JP4961604B2 - Pile foundation structure and pile head treatment method - Google Patents

Pile foundation structure and pile head treatment method Download PDF

Info

Publication number
JP4961604B2
JP4961604B2 JP2006222285A JP2006222285A JP4961604B2 JP 4961604 B2 JP4961604 B2 JP 4961604B2 JP 2006222285 A JP2006222285 A JP 2006222285A JP 2006222285 A JP2006222285 A JP 2006222285A JP 4961604 B2 JP4961604 B2 JP 4961604B2
Authority
JP
Japan
Prior art keywords
pile
steel pipe
column
horizontal
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006222285A
Other languages
Japanese (ja)
Other versions
JP2008045342A (en
Inventor
毅 田靡
哲美 岡本
久 津田
博司 田辺
耕之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Geotech Co Ltd
Original Assignee
Chiyoda Geotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Geotech Co Ltd filed Critical Chiyoda Geotech Co Ltd
Priority to JP2006222285A priority Critical patent/JP4961604B2/en
Publication of JP2008045342A publication Critical patent/JP2008045342A/en
Application granted granted Critical
Publication of JP4961604B2 publication Critical patent/JP4961604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Description

本発明は、建築等の構造物に用いる基礎梁の無い杭基礎構造と、この杭基礎構造に適用される杭頭処理方法に関するものであり、線路・プラットホームをまたぐ建築物、工場・車庫・倉庫等の建築物、鉄塔、傾斜地における建築物などの杭基礎に適用される。   The present invention relates to a pile foundation structure without a foundation beam used for a structure such as a building, and a pile head processing method applied to the pile foundation structure, and a building, factory, garage, and warehouse straddling a track and a platform. It is applied to pile foundations such as buildings such as buildings, steel towers and buildings on slopes.

例えば鉄道駅の線路およびプラットホームをまたぐ建築物(以下、線路上空建築物と称す)は、基礎部において水平方向に延びる地中梁が無い構造となっている。従来、このような建築物の基礎構造は、一般的に1本の場所打ちコンクリート杭に1本の鉄骨柱を埋め込む、もしくはフーチングを介して鉄骨柱脚をコンクリートで根巻きまたは露出型固定柱脚としている(以下、1柱−1杭構造と称す)。   For example, a building that straddles a railroad station track and a platform (hereinafter referred to as a building above the railroad) has a structure in which there is no underground beam extending in the horizontal direction at the foundation. Conventionally, the basic structure of such a building is generally embedded in a single cast-in-place concrete pile with one steel column, or the steel column base is wound with concrete through footing or exposed fixed column base. (Hereinafter referred to as one pillar-one pile structure).

しかしながら、線路上空建築物の現場工事においては、作業空間が制約される他、作業時間も夜間に限定されるため、作業時間および施工工数の短縮が求められ、なお且つ環境保護の観点から排出残土の削減も求められている。   However, in the construction work on the building over the railway, the working space is restricted and the working time is limited to nighttime, so it is required to shorten the working time and construction man-hours. Reduction is also required.

なお、本発明に関連する先行技術文献としては、例えば特許文献1及び2がある。これらは、図10に示すように、建物の荷重を支える鉄骨柱122から伝達された応力に対して、自重と圧縮抵抗のみを期待できる無筋コンクリート116から成る半固定直接基礎構造であり、地面を掘削した根切り部117に配置される。   As prior art documents related to the present invention, there are, for example, Patent Documents 1 and 2. As shown in FIG. 10, these are semi-fixed direct foundation structures composed of unreinforced concrete 116 that can expect only its own weight and compression resistance against the stress transmitted from the steel column 122 that supports the load of the building. It is arranged in the root cutting part 117 excavated.

特開2002−146800号公報JP 2002-146800 A 特開2002−121747号公報JP 2002-121747 A

従来のように場所打ちコンクリート杭を用いた場合、大掛かりな泥水を循環させるプラント設備が必要であり、また掘削により隣接軌道が変状する恐れもある。その上、泥水や掘削土などの産業廃棄物も生じる。   When cast-in-place concrete piles are used as in the past, plant facilities that circulate large-scale mud water are necessary, and there is a risk that adjacent tracks will be deformed by excavation. In addition, industrial waste such as muddy water and excavated soil is also generated.

また、線路上空建築物の基礎構造が1柱−1杭構造の場合、柱が受ける曲げモーメント、せん断力および軸力を杭に直接負担させているため、杭が降伏すると1柱−1杭構造によって支持されている線路上空建築物が倒壊する恐れがある。   In addition, when the foundation structure of the building above the track is a one-column / one-pile structure, since the bending moment, shearing force and axial force received by the column are directly borne on the pile, the one-column / one-pile structure when the pile yields There is a risk that buildings over the tracks supported by will collapse.

また、1柱−1杭構造の杭には柱から大きな曲げモーメントが伝達されるので、曲げ剛性を高めるために杭直径を大きく設定して(例えば、1800mm以上)、線路上空建築物を支持しなければならないため、基礎構造が大型化する恐れがある。   In addition, since a large bending moment is transmitted from a pillar to a pile with one pillar and one pile structure, a large pile diameter (for example, 1800 mm or more) is set to increase bending rigidity to support the building above the railway. Therefore, the foundation structure may be enlarged.

一方、特許文献1に記載の半固定直接基礎構造では、図10に示すように、鉄骨柱122の受ける曲げモーメントを第1基礎鉄骨梁126に伝達し、更に支持金物125を介してPHC杭124に伝達しているが、PHC杭124と第1基礎鉄骨梁126との接合は引張力に抵抗できない機構なので、鉄骨柱122の受ける曲げモーメントがある程度大きくなれば、一方のPHC杭124に作用する引抜き力に抵抗できなくなり、浮き上がりが生じることになる。従って、浮き上がりを抑えるためには、支持装置125、125…周辺と一体的に根切り部117内に無筋コンクリート116を打設してその重みで抵抗させることが必要になる。   On the other hand, in the semi-fixed direct foundation structure described in Patent Document 1, as shown in FIG. 10, the bending moment received by the steel column 122 is transmitted to the first foundation steel beam 126, and further the PHC pile 124 via the support metal 125. However, since the joint between the PHC pile 124 and the first foundation steel beam 126 cannot resist the tensile force, if the bending moment received by the steel column 122 increases to some extent, it acts on one PHC pile 124. It becomes impossible to resist the pulling force and a lift occurs. Therefore, in order to suppress the lifting, it is necessary to place the unreinforced concrete 116 in the root cutting portion 117 integrally with the support devices 125, 125.

また、この方法では、根切り部117を掘削した時の排出残土がそのまま産業廃棄物になるという問題がある。   In addition, this method has a problem that the residual soil discharged when the root cutting part 117 is excavated becomes industrial waste as it is.

上記課題を解決するために、本発明は、建築等の構造物を支える鉄骨柱の柱脚に接合され、その柱脚から放射方向に水平に延びる複数の水平梁と、それら水平梁の先端部に緊結され、下向きに延びる、突起による引抜き抵抗機構を有する複数の杭とから構成されていることを特徴とする基礎梁の無い杭基礎構造を提供するものである。即ち、本発明は、鉄骨柱に作用する曲げモーメント、せん断力および軸力を、当該柱の柱脚から放射方向に配置された複数の水平梁を介して引抜き抵抗機構を有する複数の杭に伝達するものである。   In order to solve the above-described problems, the present invention provides a plurality of horizontal beams which are joined to a column base of a steel column supporting a structure such as a building and extend horizontally from the column base in the radial direction, and tip portions of the horizontal beams. A pile foundation structure without foundation beams, characterized in that the pile foundation structure is composed of a plurality of piles having a pull-out resistance mechanism by protrusions, which are tightly coupled to each other and extending downward. That is, the present invention transmits bending moment, shearing force and axial force acting on a steel column to a plurality of piles having a pull-out resistance mechanism via a plurality of horizontal beams arranged radially from the column base of the column. To do.

前記水平梁は3本以上であり、それら全部の水平梁先端部に前記引抜き抵抗機構を有する杭を緊結するのが好ましい。   The number of the horizontal beams is three or more, and it is preferable that the piles having the pull-out resistance mechanism are fastened to all the horizontal beam front ends.

前記鉄骨柱の柱脚芯と前記引抜き抵抗機構を有する杭の芯とを結ぶ水平線と、前記水平梁の部材軸芯とが一致するように配置するのが好ましい。   It is preferable that the horizontal line connecting the column base of the steel column and the core of the pile having the pull-out resistance mechanism is arranged so that the member axis of the horizontal beam coincides.

複数の前記水平梁の隣接する先端同士は補剛梁で連結するのが好ましい。   The adjacent tips of the plurality of horizontal beams are preferably connected by a stiffening beam.

前記杭の頭部にトッププレートを溶接等により水平に取付け、このトッププレートに水平梁の先端部を溶接又はボルトで接合するのが好ましい。   It is preferable that a top plate is horizontally attached to the head of the pile by welding or the like, and the tip of the horizontal beam is joined to the top plate by welding or bolts.

本発明の杭基礎構造では、埋設後の鋼管杭頭部の切断処理において、仮の支持金物を杭頭付近の鋼管内部に固定し、その支持金物に支持させることにより杭頭上端に切断機走行板を水平に保持し、当該切断機走行板に設けたガイドレールに沿って切断機を走行させることにより、鋼管杭頭部の切断を行うのが好ましい。   In the pile foundation structure of the present invention, in the cutting process of the steel pipe pile head after burial, the temporary support hardware is fixed inside the steel pipe near the pile head and is supported by the support hardware so that the cutting machine travels to the top of the pile head. It is preferable to cut the steel pipe pile head by holding the plate horizontally and running the cutting machine along a guide rail provided on the cutting machine running plate.

また、本発明の杭基礎構造においては、水平梁と鋼管杭頭とを接続するためのアジャスト部の取付けにおいて、杭頭付近の鋼管内部に固定された仮の支持金物に支持させて、アジャスト部に予め取付けられたトッププレートを水平に保持し、そのトッププレートにガイドレールを設けて溶接機を走行させることにより、アジャスト部と鋼管杭頭とを溶接接合するのが好ましい。   Further, in the pile foundation structure of the present invention, in the installation of the adjustment part for connecting the horizontal beam and the steel pipe pile head, the adjustment part is supported by a temporary support hardware fixed inside the steel pipe near the pile head. It is preferable that the adjustment plate and the steel pipe pile head are welded to each other by holding a top plate attached in advance horizontally and providing a guide rail on the top plate to run the welding machine.

本発明によれば、鉄骨柱に作用する曲げモーメント、せん断力および軸力を、当該柱の柱脚から放射方向に配された複数の水平梁を介して引抜き抵抗機構を有する複数の杭に伝達するので、次のような効果がある。   According to the present invention, bending moment, shearing force and axial force acting on a steel column are transmitted from a column base of the column to a plurality of piles having a pulling resistance mechanism via a plurality of horizontal beams arranged in a radial direction. Therefore, there are the following effects.

(1)従来の1柱−1杭構造の場合では負担の大きかった曲げモーメントは、本発明では軸力に変換されて杭に伝達されるので、杭への曲げモーメントを軽減でき、杭径を細くできる。
(2)引抜き抵抗機構を有する杭を用いているため、これがアンカーの役目を果たし、一定量までの引抜力に対して抵抗でき、大きな曲げモーメントにも抵抗できる。従来の浮き上がりを抑えるための根切り部の無筋コンクリート等を無くすことができる。
(3)引抜き抵抗機構を有する杭として、回転貫入する翼付鋼管杭を使用すれば、従来の場所打ちコンクリート杭の場合よりも泥水や排出残土の産業廃棄物を大幅に減らせる。
(4)回転貫入する杭であれば、騒音や振動も少ないので環境対策上有益である。
(5)場所打ちコンクリート杭のための掘削がないので、隣接軌道が変状する危険性が大幅に減る。
(1) In the case of the conventional one-column / one-pile structure, the bending moment, which is a heavy load, is converted into axial force and transmitted to the pile in the present invention, so that the bending moment to the pile can be reduced and the pile diameter can be reduced. Can be thin.
(2) Since a pile having a pull-out resistance mechanism is used, this acts as an anchor, can resist a pulling force up to a certain amount, and can resist a large bending moment. It is possible to eliminate the unreinforced concrete at the root cutting portion for suppressing the conventional lifting.
(3) If a steel pipe pile with a blade that rotates and penetrates is used as a pile having a pulling resistance mechanism, industrial waste such as muddy water and discharged residual soil can be greatly reduced as compared with a conventional cast-in-place concrete pile.
(4) A pile that rotates and penetrates is beneficial for environmental measures because it has less noise and vibration.
(5) Since there is no excavation for cast-in-place concrete piles, the risk of deformation of adjacent tracks is greatly reduced.

(6)根切り土は本発明の基礎構造体施工後に埋め戻すため、根切り土の場外廃棄量を大幅に低減できる。
(7)大掛かりな泥水循環プラント設備が不要である。
(8)現場作業の工期短縮ができるので、時間的制約の厳しい線路上空建築物の基礎構造として本発明は極めて有益である。
(9)基礎構造体の強度を従来の1柱−1杭構造と同等以上に保ちながらコストダウンが期待できる。
(10)本発明では基礎構造体が自立しているため、従来の1柱−1杭構造では建方時に必要であったステーが不要となり、鉄骨建方において省力化になる。
(6) Since the root cutting is backfilled after the foundation structure of the present invention is constructed, the amount of off-site disposal of the root cutting can be greatly reduced.
(7) Large-scale mud circulation plant facilities are not required.
(8) Since the work period of the field work can be shortened, the present invention is extremely useful as the basic structure of the building over the railway with severe time constraints.
(9) Cost reduction can be expected while maintaining the strength of the foundation structure equal to or higher than the conventional one-column / one-pile structure.
(10) In the present invention, since the foundation structure is self-supporting, the stay required in the conventional one-column / one-pile structure is not required, and labor saving is achieved in the steel frame construction.

本発明の実施例を以下に示す。   Examples of the present invention are shown below.

図1は本発明の実施例1の構成を説明するための斜視図である。建築物を支える鉄骨柱1の柱脚1aに複数の水平梁2、2…が、柱脚1aから放射方向に水平に延びるように接合されている。柱脚1aとは反対側の水平梁2、2…の材端部下面には、それぞれ鋼管杭3の杭頭が、トッププレート37を介してボルトにより緊結されている。鉛直下向きに延びる鋼管杭3は、引抜き抵抗機構を有する杭として翼付鋼管杭を用いる場合、通常は図2に示すように、上鋼管34a、中鋼管34b、下鋼管34cで構成され、下鋼管34cの最下端部には鋼管杭3を回転貫入させるための推進翼61と掘削爪62が設けられている。鋼管杭3の長さは地盤の支持層深さにより変化するので、支持層が浅ければ下鋼管34cのみの1本で長さが足りる場合もあり得る。なお、上鋼管34a、中鋼管34b、下鋼管34cの相互の接合は現場溶接の他、ネジやカプラ―等の機械的継手により施工される。   FIG. 1 is a perspective view for explaining the configuration of the first embodiment of the present invention. A plurality of horizontal beams 2, 2... Are joined to the column base 1a of the steel column 1 supporting the building so as to extend horizontally from the column base 1a in the radial direction. The pile heads of the steel pipe piles 3 are fastened to the lower surfaces of the material end portions of the horizontal beams 2, 2. When a winged steel pipe pile is used as a pile having a pulling resistance mechanism, the steel pipe pile 3 extending vertically downward is normally composed of an upper steel pipe 34a, a middle steel pipe 34b, and a lower steel pipe 34c as shown in FIG. At the lowermost end of 34c, a propulsion blade 61 and an excavation claw 62 for rotating and inserting the steel pipe pile 3 are provided. Since the length of the steel pipe pile 3 varies depending on the depth of the support layer of the ground, the length of the steel pipe pile 3 may be sufficient if only the lower steel pipe 34c is used. The upper steel pipe 34a, middle steel pipe 34b, and lower steel pipe 34c are joined to each other by on-site welding and mechanical joints such as screws and couplers.

このように、推進翼61と掘削爪62が設けられた鋼管杭3を回転貫入させるので、杭施工に伴う排出残土が大幅に減り、また騒音や振動も少ないので環境対策上有益である。   Thus, since the steel pipe pile 3 provided with the propulsion blade 61 and the excavation claw 62 is rotated and penetrated, the discharged residual soil accompanying the pile construction is greatly reduced, and noise and vibration are also small, which is beneficial for environmental measures.

図1に図示の4、4…は、隣接する水平梁2、2…の先端同士を繋ぐ補剛梁であり、水平梁2、2…との接合は溶接あるいはボルト接合とする。   1, 4 and 4 are stiffening beams that connect the ends of adjacent horizontal beams 2, 2,..., And are joined to the horizontal beams 2, 2,.

なお、鋼管杭3へのトッププレート37の取付けは、先ず、回転貫入が完了した複数本の鋼管杭3、3…の頂部を所定の高さ位置でガス等により切断し、次に、トッププレート37、37…の高さと水平度を調整した後、鋼管杭3、3…の頂部に現場溶接する、という手順で行う。   The top plate 37 is attached to the steel pipe pile 3 by first cutting the tops of the plurality of steel pipe piles 3, 3,. After adjusting the height and level of 37, 37..., The welding is performed on-site to the tops of the steel pipe piles 3, 3.

鋼管杭3へのトッププレート37の取付けは、図3に示すように、予め工場にて溶接でトッププレート37に取付けた複数のリブ38、38…を、現場にて隅肉溶接20で行えば比較的容易である。この場合、リブ38、38…が上部からの全応力を鋼管杭3へ直接伝達させるので、リブ38及び隅肉溶接20は全応力を伝達できる十分なサイズにする必要がある。   As shown in FIG. 3, the top plate 37 is attached to the steel pipe pile 3 by performing fillet welding 20 on the site with a plurality of ribs 38, 38. It is relatively easy. In this case, since the ribs 38, 38... Directly transmit the total stress from the upper part to the steel pipe pile 3, the rib 38 and the fillet weld 20 need to be sufficiently sized to transmit the total stress.

上記の現場隅肉溶接による方法は容易であるが、通常は人間が溶接作業をするため、一定以上の作業空間が必要になる。本発明が主な対象としている線路上空建築物の基礎部工事においては、根切りも最小限とせざるを得ないので、人が作業するのに必要な空間を確保できない場合もあり得る。そこで、そのような場合には、図4〜図6に図示したようなロボット溶接が有効である。   Although the above-mentioned method by fillet welding is easy, since a human usually performs welding work, a work space of a certain level or more is required. In the foundation construction of the building over the railway, which is the main object of the present invention, since the root cutting must be minimized, it may not be possible to secure a space necessary for a person to work. In such a case, robot welding as shown in FIGS. 4 to 6 is effective.

図4は埋設後の鋼管杭頭部の切断方法を示す説明図であり、図5は図4におけるD視を示す。埋設後の杭頭部の切断処理において、先ず十字形状の受け金物31にボルト33a、33a…、ナット33b、33b…を用いて、ほぼ水平になるように円板形状の支持金物32を吊り下げる。この時、受け金物31と支持金物32との中心は合わせた状態とする。そして、支持金物32を鋼管34の内部に挿入し、受け金物31を鋼管34の上端に仮置きする。   FIG. 4 is an explanatory view showing a method of cutting the steel pipe pile head after embedding, and FIG. 5 shows a view D in FIG. In the cutting process of the pile head after embedding, first, the disk-shaped support metal 32 is suspended so as to be substantially horizontal by using bolts 33a, 33a..., Nuts 33b, 33b. . At this time, the centers of the receiving hardware 31 and the supporting hardware 32 are set to be in a combined state. Then, the support hardware 32 is inserted into the steel pipe 34, and the receiving hardware 31 is temporarily placed on the upper end of the steel pipe 34.

支持金物32の直径と鋼管34の内径とは概ね一致しており、支持金物32を鋼管34の内周面の周方向に4箇所以上、バランスよく隅肉溶接で固定する。   The diameter of the support metal 32 and the inner diameter of the steel pipe 34 are substantially the same, and the support metal 32 is fixed by fillet welding in a balanced manner at four or more locations in the circumferential direction of the inner peripheral surface of the steel pipe 34.

次に、鋼管34の小口を傷つけないために十字形状の位置固定金物35を、受け金物31の上面にボルト33a、33a…を貫通させて重ね、受け金物31直下のナット33b、33b…により、受け金物31の高さと水平度を確保した後、位置固定金物35の各端部から図中下方向に延びた各腕部35a、35a…と、鋼管34の外周面との接触部分に仮付け溶接して、受け金物31の位置を固定する。   Next, in order not to damage the fore end of the steel pipe 34, a cross-shaped position fixing metal 35 is stacked on the upper surface of the receiving metal 31 with bolts 33a, 33a penetrating the nuts 33b, 33b ... directly below the receiving metal 31. After securing the height and level of the receiving metal 31, it is temporarily attached to the contact portion between each arm 35 a, 35 a... Extending downward from the end of the position fixing metal 35 and the outer peripheral surface of the steel pipe 34. It welds and the position of the receiving metal 31 is fixed.

その次に、図4に示すように、位置固定金物35の上面に、鋼管34の外径よりも直径が大きい円板形状の切断機走行板36を、ボルト33a、33a…およびナット33b、33b…にて取付ける。従って、切断機走行板36はボルト33a、33a…を介して支持金物32に支えられるので、鋼管34には負担をかけない状態となる。   Next, as shown in FIG. 4, a disk-shaped cutting machine traveling plate 36 having a diameter larger than the outer diameter of the steel pipe 34 is provided on the upper surface of the position fixing metal 35 with bolts 33a, 33a, and nuts 33b, 33b. Install with…. Therefore, since the cutting machine travel plate 36 is supported by the support hardware 32 via the bolts 33a, 33a, etc., the steel pipe 34 is not burdened.

切断機走行板36の縁には、その周方向に延びるガイドレール51aが設けられており、このガイドレール51aに沿ってノズル駆動装置51bが走行するようになっている。ノズル駆動装置51bには、複数の回転駆動部を有するアーム51cが設けられており、このノズル51dの先端部に形成された不図示の開口部から切断用のガスが放出されるようになっている。   A guide rail 51a extending in the circumferential direction is provided at the edge of the cutting machine travel plate 36, and the nozzle driving device 51b travels along the guide rail 51a. The nozzle driving device 51b is provided with an arm 51c having a plurality of rotation driving units, and a cutting gas is discharged from an opening (not shown) formed at the tip of the nozzle 51d. Yes.

なお、ノズル駆動装置51bには、ノズル駆動装置51bの走行速度、アーム51cの回転角度など切断に関わる動作を実行させるための制御信号を生成する、不図示の制御回路が組み込まれている。   The nozzle driving device 51b incorporates a control circuit (not shown) that generates control signals for executing operations related to cutting, such as the traveling speed of the nozzle driving device 51b and the rotation angle of the arm 51c.

鋼管杭頭の切断に当たっては、ノズル51dの先端部を、破線で示す鋼管34の切断予定部41(部材長350mm以上)に位置決めし、ノズル駆動装置51bをガイドレール51aに沿って走らせながらノズル51dを駆動すると、ノズル51dの先端部からガスが放出され、鋼管34が自動切断される。切断完了後、切断機一式と切断機走行板36を取り外し、位置固定金物35、受け金物31、ボルト33a、33a…及びナット33b、33b…を、切断された鋼管34の上鋼管34aと共に撤去する。なお、切断された上鋼管34aは、後述のアジャスト部の一部として利用する。   In cutting the steel pipe pile head, the tip of the nozzle 51d is positioned on the planned cutting portion 41 (member length 350 mm or more) of the steel pipe 34 indicated by a broken line, and the nozzle 51d is moved along the guide rail 51a while running the nozzle driving device 51b. Is driven, gas is released from the tip of the nozzle 51d, and the steel pipe 34 is automatically cut. After the cutting is completed, the cutting machine set and the cutting machine traveling plate 36 are removed, and the position fixing metal 35, the receiving metal 31, the bolts 33a, 33a, and the nuts 33b, 33b are removed together with the upper steel pipe 34a of the cut steel pipe 34. . In addition, the cut | disconnected upper steel pipe 34a is utilized as a part of below-mentioned adjustment part.

切断後の鋼管34即ち中鋼管34bの切断面は、グラインダー等を用いてミルスケールを除去して仕上げ、傷やゴミなどが着かないように養生を施す。   The cut surface of the steel pipe 34 after cutting, that is, the middle steel pipe 34b, is finished by removing the mill scale using a grinder or the like so that scratches and dust do not adhere.

中鋼管34bには、水平梁2と中鋼管34bとを連結する後述のアジャスト部が溶接固定される。そのアジャスト部の製作・取付け方法を、図6を参照して説明する。   An adjustment section (described later) that connects the horizontal beam 2 and the middle steel pipe 34b is welded and fixed to the middle steel pipe 34b. A method for manufacturing and attaching the adjusting portion will be described with reference to FIG.

鉄骨柱1の柱芯と杭3の杭芯の方向(鋼管断面の長短径の扁平状況含む)を確認し、アジャスト部用の鋼管として、現場で切断された上鋼管34a(部材長350mm以上)を利用して用意する。次に、現場実測で得られた実測データ(柱芯、杭芯、水平梁軸芯およびボルト芯の方向)をもとに、上鋼管34aに高力ボルト71用のボルト孔71a付きのトッププレート37及びリブ38、38…を、工場にて溶接で組み立てる。   Check the direction of the pillar core of the steel column 1 and the pile core of the pile 3 (including the flat state of the major and minor diameters of the steel pipe cross section), and the upper steel pipe 34a (member length 350 mm or more) cut on site as a steel pipe for the adjustment part Prepare using. Next, based on the actual measurement data (column core, pile core, horizontal beam axis core and bolt core direction) obtained in the field measurement, the top plate with the bolt hole 71a for the high strength bolt 71 in the upper steel pipe 34a. 37 and ribs 38, 38... Are assembled at the factory by welding.

このようにして製作されたアジャスト部と中鋼管34bとの連結は以下のように行う。トッププレート37の縁には、トッププレート37の周方向に延びるガイドレール61aが設けられており、このガイドレール61aに沿ってトーチ駆動装置61bが走行するようになっている。   The adjustment part thus manufactured and the middle steel pipe 34b are connected as follows. A guide rail 61a extending in the circumferential direction of the top plate 37 is provided at the edge of the top plate 37, and the torch drive device 61b travels along the guide rail 61a.

トーチ駆動装置61bには、複数の回転駆動部を有するアーム61cが設けられており、このアーム61cの先端部には溶接用のトーチ61dが設けられている。   The torch driving device 61b is provided with an arm 61c having a plurality of rotation driving portions, and a welding torch 61d is provided at the tip of the arm 61c.

なお、トーチ駆動装置61bには、トーチ駆動装置61bの走行速度、アーム61cの回転角度および開先部角度、ルートギャップなどについて溶接に関わる動作を実行させるための制御信号を生成する、不図示の制御回路が組み込まれている。   The torch drive device 61b generates a control signal for performing operations related to welding with respect to the traveling speed of the torch drive device 61b, the rotation angle and groove angle of the arm 61c, the root gap, and the like (not shown). A control circuit is incorporated.

そして、アジャスト部の下端に設けられた裏当て金51を、中鋼管34bの内周面に溶接された支持金物32の上面に突き当てて、上鋼管34aの位置決めした後、鋼管の開先内に組立溶接で固定し、トーチ駆動装置61bを駆動して、上鋼管34aと中鋼管34bとの連結を自動溶接により行う。   Then, the backing metal 51 provided at the lower end of the adjusting portion is abutted against the upper surface of the support metal 32 welded to the inner peripheral surface of the middle steel pipe 34b, and after positioning the upper steel pipe 34a, the inside of the groove of the steel pipe Are fixed by assembly welding, the torch drive device 61b is driven, and the upper steel pipe 34a and the middle steel pipe 34b are connected by automatic welding.

次に、図7を参照して水平梁2の構成を詳述する。図7は本実施例1の基礎構造体の平面図および断面図である。鉄骨柱1は角型鋼管、水平梁2はH形鋼であり、鉄骨柱1の柱脚1aと水平梁2との接合は、水平梁2のウェブ2aは鉄骨柱1の側面のスキンプレートに、水平梁2のフランジ2bは鉄骨柱1のダイヤフラムにそれぞれ溶接されている。勿論、鉄骨柱1は円型鋼管等、水平梁2と補剛梁4は箱型断面部材等としてもよい。   Next, the configuration of the horizontal beam 2 will be described in detail with reference to FIG. FIG. 7 is a plan view and a cross-sectional view of the foundation structure of the first embodiment. The steel column 1 is a square steel pipe, the horizontal beam 2 is an H-shaped steel, and the column base 1a of the steel column 1 and the horizontal beam 2 are joined to each other by connecting the web 2a of the horizontal beam 2 to the skin plate on the side surface of the steel column 1. The flange 2b of the horizontal beam 2 is welded to the diaphragm of the steel column 1 respectively. Of course, the steel column 1 may be a circular steel pipe or the like, and the horizontal beam 2 and the stiffening beam 4 may be a box-shaped cross-section member or the like.

本実施例1の場合、鉄骨柱1の通り芯94、94と水平梁2、2…の部材軸芯96は一致している。   In the case of the first embodiment, the cores 94, 94 of the steel column 1 and the member axial cores 96 of the horizontal beams 2, 2,.

水平梁2の先端側で鋼管杭3が接合される位置には、水平梁2のウェブ2aを挟んだ左右両側に補強材としてリブ2cが設けてある。鋼管杭3は、鋼管杭3と一体になったトッププレ−ト37を介して、水平梁2の下フランジにボルト接合される。ボルトは高力ボルト71、71…およびナット72、72…を使用する。   At the position where the steel pipe pile 3 is joined at the front end side of the horizontal beam 2, ribs 2c are provided as reinforcing materials on both the left and right sides of the web 2a of the horizontal beam 2. The steel pipe pile 3 is bolted to the lower flange of the horizontal beam 2 via a top plate 37 integrated with the steel pipe pile 3. The bolts use high strength bolts 71, 71... And nuts 72, 72.

鋼管杭3は、地面に形成された凹形状の根切り部5の底面に回転貫入される。貫入完了直後の鋼管杭3の頂部は、所定の高さが確保できるように、根切り部5の底面よりも突出した状態とする。   The steel pipe pile 3 is rotationally inserted into the bottom surface of the concave root cutting part 5 formed on the ground. The top portion of the steel pipe pile 3 immediately after the completion of penetration is in a state of protruding from the bottom surface of the root cutting portion 5 so that a predetermined height can be secured.

根切り部5には、根切り時の掘削土や鋼管杭3の回転貫入時の排出残土を埋め戻しするので、特許文献1及び2の根切り部117の排出残土がそのまま産業廃棄物となることに比べると、本発明は産業廃棄物の軽減に大きく寄与できることは明らかである。   Since the excavated soil at the time of root cutting and the discharged residual soil at the time of rotation penetration of the steel pipe pile 3 are backfilled in the root cutting part 5, the discharged residual soil of the root cutting part 117 of Patent Documents 1 and 2 becomes industrial waste as it is. In comparison, it is clear that the present invention can greatly contribute to the reduction of industrial waste.

ここで、柱脚1a、水平梁2、2…および補強梁4、4…は、凹形状の根切り部5内の埋め戻し土に埋没するので、防錆処置として腐食防止塗料を塗布することにより、土との接触を防止する。   Here, the column base 1a, the horizontal beams 2, 2,... And the reinforcing beams 4, 4,... Are buried in the backfill soil in the concave root cutting portion 5, and therefore, a corrosion prevention paint is applied as a rust prevention treatment. Prevents contact with the soil.

本発明は以上のような構成であるので、建築構造物に地震等の外力が作用した場合には、以下のような応力伝達機構となる。   Since this invention is the above structures, when external force, such as an earthquake, acts on a building structure, it will become the following stress transmission mechanisms.

地震等の外力が作用し鉄骨柱1に軸力、曲げモーメントおよびせん断力が生じると、鉄骨柱1の軸力と曲げモーメントは水平梁2の曲げモーメントとして、また、せん断力は水平梁2の軸力として伝達される。更に、前記水平梁2の曲げモーメントは、図7に図示の杭芯間距離Lで除した偶力として、水平梁2の先端の下面に接続されたトッププレート37を介して鋼管杭3に伝達され、圧縮軸力または引張軸力となり鋼管杭3から地盤に伝達される。また、前記水平梁2の軸力は、鋼管杭3のせん断力となり地盤に伝達される。なお、通常の杭では引張軸力ができるだけ生じないように設計するのが普通であるが、本発明に用いる鋼管杭3は下端に翼61を有する等の引抜き抵抗機構を有しており、これがアンカーの役目を果し、一定量までの引抜き力に対して抵抗できるため、大きな曲げモーメントにも抵抗できるのが特徴である。   When an external force such as an earthquake acts on the steel column 1 to generate an axial force, a bending moment and a shearing force, the axial force and bending moment of the steel column 1 become the bending moment of the horizontal beam 2 and the shearing force becomes the bending force of the horizontal beam 2. It is transmitted as an axial force. Further, the bending moment of the horizontal beam 2 is transmitted to the steel pipe pile 3 through the top plate 37 connected to the lower surface of the tip of the horizontal beam 2 as a couple divided by the distance L between the pile cores shown in FIG. Then, it becomes a compression axial force or a tensile axial force and is transmitted from the steel pipe pile 3 to the ground. Further, the axial force of the horizontal beam 2 becomes a shearing force of the steel pipe pile 3 and is transmitted to the ground. In addition, although it is usual to design so that a tensile axial force may not arise as much as possible with a normal pile, the steel pipe pile 3 used for this invention has a drawing-out resistance mechanism, such as having a wing 61 at the lower end. Since it plays the role of an anchor and can resist a pulling force up to a certain amount, it can also resist a large bending moment.

このように、本発明による基礎構造体は鉄骨柱1に生じた曲げモーメントを偶力に変換して、鋼管杭3に軸力として伝達している。そのため、鋼管杭3が受ける曲げモーメントを軽減できるので、従来の1柱−1杭構造の杭よりも直径を小さくでき、基礎構造体をコンパクト化できる。また、1柱−1杭構造では、上部架構の建方時に、ステーを用いて3〜4本の柱および梁を同時に支持しながら架構を建方する必要があるが、本発明では基礎構造体は自立しているためステーが不要となり、鉄骨建方において省力化でき、工期短縮、工事費低減になる。   Thus, the foundation structure according to the present invention converts the bending moment generated in the steel column 1 into a couple and transmits it to the steel pipe pile 3 as an axial force. Therefore, since the bending moment which the steel pipe pile 3 receives can be reduced, a diameter can be made smaller than the pile of the conventional 1 pillar-1 pile structure, and a foundation structure can be made compact. Moreover, in the 1 pillar-1 pile structure, it is necessary to build the frame while supporting 3 to 4 columns and beams at the same time using a stay at the time of building the upper frame. Since it is self-supporting, there is no need for stays, and labor can be saved in the construction of steel frames, shortening the construction period and reducing construction costs.

また、本実施例1では、水平梁2、2…を補強梁4、4…で連結しているので水平梁2、2…の剛性が確保されることになり、地震力が作用しても全ての鋼管杭3、3…は一体的に挙動するため、強固な基礎構造体を形成できる。   In the first embodiment, since the horizontal beams 2, 2,... Are connected by the reinforcing beams 4, 4,..., The rigidity of the horizontal beams 2, 2,. Since all the steel pipe piles 3, 3 ... behave integrally, a strong foundation structure can be formed.

実施例2を図8にて説明する。実施例1では、鉄骨柱1の通り芯94、94と水平梁2、2…の部材軸芯96が一致していたが、実施例2はそれらが一致しない場合である。図8は実施例2の平面図であり、施工誤差のために鋼管杭3、3…の杭芯95、95…が鉄骨柱1の通り芯94、94からずれてしまい、鉄骨柱1の柱芯91と杭芯95、95…とを結ぶ線に水平梁2、2…の部材軸芯96を一致させた状態を示す。このように柱通り芯94から杭芯95が偏芯した状態では、鉄骨柱1からの伝達応力によって、微小のねじりモーメントが水平梁2、2…に生じる恐れがあるが、補強梁4、4…で水平梁2、2…を連結しているのでねじりモーメントを抑制することができ、強固な基礎構造体を提供できる。   Example 2 will be described with reference to FIG. In the first embodiment, the cores 94, 94 of the steel column 1 and the member shaft cores 96 of the horizontal beams 2, 2,... Match, but the second embodiment is a case where they do not match. FIG. 8 is a plan view of the second embodiment. Due to construction errors, the pile cores 95, 95... Of the steel pipe piles 3, 3,. The state which made the member axial core 96 of the horizontal beams 2, 2, ... match with the line which connects the core 91 and the pile cores 95, 95 ... is shown. In this way, in a state where the pile core 95 is eccentric from the column core 94, a small torsional moment may be generated in the horizontal beams 2, 2... By the transmission stress from the steel column 1. Since the horizontal beams 2, 2 ... are connected to each other, the torsional moment can be suppressed, and a strong foundation structure can be provided.

本実施例2における施工では、鉄骨柱1の通り芯94、94から偏芯した杭芯95、95…の位置を現場実測し、柱芯91と杭芯95、95…とを結ぶ線に部材軸芯96が一致するように水平梁2、2…を製作する。   In the construction in the second embodiment, the positions of the pile cores 95, 95... Eccentric from the cores 94, 94 of the steel column 1 are actually measured, and the members are connected to the lines connecting the column core 91 and the pile cores 95, 95. The horizontal beams 2, 2... Are manufactured so that the shaft cores 96 coincide.

なお、上記2つの実施例では1本の鉄骨柱を4本の杭で支持する構成であるが、3本以上の杭があれば本発明の基礎構造体は成り立つ。また、杭頭と水平梁との接合は固定接合、ピン接合或いは半剛接合の何れでもよい。   In the above two embodiments, one steel column is supported by four piles, but if there are three or more piles, the foundation structure of the present invention is established. Further, the joint between the pile head and the horizontal beam may be a fixed joint, a pin joint, or a semi-rigid joint.

また、本発明による基礎構造は、線路上空建築物以外の構造物、例えば工場、車庫、倉庫等にも適用できる。   The foundation structure according to the present invention can also be applied to structures other than buildings above the railway track, such as factories, garages, and warehouses.

本発明の杭基礎構造により支持される構造物全体の解析方法を、図9を参照して説明する。図9は、構造解析手順を示したフローチャートである。構造解析に当たっては、「線路上空建築物(低層)構造設計標準2002(財団法人鉄道総合技術研究所編)」に準拠し、以下の手順で進める。   The analysis method of the whole structure supported by the pile foundation structure of this invention is demonstrated with reference to FIG. FIG. 9 is a flowchart showing the structure analysis procedure. In the structural analysis, proceed according to the following procedures in accordance with “Structure Standards for Buildings Over the Track (Low-rise) Structural Design 2002 (Railway Technical Research Institute)”.

(S101)地盤情報(N値、せん断強度等)から地盤水平および鉛直バネ定数、鋼管杭3の支持力および引抜き耐力を計算する。
(S102)上記「線路上空建築物(低層)構造設計標準2002」に準拠した構造計算プログラムを使用し、解析モデルに対して、上部構造の鉄骨柱1他各部材、水平梁2、補剛梁4、鋼管杭3には断面性能(断面積、断面2次モーメント、断面係数等)を、鋼管杭3の長さ方向に分割した各節点に配置される仮想バネには(S101)で計算された地盤水平および鉛直バネ定数を、鋼管杭3には支持力および引抜き耐力を入力する。
(S103)上記構造計算プログラムを実行し、鉄骨柱1を含む上部構造、水平梁2、補剛梁4、鋼管杭3を連続的に一体として、有限要素法により構造解析を実施する。
(S101) From the ground information (N value, shear strength, etc.), the ground horizontal and vertical spring constants, the supporting force of the steel pipe pile 3 and the pulling strength are calculated.
(S102) Using the structural calculation program compliant with the above-mentioned “Building design over the railway (low-rise) structure design standard 2002”, for the analytical model, the steel column 1 and other members of the superstructure, horizontal beam 2, stiffening beam 4. Sectional performance (cross-sectional area, secondary moment of section, section modulus, etc.) is calculated for steel pipe pile 3, and virtual springs arranged at each node divided in the length direction of steel pipe pile 3 are calculated by (S101). The ground horizontal and vertical spring constants are input to the steel pipe pile 3 and the supporting force and pulling strength are input.
(S103) The above structural calculation program is executed, and the superstructure including the steel column 1, the horizontal beam 2, the stiffening beam 4, and the steel pipe pile 3 are continuously integrated, and the structural analysis is performed by the finite element method.

以上により得られた解析結果を元に、上記「線路上空建築物(低層)構造設計標準2002」に準拠して、各種構造規定、保有水平耐力、変形性能等を確認する。(詳細省略)   Based on the analysis results obtained as described above, various structural provisions, retained horizontal proof stress, deformation performance, and the like are confirmed in accordance with the above-mentioned “Building design over skyline (low-rise) structure design standard 2002”. (Details omitted)

本発明の実施例1の杭基礎構造体の斜視図である。It is a perspective view of the pile foundation structure of Example 1 of the present invention. 本発明で用いる鋼管杭の概観を示す側面図である。It is a side view which shows the general view of the steel pipe pile used by this invention. 本発明で用いる杭トッププレートの一例を示す、(a)は鉛直断面図、(b)は水平断面図である。An example of the pile top plate used by this invention is shown, (a) is a vertical sectional view, (b) is a horizontal sectional view. 本発明の杭頭の自動切断方法を示す、(a)は平面図、(b)は鉛直断面図である。The automatic cutting method of the pile head of this invention is shown, (a) is a top view, (b) is a vertical sectional view. 図4のD視断面図である。FIG. 5 is a cross-sectional view taken along the line D in FIG. 4. 本発明の杭頭へのアジャスト部自動溶接方法を示す鉛直断面図である。It is a vertical sectional view which shows the adjustment part automatic welding method to the pile head of this invention. 実施例1の杭基礎構造体の、(a)は平面図、(b)、(c)は鉛直断面図である。(A) of the pile foundation structure of Example 1 is a top view, (b), (c) is a vertical sectional view. 本発明の実施例2の杭基礎構造体を示す平面図である。It is a top view which shows the pile foundation structure of Example 2 of this invention. 本発明の構造解析手順を示したフローチャートである。It is the flowchart which showed the structure analysis procedure of this invention. 従来例の半固定直接基礎構造体を示す鉛直断面図である。It is a vertical sectional view showing a semi-fixed direct foundation structure of a conventional example.

符号の説明Explanation of symbols

1:鉄骨柱 1a:柱脚
2:水平梁 2a:ウェブ 2b:フランジ 2c:リブ
3:鋼管杭 4:補剛梁 5:根切り部
20:隅肉溶接
31:受け金物 32:支持金物 33a:ボルト 33b:ナット
34:鋼管 34a:上鋼管 34b:中鋼管 34c:下鋼管
35:位置固定金物 35a:腕部
36:切断機走行板 37:トッププレート
41:切断予定部
51:裏当て金 51a:ガイドレール 51b:ノズル駆動装置
51c:アーム 51d:ノズル
61:推進翼 61a:ガイドレール 61b:トーチ駆動装置
61c:アーム 61d:トーチ
62:掘削爪
71:高力ボルト 71a:ボルト孔 72:ナット
91:柱芯 94:通り芯 95:杭芯 96:水平梁の部材芯
L:杭芯間距離
116:無筋コンクリート 117:根切り部
122:鉄骨柱 124:PHC杭
125:支持装置 126:第1基礎鉄骨
1: Steel column 1a: Column base 2: Horizontal beam 2a: Web 2b: Flange 2c: Rib 3: Steel pipe pile 4: Stiffening beam 5: Root cut part 20: Fillet weld 31: Receiving metal 32: Supporting metal 33a: Bolt 33b: Nut 34: Steel pipe 34a: Upper steel pipe 34b: Medium steel pipe 34c: Lower steel pipe 35: Position fixing hardware 35a: Arm part 36: Cutting machine travel plate 37: Top plate 41: Planned cutting part 51: Backing metal 51a: Guide rail 51b: Nozzle drive device 51c: Arm 51d: Nozzle 61: Propeller blade 61a: Guide rail 61b: Torch drive device 61c: Arm 61d: Torch 62: Excavation claw 71: High strength bolt 71a: Bolt hole 72: Nut 91: Column core 94: Street core 95: Pile core 96: Horizontal beam member core L: Distance between pile cores 116: Unreinforced concrete 117: Root cutting part 122: Steel column 124: PHC pile 125: Support device 126: First foundation steel frame

Claims (7)

構造物を支える鉄骨柱の柱脚に接合され、その柱脚から放射方向に水平に延びる複数の水平梁と、それら水平梁の先端部に緊結され、下向きに延びる、突起による引抜き抵抗機構を有する複数の杭とから構成されており、前記鉄骨柱に作用する曲げモーメント、せん断力および軸力を、前記鉄骨柱の柱脚から放射方向に配置された複数の水平梁を介して引抜き抵抗機構を有する複数の杭に伝達するようにしたことを特徴とする基礎梁の無い杭基礎構造。
Connected to the column base of a steel column that supports the structure, and has a plurality of horizontal beams that extend radially from the column base in a radial direction, and a pull-out resistance mechanism with protrusions that is tightly connected to the tip of these horizontal beams and extends downward It is composed of a plurality of piles, and a bending moment, shearing force and axial force acting on the steel column are provided via a plurality of horizontal beams arranged radially from the column base of the steel column. A pile foundation structure without foundation beams, which is transmitted to a plurality of piles .
前記水平梁が3本以上であり、それら全部の水平梁先端部に前記引抜き抵抗機構を有する杭が緊結されていることを特徴とする請求項1に記載の基礎梁の無い杭基礎構造。   The pile foundation structure without a foundation beam according to claim 1, wherein the number of the horizontal beams is three or more, and piles having the pulling-out resistance mechanism are tightly connected to the tip portions of all the horizontal beams. 前記鉄骨柱の柱脚芯と前記引抜き抵抗機構を有する杭の芯とを結ぶ水平線と、前記水平梁の部材軸芯とが一致するように配置されていることを特徴とする請求項1又は請求項2のいずれかに記載の杭基礎構造。   The horizontal line connecting the column base of the steel column and the core of the pile having the pull-out resistance mechanism is arranged so that the member axis of the horizontal beam coincides. Item 3. The pile foundation structure according to any one of items 2 to 3. 複数の前記水平梁の隣接する先端同士が補剛梁で連結されていることを特徴とする請求項1から請求項3までのいずれか1つに記載の杭基礎構造。   The pile foundation structure according to any one of claims 1 to 3, wherein adjacent ends of the plurality of horizontal beams are connected by a stiffening beam. 前記杭の頭部にトッププレートが水平に取付けられ、このトッププレートに水平梁の先端部が溶接又はボルトで接合されていることを特徴とする請求項1から請求項4までのいずれか1つに記載の杭基礎構造。   The top plate is horizontally attached to the head of the pile, and the tip of the horizontal beam is joined to the top plate by welding or bolts. Pile foundation structure as described in 埋設後の鋼管杭頭部の切断処理において、仮の支持金物を杭頭付近の鋼管内部に固定し、その支持金物に支持させることにより杭頭上端に切断機走行板を水平に保持し、当該切断機走行板に設けたガイドレールに沿って切断機を走行させることにより、鋼管杭頭部の切断を行うことを特徴とする鋼管杭の杭頭処理方法。   In the cutting process of the steel pipe pile head after burial, the temporary support hardware is fixed inside the steel pipe near the pile head, and supported by the support hardware, the cutting machine traveling plate is held horizontally at the top of the pile head, A pile head treatment method for a steel pipe pile, wherein the head of the steel pipe pile is cut by running the cutting machine along a guide rail provided on the cutting machine travel plate. 水平梁と鋼管杭頭とを接続するためのアジャスト部の取付けにおいて、杭頭付近の鋼管内部に固定された仮の支持金物に支持させて、アジャスト部に予め取付けられたトッププレートを水平に保持し、そのトッププレートにガイドレールを設けて溶接機を走行させることにより、アジャスト部と鋼管杭頭とを溶接接合することを特徴とする鋼管杭の杭頭処理方法。   In the installation of the adjustment part to connect the horizontal beam and the steel pipe pile head, the top plate pre-attached to the adjustment part is held horizontally by supporting it with a temporary support hardware fixed inside the steel pipe near the pile head. And a steel pipe pile head treatment method characterized by welding the adjustment part and the steel pipe pile head by providing a guide rail on the top plate and running the welding machine.
JP2006222285A 2006-08-17 2006-08-17 Pile foundation structure and pile head treatment method Active JP4961604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222285A JP4961604B2 (en) 2006-08-17 2006-08-17 Pile foundation structure and pile head treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222285A JP4961604B2 (en) 2006-08-17 2006-08-17 Pile foundation structure and pile head treatment method

Publications (2)

Publication Number Publication Date
JP2008045342A JP2008045342A (en) 2008-02-28
JP4961604B2 true JP4961604B2 (en) 2012-06-27

Family

ID=39179342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222285A Active JP4961604B2 (en) 2006-08-17 2006-08-17 Pile foundation structure and pile head treatment method

Country Status (1)

Country Link
JP (1) JP4961604B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200451680Y1 (en) 2010-06-09 2011-01-04 코랜스그린산업(주) Deck Column Foundation
JP2013060711A (en) * 2011-09-12 2013-04-04 Chiyoda Geotech Co Ltd Foundation structure for solar cell module or solar cell array frame
CN102425190A (en) * 2011-12-07 2012-04-25 中国建筑第八工程局有限公司 Superposed tower crane foundation
JP6177508B2 (en) * 2012-08-09 2017-08-09 株式会社コプロス Vertical casing for shaft
CN103174155B (en) * 2013-03-26 2015-02-18 中建保华建筑有限责任公司 Reverse construction method for erecting steel column and pouring concrete foundation
JP6322057B2 (en) * 2014-06-09 2018-05-09 株式会社エムオーテック Rotary press-fit steel pipe pile connection fittings
CN104674838A (en) * 2014-12-31 2015-06-03 上海市机械施工集团有限公司 Foundation structure of mobile tower crane and laying method of foundation structure
JP6611615B2 (en) * 2016-01-07 2019-11-27 隆幸 瓜生 Precast foundation structure and precast foundation method
CN106088132A (en) * 2016-06-15 2016-11-09 中国建筑第八工程局有限公司 Armored concrete M shape tower crane and construction method thereof
CN106088131A (en) * 2016-06-15 2016-11-09 中国建筑第八工程局有限公司 Armored concrete cross tower crane and construction method thereof
JP6929170B2 (en) * 2017-09-04 2021-09-01 株式会社竹中工務店 Joint structure of steel pipe piles
JP6905496B2 (en) * 2018-09-03 2021-07-21 東電設計株式会社 Pile foundation
CN110670623A (en) * 2019-09-28 2020-01-10 中国建筑第四工程局有限公司 Cross beam tower crane foundation for structural wall column stress and construction method thereof
CN114482600B (en) * 2022-01-17 2023-06-06 中铁工程设计咨询集团有限公司 Single-channel stress compensation type high-speed railway station widening structure and construction method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891161A (en) * 1981-11-24 1983-05-31 Toshiba Corp Manufacture of member for nuclear reactor
JPH05331862A (en) * 1992-05-29 1993-12-14 N K Eng Kk Steel foundation structure
JP3700102B2 (en) * 1997-09-25 2005-09-28 清水建設株式会社 Building basic structure
JP2000064305A (en) * 1998-08-26 2000-02-29 Susumu Takamatsu Foundation structure of steel tower and construction thereof
JP2002047669A (en) * 2000-08-03 2002-02-15 Nippon Denro Kk Foundation structure for tower-like steel structure
JP4456257B2 (en) * 2000-08-09 2010-04-28 新日本製鐵株式会社 Semi-fixed direct foundation and pile foundation structure of steel column
JP2002146800A (en) * 2000-11-14 2002-05-22 Nippon Steel Corp Connecting structure between superstructure and foundation pile, and support hardware
JP4841731B2 (en) * 2001-01-18 2011-12-21 大和ハウス工業株式会社 Steel pipe cutting machine

Also Published As

Publication number Publication date
JP2008045342A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP4961604B2 (en) Pile foundation structure and pile head treatment method
JP6260906B2 (en) Steel structure pile pillar-to-base beam joint integrated method
JP6387321B2 (en) How to build a bridge
JP6304551B2 (en) Unit construction method for solar panels
JP2831909B2 (en) Connection structure of steel columns, piles and foundation beams
JP2005282339A (en) Structure for reinforcing hollow-steel-pipe steel tower by using splice l-shaped material
JP5967642B2 (en) Building reinforcement structure
JPH05331862A (en) Steel foundation structure
JP4309783B2 (en) Reinforcement structure with welded round material for reinforcing hollow steel tube tower
JP4838554B2 (en) Boiler damping support structure
CN115341467B (en) Highway-railway dual-purpose river-crossing A-shaped stay cable anchoring structure and construction method thereof
CN111005363A (en) Spliced snowflake type steel sheet pile capable of monitoring self deformation and construction method thereof
JP6994846B2 (en) Seismic control structure
CN212984715U (en) Temporary supporting device for large-span grid structure one-by-one accumulated sliding construction
JP3436104B2 (en) Steel pipe construction method
JP3690495B2 (en) Building construction method and building
JP2010077656A (en) Structure and method for seismically strengthening column
JP4724680B2 (en) Column base structure
JP6579512B2 (en) Bonding structure between foundation pile and unit and unit construction method using it
CN110820770A (en) Prefabricated lattice beam and construction method thereof
JP2001323481A (en) Steel foundation member and foundation structure
JP2002227190A (en) Surface layer casing pipe for cast-in-place concrete pile and method of executing surface layer casing pipe for cast-in-place concrete pile
JP6611615B2 (en) Precast foundation structure and precast foundation method
JP6865009B2 (en) Building foundation construction method and building foundation structure
Bailey et al. Seismic isolation retrofitting of the Salt Lake City and County building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120307

R150 Certificate of patent or registration of utility model

Ref document number: 4961604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250