JP4962796B2 - Redox current measuring device - Google Patents

Redox current measuring device Download PDF

Info

Publication number
JP4962796B2
JP4962796B2 JP2008085066A JP2008085066A JP4962796B2 JP 4962796 B2 JP4962796 B2 JP 4962796B2 JP 2008085066 A JP2008085066 A JP 2008085066A JP 2008085066 A JP2008085066 A JP 2008085066A JP 4962796 B2 JP4962796 B2 JP 4962796B2
Authority
JP
Japan
Prior art keywords
working electrode
oxidation
motor
current measuring
reduction current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008085066A
Other languages
Japanese (ja)
Other versions
JP2009236787A (en
Inventor
博光 桜井
丈夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2008085066A priority Critical patent/JP4962796B2/en
Publication of JP2009236787A publication Critical patent/JP2009236787A/en
Application granted granted Critical
Publication of JP4962796B2 publication Critical patent/JP4962796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description


本発明は、酸化還元電流測定装置に関するものであり、特に、連続的に精度よく酸化還元電流測定が可能な回転式又は振動式の酸化還元電流測定装置に関するものである。

The present invention relates to a redox current measuring device, and more particularly to a rotary or vibration type redox current measuring device capable of continuously and accurately measuring a redox current.

従来から、水道水、下水、プール水等の残留塩素、塩素要求量、二酸化塩素、亜塩素酸、溶存オゾン、過酸化水素等の測定を目的として、ポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定装置が用いられている。
たとえば、ポーラログラフ方式の酸化還元電流測定装置では、試料水に、白金や金などからなる作用極(検知極)と、銀や鉛などからなる対極とを浸漬し、両極間に所定の電圧を印加して作用極近傍において測定対象成分の電解還元(又は酸化)を生じさせたときに流れる電流を測定することにより測定対象成分の濃度を求めることができる。
Conventionally, measurement of redox current of polarographic method or galvanic cell method for the purpose of measuring residual chlorine, chlorine demand, chlorine dioxide, chlorous acid, dissolved ozone, hydrogen peroxide, etc. in tap water, sewage, pool water, etc. The device is used.
For example, in a polarographic redox current measuring device, a working electrode (detection electrode) made of platinum or gold and a counter electrode made of silver or lead are immersed in sample water, and a predetermined voltage is applied between both electrodes. Thus, the concentration of the measurement target component can be determined by measuring the current that flows when electrolytic reduction (or oxidation) of the measurement target component occurs in the vicinity of the working electrode.

このような酸化還元電流測定装置において測定される酸化還元電流は、拡散電流と呼ばれ、電解過程で、電極と接し、拡散による物質移動のために溶液本体と濃度勾配を生じている溶液の薄い層(拡散層)の中において、作用極表面に運ばれた測定対象成分が酸化還元されるときに流れる電流である。したがって、測定対象成分の濃度に応じた拡散電流(酸化還元電流)を得るためには、拡散層が常に新しく入れ替わるようにすることが必要である。このため、試料水を作用極表面に対して相対的に流動させることが行われている。試料水を作用極表面に対して相対的に流動させるには、作用極を具備した作用極支持体をモータで回転又は振動(歳差運動)させる方式がある。 The oxidation-reduction current measured in such an oxidation-reduction current measuring device is called a diffusion current, which is in contact with the electrode during the electrolysis process, and is a thin solution with a concentration gradient due to the mass transfer due to diffusion. In the layer (diffusion layer), this is a current that flows when the component to be measured carried to the working electrode surface is oxidized and reduced. Therefore, in order to obtain a diffusion current (oxidation reduction current) corresponding to the concentration of the component to be measured, it is necessary to constantly replace the diffusion layer. For this reason, the sample water is caused to flow relative to the working electrode surface. In order to cause the sample water to flow relative to the surface of the working electrode, there is a method of rotating or vibrating (precessing) a working electrode support provided with the working electrode with a motor.

このような方式では、試料水の通常の流速よりもはるかに大きい線速度で作用極支持体(作用極)が回転又は振動する。このため、試料水の流速と無関係に安定な拡散層を得ることができ、試料水の流速の変動による測定値への影響を受けにくい。
しかし、作用極表面には、対極で生成される電解物質や試料水中の挟雑物等の汚れが付着しやすく、これらの汚れが付着すると、作用極と対極の間に流れる電流値が減少し、測定対象成分の濃度指示値の低下を招く。
このため、従来から、研磨ビーズが収納されたキャップを作用極支持体を覆うようにして装着し、研磨ビーズの中で作用極支持体(作用極)をモータにより回転又は振動させることで、一定の線速度を得るとともに、作用極を研磨して汚れの付着を防止し、安定した測定を行うことができるようにしている(特許文献1、特許文献2、特許文献3参照)。
In such a system, the working electrode support (working electrode) rotates or vibrates at a linear velocity much higher than the normal flow rate of the sample water. For this reason, a stable diffusion layer can be obtained regardless of the flow rate of the sample water, and the measurement value due to fluctuations in the flow rate of the sample water is not easily affected.
However, the surface of the working electrode is likely to be contaminated with electrolytes generated at the counter electrode and contaminants in the sample water. When these stains are attached, the value of the current flowing between the working electrode and the counter electrode decreases. This causes a decrease in the concentration instruction value of the measurement target component.
For this reason, conventionally, a cap containing abrasive beads is attached so as to cover the working electrode support, and the working electrode support (working electrode) is rotated or vibrated by a motor in the abrasive beads. In addition, the working electrode is polished to prevent the adhesion of dirt, so that stable measurement can be performed (see Patent Document 1, Patent Document 2, and Patent Document 3).

実開平6−30764号公報Japanese Utility Model Publication No. 6-30764 特開2002−90339号公報JP 2002-90339 A 特開2004−340762号公報JP 2004-340762 A

これらの従来技術では、キャップと作用極支持体との間に研磨ビーズが挟まることにより、モータの通常の駆動力で作用極支持体を回転又は振動させることができなくなることがある(いわゆる異物かみ込み状態。以下「ビーズかみ状態」という。)。この場合、研磨ビーズによる作用極の研磨ができなくなるだけでなく、安定で新しい拡散層を得ることができなくなり、酸化還元電流の測定値は低下し、測定対象成分の濃度を正確に求めることができないという問題があった。
これに対し、酸化還元電流の測定値(測定対象成分の濃度測定値)が所定の値以下になった場合に警報を発するようにして、作業員が点検等することも行われている。しかし、測定値の低下は、当然、試料水中の測定対象成分の濃度が低下することによっても起こるので、いずれの原因により測定値が低下しているのかを迅速に判断することができない。このため、例えば、水道水、下水、プール水等の残留塩素濃度の監視システム等において、残留塩素濃度が低下したときに消毒剤を投入するよう設計されている場合に、消毒剤の投入遅れや過剰投入となってしまうという問題があった。
In these conventional techniques, if the abrasive beads are sandwiched between the cap and the working electrode support, the working electrode support may not be able to rotate or vibrate with the normal driving force of the motor (so-called foreign object engagement). (Hereinafter referred to as “bead bite state”). In this case, not only the working electrode cannot be polished with the abrasive beads, but also a stable and new diffusion layer cannot be obtained, the measured value of the oxidation-reduction current decreases, and the concentration of the component to be measured can be accurately obtained. There was a problem that I could not.
On the other hand, when the measured value of the oxidation-reduction current (measured concentration value of the component to be measured) becomes a predetermined value or less, an alarm is issued so that an operator can check. However, since the decrease in the measured value naturally occurs due to a decrease in the concentration of the measurement target component in the sample water, it is not possible to quickly determine which cause caused the decrease in the measured value. For this reason, for example, in a monitoring system for residual chlorine concentration in tap water, sewage, pool water, etc., when it is designed to inject a disinfectant when the residual chlorine concentration decreases, There was a problem of excessive input.

また、過電流保護回路を持たないモータの場合、ビーズかみ状態になってもモータ自体が停止することはない。しかし、作用極支持体の回転又は振動は停止してしまうので、酸化還元電流の測定値が低下する上、モータに過大電流が流れてモータが加熱、焼損するという問題があった。
一方、過電流保護回路を持つモータの場合、過負荷運転になればモータが停止するのでモータの加熱や焼損は回避できる。しかし、停止したモータを復帰させるためには、酸化還元電流測定装置の電源を作業員が一旦「断」にした後、再投入しなくてはならず、人手を介入させなければならないという問題や連続測定が中断されてしまうという問題があった。
さらに、酸化還元電流測定装置の電源を切らずに、停止したモータを自動的に復帰させるために、モータの電流値を監視し、電流がほとんど流れなくなったときに保護回路が働いたと判断して、モータへの電力供給回路を一旦遮断し、その後、電力供給を再開するような設計をすることも考えられる。しかし、この場合には、モータの電流値を監視する回路の追加が必要となり、コスト上昇の一因となる。
Further, in the case of a motor that does not have an overcurrent protection circuit, the motor itself does not stop even if it becomes a bead bite state. However, since the rotation or vibration of the working electrode support stops, there is a problem that the measured value of the oxidation-reduction current is lowered, and an excessive current flows through the motor to heat and burn the motor.
On the other hand, in the case of a motor having an overcurrent protection circuit, the motor stops when overload operation occurs, so that heating or burning of the motor can be avoided. However, in order to restore the stopped motor, the operator must turn off the power supply of the redox current measuring device once and then turn it back on. There was a problem that continuous measurement was interrupted.
Furthermore, in order to automatically return the stopped motor without turning off the redox current measuring device, the current value of the motor is monitored and it is determined that the protection circuit has been activated when almost no current flows. It is also conceivable to design such that the power supply circuit to the motor is temporarily cut off and then the power supply is resumed. However, in this case, it is necessary to add a circuit for monitoring the current value of the motor, which causes an increase in cost.

そこで、本発明の解決課題は、作用極支持体の回転又は振動が停止せず、また、作用極支持体の回転又は振動が停止した場合であっても、人手を介することなく回転又は振動が復帰させられることにより、測定対象成分の濃度に応じた酸化還元電流を連続的に精度よく測定することができる酸化還元電流測定装置を提供することにある。   Therefore, the problem to be solved by the present invention is that the rotation or vibration of the working electrode support does not stop, and even if the rotation or vibration of the working electrode support stops, rotation or vibration does not occur without human intervention. An object of the present invention is to provide a redox current measuring device capable of continuously and accurately measuring the redox current corresponding to the concentration of the component to be measured by being restored.

上記課題を解決するため、本発明が適用される酸化還元電流測定装置は、作用極と、対極と、前記作用極を備えた作用極支持体と、前記作用極支持体を回転又は振動させるモータと、を具備し、前記作用極支持体を回転又は振動させつつ前記作用極と前記対極との間に流れる酸化還元電流を測定する酸化還元電流測定装置であって、前記モータに対する電力供給を一時的に遮断することが可能な電源遮断手段と、前記電源遮断手段を制御する制御手段と、を備え、前記制御手段は、前記酸化還元電流の測定中に、前記電源遮断手段を制御することを特徴とする。   In order to solve the above problems, a redox current measuring apparatus to which the present invention is applied includes a working electrode, a counter electrode, a working electrode support including the working electrode, and a motor that rotates or vibrates the working electrode support. And a redox current measuring device that measures a redox current flowing between the working electrode and the counter electrode while rotating or vibrating the working electrode support, and temporarily supplying power to the motor. A power shut-off means capable of shutting off automatically, and a control means for controlling the power shut-off means. The control means controls the power shut-off means during measurement of the oxidation-reduction current. Features.

本発明において、前記制御手段は、前記電源遮断手段を1又は2以上の周期で制御することを特徴とすることができる。   In the present invention, the control means may control the power shut-off means at one or more cycles.

本発明によれば、酸化還元電流の測定中にモータに対する電力供給を一時的に遮断することができる(すなわち、モータの動作をオンオフさせることができる)ため、ビーズかみ状態になることが予防され、また、ビーズかみ状態になったとしてもそれを解消することができる。このため、作用極支持体の回転又は振動が停止しないか、あるいは、停止したとしても自動的に速やかに復帰させられ、測定対象成分の濃度に応じた酸化還元電流を連続的に精度よく測定することができる酸化還元電流測定装置を提供することが可能になる。   According to the present invention, since the power supply to the motor can be temporarily interrupted during the measurement of the oxidation-reduction current (that is, the operation of the motor can be turned on / off), the bead biting state is prevented. Moreover, even if it becomes a bead bite state, it can be eliminated. For this reason, the rotation or vibration of the working electrode support does not stop, or even if it stops, it can be automatically and quickly restored, and the oxidation-reduction current corresponding to the concentration of the component to be measured is continuously measured with high accuracy. It is possible to provide an oxidation-reduction current measuring apparatus that can perform the above-described process.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は、この実施形態に係る酸化還元電流測定装置1の全体構成の模式図である。
図1に示す酸化還元電流測定装置1は、作用極21及び対極22を具備する作用極支持体20並びにモータ12等から構成される検出器2、加電圧機構51、スイッチ機構52、演算制御部61、測定部62、表示部63、出力部64から構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a schematic diagram of the overall configuration of the oxidation-reduction current measuring apparatus 1 according to this embodiment.
The oxidation-reduction current measuring apparatus 1 shown in FIG. 1 includes a detector 2 including a working electrode support 20 having a working electrode 21 and a counter electrode 22, a motor 12, and the like, an applied voltage mechanism 51, a switch mechanism 52, and an arithmetic control unit. 61, a measurement unit 62, a display unit 63, and an output unit 64.

図1において、モータ12に接続する回路に設けられたスイッチ機構52は、通常は閉じられており、酸化還元電流測定装置1の電源が投入され、測定動作が可能な状態になると、モータ12には加電圧機構51を介して電力が供給される。検出器2の内部では、後に詳述するように作用極支持体20がモータ12に接続されており、モータ12の回転により振動(歳差運動)するようになっている。
また、測定部62は、演算制御部61からの制御信号により、作用極21と対極22との間に電圧を印加して両極に流れる酸化還元電流(拡散電流)を測定し、その測定値を演算制御部61に送る。
演算制御部61は、酸化還元電流の測定値等から測定対象成分の濃度を求め、表示部63に表示し、出力部64から外部に出力する。さらに、演算制御部61は、スイッチ機構52を酸化還元電流の測定中に所定のタイミングで開閉するよう制御する。これにより、モータ12への電力供給は一時的に遮断される。
In FIG. 1, the switch mechanism 52 provided in the circuit connected to the motor 12 is normally closed. When the power of the oxidation-reduction current measuring device 1 is turned on and the measurement operation is possible, the switch 12 is turned on. Is supplied with electric power through the applied voltage mechanism 51. Inside the detector 2, the working electrode support 20 is connected to the motor 12 as will be described in detail later, and vibrates (precesses) as the motor 12 rotates.
Further, the measuring unit 62 applies a voltage between the working electrode 21 and the counter electrode 22 according to a control signal from the arithmetic control unit 61 to measure an oxidation-reduction current (diffusion current) flowing in both electrodes, and the measured value is obtained. This is sent to the calculation control unit 61.
The arithmetic control unit 61 obtains the concentration of the measurement target component from the measured value of the oxidation-reduction current, displays it on the display unit 63, and outputs it from the output unit 64 to the outside. Further, the arithmetic control unit 61 controls the switch mechanism 52 to open and close at a predetermined timing during the measurement of the redox current. Thereby, the power supply to the motor 12 is temporarily interrupted.

次に、図2は、この実施形態に係る酸化還元電流測定装置1の検出部2の断面図である。
図2に示す酸化還元電流測定装置1の検出部2は、略円筒状のケース10が設けられ、このケース10の下端開口部には、軸中心部に貫通穴が穿設されたホルダ30が保持されている。また、ケース10の上端開口部には、コネクタ11が設けられ、このコネクタ11には、作用極21、対極22、モータ12などが電気的に接続されており(図示省略)、ケーブルを介して酸化還元電流測定装置1の測定部62や演算制御部61に接続される。
Next, FIG. 2 is a sectional view of the detection unit 2 of the oxidation-reduction current measuring apparatus 1 according to this embodiment.
The detection unit 2 of the oxidation-reduction current measuring apparatus 1 shown in FIG. 2 is provided with a substantially cylindrical case 10, and a holder 30 having a through-hole formed in the center of the shaft is provided at the lower end opening of the case 10. Is retained. In addition, a connector 11 is provided at the upper end opening of the case 10, and a working electrode 21, a counter electrode 22, a motor 12 and the like are electrically connected to the connector 11 (not shown), via a cable. It is connected to the measuring unit 62 and the calculation control unit 61 of the oxidation-reduction current measuring device 1.

ホルダ30の上部(ケース10の内部)には、モータ12が取り付けられており、モータ12の回転軸13には偏芯カップリング14が固着され、この偏芯カップリング14に連結軸15が連結されている。そして、連結軸15の偏芯カップリング14に連結している部位が円運動を行うようになっている。この連結軸15は略棒状に形成され、その下端から約1/3の部位に円形状のフランジ16がホルダ30の内周面に接するようにして保持され、さらに、このフランジ16の下面に作用極支持体20が連結されており、作用極支持体20はフランジ16を支点として振動(歳差運動)するように構成されている。 A motor 12 is attached to the upper part of the holder 30 (inside the case 10), and an eccentric coupling 14 is fixed to the rotating shaft 13 of the motor 12, and a connecting shaft 15 is connected to the eccentric coupling 14. Has been. And the site | part connected with the eccentric coupling 14 of the connection shaft 15 carries out a circular motion. The connecting shaft 15 is formed in a substantially rod shape, and a circular flange 16 is held at a position about 1/3 from the lower end of the connecting shaft 15 so as to be in contact with the inner peripheral surface of the holder 30, and further acts on the lower surface of the flange 16. The pole support 20 is connected, and the working electrode support 20 is configured to vibrate (precession) with the flange 16 as a fulcrum.

作用極支持体20の下端部には、金(Au)からなる作用極21が設けられており、前述の通り、コネクタ11を介して酸化還元電流測定装置1の測定部62に接続される。
また、このホルダ30の軸方向略中央部には、上下一対の円形の窓31が穿設されている。また、ホルダ30の下端近くには凹部32が周方向に形成され、かつ、その凹部32の全周にわたり塩化銀線(AgCl)からなる対極22が巻きつけられており、さらに、ホルダ30には、白金測温抵抗体(図示せず)が備えられ、これら対極22及び白金測温抵抗体は、コネクタ11を介して酸化還元電流測定装置1の測定部62に接続される。
ホルダ30の下端には、キャップ33が保持され、キャップ33の内部には、作用極21を研磨(洗浄)するためのビーズ34が多数収納されている。
A working electrode 21 made of gold (Au) is provided at the lower end of the working electrode support 20 and is connected to the measuring unit 62 of the oxidation-reduction current measuring apparatus 1 via the connector 11 as described above.
In addition, a pair of upper and lower circular windows 31 are formed in a substantially central portion in the axial direction of the holder 30. A recess 32 is formed in the circumferential direction near the lower end of the holder 30, and a counter electrode 22 made of silver chloride wire (AgCl) is wound around the entire periphery of the recess 32. A platinum resistance thermometer (not shown) is provided, and the counter electrode 22 and the platinum resistance thermometer are connected to the measuring unit 62 of the oxidation-reduction current measuring apparatus 1 via the connector 11.
A cap 33 is held at the lower end of the holder 30, and a large number of beads 34 for polishing (cleaning) the working electrode 21 are accommodated in the cap 33.

以上のような酸化還元電流測定装置1で酸化還元電流を測定するには、まず、試料水が導入・排出されることにより連続して試料水が流動するようにさせたフローセル(図示せず)に検出器2を浸漬し、酸化還元電流測定装置1を測定動作が可能な状態にする。すると、モータ12が作動し、回転軸13が回転する。このとき、連結軸15の偏芯カップリング14に連結している部位は円運動を行い、作用極支持体20はフランジ16を支点として振動(歳差運動)する。そして、作用極21と対極22との間に電圧を印加して両極に流れる酸化還元電流(拡散電流)を測定部62で測定し、演算制御部61において測定対象成分の濃度を求め、出力部53や表示部54に測定値を出力又は表示する。
なお、酸化還元電流の測定は、酸化還元電流測定装置1の動作中、連続的に行われる。
In order to measure the oxidation-reduction current with the oxidation-reduction current measuring apparatus 1 as described above, first, a flow cell (not shown) in which the sample water flows continuously by introducing and discharging the sample water. The detector 2 is soaked in to make the oxidation-reduction current measuring device 1 ready for the measurement operation. Then, the motor 12 operates and the rotating shaft 13 rotates. At this time, the portion of the connecting shaft 15 connected to the eccentric coupling 14 performs a circular motion, and the working electrode support 20 vibrates (precesses) using the flange 16 as a fulcrum. Then, a voltage is applied between the working electrode 21 and the counter electrode 22 to measure the oxidation-reduction current (diffusion current) flowing in both electrodes by the measuring unit 62, and the calculation control unit 61 obtains the concentration of the component to be measured, and the output unit The measured value is output or displayed on the display unit 53 or the display unit 54.
Note that the measurement of the oxidation-reduction current is continuously performed during the operation of the oxidation-reduction current measuring apparatus 1.

次に、この実施形態の動作を、図3を参照しつつ説明する。図3は、酸化還元電流測定装置1の測定動作時におけるスイッチ機構52の開閉状態(オフ・オン)の様子を示したタイミングチャートである。
スイッチ機構52は、酸化還元電流測定装置1の測定動作が開始されると同時に閉状態(以下「オン」ともいう。)にされる。すると、モータ12に電力が供給されて回転軸13が回転し、さらには、作用極支持体20が振動する。
そして、測定動作開始からオン時間T1が経過すると、スイッチ機構52は、制御手段により開状態(以下「オフ」ともいう。)にされ、オフ時間T2が経過すると制御手段により再びオンにされる。その後、またオン時間T1が経過した後、スイッチ機構52はオフにされ、オフ時間T2が経過するとオンにされ、以後、同様の動作が繰り返される。
すなわち、酸化還元電流測定装置1が連続的に稼動している間、酸化還元電流の測定は連続して行われるが、モータ12に対する電力供給は一時的に遮断されるよう制御されている。
なお、スイッチ機構52の開閉動作を制御する制御手段は、タイマ機構やマイコンによる制御等公知の手段を演算制御部61に設けることにより実現することができる。
Next, the operation of this embodiment will be described with reference to FIG. FIG. 3 is a timing chart showing an open / closed state (off / on) of the switch mechanism 52 during the measurement operation of the oxidation-reduction current measuring apparatus 1.
The switch mechanism 52 is closed (hereinafter also referred to as “on”) at the same time when the measurement operation of the oxidation-reduction current measuring apparatus 1 is started. Then, electric power is supplied to the motor 12, the rotating shaft 13 rotates, and the working electrode support 20 vibrates.
When the on-time T1 elapses from the start of the measurement operation, the switch mechanism 52 is opened (hereinafter also referred to as “off”) by the control unit, and is turned on again by the control unit when the off-time T2 elapses. Thereafter, after the on-time T1 has elapsed, the switch mechanism 52 is turned off, and when the off-time T2 has elapsed, the switch mechanism 52 is turned on. Thereafter, the same operation is repeated.
That is, while the oxidation-reduction current measuring apparatus 1 is continuously operating, the measurement of the oxidation-reduction current is continuously performed, but the power supply to the motor 12 is controlled to be temporarily interrupted.
The control means for controlling the opening / closing operation of the switch mechanism 52 can be realized by providing a known means such as a timer mechanism or control by a microcomputer in the arithmetic control unit 61.

このようにモータ12に対する電力供給を一時的に遮断する(スイッチ機構52の開閉動作を行う)ことにより、モータ12の動作が再開するときの振動等で作用極支持体20とビーズとの間隙が若干変化するので、ビーズかみによって作用極支持体20の振動が停止した場合であっても、振動を復帰させることができる。
すなわち、モータ12が過電流保護回路を持たないモータの場合には、ビーズかみ状態になってもモータ自体が停止することはないが、作用極支持体20の振動は停止してしまうことがある。このような場合であっても、ビーズかみ状態が解消され、作用極支持体20の振動が復帰し、酸化還元電流の測定値が低下することを防止できる。
また、スイッチ機構52を強制的に開く(オフにする)ことで、モータに過大電流が流れることによるモータの加熱や焼損を防止できる。
他方、モータ12が過電流保護回路を持つモータの場合には、ビーズかみ状態により過負荷運転になればモータ12は停止するが、スイッチ機構52を強制的に開き(オフにし)、さらに閉じる(オンにする)ことで、モータ12の動作が再開され、作用極支持体20の振動が復帰し、酸化還元電流の測定値が低下することを防止できる。
さらに、いずれの場合もモータ12の動作が再開するときの振動等で、ビーズかみ状態が予防される場合もあり、その結果、酸化還元電流を連続的に精度よく測定することができる。
Thus, by temporarily shutting off the power supply to the motor 12 (opening / closing operation of the switch mechanism 52), the gap between the working electrode support 20 and the bead is caused by vibration or the like when the operation of the motor 12 is resumed. Since it slightly changes, even if the vibration of the working electrode support 20 is stopped by the bead bite, the vibration can be restored.
That is, in the case where the motor 12 does not have an overcurrent protection circuit, the motor itself does not stop even if it becomes a bead bite state, but the vibration of the working electrode support 20 may stop. . Even in such a case, it is possible to prevent the bead biting state from being eliminated, the vibration of the working electrode support 20 to be restored, and the measured value of the oxidation-reduction current from being lowered.
Further, by forcibly opening (turning off) the switch mechanism 52, it is possible to prevent the motor from being heated or burned due to an excessive current flowing through the motor.
On the other hand, when the motor 12 is a motor having an overcurrent protection circuit, the motor 12 is stopped if the overload operation is caused by the bead biting state, but the switch mechanism 52 is forcibly opened (turned off) and further closed ( By turning it on), the operation of the motor 12 is restarted, the vibration of the working electrode support 20 is restored, and the measured value of the oxidation-reduction current can be prevented from decreasing.
Further, in any case, the bead biting state may be prevented by vibration or the like when the operation of the motor 12 is resumed. As a result, the oxidation-reduction current can be measured continuously and accurately.

ここで、スイッチ機構52のオン時間T1は、数秒〜数分とすることが好ましく、数十秒程度とすることがより好ましい。オン時間T1があまりに短いと測定に影響を及ぼし、反対に長すぎるとビーズかみ状態が長く続いてしまうおそれがあるからである。
一方、オフ時間T2は、0.001秒〜1秒程度とすることが好ましく、0.01秒〜0.1秒程度とすることがより好ましい。あまりに短いとモータ12の過電流保護回路をリセットすることができず、反対に長すぎると測定に影響を及ぼすからである。
Here, the ON time T1 of the switch mechanism 52 is preferably several seconds to several minutes, and more preferably about several tens of seconds. This is because if the on-time T1 is too short, the measurement is affected, and if it is too long, the bead biting state may last for a long time.
On the other hand, the off time T2 is preferably about 0.001 to 1 second, and more preferably about 0.01 to 0.1 second. This is because if it is too short, the overcurrent protection circuit of the motor 12 cannot be reset, and if it is too long, the measurement is affected.

次に、図4を用いて、他の実施形態の動作を説明する。図4は、他の実施形態に係る酸化還元電流測定装置1の測定動作時におけるスイッチ機構52の開閉状態(オフ・オン)の様子を示したタイミングチャートである。
この実施形態においては、スイッチ機構52は、オフ時間T2を間に挟んだ、オン時間T1(第1の周期)とオン時間T1’
(第2の周期)との2つの周期で開閉される。すなわち、測定動作開始からオン時間T1が経過するとスイッチ機構52はオフにされ、オフ時間T2が経過すると今度はオン時間T1’の間オンにされる。その後、オフ時間T2、オン時間T1’、オフ時間T2と繰り返された後、オン時間T1に戻って同様の動作が繰り返される。
Next, the operation of another embodiment will be described with reference to FIG. FIG. 4 is a timing chart showing an open / closed state (off / on) of the switch mechanism 52 during the measurement operation of the oxidation-reduction current measuring apparatus 1 according to another embodiment.
In this embodiment, the switch mechanism 52 includes an on time T1 (first period) and an on time T1 ′ with an off time T2 interposed therebetween.
It is opened and closed in two cycles (second cycle). That is, when the on-time T1 elapses from the start of the measurement operation, the switch mechanism 52 is turned off, and when the off-time T2 elapses, it is turned on for the on-time T1 ′. Then, after repeating the off time T2, the on time T1 ′, and the off time T2, the same operation is repeated by returning to the on time T1.

このような実施形態では、例えば、オン時間T1を数秒〜数分とし、オン時間T1’及びオフ時間T2は、0.001秒〜1秒程度とすることができる。開閉動作時(モータ12の動作停止及び再開時)の振動等によりビーズかみが解消されやすいので、ビーズかみが解消しにくい場合に特に有効である。
なお、オン時間T1(第1の周期)、オン時間T1’ (第2の周期)及びオフ時間T2の組み合わせは、上述の例に限らず、適宜変更することができ、オン時間の周期は、2つに限らず3つ以上としても良い。
また、いずれの実施形態においても、スイッチ機構52の開閉動作は、周期的に繰り返される必要はなく、例えば、測定値がある値を超えて低下した場合をトリガとして開閉動作を行うようにしても良い。
In such an embodiment, for example, the on time T1 can be several seconds to several minutes, and the on time T1 ′ and the off time T2 can be about 0.001 second to 1 second. Since the bead bite is easily eliminated by vibration or the like during the opening / closing operation (when the operation of the motor 12 is stopped and restarted), it is particularly effective when it is difficult to eliminate the bead bite.
Note that the combination of the on-time T1 (first period), the on-time T1 ′ (second period), and the off-time T2 is not limited to the above example, and can be changed as appropriate. The number is not limited to two and may be three or more.
In any of the embodiments, the opening / closing operation of the switch mechanism 52 does not have to be repeated periodically. For example, the opening / closing operation may be performed when a measured value falls below a certain value. good.

なお、上記実施形態では、ポーラログラフ方式であって、作用極支持体20が振動(歳差運動)するタイプの酸化還元電流測定装置について説明したが、本発明は、ガルバニ電池方式にも適用可能であり、また、作用極支持体20が回転するタイプの酸化還元電流測定装置1にも適用可能である。   In the above-described embodiment, a description has been given of an oxidation-reduction current measuring device that is a polarographic method and in which the working electrode support 20 vibrates (precession). However, the present invention is also applicable to a galvanic cell method. In addition, the present invention can also be applied to a redox current measuring device 1 of a type in which the working electrode support 20 rotates.

(試験例)
上述の酸化還元電流測定装置1を用い、水道水を測定対象試料水として残留塩素の測定を行った。この場合、前述したオン時間T1を40秒とし、オフ時間T2は、0.01秒、0.05秒、0.1秒、0.5秒及び1秒に変化させ、酸化還元電流測定装置1の測定部62で両極間に流れる電流値を測定した。
結果を図5に示す。図5より、オフ時間T2が0.01秒、0.05秒及び0.1秒の場合は、測定電流値が一定の幅内に収まっているが、オフ時間T2が0.5秒及び1秒の場合には大きく外れることがあることがわかる。
(Test example)
Using the above-described oxidation-reduction current measuring apparatus 1, residual chlorine was measured using tap water as the sample water to be measured. In this case, the above-described on-time T1 is set to 40 seconds, and the off-time T2 is changed to 0.01 seconds, 0.05 seconds, 0.1 seconds, 0.5 seconds, and 1 second. The measurement unit 62 measured the value of the current flowing between the two electrodes.
The results are shown in FIG. From FIG. 5, when the off time T2 is 0.01 seconds, 0.05 seconds, and 0.1 seconds, the measured current value is within a certain range, but the off time T2 is 0.5 seconds and 1 seconds. It can be seen that in the case of seconds, there may be a significant deviation.

図6は、酸化還元電流測定装置1の出力部64からの伝送出力結果を示すものである。酸化還元電流測定装置1では、測定部62で測定した電流値を、演算制御部61において測定対象成分の濃度に変換し、これを出力部53や表示部54に出力又は表示する。このとき、測定値をダイレクトに出力又は表示すると、その測定値のバラツキが大きくなるため、所定数(時間)の取得データを基にスムージングを行っている。図6より、オフ時間T2が0.1秒の場合の伝送出力は、ほぼ平坦であるのに対し、オフ時間T2が0.5秒及び1秒の場合には、上下に波打っていることがわかる。 FIG. 6 shows a transmission output result from the output unit 64 of the oxidation-reduction current measuring apparatus 1. In the oxidation-reduction current measuring apparatus 1, the current value measured by the measurement unit 62 is converted into the concentration of the measurement target component by the calculation control unit 61, and this is output or displayed on the output unit 53 or the display unit 54. At this time, if the measured value is directly output or displayed, the variation in the measured value increases, and therefore smoothing is performed based on a predetermined number (time) of acquired data. From FIG. 6, the transmission output when the off-time T2 is 0.1 seconds is almost flat, whereas when the off-time T2 is 0.5 seconds and 1 second, it is waved up and down. I understand.

従来は、酸化還元電流の連続測定中に、モータ12の動作を停止させることは考えられなかった。なぜならば、上述のとおり、モータ12を動作させることにより、作用極支持体20を回転又は振動させ、作用極21の表面付近に安定な拡散層を得ることで、測定対象成分の濃度に応じた酸化還元電流を連続的に精度よく測定することができると考えられていたからである。
しかし、発明者らの本試験の結果、オフ時間T2が、例えば、0.1秒以下であれば、測定にはほとんど影響を及ぼさないことが判明した。
Conventionally, it has not been considered to stop the operation of the motor 12 during continuous measurement of the oxidation-reduction current. This is because, as described above, by operating the motor 12, the working electrode support 20 is rotated or vibrated, and a stable diffusion layer is obtained near the surface of the working electrode 21, thereby depending on the concentration of the component to be measured. This is because it was thought that the oxidation-reduction current can be measured continuously and accurately.
However, as a result of the present tests by the inventors, it has been found that if the off time T2 is, for example, 0.1 seconds or less, the measurement is hardly affected.

本発明の実施形態に係る酸化還元電流測定装置1の全体構成の模式図である。It is a schematic diagram of the whole structure of the oxidation reduction current measuring apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る酸化還元電流測定装置1の検出部の断面図である。It is sectional drawing of the detection part of the oxidation reduction current measuring apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る酸化還元電流測定装置1の測定動作時におけるスイッチ機構52の開閉状態の様子を示したタイミングチャートである。5 is a timing chart showing a state of an open / close state of a switch mechanism 52 during a measurement operation of the oxidation-reduction current measuring apparatus 1 according to the embodiment of the present invention. 本発明の他の実施形態に係る酸化還元電流測定装置1の測定動作時におけるスイッチ機構52の開閉状態の様子を示したタイミングチャートである。It is the timing chart which showed the mode of the opening / closing state of the switch mechanism 52 at the time of measurement operation | movement of the oxidation-reduction current measuring apparatus 1 which concerns on other embodiment of this invention. 実施例におけるオフ時間T2を変化させた場合の測定電流値を示すチャートである。It is a chart which shows the measured current value at the time of changing off time T2 in an example. 実施例におけるオフ時間T2を変化させた場合の伝送出力値を示すチャートである。It is a chart which shows the transmission output value at the time of changing OFF time T2 in an Example.

符号の説明Explanation of symbols

1:酸化還元電流測定装置
2:検出器
10:ケース
11:コネクタ
12:モータ
13:回転軸
15:連結軸
20:作用極支持体
21:作用極
22:対極
30:ホルダ
33:キャップ
34:ビーズ
51:加電圧機構
52:スイッチ機構
61:演算制御部
62:測定部
63:表示部
64:出力部
1: redox current measuring device 2: detector 10: case 11: connector 12: motor 13: rotating shaft 15: connecting shaft 20: working electrode support 21: working electrode 22: counter electrode 30: holder 33: cap 34: beads 51: Applied voltage mechanism 52: Switch mechanism 61: Calculation control unit 62: Measurement unit 63: Display unit 64: Output unit

Claims (2)

作用極と、対極と、前記作用極を備えた作用極支持体と、前記作用極支持体を回転又は振動させるモータと、を具備し、
前記作用極支持体を回転又は振動させつつ前記作用極と前記対極との間に流れる酸化還元電流を測定する酸化還元電流測定装置であって、
前記モータに対する電力供給を一時的に遮断することが可能な電源遮断手段と、
前記電源遮断手段を制御する制御手段と、を備え、
前記制御手段は、前記酸化還元電流の測定中に、前記電源遮断手段を制御することを特徴とする酸化還元電流測定装置。
A working electrode, a counter electrode, a working electrode support provided with the working electrode, and a motor for rotating or vibrating the working electrode support,
A redox current measuring device that measures a redox current flowing between the working electrode and the counter electrode while rotating or vibrating the working electrode support,
A power shut-off means capable of temporarily shutting off the power supply to the motor;
Control means for controlling the power shut-off means,
The control means controls the power cut-off means during the measurement of the oxidation-reduction current.
前記制御手段は、前記電源遮断手段を1又は2以上の周期で制御することを特徴とする請求項1に記載の酸化還元電流測定装置。 2. The oxidation-reduction current measuring apparatus according to claim 1, wherein the control unit controls the power shut-off unit at one or more cycles.
JP2008085066A 2008-03-28 2008-03-28 Redox current measuring device Active JP4962796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085066A JP4962796B2 (en) 2008-03-28 2008-03-28 Redox current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085066A JP4962796B2 (en) 2008-03-28 2008-03-28 Redox current measuring device

Publications (2)

Publication Number Publication Date
JP2009236787A JP2009236787A (en) 2009-10-15
JP4962796B2 true JP4962796B2 (en) 2012-06-27

Family

ID=41250910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085066A Active JP4962796B2 (en) 2008-03-28 2008-03-28 Redox current measuring device

Country Status (1)

Country Link
JP (1) JP4962796B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302556B2 (en) * 2020-09-03 2023-07-04 横河電機株式会社 measuring device
JP7302555B2 (en) * 2020-09-03 2023-07-04 横河電機株式会社 measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952629A (en) * 1995-08-16 1997-02-25 Fuiider Giken:Kk Discharging device for powder/grain material
JP3917297B2 (en) * 1998-05-26 2007-05-23 株式会社タクミナ Residual chlorine meter and liquid sterilizer using this residual chlorine meter
JP2004144662A (en) * 2002-10-25 2004-05-20 Dkk Toa Corp Apparatus and method for measuring oxidation-reduction current

Also Published As

Publication number Publication date
JP2009236787A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
EP3431979A1 (en) Multi-functional sensor assembly and sensor system
US9664636B2 (en) Chlorine detection with pulsed amperometric detection
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
JP2018124130A (en) Device and method for measuring residual chlorine
JP6372302B2 (en) Free residual chlorine measuring device
JP4962796B2 (en) Redox current measuring device
JP4371731B2 (en) Hypohalite generator and generation method
JP6488825B2 (en) Residual chlorine measuring device
JP4414277B2 (en) Redox current measuring device and cleaning method for redox current measuring device
JP4463382B2 (en) Residual chlorine measuring device
JP2009168694A (en) Chlorine meter
JP5251573B2 (en) Redox current measuring device
JP3917297B2 (en) Residual chlorine meter and liquid sterilizer using this residual chlorine meter
JP2001091495A (en) Residual chlorine gage and water purifying apparatus
JP2004144662A (en) Apparatus and method for measuring oxidation-reduction current
JP3838435B2 (en) Hypochlorous acid concentration measuring device
JP2008281420A (en) Comparison electrode degradation detector
JP4603782B2 (en) Residual chlorine measuring device
JP2000088801A (en) Device and method for measuring oxidation-reduction potential
JP2001141692A (en) Apparatus for measuring concentration of residual chlorine
CN103675047A (en) Biosensor calibration method
JP2004191197A (en) Concentration measuring instrument and concentration measuring method
WO2016084894A1 (en) Liquid analyzer and liquid analysis system
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
JP2005345222A (en) Residual chlorine meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4962796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250