JP4959718B2 - 流体機械の流路に配置すべき部品および被膜生成のためのスプレイ法 - Google Patents

流体機械の流路に配置すべき部品および被膜生成のためのスプレイ法 Download PDF

Info

Publication number
JP4959718B2
JP4959718B2 JP2008549872A JP2008549872A JP4959718B2 JP 4959718 B2 JP4959718 B2 JP 4959718B2 JP 2008549872 A JP2008549872 A JP 2008549872A JP 2008549872 A JP2008549872 A JP 2008549872A JP 4959718 B2 JP4959718 B2 JP 4959718B2
Authority
JP
Japan
Prior art keywords
mask
coating
spray method
lattice
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008549872A
Other languages
English (en)
Other versions
JP2009523939A (ja
Inventor
ヤバト゛、レネ
ダール イェンゼン、イェンス
クリューガー、ウルズス
ケルトフェレシー、ダニエル
ライヒェ、ラルフ
リントラー、ミヒャエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2009523939A publication Critical patent/JP2009523939A/ja
Application granted granted Critical
Publication of JP4959718B2 publication Critical patent/JP4959718B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/61Structure; Surface texture corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/61Structure; Surface texture corrugated
    • F05D2250/611Structure; Surface texture corrugated undulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、流体機械の流路に配置すべき被覆付き部品に関する。また本発明は、三次元的表面構造の被覆を生成するためのスプレイ法に関する。
例えばガスタービン設備のような流体機械はかなり効率が向上された設備である。それでも、その機械の効率をさらに高める努力が払われている。今日においてガスタービン設備では、数%の効率向上でも競合上において有利となる。効率に影響を与えるパラメータは、例えば流体機械における燃焼温度、燃料の燃焼率あるいは流路内に存在する部品の流れ特性である。
本発明の課題は、効率向上を可能とする流体機械の流路に配置すべき部品を提供することにある。
本発明のもう1つの課題は、設備の効率向上を可能とする被覆を生成できる、部品上に被覆を発生するスプレイ法を提供することにある。
第1の課題は、特許請求の範囲の請求項1に記載の部品によって解決され、第2の課題は、請求項6あるいは請求項8に記載のスプレイ法によって解決される。本発明の有利な実施態様はそれらの従属請求項に記載されている。
流体機械の流路に配置すべき本発明に基づく部品は、流れ方向において重なり合う鱗(ウロコ)状表面を備えた表面構造を有する被覆を備えている。その重なり合う鱗状表面は、サメ皮のような被覆を形成することを可能にし、且つ、そのようにして部品表面が流れ媒体に対抗する流れ抵抗を弱めることを可能とする。その流れ抵抗の低減によって、設備の効率が高められる。
その部品は特にガスタービン設備における用途に対してタービン翼として形成される。それがタービンの静翼あるいは動翼として形成されている場合、ガスタービン設備の効率は良好な流れ特性により高められる。それが圧縮機の静翼あるいは動翼として形成されている場合、向上された流れ特性が、被圧縮空気と圧縮機翼との間の摩擦を低下し、これにより、通常の翼を備えた圧縮機に比べて、圧縮機出口における圧縮空気温度が下げられる。その低い圧縮機出口温度も、ガスタービン設備の効率を向上させる。
部品が流体機械に組み込まれている場合、鱗状表面が(流体の)流れ方向に延びる条溝を備えていると特に有利である。流れ方向に延びる条溝を備えた鱗状表面は、特に良好な流れ特性を有する実際のサメ皮に非常に近くなり、これにより、この被覆も良好な流れ特性を有する。
部品がその腐食を防護する被覆及び/又は酸化を防護する被覆及び/又は断熱被覆を備えているとき、その被覆あるいはそれらの被覆を上述の鱗状表面形態で設けることができる。ガスタービンにおける部品の場合、防食被覆および/又は酸化防止被覆として特にMCrAlX層を、断熱被覆としてセラミック遮熱コーティングを利用することができる。
三次元的表面構造の被覆を生成するための本発明に基づくスプレイ法において、被覆の製造中に、少なくとも1個のマスク開口を備えた少なくとも1個のマスクが採用される。この方法の第1実施形態において、少なくとも1個のマスクが時間的に順々に、マスクの時間的に連続する2つの位置において前記マスク開口の位置が部分的に重なり合うように位置決めされる。第2実施形態において、被被覆表面の垂線に対して傾斜された吹付け方向から吹き付けが行われ、吹付け方向に対しても垂線に対しても少なくとも平均的に垂直に延びるマスキング域を有するマスクが利用される。そのマスキング域は例えば吹付け方向および垂線に対して垂直に延びる中心線を中心として波打つ形状を有する。そのいずれの場合も、吹き付け過程が被覆の鱗状表面状構造を発生させる。このようにして、流れ抵抗の小さな上述した被覆が製造できる。特に流れ抵抗の小さな被覆は、マスク開口の時間的重なりが、流体が被覆すべき部品に沿って流れる流れ方向において行われるか、あるいは、吹付け方向がその方向に対して傾斜されていることによって、製造できる。
スプレイ法の特に有利な実施態様において、マスクはマスク開口としてスリットを有している。このようにして、鱗状表面が条溝を有する鱗状表面構造をした被覆が製造できる。その条溝は重なり方向に延びることができる。このようにして、将来の被覆済み部品において横流れが防止でき、即ち、部品表面における本来の流れ方向に対して直角に延びる流れが防止でき、これにより、部品の流れ抵抗が低減される。
被覆を製造するために、サーマルスプレイ法例えばプラズマスプレイ法(熱プラズマジェット溶射成膜法)あるいは特にコールドガススプレイ法を利用することができる。
本発明の他の特徴、特性および利点は、以下の図を参照した実施例の説明から理解できる。
図1はガスタービン100を縦断面図で示している。ガスタービン100は内部に回転軸線102を中心として回転可能に支持されタービンロータとも呼ばれるロータ103を有している。このロータ103に沿って順々に、吸込み室104、圧縮機105、複数のバーナ107が同軸的に配置された例えばトーラス状燃焼室110特に環状燃焼室106、タービン108および排気室109が続いている。
環状燃焼室106は例えば環状の燃焼ガス通路111に連通している。そこで直列接続された4つのタービン段112がタービン108を形成している。
各タービン段112は例えば2つの翼列(翼輪)で形成されている。作動媒体(燃焼ガス)113の流れ方向に見て、燃焼ガス通路111内において各静翼列115に、複数の動翼120から成る翼列125が続いている。
その場合、静翼130はステータ143の内部車室138に固定され、これに対して、翼列125の動翼120は例えばタービン円板133によってロータ103に設けられている。
ロータ103に発電機や作業機械(図示せず)が連結されている。
ガスタービン100の運転中、圧縮機105によって吸込み室104を通して空気135が吸い込まれ、圧縮される。圧縮機105のタービン側端に供給された圧縮空気は、バーナ107に導かれ、そこで燃料と混合される。その混合気は燃焼室110において燃焼されて作動媒体113を発生する。作動媒体113はそこから燃焼ガス通路111に沿って静翼130および動翼120を通って流れる。作動媒体113は膨張し動翼120に衝撃を伝達し、これによって、動翼120がロータ103を駆動し、このロータ103がそれに連結された作動機械を駆動する。
ガスタービン100の運転中、高温の作動媒体113に曝される部品は熱的負荷を受ける。環状燃焼室106に内張りされた耐火レンガのほかに、作動媒体113の流れ方向に見て最初のタービン段112における静翼130と動翼120が最大の熱的負荷を受ける。
そこの温度に耐えるために、それらの部品は冷却材によって冷却することができる。
部品の基材は同様に方向性構造を有し、即ち、単結晶構造(SX構造)を有するか、縦方向結晶粒構造(DS構造)だけを有することができる。
部品に対する材料、特にタービン翼120、130および燃焼室110の部品に対する材料として、例えば鉄基、ニッケル基あるいはコバルト基の耐熱合金が利用される。かかる耐熱合金は例えば欧州特許出願公告第1204776号明細書、欧州特許第1306454号明細書、欧州特許出願公開第1319729号明細書、国際公開第99/67435号パンフレットあるいは国際公開第00/44949号パンフレットで知られ、これらの文献は開示の一部である。
同様に翼120、130は防食被覆MCrAlX層を有することができる(ここで、Mは鉄(Fe)、コバルト(Co)、ニッケル(Ni)の群における少なくとも1つの元素、Xは活性元素であり、イットリウム(Y)および/又は珪素および/又は少なくとも1つの希土類元素ないしハフニウムである)。かかる合金は、欧州特許出願公告第0486489号明細書、欧州特許出願公告第0786017号明細書、欧州特許出願公告第0412397号明細書あるいは欧州特許出願公開第1306454号明細書で知られ、これらの文献は開示の一部である。
MCrAlX層の上に断熱層を存在させることもできる。これは例えばZrO2、Y23−ZrO2から成り、即ち、酸化イットリウムおよび/又は酸化カルシウムおよび/又は酸化マグネシウムにより、部分的にせよ全体的にせよ安定化されていない。例えば電子ビーム蒸着法(EB−PVD)のような適当な被覆法によって、断熱層内に柱状粒子が発生される。
静翼130は、タービン108の内部車室138の側の静翼脚(図示せず)と、この静翼脚とは反対の側の静翼先端とを有している。この静翼先端はロータ103の側に面し、ステータ143の取付け輪140に固定されている。
図2に流体機械の動翼120あるいは静翼130が斜視図で示され、これらの翼120、130は長手軸線121に沿って延びている。
その流体機械は航空機や発電所のガスタービン、蒸気タービンあるいは圧縮機である。
翼120、130は、長手軸線121に沿って順々に、取付け部400と、これに続く翼台座403と、翼形部(羽根部)406とを有している。翼130は、静翼130としてその先端415にもう1つの翼台座(図示せず)を有することもできる。
ロータ軸あるいは内部車室(図示せず)に翼120、130を取り付けるために用いる翼脚183が取付け部400に形成されている。翼脚183は例えば断面ハンマ状先端として形成されている。断面クリスマスツリー状脚あるいはダブテール状脚として形成することもできる。
翼120、130は、翼形部406を洗流する媒体に対して、前縁(入口縁)409と後縁(出口縁)412を有している。
通常の翼120、130の場合、翼120、130の全部位400、403、406に例えば中実金属材料特に耐熱合金が利用されている。かかる合金は例えば欧州特許出願公告第1204776号明細書、欧州特許第1306454号明細書、欧州特許出願公開第1319729号明細書、国際公開第99/67435号パンフレットあるいは国際公開第00/44949号パンフレットで知られ、これらの文献は開示の一部である。この場合、翼120、130は、一方向性凝固による鋳造法、鍛造法、切削加工法あるいはそれらの組合せで製造される。
運転中に大きな機械的、熱的および/又は化学的負荷を受ける機械における部品として、1つあるいは複数の単結晶構造の部材が利用される。かかる単結晶構造の部材の製造は、例えば溶融物からの方向性凝固によって行われる。それは、液状金属合金が単結晶構造の形に、即ち、単結晶部材に凝固されるか方向性を持って凝固される鋳造法である。そのデンドライト(樹状晶)結晶は、熱流束に沿って方向づけられ、柱状結晶粒構造(柱状構造(Columnar)、即ち、部材の全長にわたって延び、ここでは一般的に方向性凝固と呼ばれる結晶粒)を形成するか、あるいは単結晶構造を形成し、即ち、部材全体が単結晶から成っている。この方法において、無指向性成長によって必然的に、方向性凝固部品あるいは単結晶部品の良好な特性を無に帰する横方向粒界と縦方向粒界が形成されるので、球状(多角結晶)凝固への移行は避けねばならない。従って、一般に方向性凝固構造というとき、それは、粒界が存在しないか、たかだか小角粒界(Kleinwinkelkorngrenzen)しか存在しない単結晶と、縦方向に延びる粒界は存在するが、横方向に延びる粒界は存在しない柱状結晶粒構造とを意味する。後者の結晶構造の場合、方向性凝固構造(directional solidified structure)とも呼ばれる。かかる方法は米国特許第6024792号明細書と欧州特許出願公開第0892090号明細書で知られ、これらの文献は開示の一部である。
同様に翼120、130は、防食被覆あるいは酸化防止被覆MCrAlX層を有することができる(ここで、Mは鉄(Fe)、コバルト(Co)、ニッケル(Ni)の群における少なくとも1つの元素、Xは活性元素であり、イットリウム(Y)および/又は珪素および/又は少なくとも1つの希土類元素ないしハフニウム(Hf)である)。かかる合金は、欧州特許出願公告第0486489号明細書、欧州特許出願公告第0786017号明細書、欧州特許出願公告第0412397号明細書あるいは欧州特許出願公開第1306454号明細書で知られ、これらの文献は開示の一部である。
MCrAlX層の上に断熱層を存在させることもできる。これは例えばZrO2、Y23−ZrO2から成り、即ち、酸化イットリウムおよび/又は酸化カルシウムおよび/又は酸化マグネシウムにより、部分的にも全体的にも安定化されていない。例えば電子ビーム蒸着法(EB−PVD)のような適当な被覆法によって、断熱層内に柱状粒子が発生される。
再生(補修)処理は、部品120、130からその使用後に場合によっては保護層を(例えばサンドブラストにより)除去しなければならないことを意味する。その後、腐食層および/又は酸化層ないしそれらの生成物の除去が行われる。場合によっては、部品120、130における割れも修復される。その後、部品120、130の再被覆および部品120、130の再利用が行われる。
翼120、130は中空に、あるいは中実に形成することができる。翼120、130が冷却されるようにするとき、翼120、130は中空であり、場合によっては(破線で図示された)膜冷却用孔418を有している。
図3はガスタービンの燃焼室110を示している。この燃焼室110は例えばいわゆる環状燃焼室として形成され、その場合、回転軸線102の周りを円周方向に分布して配置された複数のバーナ107が、共通の燃焼室空間に開口している。そのために、燃焼室110は全体として、回転軸線102の周りに位置された環状構造物として形成されている。
比較的高い効率を得るために、燃焼室110は約1000℃〜1600℃の比較的高温の作動媒体Mに対して設計されている。材料にとって不利なその運転パラメータにおいても比較的長い運転時間を可能にするために、燃焼室壁153はその作動媒体Mの側に熱シールド要素155で形成された内張り(ライニング)が設けられている。
各熱シールド要素155は、その作動媒体側が特に耐火性保護層で被覆され、あるいは耐熱性材料で作られている。これはMCrAlX層および/又はセラミック層を備えた中実セラミックレンガとすることができる。燃焼室壁およびその被覆の材料をタービン翼の材料に類似させることができる。
燃焼室の内部における高温のために、熱シールド要素155ないしその保持要素に対して冷却系を設けることができる。
燃焼室110は特に熱シールド要素155の損傷点検に対して設計されている。そのために、燃焼室壁153と熱シールド要素155との間に複数の温度センサ158が置かれている。
図4は、本発明に基づく部品の実施例として、ガスタービン翼1の一部を概略的に示している。ガスタービン翼1の基材(母材)3上に、鱗状表面構造を有する被覆5が設けられている。この実施例において、その被覆5はセラミック遮熱コーティングである。その下側にMCrAlX層7が存在し、このMCrAlX層7は、一方では、基材3とセラミック被覆5との接着仲介層として用いられ、他方では、腐食防止被覆および酸化防止被覆として用いられている。
セラミック被覆5は互いに部分的に重なり合う多数の鱗状表面9から構成されている。また、個々の鱗状表面9の表面は複数の条溝11を有している。その鱗状表面9の重なりおよび条溝11の方向付けは、タービン翼1がガスタービン設備に組み込まれているとき、燃焼ガスがタービン翼1の表面に沿って流れる流れ方向Sに重なりが行われるように選定されている。その選定された方向付けは、タービン翼1の摩擦係数を高めるようなタービン翼1の表面における横流れの発生を防止する。
図5では個々の鱗状表面列が互いにずれて配置されているけれど、この形態の変形例において、個々の鱗状表面列のずれを無くすることも可能である。
図6および図7に、図4と図5に示された鱗状表面状表面を備えた被覆の製造法が示されている。その被覆5の製造は、サーマルスプレイ法で行われ、この実施例においては、いわゆるコールドガススプレイ法で行われる。コールドガススプレイ法において、ガス流がラバルノズルによって超音速に加速される。そのガス流に被覆材料粒子が入れられ、この粒子がガス流によって運ばれ、被覆されるべき表面に投げつけられる。その粒子は、被被覆表面への衝突時、粒子の大きな速度のために少なくとも部分的に溶融し、これが再び凝固した後、被覆を形成する。
図6は、基材3上に既にMCrAlX層7が設けられた被覆されるべきタービン翼1を示している。セラミック遮熱コーティング5も既に部分的に形成されている。その被覆5の製造に対して利用されるセラミック粒子は、ラバルノズル13によって、MCrAlX層の表面8に投げつけられ、その際、セラミック粒子が表面8の限られた領域だけに、即ち、新しい鱗状表面9を形成しようとする表面領域だけに到達するように、マスク15が利用される。
表面8におけるマスク開口17で露出された領域は既存の鱗状表面9と部分的に重なり合っている。従って、コールドガススプレイ法によって供給された材料は、表面8の部分的に露出された領域に付着し、また部分的に既存の鱗状表面9の上に付着する。このようにして、新しい鱗状表面9が生ずる。その鱗状表面9が製造された後、マスク開口17が、一部がMCrAlX層の未被着表面の上に、且つ、一部が既に形成された鱗状表面9の上に位置するまで、再びマスクが移動される。MCrAlX層7の全表面8がセラミック断熱層5で被覆されるまでその過程が繰り返されることによって、図4と図5に示された断熱層5の鱗状表面構造が形成される。
図8に、上述した方法で利用されるマスク15が概略的に示されている。このマスク15は、セラミック遮熱コーティング5の製造時におけるマスクの運動方向Bに対して垂直方向に並べて配置された複数のマスク開口17を有している。その各マスク開口17は、ほぼマスク15の運動方向に延びる複数のマスキング条片19を有している。これらのマスキング条片19で覆われた表面部位には少量の被覆材料しか表面8に到達せず、こうして、そこに条溝11が形成される。
図9に、その鱗状表面状表面構造を備えた被覆の製造法に利用されうる異なる形態のマスク35が示されている。このマスク35はマスキング域としての格子棒37、39を有する格子の形に構成され、その第1格子棒37は第1方向に延び、第2格子棒39は第1方向に対してほぼ直角な第2方向に延びている。第2格子棒39は波形に形成され、その仮想中心線Mを中心として波打っている。互いに隣り合う第2格子棒39は、それらの波頂41と波谷43が相対向して位置するようにずらされている。このようにして、図5に示されているような隣接する鱗状表面列のずれが得られる。なお、第2格子棒39における波頂41と波谷43は必ずしも互いにずれている必要はない。この場合、被覆の合成鱗状表面状表面構造は隣接する鱗状表面列のずれも有さないことになる。
図10に、図9に示されたマスク35を鱗状表面構造を備えた被覆50の製造法の第2実施例に使用する例が示されている。図10に示された方法において、図6と図7に述べたと同じコールドガススプレイ法が利用される。しかし、上述した方法と異なって、高速噴射ガス流14は表面に直角に向けられず、その表面垂線と角度を成している。換言すれば、ラバルノズルは流れ方向Sと逆向きに傾けられている。
被覆粒子の傾いた衝突に基づいて、鱗状表面構造を生じさせる被覆50の非対称構造が形成される。その場合、ラバルノズルの傾きは、鱗状表面59の前方部位51が緩い上り勾配51を有するように選定されている。これに対して、鱗状表面59の後方部位53は前方部位51に比べて急勾配で降下している。ラバルノズルの傾斜角は垂線から見て20°〜40°の範囲にある。
被覆50の製造中、マスク35は、第1格子棒37がほぼ後での流れ方向Sに延び、第2格子棒39の仮想中心線Mが後での流れ方向Sに対して垂直に延びるように配列されている。その場合、第2格子棒39はまず、鱗状表面59を製造するために用いられ、これに対して第1格子棒37は、鱗状表面59の表面に条溝11を形成するために用いられる。そのマスク35は、好適には、タービン翼1の被覆されるべき表面の幾何学形状に合わされるように、たわみ性材料で作られている。
鱗状表面構造を備えた被覆50の製造法の第2実施例で説明されたマスク35は、第1実施例で利用されたマスク15と異なり、マスクの移動を必要とすることなしに、被覆全体が製造されるという利点を有する。
なお、図10に示された被覆50はタービン翼1の基材3の表面上に直に設けられている。これは例えば、被覆50が圧縮機の静翼あるいは動翼に対する腐食防止被覆あるいは酸化防止被覆であるときに当てはまる。しかし、図10に関連して述べた方法で、MCrAlX層上あるいは他の接着仲介層上に設けられる断熱被覆を製造することもできる。同様に、図6と図7に関連して述べた方法で、被覆を基材の表面上に直に設けること、即ち、接着仲介層を利用することなしに設けることもできる。
ガスタービンの縦断面図。 流体機械の動翼あるいは静翼の斜視図。 ガスタービン設備の燃焼室の部分破断斜視図。 鱗状表面状表面構造を有する被覆を備えた部品の一部概略断面図。 図4に示された部分の平面図。 図4と図5に示された被覆を製造する吹付け法の第1工程の説明図。 図4と図5に示された被覆を製造する吹付け法の第2工程の説明図。 図4と図5に示された方法に関連して利用されるマスクの断面図。 マスクの異なった実施例の断面図。 図9に示されたマスクを利用した被覆の製造法の説明図。
符号の説明
1 部品
5 被覆
9 鱗状表面
11 条溝
15 マスク
17 マスク開口
35 マスク
39 条片(マスキング域)
45 マスク開口
50 被覆
59 鱗状表面
100 ガスタービン設備
S 流れ方向

Claims (5)

  1. 流体機械の流路に配置される部品(1)上に、流体の流れ方向(S)において重なり合う鱗状表面を備える三次元的表面構造の被覆(5)を形成するためのスプレイ法であって、
    被覆過程中に、マスクの移動方向に対して垂直方向に並べて配置された複数個のマスク開口(17)を備えた少なくとも1個のマスク(15)が採用され、その少なくとも1個のマスク(15)が時間的に順々に、マスク(15)の時間的に連続する2つの位置において前記マスク開口(17)の位置が部分的に重なり合うように位置決めされ、マスク開口(17)の重なりが、後で流体が被覆済み部品(1)に沿って流れる流れ方向(S)に行われることを特徴とする部品上に三次元的表面構造の被覆を形成するためのスプレイ法。
  2. 流体機械の流路に配置される部品(1)上に、流体の流れ方向(S)において重なり合う鱗状表面を備える三次元的表面構造の被覆(5)を形成するためのスプレイ法であって、
    被覆される表面の垂線に対して傾斜された吹付け方向から吹き付けが行われ、吹付け方向に対しても垂線に対しても少なくとも平均的に垂直に延びるマスキング域(39)を有するマスク(35)が利用され、前記マスク(35)は、前記マスキング域としての2つの格子棒(37、39)を有する格子の形に構成され、その第1格子棒(37)は前記流体の流れ方向である第1方向に延び、第2格子棒(39)は前記第1方向に対してほぼ直角な第2方向に延びており、かつ前記第2格子棒(39)は波形に形成され、その仮想中心線(M)を中心として波打つように形成され、互いに隣り合う第2格子棒(39)は、それらの波頂(41)と波谷(43)が相対向して位置するようにずらされていることを特徴とする部品上に三次元的表面構造の被覆を形成するためのスプレイ法。
  3. 少なくとも1個のマスク(15、35)がマスク開口(17、45)としてスリットを有していることを特徴とする請求項1又は2に記載のスプレイ法。
  4. サーマルスプレイプロセスが利用されることを特徴とする請求項1ないし3のいずれか1つに記載のスプレイ法。
  5. サーマルスプレイプロセスがコールドガススプレイ法であることを特徴とする請求項4に記載のスプレイ法。
JP2008549872A 2006-01-17 2007-01-10 流体機械の流路に配置すべき部品および被膜生成のためのスプレイ法 Expired - Fee Related JP4959718B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06000953A EP1808508A1 (de) 2006-01-17 2006-01-17 Im Strömungskanal einer Strömungsmaschine anzuordnendes Bauteil und Spritzverfahren zum Erzeugen einer Beschichtung
EP06000953.7 2006-01-17
PCT/EP2007/050216 WO2007082823A1 (de) 2006-01-17 2007-01-10 Im strömungskanal einer strömungsmaschine anzuordnendes bauteil und spritzverfahren zum erzeugen einer beschichtung

Publications (2)

Publication Number Publication Date
JP2009523939A JP2009523939A (ja) 2009-06-25
JP4959718B2 true JP4959718B2 (ja) 2012-06-27

Family

ID=36579955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008549872A Expired - Fee Related JP4959718B2 (ja) 2006-01-17 2007-01-10 流体機械の流路に配置すべき部品および被膜生成のためのスプレイ法

Country Status (4)

Country Link
US (1) US8277194B2 (ja)
EP (2) EP1808508A1 (ja)
JP (1) JP4959718B2 (ja)
WO (1) WO2007082823A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157174A1 (ja) * 2008-06-23 2009-12-30 株式会社 東芝 蒸気タービン及び蒸気タービン翼
DE102010005389A1 (de) * 2010-01-22 2011-07-28 MTU Aero Engines GmbH, 80995 Strukturierte Oberflächenbeschichtung mittels kinetischem Kaltgasspritzen
DE102010007526B3 (de) * 2010-02-11 2011-05-05 Mtu Aero Engines Gmbh Verfahren zur Herstellung eines Bauteils und ein derartiges Bauteil
JP4916560B2 (ja) 2010-03-26 2012-04-11 川崎重工業株式会社 ガスタービンエンジンの圧縮機
FR2962447B1 (fr) * 2010-07-06 2013-09-20 Snecma Barriere thermique pour aube de turbine, a structure colonnaire avec des colonnes espacees
DE102012200883B4 (de) * 2012-01-23 2015-12-03 MTU Aero Engines AG Strömungsmaschinen-Dichtungsanordnung
US9556505B2 (en) * 2012-08-31 2017-01-31 General Electric Company Thermal barrier coating systems and methods of making and using the same
FR3023322B1 (fr) * 2014-07-03 2019-09-06 Safran Aircraft Engines Manche d'entree d'air pour turbomachine
CN105015744B (zh) * 2015-06-08 2017-04-12 广西雅力耐磨材料有限公司 一种船舶用螺旋桨的制造方法
DE102018206707A1 (de) * 2018-05-02 2019-11-07 MTU Aero Engines AG Verfahren zum beschichten eines bauteils einer strömungsmaschine
CN111043076A (zh) * 2020-01-09 2020-04-21 浙江铭振电子股份有限公司 一种设有鳞片过渡层的风机叶轮
JPWO2022220021A1 (ja) * 2021-04-16 2022-10-20
DE102022119294A1 (de) * 2022-08-02 2024-02-08 Bayerische Motoren Werke Aktiengesellschaft Bauteil sowie Verfahren zum Herstellen eines Bauteils

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH351301A (de) * 1957-04-18 1961-01-15 Ibm Verfahren zum Erzeugen von durch Löcher in einem oder mehreren Körpern hindurch sich erstreckenden dünnen Belägen
US4706910A (en) * 1984-12-27 1987-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Combined riblet and lebu drag reduction system
US4650138A (en) * 1985-09-30 1987-03-17 Internorth, Inc. Cascaded micro-groove aerodynamic drag reducer
DE3609541A1 (de) * 1986-03-21 1987-09-24 Deutsche Forsch Luft Raumfahrt Verminderten stroemungswiderstand durch herabgesetzte wandschubspannung aufweisende oberflaeche eines turbolent ueberstroemten koerpers
JPS6362858A (ja) 1986-09-01 1988-03-19 Toyota Motor Corp セラミツク溶射層の形成方法
JPH01182504A (ja) 1988-01-12 1989-07-20 Mitsubishi Heavy Ind Ltd タービン動翼の表面改質方法
DE3835213A1 (de) * 1988-10-15 1990-05-10 Schiffer Dietrich F W Tragfluegelausbildung zur energieuebertragung in den medien wasser und gas und fuer ein fahrzeug zur bewegung auf dem lande bzw. dem wasser und in der luft
JPH02247372A (ja) 1989-03-17 1990-10-03 Mitsubishi Electric Corp 薄膜成膜方法
JP2773050B2 (ja) 1989-08-10 1998-07-09 シーメンス アクチエンゲゼルシヤフト 耐熱性耐食性の保護被覆層
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
GB9204791D0 (en) 1992-03-05 1992-04-22 Rolls Royce Plc A coated article
DE9316009U1 (de) * 1993-10-20 1994-01-13 Moser, Josef, 85435 Erding Oberfläche eines fluidumströmten Körpers
DE4432998C1 (de) * 1994-09-16 1996-04-04 Mtu Muenchen Gmbh Anstreifbelag für metallische Triebwerkskomponente und Herstellungsverfahren
EP0786017B1 (de) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
US5611870A (en) * 1995-04-18 1997-03-18 Edtek, Inc. Filter array for modifying radiant thermal energy
US6005219A (en) * 1997-12-18 1999-12-21 General Electric Company Ripstop laser shock peening
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
DE29901994U1 (de) * 1999-02-06 1999-07-15 Merten, Helmut-Wolfgang, Dipl.-Sozialw., 20255 Hamburg Bekleidung oder Bekleidungsstücke
DE50006694D1 (de) 1999-07-29 2004-07-08 Siemens Ag Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
US6345791B1 (en) * 2000-04-13 2002-02-12 Lockheed Martin Corporation Streamwise variable height riblets for reducing skin friction drag of surfaces
US6491208B2 (en) * 2000-12-05 2002-12-10 Siemens Westinghouse Power Corporation Cold spray repair process
US6444259B1 (en) * 2001-01-30 2002-09-03 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique
US6528118B2 (en) * 2001-02-06 2003-03-04 General Electric Company Process for creating structured porosity in thermal barrier coating
DE10126100A1 (de) * 2001-05-29 2002-12-05 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
DE50104022D1 (de) 2001-10-24 2004-11-11 Siemens Ag Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
JP2004084524A (ja) * 2002-08-26 2004-03-18 Mitsubishi Heavy Ind Ltd ファンのブレード、ファン及びファンのブレードの補強方法
JP4481027B2 (ja) * 2003-02-17 2010-06-16 財団法人ファインセラミックスセンター 遮熱コーティング部材およびその製造方法
PL1506816T3 (pl) * 2003-04-30 2013-06-28 Sulzer Metco Ag Dysza Lavala do natryskiwania termicznego albo kinetycznego
JP2005042144A (ja) * 2003-07-24 2005-02-17 Toshiba Corp 耐熱部材とその製造方法

Also Published As

Publication number Publication date
WO2007082823A1 (de) 2007-07-26
JP2009523939A (ja) 2009-06-25
EP1808508A1 (de) 2007-07-18
EP1974071B1 (de) 2012-12-26
US8277194B2 (en) 2012-10-02
EP1974071A1 (de) 2008-10-01
US20090092498A1 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP4959718B2 (ja) 流体機械の流路に配置すべき部品および被膜生成のためのスプレイ法
US7182581B2 (en) Layer system
EP2002030B1 (en) Layered thermal barrier coating with a high porosity, and a component
KR101492313B1 (ko) 나노 및 마이크로 구조의 세라믹 열 차단 코팅
EP2385155B1 (en) Ceramic thermal barrier coating system with two ceramic layers
US20110038710A1 (en) Application of Dense Vertically Cracked and Porous Thermal Barrier Coating to a Gas Turbine Component
US20020106457A1 (en) Process for creating structured porosity in thermal barrier coating
US11702950B2 (en) Seal coating
EP2589754B1 (en) Rotating airfoil component of a turbomachine
US20170368647A1 (en) Methods for repairing film holes in a surface
US20200024951A1 (en) Component for a turbine engine with a cooling hole
KR20090107520A (ko) 표면에 비스듬히 연장하는 홈들을 구비하는 구성 요소 및 터빈의 동작 방법
US7182580B2 (en) Layer system, and process for producing a layer system
US20090123722A1 (en) Coating system
EP2431495A1 (en) A method for forming thermal barrier coating and device with the thermal barrier coating
US9862002B2 (en) Process for producing a layer system
EP3725909A1 (en) Geometrically segmented thermal barrier coating with spall interrupter features
US11525179B2 (en) Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings
EP2423347A1 (en) Method for forming a thermal barrier coating and a turbine component with the thermal barrier coating
US20140255652A1 (en) Surface having specially formed recesses and component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees