JP4959169B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP4959169B2
JP4959169B2 JP2005287194A JP2005287194A JP4959169B2 JP 4959169 B2 JP4959169 B2 JP 4959169B2 JP 2005287194 A JP2005287194 A JP 2005287194A JP 2005287194 A JP2005287194 A JP 2005287194A JP 4959169 B2 JP4959169 B2 JP 4959169B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
carbon monoxide
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005287194A
Other languages
Japanese (ja)
Other versions
JP2007103014A (en
Inventor
光由 岩田
均 宮本
学 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005287194A priority Critical patent/JP4959169B2/en
Publication of JP2007103014A publication Critical patent/JP2007103014A/en
Application granted granted Critical
Publication of JP4959169B2 publication Critical patent/JP4959169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池発電システムに関する。   The present invention relates to a fuel cell power generation system.

従来の固体酸化物形の燃料電池発電システムにおいては、図2に示すように、燃料ガスである都市ガス(メタン)1を、都市ガス1を燃焼させて発生させた水蒸気と共に送給ファン111により送給して、熱交換器112により運転温度(700〜1000℃)にまで加熱し、固体酸化物形の燃料電池本体113の燃料ガス供給口へ供給すると、当該燃料電池本体113内の燃料極で都市ガス(メタン)1が下記式(1)に示す改質反応及び下記式(2)に示すシフト反応を生じ、水素ガスが発生する。   In a conventional solid oxide fuel cell power generation system, as shown in FIG. 2, city gas (methane) 1 as a fuel gas is fed together with water vapor generated by burning city gas 1 by a feed fan 111. When the heat is supplied to the operation temperature (700 to 1000 ° C.) by the heat exchanger 112 and supplied to the fuel gas supply port of the solid oxide fuel cell main body 113, the fuel electrode in the fuel cell main body 113 is supplied. Thus, the city gas (methane) 1 undergoes a reforming reaction represented by the following formula (1) and a shift reaction represented by the following formula (2) to generate hydrogen gas.

CH4+H2O→3H2+CO (1):改質反応
CO+H2O→H2+CO2 (2):シフト反応
CH 4 + H 2 O → 3H 2 + CO (1): Reforming reaction CO + H 2 O → H 2 + CO 2 (2): Shift reaction

そして、送給ファン114により酸化ガスである空気2を送給して、熱交換器115aにより空気2を運転温度(700〜1000℃)にまで加熱し、上記燃料電池本体113の酸化ガス供給口に当該空気2を供給すると、当該空気2中の酸素が当該燃料電池本体113内の空気極から固体酸化物電解質層を介してイオンとなって燃料極に伝導し、前記水素のイオンと電気化学的な反応を生じることにより、水を生成すると共に電子を発生するようになっている。   Then, air 2 that is an oxidizing gas is supplied by the supply fan 114, and the air 2 is heated to the operating temperature (700 to 1000 ° C.) by the heat exchanger 115 a, and the oxidizing gas supply port of the fuel cell main body 113. When the air 2 is supplied to the oxygen, oxygen in the air 2 is conducted as ions from the air electrode in the fuel cell body 113 through the solid oxide electrolyte layer to the fuel electrode, and the hydrogen ions and electrochemical By generating a general reaction, water is generated and electrons are generated.

燃料電池本体113で使用された使用済みの都市ガス(水素や二酸化炭素やメタンや水蒸気等の混合ガス)1は、当該燃料電池本体113の燃料ガス排出口から排出され、未利用のメタンや水素等の燃料を有効利用するために、その一部が、新たに供給される都市ガス1と共に前記送給ファン111を介して燃料電池本体113内に再び供給されて再利用される一方、残りが、燃焼室116に送給される。   The used city gas (mixed gas of hydrogen, carbon dioxide, methane, water vapor, etc.) 1 used in the fuel cell main body 113 is discharged from the fuel gas outlet of the fuel cell main body 113, and unused methane or hydrogen In order to make effective use of the fuel, a part of the fuel is supplied again into the fuel cell body 113 through the supply fan 111 and reused together with the newly supplied city gas 1, while the rest is Then, it is fed to the combustion chamber 116.

燃料電池本体113で使用された使用済みの空気2は、当該燃料電池本体113の酸化ガス排出口から排出され、燃焼室116で使用済みの前記都市ガス1と共に燃焼処理される。燃焼室116で燃焼処理された排ガス3は、前記熱交換器115aに送給されて空気2の加熱源に利用された後、排ガスボイラ115bで熱源に利用されてから、煙突117から外部へ排出される。   The used air 2 used in the fuel cell main body 113 is discharged from the oxidizing gas discharge port of the fuel cell main body 113 and burned together with the used city gas 1 in the combustion chamber 116. The exhaust gas 3 burned in the combustion chamber 116 is fed to the heat exchanger 115a and used as a heat source for the air 2, and then used as a heat source in the exhaust gas boiler 115b, and then discharged from the chimney 117 to the outside. Is done.

このような図2に示したような従来の燃料電池発電システム110においては、上述したように、上記改質反応(式(1))及び上記シフト反応(式(2))に水を要するため、起動の際には、都市ガス1と共に水蒸気を供給するものの、酸素と水素との電気化学的な反応により水を生成することから、起動後しばらくしたら水蒸気の供給を停止して、酸素と水素との電気化学的な反応で生成した水を利用するようにしている。   In the conventional fuel cell power generation system 110 as shown in FIG. 2, as described above, water is required for the reforming reaction (formula (1)) and the shift reaction (formula (2)). When starting up, water vapor is supplied together with city gas 1, but water is generated by an electrochemical reaction between oxygen and hydrogen. The water produced by the electrochemical reaction is used.

ところが、酸素と水素との電気化学的な反応による水の生成量が、上記改質反応(式(1))及び上記シフト反応(式(2))での水の使用量よりも多いため、使用済みの前記都市ガス1の一部を新たに供給される都市ガス1と共に燃料電池本体113内に再び供給していると、燃料電池本体113内に供給される都市ガス1中の水蒸気量が次第に過剰になってしまい、燃料電池本体113の発電効率の低下を引き起こしてしまう。   However, the amount of water produced by the electrochemical reaction between oxygen and hydrogen is larger than the amount of water used in the reforming reaction (formula (1)) and the shift reaction (formula (2)). When a part of the used city gas 1 is supplied again into the fuel cell main body 113 together with the newly supplied city gas 1, the amount of water vapor in the city gas 1 supplied into the fuel cell main body 113 is reduced. It gradually becomes excessive, causing a reduction in power generation efficiency of the fuel cell main body 113.

このため、図3に示すように、都市ガス1の循環供給系統に熱交換器128及び凝縮器129等を設け、燃料電池本体113から排出された使用済みの都市ガス1の前記一部を上記熱交換器128により熱回収して、凝縮器129により冷却して水分を凝縮除去してから、新たに供給される都市ガス1と混合して燃料電池本体113内に再び供給するようにしている。   Therefore, as shown in FIG. 3, a heat exchanger 128, a condenser 129, and the like are provided in the circulation supply system of the city gas 1, and the part of the used city gas 1 discharged from the fuel cell body 113 is Heat is recovered by the heat exchanger 128, cooled by the condenser 129, condensed and removed, and then mixed with the newly supplied city gas 1 and supplied again into the fuel cell body 113. .

特開平11−312527号公報JP-A-11-31527 特開2003−288912号公報JP 2003-288912 A 特開2005−005074号公報JP 2005-005074 A

しかしながら、前述した図3に示したような従来の燃料電池発電システム120では、前述したように、新たに供給される都市ガス1と混合する使用済みの都市ガス1を凝縮器129により冷却して水分を凝縮除去するため、系内の熱エネルギ収支に無駄を生じてしまっていた。   However, in the conventional fuel cell power generation system 120 as shown in FIG. 3 described above, the used city gas 1 mixed with the newly supplied city gas 1 is cooled by the condenser 129 as described above. In order to condense and remove moisture, the heat energy balance in the system was wasted.

このようなことから、本発明は、系内の熱エネルギ収支に無駄を生じさせることなく燃料電池本体の発電効率の低下を防止することができる燃料電池発電システムを提供することを目的とする。   Accordingly, an object of the present invention is to provide a fuel cell power generation system capable of preventing a decrease in power generation efficiency of the fuel cell main body without causing waste in the thermal energy balance in the system.

前述した課題を解決するための、第一番目の発明に係る燃料電池発電システムは、固体酸化物形の燃料電池本体と、前記燃料電池本体の燃料極へ炭化水素ガスからなる燃料ガスを供給する燃料ガス供給手段と、前記燃料電池本体の空気極へ酸素を含有する酸化ガスを供給する酸化ガス供給手段と、前記燃料電池本体から排出された使用済みの前記燃料ガスの少なくとも一部を当該燃料電池本体の前記燃料極へ再び供給する燃料ガス循環手段とを備えている燃料電池発電システムにおいて、前記燃料電池本体の前記燃料極へ一酸化炭素を供給する一酸化炭素供給手段を備え、前記一酸化炭素供給手段が、前記燃料ガス供給手段で前記燃料極へ供給する前記燃料ガスの供給量と前記燃料ガス循環手段で前記燃料極へ供給する使用済みの前記燃料ガスとの合計量に対して10〜40mol%の割合で前記一酸化炭素ガスを供給するものであることを特徴とする。 A fuel cell power generation system according to a first invention for solving the above-described problem is a solid oxide fuel cell main body, and supplies a fuel gas comprising a hydrocarbon gas to the fuel electrode of the fuel cell main body. A fuel gas supply means; an oxidizing gas supply means for supplying an oxidizing gas containing oxygen to the air electrode of the fuel cell body; and at least a part of the used fuel gas discharged from the fuel cell body. in the fuel cell power generation system and a fuel gas circulation means for feeding back to the fuel electrode of the cell body, with a carbon monoxide supply means for supplying carbon monoxide to the fuel electrode of the fuel cell main body, the one The carbon oxide supply means supplies the fuel gas supplied to the fuel electrode by the fuel gas supply means and the used fuel gas supplied to the fuel electrode by the fuel gas circulation means. Characterized in that it is intended to supply the carbon monoxide gas at a rate of 10 to 40 mol% with respect to the total amount of the.

番目の発明に係る燃料電池発電システムは、第一番目発明において、前記一酸化炭素供給手段が、化学プラントで副生した一酸化炭素ガスを前記燃料極へ供給するものであることを特徴とする。 Fuel cell power generation system according to a second invention, in the first-th invention, said carbon monoxide supply means is by-produced carbon monoxide gas in chemical plants to supply to the fuel electrode Features.

本発明に係る燃料電池発電システムによれば、一酸化炭素供給手段が燃料電池本体の燃料極へ一酸化炭素を供給することから、燃料ガス循環手段で循環利用される使用済みの燃料ガスによって増加する水分と当該一酸化炭素とがシフト反応を生じて水素ガスと二酸化炭素ガスとにシフトするので、使用済みの燃料ガスを循環利用しても、系内の水分の増加を抑制することができる。このため、従来のような凝縮器を使用しなくても、系内の水分の増加を抑制することができるので、系内の熱エネルギ収支に無駄を生じさせることなく燃料電池本体の発電効率の低下を防止することができるばかりか、余剰な水分から水素ガスをさらに生成させることができるので、燃料電池本体の発電効率を向上させることができる。   According to the fuel cell power generation system of the present invention, since the carbon monoxide supply means supplies carbon monoxide to the fuel electrode of the fuel cell main body, it is increased by the used fuel gas circulated by the fuel gas circulation means. The water content and the carbon monoxide cause a shift reaction to shift to hydrogen gas and carbon dioxide gas, so that increase of the water content in the system can be suppressed even if the used fuel gas is recycled. . For this reason, since it is possible to suppress an increase in moisture in the system without using a conventional condenser, the power generation efficiency of the fuel cell main body can be reduced without causing waste in the thermal energy balance in the system. Not only can the decrease be prevented, but also hydrogen gas can be further generated from excess water, so that the power generation efficiency of the fuel cell body can be improved.

本発明に係る燃料電池発電システムの実施形態を図1に基づいて以下に説明する。図1は、燃料電池発電システムの概略構成図である。   An embodiment of a fuel cell power generation system according to the present invention will be described below with reference to FIG. FIG. 1 is a schematic configuration diagram of a fuel cell power generation system.

図1に示すように、固体酸化物電解質形の燃料電池本体13の燃料ガス供給口には、炭化水素ガスからなる燃料ガスである都市ガス(メタン)1の都市ガス源18が配管10aを介して連絡している。燃料電池本体13の燃料ガス供給口と都市ガス源18との間の配管10a部分には、一酸化炭素ガス4の一酸化炭素ガス源19が配管10gを介して連絡している。燃料電池本体13の燃料ガス供給口と都市ガス源18及び一酸化炭素ガス源19との間の配管10a部分には、送給ファン11が配設されている。送給ファン11と燃料電池本体13の燃料ガス供給口との間の配管10a部分には、熱交換器12が配設されている。   As shown in FIG. 1, a city gas source 18 of city gas (methane) 1 which is a fuel gas made of hydrocarbon gas is connected to a fuel gas supply port of a solid oxide electrolyte fuel cell main body 13 via a pipe 10a. Contact. A carbon monoxide gas source 19 of the carbon monoxide gas 4 communicates with the pipe 10a between the fuel gas supply port of the fuel cell main body 13 and the city gas source 18 via the pipe 10g. A feed fan 11 is disposed in a pipe 10 a portion between the fuel gas supply port of the fuel cell main body 13 and the city gas source 18 and the carbon monoxide gas source 19. A heat exchanger 12 is disposed in the pipe 10 a portion between the feed fan 11 and the fuel gas supply port of the fuel cell main body 13.

前記燃料電池本体13の酸化ガス供給口には、酸素を含有する酸化ガスである空気2の送給ファン14が前記熱交換器12を経由する配管10bを介して連絡している。送給ファン14と前記熱交換器12との間の配管10b部分には、熱交換器15aが配設されている。   A supply fan 14 for air 2, which is an oxidizing gas containing oxygen, communicates with an oxidizing gas supply port of the fuel cell main body 13 via a pipe 10 b that passes through the heat exchanger 12. A heat exchanger 15a is disposed in the pipe 10b portion between the supply fan 14 and the heat exchanger 12.

前記燃料電池本体13の燃料ガス排出口は、前記送給ファン11と前記都市ガス源18及び前記一酸化炭素ガス源19との間の配管10a部分に配管10cを介して連絡すると共に、燃焼室16の受入口に配管10dを介して連絡している。また、燃料電池本体13の酸化ガス排出口は、上記燃焼室16の受入口に配管10eを介して連絡している。   A fuel gas discharge port of the fuel cell main body 13 communicates with a pipe 10a portion between the supply fan 11 and the city gas source 18 and the carbon monoxide gas source 19 through a pipe 10c, and a combustion chamber. The sixteen inlets are connected via a pipe 10d. The oxidizing gas discharge port of the fuel cell main body 13 communicates with the receiving port of the combustion chamber 16 through a pipe 10e.

燃焼室16の排出口は、前記熱交換器15a及び排ガスボイラ15bを経由して煙突17に配管10fを介して連絡している。   The exhaust port of the combustion chamber 16 communicates with the chimney 17 via the pipe 10f via the heat exchanger 15a and the exhaust gas boiler 15b.

なお、本実施形態では、配管10a,送給ファン11,都市ガス源18等により燃料ガス供給手段を構成し、配管10b,送給ファン14等により酸化ガス供給手段を構成し、配管10c等により燃料ガス循環手段を構成し、配管10g,一酸化炭素ガス源19等により一酸化炭素供給手段を構成している。   In this embodiment, the fuel gas supply means is constituted by the pipe 10a, the feed fan 11, the city gas source 18, and the like, and the oxidizing gas supply means is constituted by the pipe 10b, the feed fan 14 and the like, and the pipe 10c and the like. The fuel gas circulation means is constituted, and the carbon monoxide supply means is constituted by the pipe 10 g, the carbon monoxide gas source 19 and the like.

このような本実施形態に係る燃料電池発電システム10の作用を次に説明する。   Next, the operation of the fuel cell power generation system 10 according to this embodiment will be described.

まず、都市ガス源18からの都市ガス(メタン)1を、都市ガス1を燃焼させて発生させた水蒸気と共に送給ファン11により送給して、熱交換器12により運転温度(700〜1000℃)にまで加熱し、固体酸化物形の燃料電池本体13の燃料ガス供給口に供給すると、当該燃料電池本体13内の燃料極で都市ガス(メタン)1が下記式(1)に示す改質反応及び下記式(2)に示すシフト反応を生じ、水素ガスが発生する。   First, city gas (methane) 1 from a city gas source 18 is fed by a feed fan 11 together with water vapor generated by burning the city gas 1, and an operating temperature (700 to 1000 ° C.) is obtained by a heat exchanger 12. ) And supplied to the fuel gas supply port of the solid oxide fuel cell main body 13, the city gas (methane) 1 is reformed by the fuel electrode in the fuel cell main body 13 according to the following formula (1). The reaction and the shift reaction shown in the following formula (2) occur, and hydrogen gas is generated.

CH4+H2O→3H2+CO (1):改質反応
CO+H2O→H2+CO2 (2):シフト反応
CH 4 + H 2 O → 3H 2 + CO (1): Reforming reaction CO + H 2 O → H 2 + CO 2 (2): Shift reaction

そして、送給ファン14により空気2を送給して、熱交換器15aにより空気2を運転温度(700〜1000℃)にまで加熱し、上記燃料電池本体13の酸化ガス供給口に当該空気2を供給すると、当該空気2中の酸素が当該燃料電池本体13内の空気極から固体酸化物電解質層を介してイオンとなって燃料極に伝導し、前記水素のイオンと電気化学的な反応を生じることにより、水を生成すると共に電子を発生する。   Then, the air 2 is supplied by the supply fan 14, the air 2 is heated to the operating temperature (700 to 1000 ° C.) by the heat exchanger 15 a, and the air 2 is supplied to the oxidizing gas supply port of the fuel cell body 13. When oxygen is supplied, oxygen in the air 2 becomes ions from the air electrode in the fuel cell body 13 through the solid oxide electrolyte layer and is conducted to the fuel electrode to cause an electrochemical reaction with the hydrogen ions. As a result, water is generated and electrons are generated.

燃料電池本体13で使用された使用済みの都市ガス(水素や二酸化炭素やメタンや水蒸気等の混合ガス)1は、当該燃料電池本体13の燃料ガス排出口から排出され、その一部が前記配管10cを介して前記配管10a内に流入し、新たに供給される都市ガス1と共に前記送給ファン11を介して燃料電池本体13内に再び供給されることにより、未利用のメタンや水素等の燃料が再利用される一方、残りが前記配管10dを介して燃焼室16に送給される。   The used city gas (mixed gas of hydrogen, carbon dioxide, methane, water vapor, etc.) 1 used in the fuel cell main body 13 is discharged from the fuel gas discharge port of the fuel cell main body 13, and a part thereof is the pipe. 10c flows into the pipe 10a, and is supplied again into the fuel cell body 13 through the supply fan 11 together with the newly supplied city gas 1, so that unused methane, hydrogen, etc. While the fuel is reused, the remainder is fed to the combustion chamber 16 via the pipe 10d.

燃料電池本体13で使用された使用済みの空気2は、当該燃料電池本体13の酸化ガス排出口から排出され、燃焼室16で使用済みの前記都市ガス1と共に燃焼処理される。燃焼室16で燃焼処理された排ガス3は、前記熱交換器15aに送給されて空気2の加熱源に利用された後、排ガスボイラ15bで熱源に利用されてから、煙突17から外部へ排出される。   The used air 2 used in the fuel cell main body 13 is discharged from the oxidizing gas discharge port of the fuel cell main body 13 and is combusted together with the city gas 1 used in the combustion chamber 16. The exhaust gas 3 burned in the combustion chamber 16 is fed to the heat exchanger 15a and used as a heat source for the air 2 and then used as a heat source in the exhaust gas boiler 15b and then discharged from the chimney 17 to the outside. Is done.

このようにして燃料電池本体13を起動して、酸素と水素との電気化学的な反応によって生成する水だけでも都市ガス1の改質反応及びシフト反応が十分に生じるようになったら、水蒸気の供給を停止すると共に、前記一酸化炭素ガス源19から一酸化炭素ガス4を、配管10gを介して前記配管10a内に流入させ、都市ガス源18からの新たな都市ガス(メタン)1及び前記配管10cからの使用済みの都市ガス(水素や二酸化炭素やメタンや水蒸気等の混合ガス)1と共に燃料電池本体13の燃料ガス供給口に供給すると、当該燃料電池本体13内の燃料極で都市ガス(メタン)1が、前述したように、前記式(1)に示す改質反応及び前記式(2)に示すシフト反応を生じ、水素ガスを発生させると共に、使用済みの都市ガス(水素や二酸化炭素やメタンや水蒸気等の混合ガス)1の循環利用によって増加する水分が前記一酸化炭素ガス源19からの一酸化炭素ガス4と前記式(2)で示したシフト反応を生じて水素ガスと二酸化炭素ガスとにシフトするようになる。   When the fuel cell main body 13 is started up in this way and the reforming reaction and shift reaction of the city gas 1 are sufficiently generated only by water generated by the electrochemical reaction between oxygen and hydrogen, While stopping the supply, the carbon monoxide gas 4 from the carbon monoxide gas source 19 is caused to flow into the pipe 10a through the pipe 10g, and the new city gas (methane) 1 from the city gas source 18 and the above-mentioned When used city gas (mixed gas of hydrogen, carbon dioxide, methane, water vapor, etc.) 1 from the pipe 10 c is supplied to the fuel gas supply port of the fuel cell main body 13, the city gas is generated at the fuel electrode in the fuel cell main body 13. As described above, the (methane) 1 causes the reforming reaction shown in the above formula (1) and the shift reaction shown in the above formula (2) to generate hydrogen gas, and the used city gas (hydrogen) Moisture that increases due to the circulating use of carbon dioxide, methane, water vapor, etc.) 1 causes a shift reaction shown in the above formula (2) with the carbon monoxide gas 4 from the carbon monoxide gas source 19 to generate hydrogen gas. And shift to carbon dioxide gas.

このため、使用済みの都市ガス1を循環利用しても、系内の水分の増加を抑制することができる。   For this reason, even if the used city gas 1 is circulated and used, an increase in moisture in the system can be suppressed.

したがって、本実施形態によれば、従来のような凝縮器を使用しなくても、系内の水分の増加を抑制することができるので、系内の熱エネルギ収支に無駄を生じさせることなく燃料電池本体13の発電効率の低下を防止することができるばかりか、一酸化炭素ガス4を加えることにより、余剰な水分から水素ガスをさらに生成させることができるので、燃料電池本体13の発電効率を向上させることができる。   Therefore, according to the present embodiment, since it is possible to suppress an increase in moisture in the system without using a conventional condenser, fuel can be generated without wasting the heat energy balance in the system. Not only can the power generation efficiency of the battery body 13 be reduced, but also by adding the carbon monoxide gas 4, hydrogen gas can be further generated from excess water. Can be improved.

また、一酸化炭素ガス4を副生してしまう化学プラントを有するコンビナート等に適用すれば、副生した一酸化炭素ガス4を有効利用しながら燃料電池本体13の発電効率を向上させることができる。   Further, when applied to a complex having a chemical plant that produces carbon monoxide gas 4 as a by-product, the power generation efficiency of the fuel cell body 13 can be improved while effectively using the carbon monoxide gas 4 produced as a by-product. .

なお、燃料電池本体13の燃料極へ供給する一酸化炭素ガス4の量は、都市ガス源18から上記燃料極へ供給する都市ガス1の供給量と前記配管10cを介して上記燃料極へ供給する使用済みの都市ガス1との合計量に対して10〜40mol%の割合で供給すると好ましく、特に、30〜40mol%の割合で供給するとより好ましい。   The amount of the carbon monoxide gas 4 supplied to the fuel electrode of the fuel cell main body 13 is supplied to the fuel electrode via the supply amount of the city gas 1 supplied from the city gas source 18 to the fuel electrode and the pipe 10c. It is preferable to supply at a rate of 10 to 40 mol%, particularly more preferable to supply at a rate of 30 to 40 mol%, with respect to the total amount of used city gas 1 to be used.

なぜなら、一酸化炭素ガス4の上記供給量が10mol%未満であると、一酸化炭素ガス4を供給することによる効果(系内の水分の増加抑制、発電効率の向上(電圧向上)等)をほとんど期待することができず、40mol%を超えると、一酸化炭素ガス4の供給量が過剰となってむしろ悪影響を与えてしまい(系内の水分の減少、発電効率の低下(電圧低下)、炭素析出等)、30〜40mol%の範囲であると、系内の水分のバランスを図りながら、電圧向上率を4%以上とすることができ、本発明の効果を最も効率よく得ることができるからである。   Because, if the supply amount of the carbon monoxide gas 4 is less than 10 mol%, the effects (suppression of increase of moisture in the system, improvement of power generation efficiency (voltage improvement), etc.) due to the supply of the carbon monoxide gas 4 are obtained. If almost 40 mol% cannot be expected, the amount of carbon monoxide gas 4 supplied will be excessive, which will have a negative effect (reduction of moisture in the system, reduction in power generation efficiency (voltage drop), Carbon deposition, etc.), the range of 30 to 40 mol% can achieve a voltage improvement rate of 4% or more while achieving a balance of moisture in the system, and the effects of the present invention can be obtained most efficiently. Because.

本発明に係る燃料電池発電システムは、系内の熱エネルギ収支に無駄を生じさせることなく燃料電池本体の発電効率の低下を防止することができるばかりか、余剰な水分から水素ガスをさらに生成させることができるので、燃料電池本体の発電効率を向上させることができ、産業上、極めて有益に利用することができる。   The fuel cell power generation system according to the present invention can prevent a decrease in the power generation efficiency of the fuel cell main body without wasting the heat energy balance in the system, and further generate hydrogen gas from excess water. Therefore, the power generation efficiency of the fuel cell main body can be improved, and the fuel cell body can be used extremely beneficially in the industry.

本発明に係る燃料電池発電システムの実施形態の概略構成図である。1 is a schematic configuration diagram of an embodiment of a fuel cell power generation system according to the present invention. 従来の燃料電池発電システムの一例の概略構成図である。It is a schematic block diagram of an example of the conventional fuel cell power generation system. 従来の燃料電池発電システムの他の例の概略構成図である。It is a schematic block diagram of the other example of the conventional fuel cell power generation system.

符号の説明Explanation of symbols

1 都市ガス
2 空気
3 排ガス
4 一酸化炭素ガス
10 燃料電池発電システム
10a〜10g 配管
11 送給ファン
12 熱交換器
13 燃料電池本体
14 送給ファン
15a 熱交換器
15b 排ガスボイラ
16 燃焼室
17 煙突
18 都市ガス源
19 一酸化炭素ガス源
DESCRIPTION OF SYMBOLS 1 City gas 2 Air 3 Exhaust gas 4 Carbon monoxide gas 10 Fuel cell power generation system 10a-10g Piping 11 Supply fan 12 Heat exchanger 13 Fuel cell main body 14 Supply fan 15a Heat exchanger 15b Exhaust gas boiler 16 Combustion chamber 17 Chimney 18 City gas source 19 Carbon monoxide gas source

Claims (2)

固体酸化物形の燃料電池本体と、
前記燃料電池本体の燃料極へ炭化水素ガスからなる燃料ガスを供給する燃料ガス供給手段と、
前記燃料電池本体の空気極へ酸素を含有する酸化ガスを供給する酸化ガス供給手段と、
前記燃料電池本体から排出された使用済みの前記燃料ガスの少なくとも一部を当該燃料電池本体の前記燃料極へ再び供給する燃料ガス循環手段と
を備えている燃料電池発電システムにおいて、
前記燃料電池本体の前記燃料極へ一酸化炭素を供給する一酸化炭素供給手段を備え
前記一酸化炭素供給手段が、前記燃料ガス供給手段で前記燃料極へ供給する前記燃料ガスの供給量と前記燃料ガス循環手段で前記燃料極へ供給する使用済みの前記燃料ガスとの合計量に対して10〜40mol%の割合で前記一酸化炭素ガスを供給するものである
ことを特徴とする燃料電池発電システム。
A solid oxide fuel cell body;
Fuel gas supply means for supplying fuel gas comprising hydrocarbon gas to the fuel electrode of the fuel cell body;
An oxidizing gas supply means for supplying an oxidizing gas containing oxygen to the air electrode of the fuel cell body;
In a fuel cell power generation system, comprising: a fuel gas circulation means for supplying at least a part of the used fuel gas discharged from the fuel cell main body to the fuel electrode of the fuel cell main body again.
Comprising carbon monoxide supply means for supplying carbon monoxide to the fuel electrode of the fuel cell main body ,
The carbon monoxide supply means has a total amount of the supply amount of the fuel gas supplied to the fuel electrode by the fuel gas supply means and the used fuel gas supplied to the fuel electrode by the fuel gas circulation means. A fuel cell power generation system, characterized in that the carbon monoxide gas is supplied at a rate of 10 to 40 mol% .
請求項において、
前記一酸化炭素供給手段が、化学プラントで副生した一酸化炭素ガスを前記燃料極へ供給するものである
ことを特徴とする燃料電池発電システム。
In claim 1 ,
The fuel cell power generation system, wherein the carbon monoxide supply means supplies carbon monoxide gas by-produced in a chemical plant to the fuel electrode.
JP2005287194A 2005-09-30 2005-09-30 Fuel cell power generation system Active JP4959169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287194A JP4959169B2 (en) 2005-09-30 2005-09-30 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287194A JP4959169B2 (en) 2005-09-30 2005-09-30 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JP2007103014A JP2007103014A (en) 2007-04-19
JP4959169B2 true JP4959169B2 (en) 2012-06-20

Family

ID=38029774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287194A Active JP4959169B2 (en) 2005-09-30 2005-09-30 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP4959169B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2448890B (en) * 2007-05-01 2013-03-13 Ceres Ip Co Ltd A method of disposing a water gas shift catalyst on a metal substrate
JP5214190B2 (en) * 2007-08-01 2013-06-19 本田技研工業株式会社 Fuel cell system and operation method thereof
FR2927471B1 (en) * 2008-02-12 2011-05-13 Commissariat Energie Atomique METHOD AND DEVICE FOR LIMITING CORROSION AGING OF THE CARBON CATHODE CATHODE SUPPORT OF PROTON EXCHANGE MEMBRANE FUEL CELLS
FI120949B (en) * 2008-07-10 2010-05-14 Waertsilae Finland Oy Method and arrangement for enhancing the preheating of the fuel cell system
WO2013012246A2 (en) * 2011-07-18 2013-01-24 Tes Co., Ltd Power generating apparatus using effluent gases exhausted from process chamber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362160A (en) * 1986-09-01 1988-03-18 Ishikawajima Harima Heavy Ind Co Ltd Power generation by recovering converter gas energy
JPH05315003A (en) * 1992-05-13 1993-11-26 Hitachi Ltd Composite system of oxygen-enriched combustion furnace and co2 converter
JP2003109638A (en) * 2001-09-27 2003-04-11 Toto Ltd Sofc fuel recycle system
JP3986430B2 (en) * 2002-12-18 2007-10-03 三菱重工業株式会社 Hydrogen utilization system using solid oxide fuel cell
EP1909945A4 (en) * 2005-07-25 2009-06-24 Bloom Energy Corp Gas separation method and apparatus using partial pressure swing adsorption

Also Published As

Publication number Publication date
JP2007103014A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5327693B2 (en) Fuel cell system
JP5282103B2 (en) Hydrogen recycling type MCFC power generation system
WO2010058749A1 (en) Mcfc power generation system and method for operating same
JP6952013B2 (en) Methods and equipment utilizing recirculation for high temperature fuel cell systems
JP4959169B2 (en) Fuel cell power generation system
JP6439545B2 (en) Fuel cell system
US20190190050A1 (en) Solid oxide fuel cell system
JP5906424B2 (en) Hydrogen generator and fuel cell system
JP5127395B2 (en) Fuel cell power generation system
JP5201850B2 (en) Fuel cell device
JP6826683B1 (en) Fuel cell system
JP4640052B2 (en) Hydrogen generator and power generation system provided with the same
JP6721363B2 (en) Fuel cell system and operating method thereof
JP6470633B2 (en) Fuel cell system
JP2014182923A (en) Fuel cell system and operation method thereof
JP6755424B1 (en) Fuel cell system
JP2003187832A (en) Fuel cell system
JP6582572B2 (en) Fuel cell system
JP2010108770A (en) Fuel cell power generation system, and control method of fuel cell power generation system
JP2009206005A (en) Fuel cell system and method of operating the same
JP7557335B2 (en) Fuel Cell Systems
JP2007141693A (en) Fuel cell power generator
JP2010044960A (en) Fuel cell power generation system and power generation method of fuel cell
JP2023135719A (en) fuel cell system
KR20240001717A (en) Fuel cell systems and how to operate them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4959169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350