は金属を活性状態にするために適切な温度での加熱が好ましい。活性化のための加熱温度は200℃〜700℃が好ましく、中でも250℃〜450℃が特に好ましい。
この方法を用いると、含浸法など他の公知の手法を用いたときと異なり、アパタイト表面に担持された金の粒子は、10ナノメートルを超える大きな粒子に凝集することがなく、10ナノメートル以下のほぼ均一な超微粒子状で担持することが出来る。
A water-soluble chloroauric acid (tetrachloroauric acid) is dissolved in ion-exchanged water to prepare an acidic aqueous solution. The solution is neutralized by adding alkali, and the pH value is adjusted to 7.0 or more, which is neutral to alkaline. In this case, on the acidic side where the pH value is less than 7.0, the apatite may be dissolved, which is not preferable. The alkali that can be used here is not particularly limited, but sodium hydroxide is most preferable, and other than that, ammonia water, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, sodium carbonate, Sodium bicarbonate and the like are also preferably used. At this time, the chlorine ligand (Cl) coordinated to the gold atom is exchanged for the hydroxide ligand (OH). When the hydroxide ions are coordinated to gold, electrical affinity with the surface of the apatite works, and the gold complex is adsorbed on the apatite surface in a highly dispersed state. The slurry after the pH adjustment is maintained at 30 to 80 ° C., and preferably stirred for 1 minute to 24 hours, more preferably 1 hour to 5 hours to stabilize the adsorption state. After the gold complex has been sufficiently adsorbed, it is thoroughly washed with distilled water, ion exchange water, etc., and residual chlorine and gold complex that cannot be adsorbed are washed away and dried by vacuum drying or other methods. Do. Thereafter, after loading the metal, heating at an appropriate temperature is preferable to bring the metal into an active state. The heating temperature for activation is preferably 200 ° C to 700 ° C, and particularly preferably 250 ° C to 450 ° C.
When this method is used, unlike other known methods such as the impregnation method, the gold particles supported on the apatite surface do not aggregate into large particles exceeding 10 nanometers and 10 nanometers or less. It can be supported in the form of almost uniform ultrafine particles.

一酸化炭素が微量含まれているガス中から一酸化炭素を酸素と反応させて除去する反応は、大きく2種類の用途がある。一つは、空気中からの除去、もう一つは水素中からの除去である。ここでは、空気中の除去を中心に述べるが、水素からの除去にも本触媒は適用可能である。   The reaction for removing carbon monoxide by reacting it with oxygen from a gas containing a small amount of carbon monoxide has two major uses. One is removal from the air, and the other is removal from hydrogen. Here, the description will focus on the removal in the air, but the present catalyst can also be applied to the removal from hydrogen.

空気は十分に乾燥剤などを用いて十分に乾燥した状態から、日常生活空間での相対湿度の最も高い状態に相当する相対湿度100%までの範囲で好ましく用いることが出来る。触媒の使用法は、燃料の不完全燃焼や喫煙の副流煙など、何らかの理由で微量の一酸化炭素を含有する空気をポンプやファンなどを用いて触媒を充填した層を通過させるか、触媒や触媒を塗布した支持体に吹き付けるなどの方法で、効率的に接触させ、一酸化炭素を二酸化炭素に変換しほぼ無害化する。二酸化炭素も、2%以上で呼吸困難のような毒性を有するが、1%以下の低濃度では、一酸化炭素と比較すれば人体に対する影響は極めて少ない。
次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
Air can be preferably used in a range from a sufficiently dried state using a desiccant or the like to a relative humidity of 100% corresponding to the highest relative humidity in the daily living space. The catalyst can be used by passing air containing a minute amount of carbon monoxide for some reason, such as incomplete combustion of fuel or smoking sidestream smoke, through a layer filled with catalyst using a pump or fan, etc. The carbon monoxide is converted into carbon dioxide and made almost harmless by contacting it efficiently, for example, by spraying on a support coated with a catalyst. Carbon dioxide also has toxicity such as dyspnea at 2% or more, but at a low concentration of 1% or less, there is very little influence on the human body compared to carbon monoxide.
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

〈アパタイトの調製〉
所定量の硝酸カルシウム4水和物をテフロン(登録商標)製薬さじで計り取り、ビーカーで水に溶解した。その後、アンモニア水と混合しpH11〜12になるのを確認し溶液(A)とした。所定量のリン酸水素二アンモニウムを計りとり、ビーカーで水に溶解した。その後、ドラフトでアンモニア水と混合し生じた沈殿物が完全に溶解するまでイオン交換水を加えた。pHは11〜12になるのを確認した。この溶液を溶液(B)とした。
溶液(A)を撹拌羽根で撹拌しながら、溶液(B)をスポイト等でゆっくりと徐々に滴下し、乳白色の沈殿物を得た。撹拌羽根で120分撹拌後、室温で一晩放置し沈殿物の熟成を行った。
熟成後の沈殿物を遠心分離装置を用いてイオン交換水で洗浄し最後に吸引濾過を行い沈殿物を分離した。その後、室温で48時間真空乾燥処理を行った。ここまでの工程で、温度が50℃を上回った状態にならないようにした。
<Preparation of apatite>
A predetermined amount of calcium nitrate tetrahydrate was weighed with a Teflon (registered trademark) pharmaceutical spoon and dissolved in water in a beaker. Then, it mixed with ammonia water and it was confirmed that it became pH11-12, and it was set as the solution (A). A predetermined amount of diammonium hydrogen phosphate was measured and dissolved in water in a beaker. Thereafter, ion-exchanged water was added until the precipitate formed by mixing with ammonia water in a draft was completely dissolved. It was confirmed that the pH was 11-12. This solution was designated as solution (B).
While the solution (A) was stirred with a stirring blade, the solution (B) was slowly dropped slowly with a dropper or the like to obtain a milky white precipitate. After stirring for 120 minutes with a stirring blade, the mixture was allowed to stand overnight at room temperature to age the precipitate.
The precipitate after aging was washed with ion-exchanged water using a centrifugal separator and finally subjected to suction filtration to separate the precipitate. Thereafter, vacuum drying was performed at room temperature for 48 hours. In the process up to here, the temperature was prevented from exceeding 50 ° C.

上記の所定量を代えて、カルシウムとリンのモル比(Ca/O)の値が、1.40、5/3(≒1.67 以下、「1.67」と記載する。)、1.8となるように3種のアパタイトを同様な手法で合成した。それぞれの比表面積をBET法で測定し、Ca/P比が1.4のアパタイトは199m/g、Ca/P比が1.67のアパタイトは173m/g、Ca/P比が1.8のアパタイトは197m/gであった。 Instead of the above predetermined amount, the molar ratio of calcium to phosphorus (Ca / O) is 1.40, 5/3 (≈1.67 or less, described as “1.67”). Three types of apatite were synthesized by the same method so as to be 8. Each specific surface area was measured by the BET method. Apatite with a Ca / P ratio of 1.4 was 199 m 2 / g, apatite with a Ca / P ratio of 1.67 was 173 m 2 / g, and the Ca / P ratio was 1. The apatite of 8 was 197 m 2 / g.

X線回折測定をRIGAKU-RINT2000を用いて行った。比較対象の和光純薬株式会社製の単斜晶構造のアパタイトと比較した結果、本法はピークの鋭さなどから結晶性が落ちるが、同じ位置にピークが現れ、また、帰属できない不明ピークも無かったので、アパタイト構造が得られていることが確認できた。   X-ray diffraction measurement was performed using RIGAKU-RINT2000. As a result of comparison with the monoclinic structure apatite manufactured by Wako Pure Chemical Industries, Ltd., the crystallinity drops due to the sharpness of the peak, etc., but the peak appears at the same position, and there are no unknown peaks that cannot be assigned. Therefore, it was confirmed that an apatite structure was obtained.

〈金超微粒子の担持〉
塩化金酸4水和物を所定量計り取り、イオン交換水に溶解した。充分溶解させた後に、水酸化ナトリウムの希釈溶液を用いてpHを8.6〜8.8の範囲に調整した。その後、上述の乾燥後のアパタイト粉末を溶液に分散しそのスラリー液を70℃で3時間撹拌した。その後、金が吸着したアパタイトを遠心分離し、イオン交換水で十分洗浄後、室温で一晩、真空乾燥した。その後、乾燥後のアパタイト粉末を空気中で400℃で加熱焼成し、紫色の金担持アパタイト触媒を得た。フルイを用いて、粒度を調節し反応に供した。BET法で表面積を測定したところCa/P比が1.4の担体を用いて調整した触媒は120m/g、同様にCa/P比が1.67のアパタイト担体では109m/g、Ca/P比が1.8の担体では108m/gであった。
<Supporting ultrafine gold particles>
A predetermined amount of chloroauric acid tetrahydrate was weighed and dissolved in ion-exchanged water. After sufficiently dissolving, the pH was adjusted to the range of 8.6 to 8.8 using a diluted solution of sodium hydroxide. Thereafter, the apatite powder after drying was dispersed in the solution, and the slurry was stirred at 70 ° C. for 3 hours. Thereafter, the apatite on which gold was adsorbed was centrifuged, sufficiently washed with ion-exchanged water, and then vacuum-dried overnight at room temperature. Thereafter, the dried apatite powder was heated and fired at 400 ° C. in the air to obtain a purple gold-supported apatite catalyst. Using a sieve, the particle size was adjusted and subjected to the reaction. When the surface area was measured by the BET method, the catalyst prepared using a carrier having a Ca / P ratio of 1.4 was 120 m 2 / g, and similarly, the apatite carrier having a Ca / P ratio of 1.67 was 109 m 2 / g. The carrier having a / P ratio of 1.8 was 108 m 2 / g.

〈空気中の一酸化炭素の酸化除去活性の測定〉
前記触媒を100ミリグラム量り取り、ガラス製の反応管に充填した。250℃で30分乾燥空気を流通し、加熱処理をした後に、所定温度まで冷却した。その後、反応ガスに切り替え触媒の活性を測定した。反応ガスは、一酸化炭素を1.0体積%含有する乾燥空気で、流速は毎分33ミリリットルになるようにマスフローコントローラーで調節した。また、反応ガスに含まれる水分量を静電容量式露点計にて測定した。触媒層を通さないバイパスラインでガスクロマトグラフ(島津製作所GC-8A)の感度校正を行い、触媒の一酸化炭素の除去活性である一酸化炭素除去率を一酸化炭素に帰属されるピーク面積の減少量を用い以下の式で算出した。
除去率(%)=(バイパスラインの面積値−触媒層通過後の面積値)÷(バイパスラインの面積値)×100
<Measurement of oxidation removal activity of carbon monoxide in air>
100 mg of the catalyst was weighed and filled into a glass reaction tube. Dry air was circulated at 250 ° C. for 30 minutes, heat treatment was performed, and then cooled to a predetermined temperature. Thereafter, the activity of the catalyst was measured by switching to the reaction gas. The reaction gas was dry air containing 1.0% by volume of carbon monoxide, and the flow rate was adjusted with a mass flow controller so that the flow rate was 33 ml / min. Further, the amount of water contained in the reaction gas was measured with a capacitance type dew point meter. The sensitivity of the gas chromatograph (Shimadzu GC-8A) is calibrated with a bypass line that does not pass through the catalyst layer, and the carbon monoxide removal rate, which is the carbon monoxide removal activity of the catalyst, is reduced in the peak area attributed to carbon monoxide. It calculated with the following formula | equation using the quantity.
Removal rate (%) = (Area value of bypass line−Area value after passing through catalyst layer) ÷ (Area value of bypass line) × 100

〈触媒の活性比較〉
触媒調製法において、Ca/P比=1.4、溶液に溶解した金の仕込み量5.0wt%調製操作を行った触媒では、室温(20℃)において、触媒層通化後のガス中の一酸化炭素含有量がガスクロマトグラフの感度限界以下まで低下しCO除去率=100%となり、優れた酸化除去活性を示した。そのとき、触媒層の温度がわずかに上昇して、発熱反応である一酸化炭素の酸化反応が進行していることが明らかになった。露点計による露点温度は−50℃であった。
また、反応温度−15℃まで温度を低下させても、一酸化炭素の転化率=100%を維持した。さらに反応温度を−37℃まで低下させても、転化率は50%を下回ることは無かった。この実施例によるCO除去反応の結果をグラフに表したのが、図1である。
<Catalyst activity comparison>
In the catalyst preparation method, a catalyst having a Ca / P ratio = 1.4 and a preparation amount of 5.0 wt% of gold dissolved in a solution was prepared at a room temperature (20 ° C.) at one temperature in the gas after passing through the catalyst layer. The carbon oxide content decreased to below the sensitivity limit of the gas chromatograph, and the CO removal rate was 100%, indicating excellent oxidation removal activity. At that time, it was revealed that the temperature of the catalyst layer was slightly increased, and the oxidation reaction of carbon monoxide, which was an exothermic reaction, proceeded. The dew point temperature measured by a dew point meter was −50 ° C.
Further, even when the temperature was lowered to −15 ° C., the conversion rate of carbon monoxide = 100% was maintained. Further, even when the reaction temperature was lowered to -37 ° C, the conversion rate did not fall below 50%. FIG. 1 is a graph showing the results of the CO removal reaction according to this example.

この活性は、最近の文献で公開されている、金を酸化セリウムに担持した触媒(Journal of Catalysis 237 (2006) 303-313、Applied Catalysis A:General 299 (2006) 266-273)、金を酸化鉄に担持した触媒(Applied Catalysis A:General 291 (2005) 151-161)、金をゼオライトに担持した触媒(Applied Catalysis A:General 291 (2005) 162-169)に匹敵、又はそれらを上回っており優秀な活性であるといえる。   This activity is disclosed in a recent literature, gold supported on cerium oxide catalyst (Journal of Catalysis 237 (2006) 303-313, Applied Catalysis A: General 299 (2006) 266-273), oxidizing gold. Compared to or better than catalysts supported on iron (Applied Catalysis A: General 291 (2005) 151-161), catalysts supported on zeolite (Applied Catalysis A: General 291 (2005) 162-169) It can be said that it is excellent activity.

〈比較例〉
実施例と同様の手法でCa/Pの原子比が理論値である1.67になるように調製したアパタイト担体を用いて実施例と同様に金を担持し、CO酸化反応を行った。反応温度−4℃で除去率が48.6%と、実施例よりも劣る結果になった。またCa/Pの原子比が理論値を上回る1.8になるように調製した触媒では反応温度2℃でCO除去率が64%と実施例に劣った。この結果より、担体の仕込みCa/P原子比に活性は大きく影響されて、理論比の1.67およびそれを上回る値の担体では十分な活性を得にくいことが明らかであり、実施例のように、仕込み時のCa/P比を1.67よりも小さい値にする効果が大きいことが明確にわかる。
<Comparative example>
Using an apatite support prepared by the same method as in the example so that the atomic ratio of Ca / P was 1.67 which is the theoretical value, gold was supported in the same manner as in the example and a CO oxidation reaction was performed. The removal rate was 48.6% at a reaction temperature of −4 ° C., which was inferior to the examples. Moreover, the catalyst prepared so that the atomic ratio of Ca / P was 1.8, which exceeds the theoretical value, was inferior to the examples with a CO removal rate of 64% at a reaction temperature of 2 ° C. From this result, it is clear that the activity is greatly influenced by the charged Ca / P atomic ratio of the carrier, and it is difficult to obtain a sufficient activity with a carrier having a theoretical ratio of 1.67 and a value exceeding that, as in the examples. In addition, it can be clearly seen that the effect of making the Ca / P ratio at the time of preparation smaller than 1.67 is great.

〈空気中の水素の酸化除去活性の測定〉
前述の活性測定において一酸化炭素を1.0%含有する空気ガスに代えて、水素を1.0%含有する空気ガスを流通させ、水素の酸化除去活性の測定を行った。測定装置、測定方法、活性算出方法は、一酸化炭素の場合と同じ条件で行った。その結果を、図2に示す。CO酸化よりも高温が必要であり、水素中のCO除去に必要な、水素を酸化せずにCOを酸化する機能が期待でき、有効な触媒となりうることが示唆される。
<Measurement of oxidation removal activity of hydrogen in air>
Instead of air gas containing 1.0% carbon monoxide in the above-described activity measurement, air gas containing 1.0% hydrogen was circulated to measure the oxidation removal activity of hydrogen. The measurement apparatus, measurement method, and activity calculation method were performed under the same conditions as in the case of carbon monoxide. The result is shown in FIG. A higher temperature than CO oxidation is required, and a function of oxidizing CO without oxidizing hydrogen necessary for removing CO in hydrogen can be expected, suggesting that it can be an effective catalyst.

〈アパタイトに担持した金の超微粒子の透過電子顕微鏡による撮影〉
実施例の一酸化炭素の除去性能が高い触媒を透過型電子顕微鏡を用いて観察した。その結果を図3に示す。図中、4個の矢印で、代表的な粒子を示しているが、この濃い灰色の粒子が、金の超微粒子に帰属され、直径は約2〜4ナノメートルであった。また、金の超微粒子は、一箇所に固まるようなことは無く、担体の表面全体に均一に分散していることも確認できた。
<Photograph of ultrafine gold particles supported on apatite by transmission electron microscope>
Catalysts having high carbon monoxide removal performance in the examples were observed using a transmission electron microscope. The result is shown in FIG. In the figure, four arrows indicate representative particles, but these dark gray particles are attributed to gold ultrafine particles and have a diameter of about 2 to 4 nanometers. It was also confirmed that the gold ultrafine particles did not harden in one place and were uniformly dispersed over the entire surface of the carrier.

〈X線回折による分析〉
活性の高いCa/P比が1.4の触媒のX線回折(XRD)測定をRIGAKU RINT2000型X線回折装置を用いて行った。その結果を図4に示す。図中、(1)は比較用の標準試料として測定した、単斜晶構造のヒドロキシアパタイト(和光純薬株式会社製)である。Ca/Pは理論値の1.67である。(2)は実施例に示した湿式合成法で調製したCa/P比が1.4の担体で、室温での真空乾燥が終わった直後(金粒子担持前)のXRDパターンで、(3)は(2)の担体に金粒子を担持した処理後に400度で3時間加熱焼成した後の触媒のXRDパターンである。(2)は(1)の参照用試料に比べて細かいピークが不明瞭であったり、ピークの幅が広くなっているが、ピークの位置はほぼ同じで、結晶性の低いアパタイト構造になっているといえる。また、(1)のピークに帰属できない不明ピークも無く、アパタイト構造以外の結晶構造の存在は確認できない。(3)は金粒子の担持後の触媒であるが、金や金化合物に帰属されるピークは確認できない。XRDでは高分散状態や直径4〜5nm以下の粒子は観測できないとされているので、金は4〜5nm以下の超微粒子状になっていると推定された。また、(1)、(2)と比較しても大きな結晶構造の変化は見られなかった。したがって、(3)は担体が結晶性の低いアパタイト構造をとっていることを示しており、透過電子顕微鏡写真と併せて、アパタイトに金の超微粒子を複合化させた無機材料の調製が成功したことを示している。
<Analysis by X-ray diffraction>
X-ray diffraction (XRD) measurement of a highly active catalyst having a Ca / P ratio of 1.4 was performed using a RIGAKU RINT2000 X-ray diffractometer. The results are shown in FIG. In the figure, (1) is a monoclinic structure hydroxyapatite (manufactured by Wako Pure Chemical Industries, Ltd.) measured as a standard sample for comparison. Ca / P is a theoretical value of 1.67. (2) is a carrier with a Ca / P ratio of 1.4 prepared by the wet synthesis method shown in the Examples, and is an XRD pattern immediately after vacuum drying at room temperature (before supporting gold particles). (3) FIG. 4 is an XRD pattern of the catalyst after heat treatment at 400 ° C. for 3 hours after the treatment of supporting the gold particles on the carrier of (2). In (2), the fine peak is not clear compared to the reference sample in (1) or the peak width is wide, but the peak position is almost the same, and the apatite structure has low crystallinity. It can be said that. Further, there is no unknown peak that cannot be attributed to the peak of (1), and the presence of a crystal structure other than the apatite structure cannot be confirmed. (3) is a catalyst after supporting gold particles, but no peak attributed to gold or a gold compound can be confirmed. In XRD, since it is said that a highly dispersed state and particles having a diameter of 4 to 5 nm or less cannot be observed, it was estimated that gold is in the form of ultrafine particles of 4 to 5 nm or less. Further, even when compared with (1) and (2), no significant change in the crystal structure was observed. Therefore, (3) shows that the carrier has an apatite structure with low crystallinity, and in combination with a transmission electron micrograph, preparation of an inorganic material in which gold ultrafine particles are complexed with apatite was successful. It is shown that.

生活空間において、本発明の一酸化炭素除去用触媒を、空気浄化フィルターなどに塗布して用いることにより、空気中の一酸化炭素を二酸化炭素に変換し除去することができる。また、水素を用いた燃料電池において、本発明の一酸化炭素除去用触媒を用いることにより、水素の酸化を少量に防ぎつつ一酸化炭素だけを除去することができる。   In the living space, the carbon monoxide removing catalyst of the present invention can be applied to an air purification filter or the like to convert carbon monoxide in the air into carbon dioxide and remove it. Further, in the fuel cell using hydrogen, by using the carbon monoxide removing catalyst of the present invention, only carbon monoxide can be removed while preventing oxidation of hydrogen to a small amount.

実施例によるCO除去反応の結果を示すグラフThe graph which shows the result of CO removal reaction by an Example 水素の酸化除去反応の結果を示すグラフGraph showing the result of oxidation removal reaction of hydrogen 触媒の透過電子顕微鏡写真Transmission electron micrograph of the catalyst 触媒と参照用標準試料のX線回折パターンの比較Comparison of X-ray diffraction patterns of catalyst and reference standard sample

Claims (7)

カルシウムとリンのモル比率を示すCa/Pの原子比の値が、アパタイトの化学式Ca 10 (PO (OH) から導かれる理論値である5/3を下回るように調製したカルシウムとリンからなるアパタイトを担体とし、該アパタイト担体に、金の超微粒子を担持させた無機複合材料の製造方法であって、
塩素配位子を持つ金錯体の水溶液にアルカリ溶液を添加してpHを7.0以上に調整することにより、前記塩素配位子が水酸化物配位子に交換された金の水酸化物錯体を得、得られた金の水酸化物錯体と前記アパタイト担体の表面の電気的親和力により、或いは得られた金の水酸化物錯体と前記アパタイトの構成元素とのイオン交換により、前記アパタイト担体の表面に金の水酸化物錯体を担持させる工程を有することを特徴とする無機複合材料の製造方法。
Calcium prepared so that the value of the atomic ratio of Ca / P indicating the molar ratio of calcium to phosphorus is less than 5/3 which is a theoretical value derived from the chemical formula Ca 10 (PO 4 ) 6 (OH) 2 of apatite A method for producing an inorganic composite material in which apatite composed of phosphorus is used as a carrier, and gold ultrafine particles are supported on the apatite carrier,
Gold hydroxide in which the chlorine ligand is replaced with a hydroxide ligand by adding an alkaline solution to an aqueous solution of a gold complex having a chlorine ligand and adjusting the pH to 7.0 or higher The apatite support is obtained by obtaining an electric affinity of the obtained gold hydroxide complex and the surface of the apatite support, or by ion exchange between the obtained gold hydroxide complex and the constituent elements of the apatite. A method for producing an inorganic composite material, comprising a step of supporting a gold hydroxide complex on the surface of a metal.
前記アパタイト担体を調製するに際し、金の超微粒子を担持させる以前には、50℃を超える温度に加熱しないことを特徴とする請求項1に記載の無機複合材料の製造方法。 2. The method for producing an inorganic composite material according to claim 1, wherein the apatite carrier is not heated to a temperature exceeding 50 ° C. before the gold ultrafine particles are supported. 請求項1又は2に記載の製造方法で製造された無機複合材料であって、前記金の超微粒子の平均粒径が、10ナノメートル以下であることを特徴とする無機複合材料。 An inorganic composite material produced by the production method according to claim 1 or 2, the average particle diameter of the ultrafine particles of the gold-free inorganic composite material you wherein a is 10 nm or less. 前記金の超微粒子を担持させた複合材料の比表面積が、50m/gを超えることを特徴とする請求項に記載の無機複合材料。 The inorganic composite material according to claim 3 , wherein a specific surface area of the composite material supporting the gold ultrafine particles exceeds 50 m 2 / g. 一酸化炭素を酸素と反応させて二酸化炭素に転換することにより一酸化炭素を除去するのに用いる触媒であって、請求項3又は4に記載の無機複合材料からなることを特徴とする触媒。5. A catalyst used for removing carbon monoxide by reacting carbon monoxide with oxygen to convert it to carbon dioxide, which comprises the inorganic composite material according to claim 3 or 4. 触媒存在下、ガス中の微量の一酸化炭素を酸素と反応させて二酸化炭素に転換することにより酸化除去し、ガスを無害化する方法であって、該触媒として請求項3又は4に記載の無機複合材料を用いることを特徴とする微量一酸化炭素の酸化除去方法。 A method for detoxifying a gas by reacting oxygen with a small amount of carbon monoxide in a gas in the presence of a catalyst to convert it into carbon dioxide, thereby detoxifying the gas, wherein the catalyst according to claim 3 or 4 is used. A method for oxidizing and removing trace amounts of carbon monoxide, characterized by using an inorganic composite material. 前記ガスが、空気又は水素である請求項6に記載の微量一酸化炭素の酸化除去方法。   The method for oxidizing and removing a trace amount of carbon monoxide according to claim 6, wherein the gas is air or hydrogen.
JP2006127181A 2006-05-01 2006-05-01 INORGANIC COMPOSITE MATERIAL COMPRISING GOLD ULTRAFINE PARTICLES AND Apatite, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR OXIDATION AND REMOVAL OF MICROCOAL MONOXIDE USING THE SAME Expired - Fee Related JP4963036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127181A JP4963036B2 (en) 2006-05-01 2006-05-01 INORGANIC COMPOSITE MATERIAL COMPRISING GOLD ULTRAFINE PARTICLES AND Apatite, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR OXIDATION AND REMOVAL OF MICROCOAL MONOXIDE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127181A JP4963036B2 (en) 2006-05-01 2006-05-01 INORGANIC COMPOSITE MATERIAL COMPRISING GOLD ULTRAFINE PARTICLES AND Apatite, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR OXIDATION AND REMOVAL OF MICROCOAL MONOXIDE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2007297245A JP2007297245A (en) 2007-11-15
JP4963036B2 true JP4963036B2 (en) 2012-06-27

Family

ID=38767076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127181A Expired - Fee Related JP4963036B2 (en) 2006-05-01 2006-05-01 INORGANIC COMPOSITE MATERIAL COMPRISING GOLD ULTRAFINE PARTICLES AND Apatite, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR OXIDATION AND REMOVAL OF MICROCOAL MONOXIDE USING THE SAME

Country Status (1)

Country Link
JP (1) JP4963036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031195A1 (en) * 2011-04-19 2014-01-30 National Institute Of Advanced Industrial Science And Technology Anionic gold-hydroxo complex solution and process for producing material loaded with gold nanoparticles
KR101424910B1 (en) * 2012-01-11 2014-07-31 주식회사 엘지화학 Cnt and method for manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217343A (en) * 1998-01-30 1999-08-10 Sangi Co Ltd Synthesis of chemical industrial feedstock and high-octane fuel

Also Published As

Publication number Publication date
JP2007297245A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
CN108514878B (en) Monoatomic noble metal catalyst, preparation method thereof and application thereof in low-temperature catalytic oxidation of formaldehyde
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
JP6521317B2 (en) Metal complexed carbon nitride for deodorization and manufacturing method thereof
JP4803414B2 (en) Novel Z-scheme-type photocatalytic system for complete decomposition of visible light active water and method for complete decomposition of water using said catalyst
JP5582527B2 (en) Method for producing graphitic carbon nitride
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
WO2014083772A1 (en) Method for producing metal nanoparticle complex, and metal nanoparticle complex produced by said method
JPWO2008132824A1 (en) Titanium oxide photocatalyst and method for producing the same
JP5809417B2 (en) Adsorbent capable of regenerating light and its use
JP5071928B2 (en) Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones
JP4119974B2 (en) Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same
CN110711579B (en) Silver-manganese catalyst for decomposing ozone, preparation method and application thereof
JP5888719B2 (en) Sulfur compound adsorbent
CN112473665A (en) Supported silver-manganese catalyst and preparation method and application thereof
JP4963036B2 (en) INORGANIC COMPOSITE MATERIAL COMPRISING GOLD ULTRAFINE PARTICLES AND Apatite, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR OXIDATION AND REMOVAL OF MICROCOAL MONOXIDE USING THE SAME
JP2011136993A (en) Platinum complex, and production method and application thereof
JP5503155B2 (en) Carbon monoxide removal filter
JP2014073956A (en) Method of oxidizing carbon monoxide to carbon dioxide by light
JP5105709B2 (en) Water gas shift reaction catalyst
JP2004025032A (en) High activity photocatalyst, and method for producing the same
JP4591920B2 (en) Photocatalyst and method for producing the same
Zeng et al. Precious metal nanoparticles supported on KOH pretreated activated carbon under microwave radiation as a catalyst for selective hydrogenation of cinnamaldehyde
KR102212649B1 (en) Platinum-titanium dioxide catalyst, its production method, and its production apparatus
JP2013236998A (en) Carbon monoxide removal catalyst, carbon monoxide removing filter, and method of manufacturing carbon monoxide removal catalyst
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees