JP4961152B2 - Optical element, light deflection element, and image display apparatus - Google Patents

Optical element, light deflection element, and image display apparatus Download PDF

Info

Publication number
JP4961152B2
JP4961152B2 JP2006070328A JP2006070328A JP4961152B2 JP 4961152 B2 JP4961152 B2 JP 4961152B2 JP 2006070328 A JP2006070328 A JP 2006070328A JP 2006070328 A JP2006070328 A JP 2006070328A JP 4961152 B2 JP4961152 B2 JP 4961152B2
Authority
JP
Japan
Prior art keywords
refractive index
optical
electrode
light
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006070328A
Other languages
Japanese (ja)
Other versions
JP2007248674A (en
Inventor
由希子 平野
才明 鴇田
一也 宮垣
浩 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006070328A priority Critical patent/JP4961152B2/en
Publication of JP2007248674A publication Critical patent/JP2007248674A/en
Application granted granted Critical
Publication of JP4961152B2 publication Critical patent/JP4961152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

この発明は、複数のパターン電極に電気信号を印加して光を変調する光学素子と、それを使用して光の方向を変える光偏向素子及び光偏向素子を使用したプロジェクションディスプレイやヘッドマウントディスプレイ等の画像表示装置に関するものである。   The present invention relates to an optical element that modulates light by applying an electric signal to a plurality of pattern electrodes, an optical deflection element that changes the direction of the light using the optical element, a projection display that uses the optical deflection element, a head-mounted display, etc. The present invention relates to an image display apparatus.

液晶分子の配列を電極基板面内に沿って生じる電界により変化させて光を偏向させる光偏向素子が、例えば特許文献1等に開示されている。この光偏向素子は、液晶層を挟んだ透明基板の一方の基板表面にだけ複数の平行な透明ライン電極を設け、外部には電源から供給される電圧を分割する複数の抵抗を設け、各抵抗間を各ライン電極に接続し、各ライン電極に段階的な電圧値を印加して各ライン電極間の電位差により各ライン電極間に基板面内に沿った電界すなわち水平電界を生じさせて、液晶層の内部に強制的に電位勾配を作り、素子の全面で比較的均一な電界強度を得るようにしている。   For example, Patent Document 1 discloses an optical deflection element that deflects light by changing the arrangement of liquid crystal molecules by an electric field generated along the plane of an electrode substrate. This optical deflection element is provided with a plurality of parallel transparent line electrodes only on one substrate surface of a transparent substrate with a liquid crystal layer sandwiched therebetween, and a plurality of resistors for dividing a voltage supplied from a power source outside. Connected to each line electrode, a stepped voltage value is applied to each line electrode, and an electric field along the substrate plane, that is, a horizontal electric field is generated between each line electrode due to a potential difference between the line electrodes. A potential gradient is forcibly created inside the layer so as to obtain a relatively uniform electric field strength over the entire surface of the device.

この光偏向素子の光の回折を低減するため、特許文献1に示された光偏向素子は、透明基板に形成された複数のライン電極の間に充填材を設け、ライン電極と充填材の光路差を小さく限定している。
特開2004−286962号公報
In order to reduce the light diffraction of this optical deflection element, the optical deflection element disclosed in Patent Document 1 is provided with a filler between a plurality of line electrodes formed on a transparent substrate, and the optical path between the line electrode and the filler The difference is limited to a small size.
Japanese Patent Laid-Open No. 2004-286562

ライン電極と充填材に起因する光路差で生じる回折を低減するためにはライン電極の屈折率を小さくしたり、ライン電極の膜厚を薄くしたり、あるいは充填材の屈折率を大きくする方法がある。   In order to reduce diffraction caused by the optical path difference caused by the line electrode and the filler, there are methods of reducing the refractive index of the line electrode, reducing the film thickness of the line electrode, or increasing the refractive index of the filler. is there.

しかしながら、ライン電極の膜厚については、液晶に印加する電界を発生させる上で問題が生じないよう、ある程度の表面抵抗率を確保する必要があるため、極端に膜厚を薄くすることはできない。また、光学素子の作製プロセスに対する耐熱性や作製した光学素子の耐久性・耐光性の観点から、屈折率以外に充填材に求められる特性が多々ある。このため屈折率の高さを優先させると、これらの特性が犠牲になることが多く、回折を低減しようとすると、ライン電極の材料や膜厚、充填材の材料等が大幅な制約を受け、光学素子の他の特性が劣化してしまう。   However, as for the film thickness of the line electrode, it is necessary to ensure a certain degree of surface resistivity so as not to cause a problem in generating an electric field to be applied to the liquid crystal. Therefore, the film thickness cannot be extremely reduced. In addition, from the viewpoints of heat resistance to the optical element manufacturing process and durability and light resistance of the manufactured optical element, there are many characteristics required for the filler in addition to the refractive index. For this reason, if the higher refractive index is prioritized, these characteristics are often sacrificed, and when trying to reduce diffraction, the line electrode material, film thickness, filler material, etc. are significantly restricted, Other characteristics of the optical element are deteriorated.

この発明は、このような課題に着目したものであり、光学素子を形成する際の材料選択の自由度を残したまま回折の影響をより低減することができる光学素子と、それを使用して光の方向を変える光偏向素子及び画像表示装置を提供することを目的とするものである。   This invention pays attention to such a problem, and an optical element capable of further reducing the influence of diffraction while leaving the degree of freedom of material selection when forming an optical element, and using the same It is an object of the present invention to provide an optical deflection element and an image display device that change the direction of light.

この発明の光学素子は、基板と、該基板の少なくとも一方の面に形成された屈折率調整部と該屈折率調整部に重畳された電極とを有する複数の電極形成部と、該複数の電極形成部の間を充填する電極非形成部とを有する光学素子であって、前記電極の屈折率をn1、前記電極非形成部の屈折率をn2、前記屈折率調整部の屈折率をn3としたとき、n3<n2<n1を満足することを特徴とする。 The optical element of the present invention includes a plurality of electrode forming portions each including a substrate, a refractive index adjusting portion formed on at least one surface of the substrate, and an electrode superimposed on the refractive index adjusting portion, and the plurality of electrodes. an optical element having an electrode non-formation portions to be filled between the forming section, the refractive index of the electrode n1, the refractive index of the electrode non-formation portions n2, the refractive index of the refractive index adjusting unit and n3 when, characterized and Turkey to satisfy n3 <n2 <n1.

前記電極の厚さをd1、前記屈折率調整部の厚さをd2としたとき、前記屈折率調整部と前記電極非形成部の屈折率差で生じる光路差(n3−n2)×d2が、
0.6×(n1−n2)×d1 <|(n3−n2)×d2|<1.4×(n1−n2)×d1を満たすことが望ましい。
The thickness of the electrode d1, when the thickness of the refractive index adjuster has a d 2, an optical path difference caused by the refractive index difference between the refractive index adjuster the electrode non-formation portion (n3-n2) × d2 is ,
0.6 × (n1-n2) × d1 <| (n3-n2) × d2 | <1.4 × (n1-n2) × satisfy d1 score and is desirable.

また、前記屈折率調整部は、前記基板をエッチングして形成すると良い。   The refractive index adjusting unit may be formed by etching the substrate.

さらに、前記電極非形成部を接着層で形成すると良い。   Furthermore, the electrode non-formation part may be formed of an adhesive layer.

また、前記電極非形成部を誘電体膜で形成しても良い。   The electrode non-formation part may be formed of a dielectric film.

この発明の光偏向素子は、前記いずれかの光学素子を1対有し、1対の光学素子のライン電極が形成された面を一定間隔で対向させて配置した間隔内にキラルスメクチックC相を形成する液晶層を設けたことを特徴とする。   The optical deflection element of the present invention has a pair of any one of the optical elements described above, and the chiral smectic C phase is disposed within an interval in which the surfaces on which the line electrodes of the pair of optical elements are formed are opposed to each other at a constant interval. A liquid crystal layer to be formed is provided.

この発明の他の光偏向素子は、誘電体膜を複数層有する光学素子を1対有し、1対の光学素子のライン電極が形成された面を一定間隔で対向させて配置し、複数層の誘電体膜のうち最上層の誘電体膜を配向膜とし、配向膜とした誘電体膜の間にキラルスメクチックC相を形成する液晶層を設けたことを特徴とする。   Another optical deflection element according to the present invention has a pair of optical elements each having a plurality of dielectric films, and the plurality of layers are arranged with the surfaces on which the line electrodes of the pair of optical elements are formed facing each other at regular intervals. Of the above dielectric films, the uppermost dielectric film is used as an alignment film, and a liquid crystal layer for forming a chiral smectic C phase is provided between the alignment films.

この発明の画像表示装置は、前記光偏向素子を有する画像表示装置であって、画像情報にしたがって光を制御可能な複数の画素が2次元的に配列した画像表示素子と、前記画像表示素子を照明する照明光学系と、前記光偏向素子と、前記画像表示素子から出射された画像光を投影する投影光学系とを有し、前記光偏向素子が前記画像表示素子と投影光学系との間に配置されていることを特徴とする。   The image display device of the present invention is an image display device having the light deflection element, wherein the image display element in which a plurality of pixels capable of controlling light according to image information is two-dimensionally arranged, and the image display element An illumination optical system for illuminating, the light deflection element, and a projection optical system for projecting image light emitted from the image display element, wherein the light deflection element is between the image display element and the projection optical system. It is characterized by being arranged in.

この発明は、基板に形成された屈折率調整部に重畳された電極を有する電極形成部と電極非形成部の光路差を小さくすることにより、光が光学素子を透過するときに生じる回折を抑制して、光学特性の劣化を防止することができる。 This invention suppresses diffraction that occurs when light passes through an optical element by reducing the optical path difference between an electrode forming portion having electrodes superimposed on a refractive index adjusting portion formed on a substrate and an electrode non-forming portion. Thus, it is possible to prevent deterioration of optical characteristics.

また、屈折率調整部と電極非形成部の屈折率差で生じる光路差により電極非形成部の屈折率と厚さを定めることにより、回折を十分に抑制することができる。   Further, the diffraction can be sufficiently suppressed by determining the refractive index and thickness of the electrode non-forming part by the optical path difference caused by the refractive index difference between the refractive index adjusting part and the electrode non-forming part.

さらに、屈折率調整部を、基板をエッチングして形成することにより、屈折率調整部を容易に作製することができる。   Furthermore, the refractive index adjusting unit can be easily manufactured by forming the refractive index adjusting unit by etching the substrate.

また、電極非形成部を、接着層や誘電体膜で形成することにより、電極非形成部の屈折率を決定するために最適な充填材の材料を選択することができ、回折抑制効果を安定して高めることができる。   In addition, by forming the electrode non-forming part with an adhesive layer or dielectric film, it is possible to select the optimal filler material for determining the refractive index of the electrode non-forming part, stabilizing the diffraction suppression effect Can be increased.

この光学素子とキラルスメクチックC相を形成する液晶層で光偏向素子を形成することにより、回折を抑制して安定した光路を偏向させることができる。   By forming an optical deflection element with this optical element and a liquid crystal layer that forms a chiral smectic C phase, it is possible to suppress diffraction and deflect a stable optical path.

この光偏向素子の配向膜として光学素子の誘電体膜を使用することにより、液晶の良好な配向性を確保することができ、安定して光を偏向させることができる。   By using the dielectric film of the optical element as the alignment film of the light deflecting element, it is possible to ensure good alignment of the liquid crystal and to deflect light stably.

また、この光変偏向素子を画像表示装置に使用し、画像情報にしたがって光を制御可能な複数の画素が2次元的に配列した画像表示素子から出射された画像光を偏向して投影することにより、画素数の少ない画像表示素子を用いても高精細で性能の安定した画像を表示することができる。   In addition, this light variable deflection element is used in an image display device, and image light emitted from an image display element in which a plurality of pixels capable of controlling light according to image information is two-dimensionally arranged is deflected and projected. Therefore, even if an image display element having a small number of pixels is used, a high-definition and stable performance image can be displayed.

図1はこの発明の光学素子の構成を示し、(a)は正面図、(b)は(a)のA−A断面図、(c)は(a)のB−B断面図である。光学素子1は光が物質中を通過するとき、吸収される度合いが小さい材料や透明な材料で形成された基板2と、複数の屈折率を調整する屈折率調整部である低屈折率層3とライン電極4と、抵抗膜5と接着層6及び誘電体基板7を有する。複数の低屈折率層3は光が物質中を通過するとき、吸収される度合いが小さい材料で基板2の一方の表面に平行に形成されている。なお、低屈折率層3を基板2の一方の面に形成した場合を示すが、基板2の両方の面に形成しても良い。複数のライン電極4は透明導電膜からなり、各低屈折率層3に重畳して形成され、各低屈折率層3とライン電極4で基板2を複数区間に分割している。この低屈折率層3とライン電極4とで格子された部分を電極形成部といい、各ライン電極4の間に形成されている部分を電極非形成部という。両端のライン電極4の端部には電圧印加手段8との接続部9を有する。抵抗膜5は各ライン電極4の端部表面に沿って帯状に配置しており、積層して成膜されている。基板2のライン電極4を設けた面には光硬化性樹脂又は熱硬化性樹脂等の接着層6を介して光が物質中を通過するとき、吸収される度合いが小さい材料や透明な材料で形成された誘電体基板7が接着されている。この誘電体基板7を接着する接着層6は各低屈折率層3とライン電極4の間にも充填されている。なお、接着層6の接着剤が充填材として構成されているが、接着剤に限らず光を透過させる部材であれば良い。   1A and 1B show a configuration of an optical element according to the present invention, in which FIG. 1A is a front view, FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A, and FIG. The optical element 1 includes a substrate 2 formed of a material that is less absorbed or transparent when light passes through the substance, and a low refractive index layer 3 that is a refractive index adjusting unit that adjusts a plurality of refractive indexes. And the line electrode 4, the resistance film 5, the adhesive layer 6, and the dielectric substrate 7. The plurality of low-refractive index layers 3 are made of a material having a small degree of absorption when light passes through a substance and is formed in parallel with one surface of the substrate 2. Although the case where the low refractive index layer 3 is formed on one surface of the substrate 2 is shown, it may be formed on both surfaces of the substrate 2. The plurality of line electrodes 4 are made of a transparent conductive film, are formed so as to overlap each low refractive index layer 3, and the substrate 2 is divided into a plurality of sections by each low refractive index layer 3 and the line electrode 4. A portion that is latticed by the low refractive index layer 3 and the line electrode 4 is referred to as an electrode forming portion, and a portion that is formed between the line electrodes 4 is referred to as an electrode non-forming portion. At the ends of the line electrodes 4 at both ends, there are connecting portions 9 to the voltage applying means 8. The resistance film 5 is disposed in a band shape along the end surface of each line electrode 4 and is formed by being laminated. The surface of the substrate 2 on which the line electrode 4 is provided is made of a material that is less absorbed or transparent when light passes through the substance through an adhesive layer 6 such as a photocurable resin or a thermosetting resin. The formed dielectric substrate 7 is adhered. The adhesive layer 6 for adhering the dielectric substrate 7 is also filled between each low refractive index layer 3 and the line electrode 4. In addition, although the adhesive agent of the adhesive layer 6 is comprised as a filler, what is necessary is just the member which permeate | transmits light not only an adhesive agent.

この光学素子1の両端のライン状電極4間に電圧印加手段8から電圧を印加すると、隣接するライン電極4間では抵抗膜5の各抵抗により電圧の減衰が生じ、各ライン電極4には段階的に異なる電位が与えられて、ライン電極4の長手方向と直交する向に電位勾配が形成され、この電位が変化する方向に基板2の面に沿った水平電界が発生する。この両端のライン状電極4に印加する電圧の極性を逆にすると、電界の方向を反転させることができる。したがって電圧印加手段8として交流電源を用いると、周期的に、あるいは任意のタイミングで電界の方向を切り替えることができる。   When a voltage is applied from the voltage applying means 8 between the line electrodes 4 at both ends of the optical element 1, the voltage attenuation occurs between the adjacent line electrodes 4 due to the resistance of the resistance film 5. Different potentials are applied, a potential gradient is formed in a direction orthogonal to the longitudinal direction of the line electrode 4, and a horizontal electric field along the surface of the substrate 2 is generated in the direction in which the potential changes. If the polarity of the voltage applied to the line electrodes 4 at both ends is reversed, the direction of the electric field can be reversed. Therefore, when an AC power supply is used as the voltage application means 8, the direction of the electric field can be switched periodically or at an arbitrary timing.

このように光学素子1の両端のライン状電極4間に電圧を印加して電界を発生させるとき、各ライン電極4には段階的に異なる電位が与えられて電位勾配が生じるが、各ライン電極4が形成されている領域は一定の電位を持ち、ライン電極4間は電位が浮遊した状態であるので、局所的には各ライン電極4の配置に対応して電界の方向や大きさが変調されている。このような電界の局所的な変調は、誘電体基板7を介することによってその影響が低減できる。   Thus, when a voltage is applied between the line electrodes 4 at both ends of the optical element 1 to generate an electric field, different potentials are applied to each line electrode 4 in stages, thereby generating a potential gradient. 4 has a constant potential, and the potential between the line electrodes 4 is floating. Therefore, the direction and magnitude of the electric field are locally modulated according to the arrangement of the line electrodes 4. Has been. The influence of such local modulation of the electric field can be reduced through the dielectric substrate 7.

この光学素子1のライン電極4は、スズ添加酸化インジウム(ITO)や酸化インジウム(In)、酸化インジウム・酸化亜鉛(IZO)、酸化スズ(SnO)、酸化亜鉛(ZnO)、アルミニウム添加酸化亜鉛(ZnO:Sb)、アンチモン添加酸化スズ(ATO)などを用いる。このライン電極4を形成する材料としては可視光に対する透過率の高い透明酸化物を用いるのが一般的であり、500〜550nmの波長の光に対して酸化インジウムは屈折率が約1.8〜2.0、酸化亜鉛は屈折率が約2.1、酸化スズは屈折率が約1.9と屈折率が比較的高く、これらに対してドーピングを行った材料は、いずれも比較的屈折率が高い。このライン電極4の間に充填する光硬化性樹脂又は熱硬化性樹脂等の接着層6の屈折率は約1.5程度であり、高屈折率の材料でも屈折率は1.6である。 The line electrode 4 of the optical element 1 includes tin-doped indium oxide (ITO), indium oxide (In 2 O 3 ), indium oxide / zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO), aluminum Added zinc oxide (ZnO: Sb), antimony-added tin oxide (ATO), or the like is used. As a material for forming the line electrode 4, it is common to use a transparent oxide having a high transmittance to visible light. Indium oxide has a refractive index of about 1.8 to 2.0 with respect to light having a wavelength of 500 to 550 nm. Zinc oxide has a relatively high refractive index of about 2.1 and tin oxide has a refractive index of about 1.9, and all of the materials doped with these materials have a relatively high refractive index. The refractive index of the adhesive layer 6 such as a photocurable resin or a thermosetting resin filled between the line electrodes 4 is about 1.5, and the refractive index is 1.6 even with a high refractive index material.

このライン電極4の屈折率をn1、接着層6の屈折率をn2とすると、n1>n2であり、低屈折率層3がない場合は、ライン電極4の屈折率n1と接着層6の屈折率n2の差により、光学素子1に入射して透過した光に回折が生じる。そこで基板2とライン電極4の間に、ライン電極4の屈折率n1と接着層6の屈折率n2のいずれの屈折率よりも小さい屈折率n3を有する低屈折率層3を設け、ライン電極4の屈折率n1と接着層6の屈折率n2の差による影響を小さくする。すなわち、電極形成部と電極非形成部との屈折率の差が生じるので、低屈折率層3により屈折率の統制を行い、電極形成部と電極非形成部との屈折率の差による影響を小さくする。 When the refractive index of the line electrode 4 is n1 and the refractive index of the adhesive layer 6 is n2, n1> n2, and when there is no low refractive index layer 3, the refractive index n1 of the line electrode 4 and the refractive index of the adhesive layer 6 Due to the difference in the rate n2, diffraction occurs in the light that is incident on and transmitted through the optical element 1. Therefore, a low refractive index layer 3 having a refractive index n3 smaller than any of the refractive index n1 of the line electrode 4 and the refractive index n2 of the adhesive layer 6 is provided between the substrate 2 and the line electrode 4. The influence of the difference between the refractive index n1 of the first layer and the refractive index n2 of the adhesive layer 6 is reduced. That is, since a difference in refractive index occurs between the electrode forming portion and the electrode non-forming portion, the refractive index is controlled by the low refractive index layer 3, and the influence of the difference in refractive index between the electrode forming portion and the electrode non-forming portion is affected. Make it smaller.

すなわち、図2に示すように、ライン電極4の厚さをd1、低屈折率層3の厚さをd2とすると、低屈折率層3とライン電極4を通った光と厚さ(d1+d2)の接着層6を通った光の光路差は、
{(n3×d2+n1×d1)−n2×(d1+d2)}
={(n1−n2)×d1+(n3−n2)×d2}
となり、n2>n3であるから、全体の光路差を小さくすることができ、回折を抑えることができる。
That is, as shown in FIG. 2, when the thickness of the line electrode 4 is d1 and the thickness of the low refractive index layer 3 is d2, the light and thickness (d1 + d2) passing through the low refractive index layer 3 and the line electrode 4 The optical path difference of light passing through the adhesive layer 6 is
{(N3 * d2 + n1 * d1) -n2 * (d1 + d2)}
= {(N1-n2) * d1 + (n3-n2) * d2}
Since n2> n3, the entire optical path difference can be reduced, and diffraction can be suppressed.

回折強度はsin(光路差/波長×π)に比例するので、光路差が波長と比べて十分に小さいとき、例えば1%以下であるとき回折が十分に抑制することができる。例えば波長546nmの光に対するライン電極4の屈折率n1を2.0、厚さd1を30nm、接着層6の屈折率n2 を1.56とするとき、光路差を波長546nmの1%である5.46nm以下にするためには、(n1−n2)×d1=13.2nmであるから、低屈折率層3と接着層6の屈折率差で生じる光路差(n3−n2)×d2を
−18.66nm≦(n3−n2)×d2≦−7.74nm (1)
を満たすようにすれば良い。この条件は、
0.6×(n1−n2)×d1 <|(n3−n2)×d2|<1.4×(n1−n2)×d1
に相当する。
このように低屈折率層3とライン電極4を通った光と接着層6を通った光の光路差の絶対値を透過光波長の1%以下にしたとき回折低減効果が視認でき、回折による光学特性の劣化を十分抑えることができる。
Since the diffraction intensity is proportional to sin (optical path difference / wavelength × π), diffraction can be sufficiently suppressed when the optical path difference is sufficiently smaller than the wavelength, for example, 1% or less. For example, when the refractive index n1 of the line electrode 4 for light having a wavelength of 546 nm is 2.0, the thickness d1 is 30 nm, and the refractive index n2 of the adhesive layer 6 is 1.56, the optical path difference is 5.46 nm or less, which is 1% of the wavelength 546 nm. Therefore, since (n1−n2) × d1 = 13.2 nm, the optical path difference (n3−n2) × d2 caused by the difference in refractive index between the low refractive index layer 3 and the adhesive layer 6 is set to −18.66 nm ≦ (n3− n2) × d2 ≦ −7.74 nm (1)
It should be satisfied. This condition is
0.6 * (n1-n2) * d1 <| (n3-n2) * d2 | <1.4 * (n1-n2) * d1
It corresponds to.
Thus, when the absolute value of the optical path difference between the light passing through the low refractive index layer 3 and the line electrode 4 and the light passing through the adhesive layer 6 is 1% or less of the transmitted light wavelength, the diffraction reduction effect can be visually recognized. Degradation of optical characteristics can be sufficiently suppressed.

前記説明では基板2に低屈折率層3を形成してから、低屈折率層3の表面にライン電極4を形成する場合について説明した。しかしながら、接着層6より基板2の屈折率が小さいときには、図3に示すように、基板2の表面に導電膜を成膜し、これをライン形状にパターニングする際に、導電膜に続けて所望の深さ分基板2もエッチングしてライン電極4と低屈折率層3を形成して、基板2の一部を低屈折率層3として利用しても良い。   In the above description, the case where the line electrode 4 is formed on the surface of the low refractive index layer 3 after the low refractive index layer 3 is formed on the substrate 2 has been described. However, when the refractive index of the substrate 2 is smaller than that of the adhesive layer 6, a conductive film is formed on the surface of the substrate 2 and patterned into a line shape as shown in FIG. The substrate 2 may also be etched to the depth of 2 to form the line electrode 4 and the low refractive index layer 3, and a part of the substrate 2 may be used as the low refractive index layer 3.

この光学素子1を使用した光偏向素子について説明する。図4は光学素子1を使用した光偏向素子10の構成を示し、(a)は正面図、(b)は(a)のA−A断面図、(c)は(a)のB−B断面図である。光偏向素子10は1対の光学素子1と4個のスペーサ11と配向膜12及び液晶層13を有する。各光学素子1の誘電体基板7の表面には配向膜12が形成され、この配向膜12側を内側にして光学素子1の1対の基板2はスペーサ11により一定間隔をおいて貼り合わされている。この1対の光学素子1は、発生する電界の均一性を向上させるために、各基板2のライン電極4を半ピッチずらした状態にして構成されている。この対向して配置した配向膜12間にキラルスメクチックC相を形成可能な液晶層13を設けている。配向膜12は液晶分子を配向膜12に対して垂直方向に配向させる垂直配向膜であり、キラルスメクチックC相を形成する液晶分子の層構造の層法線方向が基板2の面に対してほぼ垂直となるように構成されている。この配向膜12としては、シランカップリング剤や市販の液晶用垂直配向剤などを用いることができる。   An optical deflection element using the optical element 1 will be described. 4A and 4B show a configuration of an optical deflecting element 10 using the optical element 1, wherein FIG. 4A is a front view, FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A, and FIG. It is sectional drawing. The optical deflection element 10 includes a pair of optical elements 1, four spacers 11, an alignment film 12, and a liquid crystal layer 13. An alignment film 12 is formed on the surface of the dielectric substrate 7 of each optical element 1, and the pair of substrates 2 of the optical element 1 are bonded to each other by a spacer 11 with the alignment film 12 side inside. Yes. This pair of optical elements 1 is configured with the line electrodes 4 of each substrate 2 shifted by a half pitch in order to improve the uniformity of the generated electric field. A liquid crystal layer 13 capable of forming a chiral smectic C phase is provided between the alignment films 12 arranged to face each other. The alignment film 12 is a vertical alignment film for aligning liquid crystal molecules in a direction perpendicular to the alignment film 12, and the layer normal direction of the layer structure of the liquid crystal molecules forming the chiral smectic C phase is substantially the plane of the substrate 2. It is configured to be vertical. As the alignment film 12, a silane coupling agent, a commercially available vertical alignment agent for liquid crystal, or the like can be used.

ここで液晶層13について詳細に説明する。スメクチック液晶は液晶分子の長軸方向を層状に配列してなる液晶層である。このような液晶に関し、層の法線方向(層法線方向)と液晶分子の長軸方向とが一致している液晶をスメクチックA相、法線方向と一致していない液晶をスメクチックC相という。スメクチックC相よりなる強誘電性液晶は、一般的に外部電界が働かない状態において各層毎に液晶ダイレクタ方向が螺旋的に回転しているいわゆる螺旋構造をとり、キラルスメクチックC相と呼ばれる。また、キラルスメクチックC相の反強誘電液晶は各層毎に液晶ダイレクタが対向する方向を向く。これらのキラルスメクチックC相よりなる液晶は、不斉炭素を分子構造に有し、これによって自発分極しているため、この自発分極Psと外部電界Eにより定まる方向に液晶分子が再配列することで光学特性が制御される。   Here, the liquid crystal layer 13 will be described in detail. A smectic liquid crystal is a liquid crystal layer in which major axis directions of liquid crystal molecules are arranged in layers. With respect to such a liquid crystal, a liquid crystal in which the normal direction of the layer (layer normal direction) and the major axis direction of the liquid crystal molecules coincide with each other is called a smectic A phase, and a liquid crystal that does not coincide with the normal direction is called a smectic C phase. . A ferroelectric liquid crystal composed of a smectic C phase generally has a so-called spiral structure in which the direction of the liquid crystal director is spirally rotated for each layer in a state where an external electric field does not work, and is called a chiral smectic C phase. Further, the chiral smectic C phase antiferroelectric liquid crystal is oriented in the direction in which the liquid crystal directors face each other. Since the liquid crystal composed of these chiral smectic C phases has an asymmetric carbon in the molecular structure and is spontaneously polarized by this, the liquid crystal molecules are rearranged in a direction determined by the spontaneous polarization Ps and the external electric field E. Optical properties are controlled.

ここで光偏向素子10の液晶層13として強誘電性液晶を使用した場合について説明するが、反強誘電液晶も同様に使用することができる。キラルスメクチックC相よりなる強誘電液晶の構造は、主鎖、スペーサ、骨格、結合部、キラル部などよりなる。主鎖構造としてはポリアクリレート、ポリメタクリレート、ポリシロキサン、ポリオキシエチレンなどが利用可能である。スペーサは分子回転を担う骨格と結合部及びキラル部を主鎖と結合させるためのものであり、適当な長さのメチレン鎖等が選ばれる。また、カイラル部とビフェニル構造など剛直な骨格とを結合する結合部には(−COO−)結合等が選ばれる。キラルスメクチックC相よりなる強誘電性液晶層13は配向膜12により基板2面に垂直に分子螺旋回転の回転軸が向いており、いわゆるホメオトロピック配向をなす。   Here, a case where a ferroelectric liquid crystal is used as the liquid crystal layer 13 of the light deflection element 10 will be described. However, an antiferroelectric liquid crystal can also be used in the same manner. The structure of a ferroelectric liquid crystal composed of a chiral smectic C phase is composed of a main chain, a spacer, a skeleton, a bonding part, a chiral part, and the like. As the main chain structure, polyacrylate, polymethacrylate, polysiloxane, polyoxyethylene and the like can be used. The spacer is for linking the skeleton responsible for molecular rotation, the bonding portion, and the chiral portion with the main chain, and a methylene chain having an appropriate length is selected. In addition, a (—COO—) bond or the like is selected as a bond part that bonds the chiral part and a rigid skeleton such as a biphenyl structure. The ferroelectric liquid crystal layer 13 composed of a chiral smectic C phase has a rotational axis of molecular helix rotation perpendicular to the surface of the substrate 2 by the alignment film 12 and has a so-called homeotropic alignment.

この光偏向素子10を構成する光学素子1の両端のライン電極4間に電圧を印加すると、抵抗膜5に電流が流れ、隣接するライン電極4間では抵抗膜5により電圧値が減衰し、各ライン状電極4間に電位勾配が発生する。この電位勾配により基板2のライン電極4が形成された面近傍に、面に沿った水平電界が得られる。この水平電界は各ライン電極4の配置に対応して電界の方向や大きさが変調されているが、誘電体基板7により変調の影響が低減されて液晶層13に基板2の表面とほぼ平行な均一な水平電界が得られる。すなわち誘電体基板7を介して液晶層13を挟んでいるため、基板2とほぼ平行で、且つ均一な水平電界を得ることができる。この誘電体基板7としては、透明な材料で構成されていれば良く、例えばガラスやサファイヤ、セラミックスを使用できる。この光学素子1の両端のライン電極4間に印加する電圧の極性を切り替えることにより、各ライン電極4間には逆向きの電位勾配を与えることができ、液晶層13内部の水平電界の方向を切り替えることができる。このように水平電界の方向を切り替わると、液晶層13の平均的な光学軸の傾斜方向が変化して、ライン電極4に平行な方向に直線偏光した入射光は、液晶層13の厚さ及び液晶分子の常光/異常光屈折率に応じた光路シフトを受けて偏向して、図4(b)に示すように、入射光は第1出射光と第2出射光の光路をとる。このように光を偏向させるとき、ライン電極4の本数やライン幅、ライン間隔、各ライン電極4間の電位差などを所望の光路サイズや光路偏向量及び液晶材料などに基づき適宜設定すれば良い。   When a voltage is applied between the line electrodes 4 at both ends of the optical element 1 constituting the optical deflecting element 10, a current flows through the resistance film 5, and the voltage value is attenuated between the adjacent line electrodes 4 by the resistance film 5. A potential gradient is generated between the line electrodes 4. Due to this potential gradient, a horizontal electric field along the surface is obtained in the vicinity of the surface of the substrate 2 on which the line electrode 4 is formed. The horizontal electric field is modulated in the direction and magnitude of the electric field corresponding to the arrangement of each line electrode 4, but the influence of the modulation is reduced by the dielectric substrate 7, and the liquid crystal layer 13 is substantially parallel to the surface of the substrate 2. A uniform horizontal electric field can be obtained. That is, since the liquid crystal layer 13 is sandwiched through the dielectric substrate 7, a uniform horizontal electric field that is substantially parallel to the substrate 2 can be obtained. The dielectric substrate 7 may be made of a transparent material. For example, glass, sapphire, or ceramics can be used. By switching the polarity of the voltage applied between the line electrodes 4 at both ends of the optical element 1, a reverse potential gradient can be given between the line electrodes 4, and the direction of the horizontal electric field inside the liquid crystal layer 13 can be changed. Can be switched. When the direction of the horizontal electric field is switched in this way, the inclination direction of the average optical axis of the liquid crystal layer 13 changes, and the incident light linearly polarized in the direction parallel to the line electrode 4 has the thickness of the liquid crystal layer 13 and As shown in FIG. 4B, the incident light takes an optical path between the first outgoing light and the second outgoing light as a result of being deflected by receiving an optical path shift corresponding to the ordinary light / abnormal light refractive index of the liquid crystal molecules. When the light is deflected in this way, the number of line electrodes 4, the line width, the line interval, the potential difference between the line electrodes 4, etc. may be appropriately set based on the desired optical path size, optical path deflection amount, liquid crystal material, and the like.

前記説明では、光学素子1の誘電体基板7を基板2に接着層6で接着し、誘電体基板7の表面に凹凸がない場合について説明したが、ライン電極4を有する基板2の面に誘電体層を直接形成しても良い。   In the above description, the case where the dielectric substrate 7 of the optical element 1 is bonded to the substrate 2 with the adhesive layer 6 and the surface of the dielectric substrate 7 is not uneven has been described. The body layer may be formed directly.

例えば図5の断面図に示す光偏向素子10aは、基板2の一方の面に複数のライン電極4を平行に形成し、その端部に抵抗膜5を積層し、各ライン電極4の表面に低屈折率層3が積層されている。この低屈折率層3を有する面に2層の誘電体層14,15が成膜され、表面の誘電体層15を配向膜として使用する。この液晶層13と接する誘電体層15を配向膜とすることにより、液晶の良好な配向性を確保できる。ここで誘電体層の数を1層として配向膜の機能を持たせても良い。また、光学素子1aは接着層6を介して誘電体基板7を接着する必要がないから、接着層6を介して誘電体基板7を貼り合せた構造の光偏向素子1と比較して、製造工程が簡易であるとともに接着層6の厚さムラや誘電体基板7の反りなどに起因した波面収差の悪化がなく、また、界面の数を少なくできるので余分な散乱が無いなどの利点があり、結果としてコントラストの向上につながる。   For example, in the optical deflection element 10 a shown in the cross-sectional view of FIG. 5, a plurality of line electrodes 4 are formed in parallel on one surface of the substrate 2, and a resistance film 5 is stacked on the end portion. A low refractive index layer 3 is laminated. Two dielectric layers 14 and 15 are formed on the surface having the low refractive index layer 3, and the surface dielectric layer 15 is used as an alignment film. By using the dielectric layer 15 in contact with the liquid crystal layer 13 as an alignment film, good alignment of the liquid crystal can be secured. Here, the number of dielectric layers may be one to provide the function of an alignment film. Further, since the optical element 1a does not need to be bonded to the dielectric substrate 7 via the adhesive layer 6, it is manufactured in comparison with the optical deflection element 1 having a structure in which the dielectric substrate 7 is bonded via the adhesive layer 6. There is an advantage that the process is simple and there is no deterioration of wavefront aberration due to uneven thickness of the adhesive layer 6 or warping of the dielectric substrate 7, and the number of interfaces can be reduced, so there is no extra scattering. As a result, the contrast is improved.

この光学素子1aの2層の誘電体層14,15はスパッタリング法や蒸着法、イオンプレーティング法などの真空成膜や、塗布法・浸漬法・ゾルゲル法などで成膜する。このように2層の誘電体膜14,15を成膜すると、ライン電極4の幅とピッチにもよるが、多くの場合、図5に示すように、ライン電極4の形状の凹凸が誘電体膜14,15の表面に現れてライン状の凸部が存在した状態になる。このためライン電極4と誘電体層14の屈折率差だけではなく、第1の誘電体層14と第2の誘電体層15の屈折率差と、第2の誘電体層15と液晶層13の屈折率差によっても回折が生じる。この回折が生じることを抑制するため低屈折率層3の屈折率と厚さを最適化して電極形成部と電極非形成部を通過する光の光路差を極力小さく抑える。   The two dielectric layers 14 and 15 of the optical element 1a are formed by vacuum film formation such as sputtering, vapor deposition, or ion plating, or by coating, dipping, or sol-gel. When the two dielectric films 14 and 15 are formed as described above, depending on the width and pitch of the line electrode 4, in many cases, as shown in FIG. It appears on the surfaces of the films 14 and 15 and is in a state in which line-shaped convex portions exist. Therefore, not only the refractive index difference between the line electrode 4 and the dielectric layer 14 but also the refractive index difference between the first dielectric layer 14 and the second dielectric layer 15, and the second dielectric layer 15 and the liquid crystal layer 13. Diffraction also occurs due to the difference in refractive index. In order to suppress the occurrence of this diffraction, the refractive index and thickness of the low refractive index layer 3 are optimized to suppress the optical path difference of light passing through the electrode forming portion and the electrode non-forming portion as small as possible.

例えば図6(a)に示すように、基板2にライン電極4を形成し、低屈折率層3を設けずに誘電体層14をSiO層で成膜し、その表面に配向膜となる誘電体層15を成膜したとする。そしてライン電極4の屈折率n1を2.0、厚さを30nmとし、SiO層からなる誘電体層14の屈折率n4を1.46、誘電体層15の屈折率n5を1.41、液晶層13の屈折率n6を1.54とする。この誘電体層14として基板2表面から厚さd4=100nmで成膜すると、ライン電極4上の誘電体層14の厚さd41は若干小さく97nmとなった。この誘電体層14の表面に誘電体層15を厚さd5=50nmで成膜すると、ライン電極4上の誘電体層15の厚さd51は47nmとなり、液晶層13に突出した凸部の高さd6は24nmになった。この測定した膜厚の測定値と各屈折率を基に計算した電極形成部の光路長は253.46nmとなり、電極非形成部の光路長は253.46nmとなって、電極形成部と電極非形成部を通過する光の光路差は14.43nmであった。この光路差はライン電極4とSiOからなる誘電体層14の屈折率差が大きく影響する。そこで図6(b)に示すように、誘電体層14の代わりにライン電極4と等しい屈折率を持った誘電体層14を使用しても、誘電体層14と誘電体層15の屈折率差が大きくなるため、電極形成部と電極非形成部を通過する光の光路差は12.81nmとなり、大きな改善は見られない。 For example, as shown in FIG. 6A, the line electrode 4 is formed on the substrate 2, the dielectric layer 14 is formed with a SiO 2 layer without providing the low refractive index layer 3, and the alignment film is formed on the surface thereof. It is assumed that the dielectric layer 15 is formed. The refractive index n1 of the line electrode 4 is 2.0, the thickness is 30 nm, the refractive index n4 of the dielectric layer 14 made of SiO 2 is 1.46, the refractive index n5 of the dielectric layer 15 is 1.41, and the refractive index of the liquid crystal layer 13 Let n6 be 1.54. When the dielectric layer 14 was deposited from the surface of the substrate 2 with a thickness d4 = 100 nm, the thickness d41 of the dielectric layer 14 on the line electrode 4 was slightly smaller and became 97 nm. When the dielectric layer 15 is formed on the surface of the dielectric layer 14 with a thickness d5 = 50 nm, the thickness d51 of the dielectric layer 15 on the line electrode 4 becomes 47 nm, and the height of the protruding portion protruding to the liquid crystal layer 13 is increased. The d6 became 24 nm. The optical path length of the electrode forming part calculated based on the measured thickness value and each refractive index is 253.46 nm, the optical path length of the electrode non-forming part is 253.46 nm, and the electrode forming part and the electrode non-forming part The optical path difference of the light passing through was 14.43 nm. This optical path difference is greatly influenced by the refractive index difference between the line electrode 4 and the dielectric layer 14 made of SiO 2 . Therefore, as shown in FIG. 6B, even if the dielectric layer 14 having the same refractive index as that of the line electrode 4 is used instead of the dielectric layer 14, the refractive indexes of the dielectric layer 14 and the dielectric layer 15 are used. Since the difference becomes large, the optical path difference of the light passing through the electrode forming part and the electrode non-forming part is 12.81 nm, and no significant improvement is observed.

これに対して、図6(c)に示すように、低屈折率層3として屈折率n3が1.38のMgF膜で100nmの厚さd2で成膜し、誘電体層14として基板2表面から厚さd4=100nmで成膜すると、ライン電極4上の誘電体層14の厚さd41は90nmとなった。この誘電体層14の表面に誘電体層15を厚さd5=50nmで成膜すると、ライン電極4上の誘電体層15の厚さd51は40nmとなり、液晶層13に突出した凸部の高さd6は110nmになった。この測定した膜厚の測定値と各屈折率を基に計算した電極形成部の光路長は385.8nmとなり、電極非形成部の光路長は385.9nmとなって、電極形成部と電極非形成部を通過する光の光路差は0.1nmとなり、緑に相当する波長546nmに対して十分に小さい光路差を得ることができた。したがって低屈折率層3として屈折率が1.46のSiOや屈折率が1.38のMaFあるいは屈折率が1.35のNaAiF等の膜をライン状にパターニングして形成することができ、低屈折率層3の材料を選ぶことによって所望の厚さに制御することができ、高い回折抑制効果を得ることができる。なお、低屈折率層3とライン電極4は、どちらを先に基板2に形成しても良い。 On the other hand, as shown in FIG. 6C, a low refractive index layer 3 is formed of a MgF 2 film having a refractive index n3 of 1.38 with a thickness d2 of 100 nm, and a dielectric layer 14 is formed from the surface of the substrate 2. When the film was formed with a thickness d4 = 100 nm, the thickness d41 of the dielectric layer 14 on the line electrode 4 was 90 nm. When the dielectric layer 15 is formed on the surface of the dielectric layer 14 with a thickness d5 = 50 nm, the thickness d51 of the dielectric layer 15 on the line electrode 4 becomes 40 nm, and the height of the protruding portion protruding to the liquid crystal layer 13 is increased. The d6 became 110 nm. The optical path length of the electrode forming part calculated based on the measured thickness value and each refractive index is 385.8 nm, the optical path length of the electrode non-forming part is 385.9 nm, and the electrode forming part and the electrode non-forming part The optical path difference of the light passing through was 0.1 nm, and a sufficiently small optical path difference with respect to the wavelength of 546 nm corresponding to green could be obtained. Therefore, the low refractive index layer 3 can be formed by patterning a film such as SiO 2 having a refractive index of 1.46, MaF 2 having a refractive index of 1.38, or Na 3 AiF 6 having a refractive index of 1.35 in a line shape. By selecting the material of the rate layer 3, it can be controlled to a desired thickness, and a high diffraction suppression effect can be obtained. Note that either the low refractive index layer 3 or the line electrode 4 may be formed on the substrate 2 first.

また、誘電体層がN層ある場合、電極形成部と電極非形成部を通過する光の光路差Xは、
X=n1×d1+n3×d2+Σi=1,N{ni×(di1-di)}−n6×d6
で表せる。ここでniとdiはN層の誘電体層の屈折率と厚さを示し、di1はライン電極4上のN層の誘電体層の厚さを示し、厚さd6は液晶層13に突出した凸部の高さである。この光路差Xが例えば波長546nmの1%である5.46nm以下になるように、低屈折率層3の屈折率と厚さや誘電体層の屈折率と厚さを選択することにより、回折を抑制することができる。
Further, when there are N dielectric layers, the optical path difference X of the light passing through the electrode forming part and the electrode non-forming part is
X = n1 * d1 + n3 * d2 + Σ i = 1, N {ni * (di1-di)}-n6 * d6
It can be expressed as Here, ni and di indicate the refractive index and thickness of the N dielectric layer, di1 indicates the thickness of the N dielectric layer on the line electrode 4, and the thickness d6 protrudes into the liquid crystal layer 13. It is the height of the convex part. Diffraction is suppressed by selecting the refractive index and thickness of the low refractive index layer 3 and the refractive index and thickness of the dielectric layer so that the optical path difference X is, for example, 5.46 nm or less which is 1% of the wavelength of 546 nm. can do.

次に、光偏向素子10や光偏向素子10aを使用した画像表示装置について説明する。画像表示装置20の光学系は、図7の構成図に示すように、光源21と、光源21から出射した光の光路に沿って配置された拡散板22とコンデンサレンズ23と画像表示素子24と、光偏向素子10又は光偏向素子10aを有する光偏向手段25及び投射レンズ26が順に配設されている。駆動手段は、光源21を駆動する光源駆動制御部27と、画像表示素子24を駆動する表示駆動制御部28及び光偏向手段25を駆動する光偏向駆動制御部29及び主制御部30を有する。   Next, an image display apparatus using the light deflection element 10 or the light deflection element 10a will be described. As shown in the configuration diagram of FIG. 7, the optical system of the image display device 20 includes a light source 21, a diffusion plate 22, a condenser lens 23, and an image display element 24 arranged along the optical path of light emitted from the light source 21. The light deflection means 25 having the light deflection element 10 or the light deflection element 10a and the projection lens 26 are arranged in this order. The drive unit includes a light source drive control unit 27 that drives the light source 21, a display drive control unit 28 that drives the image display element 24, a light deflection drive control unit 29 that drives the light deflection unit 25, and a main control unit 30.

光源21は白色あるいは任意の色の光を高速にオン・オフできるものであるならば、いかなる種類や型の光源であっても利用することができる。例えばLEDランプやレーザ光源あるいは白色のランプ光源などを2次元アレイ状に配列して、高速動作するシャッタを組合せたものなどを用いる。画像表示素子24は入射した均一の照明光を、画像フィールドを時間的に更に細分割した複数個の画像サブフィールドごとに、画像情報に基づいて空間光変調して、画像光として出射するものであり、透過型液晶ライトバルブ、反射型液晶ライトバルブ、DMD素子などを用いることができる。光偏向手段25は前記画像サブフィールドごとに、画像表示素子24から出射される画像光の光路を偏向して、偏向画像光として出射する。この光偏向手段24により画像サブフィールドごとの光路の偏向量に応じて、スクリーン31上に投射される画像表示位置がずらされる状態となる画像パターンを表示させることが可能となり、画像表示素子24の実際の画素数を見かけ上増倍した画素数として、画像表示させることができる。   As long as the light source 21 can turn on / off white light or an arbitrary color light at high speed, any type or type of light source can be used. For example, an LED lamp, a laser light source, a white lamp light source, or the like arranged in a two-dimensional array and combined with a shutter that operates at high speed is used. The image display element 24 spatially modulates incident uniform illumination light based on image information for each of a plurality of image subfields obtained by further subdividing the image field in time, and emits the image light as image light. Yes, a transmissive liquid crystal light valve, a reflective liquid crystal light valve, a DMD element, or the like can be used. The light deflecting means 25 deflects the optical path of the image light emitted from the image display element 24 for each image subfield and emits it as deflected image light. The light deflecting unit 24 can display an image pattern in which the image display position projected on the screen 31 is shifted according to the deflection amount of the optical path for each image subfield. An image can be displayed as the actual number of pixels multiplied.

この画像表示装置20でスクリーン31に画像を投影するとき、光源駆動制御部27で制御されて光源21から放射された光は、拡散板22により均一化された照明光となり、コンデンサレンズ23により、光源駆動制御部27と同期して動作する表示駆動制御部28により制御されている例えば透過型液晶ライトバルブからなる画像表示素子24をクリティカルに照明する。画像表示素子24は入射した照明光を空間光変調して画像光として光偏向手段25に入射し、光偏向手段25は入射した画像光が画素の配列方向に任意の距離だけシフトして投射レンズ26に入射する。投射レンズ26は入射した光を拡大してスクリーン31に投射する。このように回折の影響が少ない光偏向素子10を使用することにより、コントラストが高く、シャープな高精細画像をスクリーン31に投射することができる。   When an image is projected onto the screen 31 by the image display device 20, the light emitted from the light source 21 controlled by the light source drive control unit 27 becomes illumination light that is made uniform by the diffusion plate 22. The image display element 24 composed of, for example, a transmissive liquid crystal light valve controlled by a display drive control unit 28 that operates in synchronization with the light source drive control unit 27 is critically illuminated. The image display element 24 spatially modulates the incident illumination light and enters the light deflecting means 25 as image light. The light deflecting means 25 shifts the incident image light by an arbitrary distance in the pixel arrangement direction and projects a projection lens. 26 is incident. The projection lens 26 enlarges the incident light and projects it onto the screen 31. By using the light deflecting element 10 having little influence of diffraction in this way, a high-contrast image with high contrast and sharpness can be projected onto the screen 31.

この偏向画像光の光路のシフト(偏向)量は、画素ピッチの整数分の1であることが望ましい。すなわち、画素の配列方向に対して2倍の画素増倍を行なう場合は、偏向画像光の光路のシフト量は、画素ピッチの1/2とし、配列方向に対して3倍の画素増倍を行なう場合は、画素ピッチの1/3とすることが望ましい。また、光偏向手段25の構成によって、偏向画像光の光路のシフト量が画素ピッチよりも大きくなる場合には、光路のシフト量を画素ピッチの(整数倍+整数分の1)の距離に設定しても良い。   The amount of shift (deflection) of the optical path of the deflected image light is desirably 1 / integer of the pixel pitch. That is, when the pixel multiplication is performed twice in the pixel arrangement direction, the shift amount of the optical path of the deflected image light is ½ of the pixel pitch, and the pixel multiplication is three times in the arrangement direction. When performing, it is desirable to set to 1/3 of the pixel pitch. Further, when the optical path shift amount of the deflected image light is larger than the pixel pitch due to the configuration of the light deflecting means 25, the optical path shift amount is set to a distance of (integer multiple + 1 / integer) of the pixel pitch. You may do it.

この光偏向手段25を画素配列方向の縦横2次元に用いる、例えば2倍の画像増倍を行なう光偏向素子10を2枚用いることにより、見かけ上の画素4倍の効果が得られ、使用した透過型液晶ライトバルブの解像度以上の高精細な画像を表示することができる。   Using this light deflecting means 25 in two dimensions vertically and horizontally in the pixel array direction, for example, by using two light deflecting elements 10 that perform image multiplication of twice, an effect of four times the apparent pixel can be obtained and used. A high-definition image higher than the resolution of the transmissive liquid crystal light valve can be displayed.

図7に示した画像表示装置は、単板の透過型液晶ライトバルブからなる画像表示素子24と単色の光源21を用いて単色の画像を表示する場合について説明したが、3原色の光源21と、3枚の画像表示素子24を用いて、3原色の画像を混合してフルカラー画像を表示させることもできる。また、単板の画像表示素子24を時間順次に三原色光で照明するフィールドシーケンシャル方式でもフルカラー画像を表示することができる。この場合、3色の光源からの光路をクロスプリズムで混合して照明しても良いし、白色ランプ光源と回転カラーフィルターの組合せで、時間順次の三原色光を生成してもよい。   The image display apparatus shown in FIG. 7 has been described with respect to the case where a single color image is displayed using the image display element 24 formed of a single-plate transmissive liquid crystal light valve and the single color light source 21, but the three primary color light sources 21 and Using the three image display elements 24, it is also possible to display a full-color image by mixing three primary color images. A full-color image can also be displayed by a field sequential method in which the single-panel image display element 24 is illuminated with the three primary colors in time sequence. In this case, the light paths from the three color light sources may be mixed and illuminated by a cross prism, or time-sequential three primary color lights may be generated by a combination of a white lamp light source and a rotating color filter.

大きさ70mm×50mm、厚さ1mmのガラス板を基板2とし、SiOを120nmの厚さになるようスパッタし、その上に30nmのITO膜をスパッタした。SiOの屈折率は波長546nmにおいて1.46、ITO膜の屈折率は2.00である。次に、フォトレジストの塗布・露光・現像によってライン状のパターンを形成し、エッチングを行って幅10μm、ピッチ100μmのライン形状のSiOの低屈折率層3とITOのライン電極4を400本形成し、両端のライン電極4の一端には接続部を形成した。次に、各ライン電極4を電気的に直列につなぐ領域に、スパッタ法によりCr−SiO抵抗膜5を形成した。抵抗膜5の厚さは100nmとし、表面抵抗率は4×10Ω/□であった。 A glass plate having a size of 70 mm × 50 mm and a thickness of 1 mm was used as the substrate 2, SiO 2 was sputtered to a thickness of 120 nm, and a 30 nm ITO film was sputtered thereon. The refractive index of SiO 2 is 1.46 at a wavelength of 546 nm, and the refractive index of the ITO film is 2.00. Next, a line pattern is formed by applying, exposing, and developing a photoresist, and etching is performed to form 400 low-refractive index layers 3 of SiO 2 and ITO line electrodes 4 each having a width of 10 μm and a pitch of 100 μm. The connection part was formed in the end of the line electrode 4 of both ends. Next, a Cr—SiO resistance film 5 was formed by a sputtering method in a region where the line electrodes 4 were electrically connected in series. The thickness of the resistive film 5 was 100 nm, and the surface resistivity was 4 × 10 7 Ω / □.

次に電源接続部を除いた50mm×50mmの領域に、厚さ150μmのカバーガラスを、厚さ10μmの光学用UV接着剤で全面に貼付けた。この接着剤の屈折率は1.56である。次にカバーガラスの表面を垂直配向剤で処理した後に、接着剤に粒子径50μmのスペーサーを混入したもので2枚の基板2を接着した。次に、2枚の基板2間に強誘電性液晶(チッソ製CS1029)を注入して光偏向素子10を形成した。そして両端のライン電極4にそれぞれ±2kV、60Hzの交流電圧を印加し、光路シフトを確認した結果、有効領域全体にわたる各測定点で測定を行い、平均5μmの光路シフト量が得られた。このときの光路差は1.2nmであり、|(n3−n2)×d2|≒0.9×(n1−n2)×d1であった。   Next, a cover glass having a thickness of 150 μm was attached to the entire surface with an optical UV adhesive having a thickness of 10 μm in an area of 50 mm × 50 mm excluding the power connection portion. The refractive index of this adhesive is 1.56. Next, the surface of the cover glass was treated with a vertical alignment agent, and then two substrates 2 were bonded with an adhesive mixed with a spacer having a particle diameter of 50 μm. Next, a ferroelectric liquid crystal (CS1029 manufactured by Chisso) was injected between the two substrates 2 to form the light deflection element 10. As a result of applying an AC voltage of ± 2 kV and 60 Hz to the line electrodes 4 at both ends and confirming the optical path shift, measurement was performed at each measurement point over the entire effective area, and an optical path shift amount of 5 μm on average was obtained. The optical path difference at this time was 1.2 nm, and | (n3−n2) × d2 | ≈0.9 × (n1−n2) × d1.

この光偏向素子10を画像表示装置20の光偏向手段25に使用し、光偏向素子10をライン電極4が垂直となる方向で配置して、画像表示素子24により右半分が黒、左半分が白となる画像を表示させた。表示された黒と白の境界近傍で黒浮きが発生するかどうか、すなわち黒領域において輝度が上がるかどうかを確認した結果、白と黒の境界近傍の黒領域における輝度は白の輝度を100%とすると3.58%であった。この光偏向素子10の代わりに光偏向素子10の光路長と同じ光路長のガラス板を置いたところ、白と黒の境界近傍の黒領域における輝度は3.59%であり、光偏向素子10を使用したときの輝度は測定誤差の範囲であり、回折による輝度の上昇は観測できず、目視によっても、回折による黒浮きは認められなかった。   This light deflecting element 10 is used for the light deflecting means 25 of the image display device 20, and the light deflecting element 10 is arranged in the direction in which the line electrode 4 is vertical, and the image display element 24 makes the right half black and the left half A white image was displayed. As a result of checking whether black floating occurs near the displayed black-white boundary, that is, whether the luminance increases in the black area, the luminance in the black area near the white-black boundary is 100% of the luminance of white. It was 3.58%. When a glass plate having the same optical path length as that of the optical deflection element 10 is placed in place of the optical deflection element 10, the luminance in the black region near the boundary between white and black is 3.59%, and the optical deflection element 10 is used. The luminance was within the range of measurement error, and no increase in luminance due to diffraction could be observed, and no black float due to diffraction was observed.

SiOの膜厚を40nm、60nm、80nm、100nmと変えた他は実施例1と同様にして4種類の光偏向素子10を作製した。実施例1と同様の方法で黒の輝度を測定したところ、SiOの膜厚が厚くなるほど黒浮きは減っていた。SiOの膜厚が80nmのときに回折による黒浮きが約0.3%となり、256階調表示の際の1階調分以下となることがわかった。見た目にも、SiOの膜厚2が80nm以上の光偏向素子10では回折の影響が視認できなかった。そしてSiOの膜厚2が80nmのときの光路差は5.2nmであり、光路差を波長546nmの1%以下とすれば回折の影響を十分低減できることが示された。このときは、|(n3−n2)×d2|≒0.6×(n1−n2)×d1であった。 Four types of optical deflection elements 10 were produced in the same manner as in Example 1 except that the thickness of SiO 2 was changed to 40 nm, 60 nm, 80 nm, and 100 nm. When the luminance of black was measured in the same manner as in Example 1, the black float decreased as the SiO 2 film thickness increased. When the film thickness of SiO 2 was 80 nm, the black float due to diffraction was about 0.3%, which was found to be less than or equal to one gradation in 256 gradation display. Visually, the influence of diffraction was not visually recognized in the optical deflector 10 having a SiO 2 film thickness 2 of 80 nm or more. When the film thickness 2 of SiO 2 is 80 nm, the optical path difference is 5.2 nm, and it was shown that the influence of diffraction can be sufficiently reduced if the optical path difference is 1% or less of the wavelength 546 nm. At this time, it was | (n3−n2) × d2 | ≈0.6 × (n1−n2) × d1.

実施例1と同形状のガラス基板2に、ITOを30nmの厚さになるようスパッタした。フォトレジストの塗布・露光・現像の後、ITOをライン形状にドライエッチングした。その際、ITOに続けて基板2自体を200nmの深さ分エッチングして、図3に類似の構成とした。その後は実施例1と同様にして光偏向素子10を作製した。基板2であるガラスの屈折率は波長546nmにおいて1.52である。このとき光路差は5.2nmである。実施例1と同様の方法で黒の輝度を測定したところ黒の輝度は3.88%であり、実施例2でSiOの膜厚を80nmとしたときと同程度であり、目視では回折の影響は見られなかった。 ITO was sputtered on a glass substrate 2 having the same shape as in Example 1 to a thickness of 30 nm. After coating / exposure / development of the photoresist, the ITO was dry etched into a line shape. At that time, the substrate 2 itself was etched by a depth of 200 nm following ITO, so that a configuration similar to that shown in FIG. 3 was obtained. Thereafter, an optical deflection element 10 was produced in the same manner as in Example 1. The refractive index of the glass as the substrate 2 is 1.52 at a wavelength of 546 nm. At this time, the optical path difference is 5.2 nm. When the black luminance was measured in the same manner as in Example 1, the black luminance was 3.88%, which was the same as that in Example 2 when the SiO 2 film thickness was 80 nm. I couldn't see it.

実施例1と同形状のガラス基板2に、スパッタ法によりCrSiO抵抗膜5を形成した。抵抗膜5の厚さは100nmとし、表面抵抗率は4×10Ω/□であった。次に、MgFを100nmの厚さになるようスパッタし、その上に続けて30nmのITO膜をスパッタした。MgFの屈折率は1.38、ITOは2.00である。フォトレジストの塗布・露光・現像の後、ITOとMgFの両方をドライエッチングしてライン形状のMgFの低屈折率層3とライン電極4を形成した。ここで抵抗膜5はライン電極4を電気的に直列につなぐ領域に形成されている。ライン電極4と低屈折率層3を形成した面に、それらを覆うようにSiOを約100nmスパッタし、更にその表面に厚さ約50nmの配向膜を形成した。その面が対向するように2枚の基板2をスペーサー11で接着して素子の有効面積が40mm×40mm以上となるようにした。この2枚の基板2の間に強誘電性液晶(チッソ製CS1029)を注入して光偏向素子10を形成した。この各基板2の両端のライン電極4に±2kV、60Hzの交流電圧を印加し、光路シフトを確認した結果、有効領域全体にわたる各測定点で平均5μmのシフト量が得られていることが確認できた。 A CrSiO resistance film 5 was formed on a glass substrate 2 having the same shape as in Example 1 by sputtering. The thickness of the resistive film 5 was 100 nm, and the surface resistivity was 4 × 10 7 Ω / □. Next, MgF 2 was sputtered to a thickness of 100 nm, and then a 30 nm ITO film was sputtered thereon. The refractive index of MgF 2 is 1.38 and that of ITO is 2.00. After applying, exposing and developing the photoresist, both ITO and MgF 2 were dry etched to form a line-shaped MgF 2 low refractive index layer 3 and a line electrode 4. Here, the resistance film 5 is formed in a region where the line electrodes 4 are electrically connected in series. On the surface on which the line electrode 4 and the low refractive index layer 3 were formed, SiO 2 was sputtered about 100 nm so as to cover them, and an alignment film having a thickness of about 50 nm was formed on the surface. The two substrates 2 were bonded with spacers 11 so that the surfaces face each other, so that the effective area of the element was 40 mm × 40 mm or more. A ferroelectric liquid crystal (CS1029 manufactured by Chisso) was injected between the two substrates 2 to form the light deflection element 10. As a result of applying an AC voltage of ± 2 kV and 60 Hz to the line electrodes 4 at both ends of each substrate 2 and confirming the optical path shift, it was confirmed that an average shift amount of 5 μm was obtained at each measurement point over the entire effective area. did it.

この光偏向素子10を画像表示装置20に組み込み、黒と白の画像を投射した結果、回折による輝度の上昇は観測できない程度であり、目視によっても、回折による黒浮きは認められなかった。このときの各層の厚さは図6(c)に示した通りであり、光路差は0.1
nmであった。
As a result of incorporating the light deflection element 10 into the image display device 20 and projecting a black and white image, an increase in luminance due to diffraction cannot be observed, and no black float due to diffraction was observed. The thickness of each layer at this time is as shown in FIG. 6C, and the optical path difference is 0.1.
nm.

この発明の光学素子の構成図である。It is a block diagram of the optical element of this invention. 電極形成部と電極非形成部の構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of an electrode formation part and an electrode non-formation part. 基板をエッチングして形成した低屈折率層の構成図である。It is a block diagram of the low refractive index layer formed by etching a board | substrate. 光偏向素子の構成図である。It is a block diagram of an optical deflection element. 第2の光偏向素子の構成を示す断面図である。It is sectional drawing which shows the structure of a 2nd light deflection | deviation element. 第2の光偏向素子における電極形成部と電極非形成部の光路差を示す模式図である。It is a schematic diagram which shows the optical path difference of the electrode formation part in a 2nd optical deflection | deviation element, and an electrode non-formation part. この発明の画像表示装置の構成図である。It is a block diagram of the image display apparatus of this invention.

符号の説明Explanation of symbols

1;光学素子、2;基板、3;低屈折率層、4;ライン電極、5;抵抗膜、
6;接着層、7;誘電体基板、8;電圧印加手段、9;接続部、10;光偏向素子、
11;スペーサ、12;配向膜、13;液晶層、14;誘電体層、15;誘電体層、
20;画像表示装置、21;光源、22;拡散板、23;コンデンサレンズ、
24;画像表示素子、25;光偏向手段、26;投射レンズ、
27;光源駆動制御部、28;表示駆動制御部、29;光偏向駆動制御部、
30;主制御部、31;スクリーン。
1; optical element, 2; substrate, 3; low refractive index layer, 4; line electrode, 5;
6; adhesive layer, 7; dielectric substrate, 8; voltage applying means, 9; connection portion, 10;
11; spacer, 12; alignment film, 13; liquid crystal layer, 14; dielectric layer, 15; dielectric layer,
20; Image display device, 21; Light source, 22; Diffuser plate, 23; Condenser lens,
24; Image display element; 25; Light deflecting means; 26; Projection lens;
27; light source drive control unit; 28; display drive control unit; 29; light deflection drive control unit;
30: Main control unit, 31: Screen.

Claims (9)

基板と、該基板の少なくとも一方の面に形成された屈折率調整部と該屈折率調整部に重畳された電極とを有する複数の電極形成部と、該複数の電極形成部の間を充填する電極非形成部とを有する光学素子であって、
前記電極の屈折率をn1、前記電極非形成部の屈折率をn2、前記屈折率調整部の屈折率をn3としたとき、n3<n2<n1を満足することを特徴とする光学素子。
A plurality of electrode forming portions each having a substrate, a refractive index adjusting portion formed on at least one surface of the substrate, and an electrode superimposed on the refractive index adjusting portion, and a space between the plurality of electrode forming portions are filled. An optical element having an electrode non-forming portion,
When the refractive index of the electrode n1, the refractive index of the electrode non-formation portions n2, the refractive index of the refractive index adjuster was n3, wherein the optical element and Turkey to satisfy n3 <n2 <n1 .
前記電極の厚さをd1、前記屈折率調整部の厚さをd2としたとき、前記屈折率調整部と前記電極非形成部の屈折率差で生じる光路差(n3−n2)×d2が、
0.6×(n1−n2)×d1 <|(n3−n2)×d2|<1.4×(n1−n2)×d1を満たす請求項1記載の光学素子。
The thickness of the electrode d1, when the thickness of the refractive index adjuster has a d 2, an optical path difference caused by the refractive index difference between the refractive index adjuster the electrode non-formation portion (n3-n2) × d2 is ,
0.6 × (n1-n2) × d1 <| (n3-n2) × d2 | <1.4 × (n1-n2) optical element Motomeko 1, wherein satisfying the × d1.
前記屈折率調整部は、前記基板をエッチングして形成されている請求項1又は2に記載の光学素子。   The optical element according to claim 1, wherein the refractive index adjusting unit is formed by etching the substrate. 前記電極非形成部は、接着層で形成された請求項1乃至3のいずれかに記載の光学素子。   The optical element according to claim 1, wherein the electrode non-forming portion is formed of an adhesive layer. 前記電極非形成部は、誘電体膜で形成された請求項1乃至3のいずれかに記載の光学素子。   The optical element according to claim 1, wherein the electrode non-forming portion is formed of a dielectric film. 前記誘電体膜を複数層に形成した請求項5に記載の光学素子。   The optical element according to claim 5, wherein the dielectric film is formed in a plurality of layers. 請求項1乃至6のいずれかに記載の光学素子を1対有し、前記1対の光学素子の前記ライン電極が形成された面を一定間隔で対向させて配置した間隔内にキラルスメクチックC相を形成する液晶層を設けたことを特徴とする光偏向素子。   A pair of optical elements according to any one of claims 1 to 6, wherein the pair of optical elements has a chiral smectic C phase within an interval in which the surfaces on which the line electrodes are formed are arranged to face each other at a constant interval. An optical deflecting element provided with a liquid crystal layer for forming. 請求項6記載の光学素子を1対有し、前記1対の光学素子の前記ライン電極が形成された面を一定間隔で対向させて配置し、前記複数層の誘電体膜うち最上層の誘電体膜を配向膜とし、配向膜とした誘電体膜の間にキラルスメクチックC相を形成する液晶層を設けたことを特徴とする光偏向素子。   7. A pair of optical elements according to claim 6, wherein surfaces of the pair of optical elements on which the line electrodes are formed are arranged to face each other at a constant interval, and the uppermost dielectric layer of the plurality of dielectric films is disposed. An optical deflecting element comprising a liquid crystal layer that forms a chiral smectic C phase between dielectric films having an alignment film as an alignment film and an alignment film. 請求項7又は8に記載の光偏向素子を有する画像表示装置であって、
画像情報にしたがって光を制御可能な複数の画素が2次元的に配列した画像表示素子と、前記画像表示素子を照明する照明光学系と、前記光偏向素子と、前記画像表示素子から出射された画像光を投影する投影光学系とを有し、前記光偏向素子が前記画像表示素子と投影光学系との間に配置されていることを特徴とする画像表示装置。
An image display device comprising the light deflection element according to claim 7 or 8,
An image display element in which a plurality of pixels that can control light according to image information are arranged two-dimensionally, an illumination optical system that illuminates the image display element, the light deflection element, and the image display element An image display apparatus comprising: a projection optical system that projects image light, wherein the light deflection element is disposed between the image display element and the projection optical system.
JP2006070328A 2006-03-15 2006-03-15 Optical element, light deflection element, and image display apparatus Expired - Fee Related JP4961152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070328A JP4961152B2 (en) 2006-03-15 2006-03-15 Optical element, light deflection element, and image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070328A JP4961152B2 (en) 2006-03-15 2006-03-15 Optical element, light deflection element, and image display apparatus

Publications (2)

Publication Number Publication Date
JP2007248674A JP2007248674A (en) 2007-09-27
JP4961152B2 true JP4961152B2 (en) 2012-06-27

Family

ID=38593066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070328A Expired - Fee Related JP4961152B2 (en) 2006-03-15 2006-03-15 Optical element, light deflection element, and image display apparatus

Country Status (1)

Country Link
JP (1) JP4961152B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041873B2 (en) 2010-11-30 2015-05-26 Sharp Kabushiki Kaisha Liquid crystal display element and liquid crystal module
JP5991215B2 (en) * 2013-01-31 2016-09-14 富士通株式会社 Photocuring resin curing monitoring method and optical component connecting method
CN110911439B (en) * 2018-09-14 2023-08-18 云谷(固安)科技有限公司 Display panel, display screen and display terminal
CN110911440B (en) * 2018-09-14 2020-10-16 云谷(固安)科技有限公司 Display panel, display screen and display terminal
CN110767714B (en) * 2019-03-25 2022-03-08 昆山国显光电有限公司 Transparent array substrate, transparent display panel, display panel and display terminal
CN110767835B (en) 2019-03-29 2021-01-26 昆山国显光电有限公司 Transparent display panel, display screen, display device and mask plate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566393A (en) * 1991-09-10 1993-03-19 Sony Corp Liquid crystal element and liquid crystal display device
JPH06102499A (en) * 1992-09-18 1994-04-15 Matsushita Electric Ind Co Ltd Electrode substrate and liquid crystal panel and liquid crystal projection type television formed by using the same
JPH07248490A (en) * 1994-03-08 1995-09-26 Sharp Corp Liquid crystal display device, its production and vacuum vapor deposition device by heating with electron beam
JPH08136906A (en) * 1994-11-04 1996-05-31 Toyobo Co Ltd Liquid crystal panel
JPH11174427A (en) * 1997-12-15 1999-07-02 Victor Co Of Japan Ltd Liquid crystal display device and liquid crystal projector
JP2003098504A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Optical deflecting element, optical deflector using it, and picture display device
JP4520099B2 (en) * 2003-03-20 2010-08-04 株式会社リコー Optical element, light deflection element, and image display device
JP2004286961A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Optical element, optical deflection element, and image display apparatus
JP4352733B2 (en) * 2003-03-20 2009-10-28 セイコーエプソン株式会社 Electro-optical device substrate, electro-optical device, electronic equipment

Also Published As

Publication number Publication date
JP2007248674A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
KR101187115B1 (en) Variable transmission light quantity element and projection display
JP4961152B2 (en) Optical element, light deflection element, and image display apparatus
US10459282B2 (en) Display device
CN108957830B (en) Display device, control method of display device, and display apparatus
JP5597667B2 (en) Image display device
WO2015059996A1 (en) Three-dimensional display device
JP2005338804A (en) Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection device, optical path deflection device, picture display device
Tokita et al. P‐108: FLC Resolution‐Enhancing Device for Projection Displays
JP4432056B2 (en) Liquid crystal display element and liquid crystal display device using the liquid crystal display element
WO2018042912A1 (en) Optical compensation element, liquid crystal display device, and projection-type display device
JP4548475B2 (en) Liquid crystal display element and projection type liquid crystal display device
JP2010091898A (en) Phase modulation element and driving method thereof, and projection display
JP2008058495A (en) Liquid crystal display element and projection liquid crystal display device
JP4961151B2 (en) Optical path deflecting element and image display device
JP4520099B2 (en) Optical element, light deflection element, and image display device
US8724063B2 (en) Liquid crystal optical apparatus, drive device, and image display device
JP2009069422A (en) Liquid crystal display element and projection liquid crystal display
JP2008070567A (en) Display device
US6744483B2 (en) Liquid crystal display and projector having electrode section with equal areas and different heights
JP2008009195A (en) Liquid crystal display element and projection type liquid crystal display device
JP3980908B2 (en) Optical path deflecting element, optical path deflecting element unit, and image display apparatus
JP2004286961A (en) Optical element, optical deflection element, and image display apparatus
JP2005309100A (en) Optical element, optical deflection element, optical deflection device and image display apparatus
JP5067086B2 (en) Liquid crystal display element and projection type liquid crystal display device
TWI392905B (en) Liquid crystal display element and projection type liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4961152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees