JP4959157B2 - Circulating nanofiltration test apparatus and circulating nanofiltration test method - Google Patents

Circulating nanofiltration test apparatus and circulating nanofiltration test method Download PDF

Info

Publication number
JP4959157B2
JP4959157B2 JP2005210378A JP2005210378A JP4959157B2 JP 4959157 B2 JP4959157 B2 JP 4959157B2 JP 2005210378 A JP2005210378 A JP 2005210378A JP 2005210378 A JP2005210378 A JP 2005210378A JP 4959157 B2 JP4959157 B2 JP 4959157B2
Authority
JP
Japan
Prior art keywords
water
membrane element
concentration
nanofiltration
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005210378A
Other languages
Japanese (ja)
Other versions
JP2007021440A (en
Inventor
雅喜 伊藤
司 品田
直輝 太田
直秀 松本
隆仁 杉本
弘幸 古屋
亮太 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Toray Industries Inc
Suido Kiko Kaisha Ltd
Swing Corp
Original Assignee
Kubota Corp
Toray Industries Inc
Suido Kiko Kaisha Ltd
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Toray Industries Inc, Suido Kiko Kaisha Ltd, Swing Corp filed Critical Kubota Corp
Priority to JP2005210378A priority Critical patent/JP4959157B2/en
Publication of JP2007021440A publication Critical patent/JP2007021440A/en
Application granted granted Critical
Publication of JP4959157B2 publication Critical patent/JP4959157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

この発明は、例えば浄水場に設置しようとする一過型多段ナノろ過実施設の処理機能を予測する装置および方法に関する。   The present invention relates to an apparatus and a method for predicting a processing function of a temporary multi-stage nanofiltration implementation facility to be installed in a water purification plant, for example.

従来、水道の原水には富栄養化、病原性微生物などの自然発生的な物質の他に、農薬、中性洗剤などの人為的な物質が含まれている。過去には、病原性微生物であるクリプトスポリジウムによる集団感染が発生したこともある。この対策として、浄水場には原水をろ過膜によってろ過する膜ろ過施設が導入され、原水から懸濁物質ばかりでなく細菌類、藻類、原虫類などが確実に除去されている。このような膜ろ過施設に使用されている膜として、サイズの大きな方から順に精密ろ過膜、限外ろ過膜、ナノろ過膜、および逆浸透膜が知られている。これらの膜のうち、精密ろ過膜および限外ろ過膜は細菌類を極めて高度に除去できるが、農薬や臭気物質などは十分に除去できないものとなっている。このため、精密ろ過膜や限外ろ過膜を用いて処理したろ過水は、オゾンや活性炭によって更に処理することが必要となっている。   Conventionally, raw water for tap water contains artificial substances such as agricultural chemicals and neutral detergents in addition to eutrophication and naturally occurring substances such as pathogenic microorganisms. In the past, mass infections have occurred with Cryptosporidium, a pathogenic microorganism. As a countermeasure, a membrane filtration facility that filters raw water through a filtration membrane has been introduced to the water purification plant, and not only suspended substances but also bacteria, algae, and protozoa are reliably removed from the raw water. As membranes used in such membrane filtration facilities, microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes are known in order from the largest size. Among these membranes, microfiltration membranes and ultrafiltration membranes can remove bacteria to a very high degree, but cannot sufficiently remove agricultural chemicals and odorous substances. For this reason, it is necessary to further treat the filtered water treated with a microfiltration membrane or an ultrafiltration membrane with ozone or activated carbon.

これに対し、ナノろ過膜を用いた膜ろ過施設はオゾンや活性炭による処理が不要とされ、オゾン・活性炭処理の代替として位置付けられている。このようなナノろ過膜を用いた膜ろ過施設の多くは、小規模な施設を除いて、供給水を循環させない所謂一過型多段ナノろ過施設とされている。この種の一過型多段ナノろ過施設では、複数の膜モジュールがバンク式またはツリー式に一過型として配置され、第1バンクの膜モジュールで生成された濃縮水が第2バンクの膜モジュールに供給され、回収率の向上が図られている。そして、より高い回収率を目指す場合には第2バンクの膜モジュールの濃縮水が第3バンクの膜モジュールに供給され、更なる高い回収率を目指す場合には更なるバンクが追加されて同様に処理されている。   On the other hand, membrane filtration facilities using nanofiltration membranes do not require treatment with ozone or activated carbon, and are positioned as alternatives to ozone / activated carbon treatment. Many membrane filtration facilities using such nanofiltration membranes are so-called single-stage multi-stage nanofiltration facilities that do not circulate supply water except for small-scale facilities. In this type of single-stage multi-stage nanofiltration facility, a plurality of membrane modules are arranged in a single-bank or tree-type, and the concentrated water generated by the first bank membrane module is used as the second bank membrane module. It is supplied and the recovery rate is improved. And when aiming for a higher recovery rate, the concentrated water from the membrane module of the second bank is supplied to the membrane module of the third bank, and when aiming for a higher recovery rate, additional banks are added in the same manner. Has been processed.

なお、上記先行技術は当業者一般に知られた技術であって、文献公知発明に係るものではない。   The above prior art is a technique generally known to those skilled in the art, and does not relate to a known literature invention.

上述の一過型多段ナノろ過施設の処理機能は運転圧力、供給水濃度、供給水温度などの処理機能影響因子によって異なるので、一過型多段ナノろ過施設の処理機能を予測するためには、一過型多段ナノろ過施設と同じ試験施設を用意する必要があり、研究開発コスト、施設コスト、運転管理コストなどが極めて高くなっている。   Since the processing function of the above-mentioned transient multi-stage nanofiltration facility differs depending on the processing function influencing factors such as operating pressure, supply water concentration, and supply water temperature, in order to predict the processing function of the transient multi-stage nanofiltration facility, It is necessary to prepare the same test facility as the transient multi-stage nanofiltration facility, and the research and development cost, facility cost, operation management cost, etc. are extremely high.

この発明は、上述のような課題を解決するためになされたもので、第1の目的は、簡素な構成で一過型多段ナノろ過実施設の処理機能を予測できる循環型ナノろ過試験装置を得るものである。
また、第2の目的は、簡素な構成の循環型ナノろ過試験装置によって一過型多段ナノろ過実施設の処理機能を予測できる処理機能予測方法を得るものである。
The present invention has been made to solve the above-described problems, and a first object is to provide a circulating nanofiltration test apparatus capable of predicting the processing function of a transient multistage nanofiltration implementation with a simple configuration. To get.
Moreover, the 2nd objective is to obtain the processing function prediction method which can predict the processing function of a temporary multistage nanofiltration implementation by the circulation type nanofiltration test apparatus of simple structure.

この発明に係る循環型ナノろ過試験装置は、前処理された供給水をナノろ過する一過型多段ナノろ過実施設の処理機能を予測する循環型ナノろ過試験装置において、前記供給水を貯留する供給水槽、前記供給水をナノろ過する上流側膜エレメント、前記供給水槽から該上流側膜エレメントへ前記供給水を供給する供給水管、該供給水管に設けられた供給ポンプ、前記上流側膜エレメントの濃縮水をナノろ過する後流側膜エレメント、該後流側膜エレメントへ前記上流側膜エレメントの濃縮水を導く上流側濃縮水管、前記後流側膜エレメントで生じた濃縮水を系外に排出する後流側濃縮水管、前記上流側膜エレメントと前記後流側膜エレメントのろ過水を貯留するろ過水槽、前記上流側膜エレメントのろ過水をろ過水槽へ導く上流側ろ過水管、前記後流側膜エレメントのろ過水をろ過水槽へ導く後流側ろ過水管、および前記後流側膜エレメントの濃縮水を前記供給水管の前記供給ポンプより上流に循環させる循環水管を備えたことを特徴とする循環型ナノろ過試験装置である。 The circulation type nanofiltration test apparatus according to the present invention stores the supply water in the circulation type nanofiltration test apparatus that predicts the processing function of a transient multi-stage nanofiltration implementation that nanofilters pretreated supply water. A feed water tank, an upstream membrane element that nano-filters the feed water, a feed water pipe that feeds the feed water from the feed water tank to the upstream membrane element, a feed pump provided in the feed water pipe, and an upstream membrane element A downstream membrane element for nanofiltration of the concentrated water, an upstream concentrated water pipe for leading the concentrated water of the upstream membrane element to the downstream membrane element, and the concentrated water generated in the downstream membrane element is discharged out of the system The upstream-side concentrated water pipe, the upstream-side membrane element and the filtered water tank for storing the filtrate of the downstream-side membrane element, the upstream-side filtered water pipe for guiding the filtered water of the upstream-side membrane element to the filtered water tank, The apparatus has a wake-side filtered water pipe that guides the filtrate of the wake-side membrane element to a filtrate tank, and a circulating water pipe that circulates the concentrated water of the wake-side membrane element upstream from the supply pump of the supply water pipe. This is a circulation type nanofiltration test apparatus.

この発明に係る循環型ナノろ過試験方法は、請求項1に記載の循環型ナノろ過試験装置を用いて、供給水濃度、水回収率、および物質除去率の関係を前記一過型多段ナノろ過実施設の濃度予測式に適用することによって前記一過型多段ナノろ過実施設の処理機能を予測する循環型ナノろ過試験方法において、供給水濃度をC fn 、水回収率をr 、物質除去率をR とした場合に、前記一過型多段ナノろ過実施設のn番目の膜エレメントにおける濃縮水濃度C bn の予測式は、
bn=Cfn・{rn(1−rn)−2}/{rn(1+Rn)−2}
であり、ろ過水濃度C pn の予測式は
pn=Cfn・(rn−2)(1−Rn)/{rn(1+Rn)−2}
であることを特徴とする循環型ナノろ過試験方法である。
The circulation type nanofiltration test method according to the present invention uses the circulation type nanofiltration test apparatus according to claim 1 to determine the relationship between the supply water concentration, the water recovery rate, and the substance removal rate. in recycling nanofiltration test method for predicting the processing function of the transient multistage nanofiltration actual plant by applying to a concentration prediction equation of actual plant, the feed water concentration C fn, the water recovery rate r n, substance removing When the rate is R n , the prediction formula of the concentrated water concentration C bn in the n-th membrane element of the transient multi-stage nanofiltration implementation is:
C bn = C fn · {r n (1-r n ) -2} / {r n (1 + R n ) -2}
And the prediction formula of the filtrate concentration C pn is C pn = C fn · (r n −2) (1−R n ) / {r n (1 + R n ) −2}
It is a circulation type nanofiltration test method characterized by being.

この発明は、一過型多段ナノろ過実施設の任意の箇所の少なくとも1つの膜エレメントの処理機能影響因子を循環型ナノろ過試験装置によって再現して水回収率と物質除去率を求めることにより、一過型多段ナノろ過実施設の濃度を理論的に算出できるので、一過型多段ナノろ過実施設またはそれに相当する装置を用意することなく、一過型多段ナノろ過実施設の処理機能を予測できる。そして、一過型多段ナノろ過実施設の処理機能を予測するために一過型多段ナノろ過実施設またはそれに相当する装置を用意する必要がないので、研究開発コスト、設備コスト、運転管理コストなどを大幅に削減できる。   This invention reproduces the processing function influencing factor of at least one membrane element at an arbitrary location of the transient multi-stage nanofiltration implementation facility by a circulation type nanofiltration test apparatus to obtain a water recovery rate and a substance removal rate, Since the concentration of the single-stage multi-stage nanofiltration facility can be calculated theoretically, the processing function of the single-stage multi-stage nanofiltration facility can be predicted without preparing a single-stage multi-stage nanofiltration facility or an equivalent device. it can. And since it is not necessary to prepare a single-stage multi-stage nanofiltration facility or equivalent equipment to predict the processing function of the single-stage multi-stage nanofiltration facility, research and development costs, equipment costs, operation management costs, etc. Can be greatly reduced.

実施の形態1.
図1は、例えば浄水場の一過型(ツリー型)多段ナノろ過実施設の処理機能(処理性または性能)を実証実験するために用意した一過型多段ナノろ過装置1(以降、多段型装置1という)を示すものである。図2は、多段型装置1の処理機能を予測(評価)するための循環型ナノろ過試験装置2(以降、循環型装置2という)を示すものである。浄水場は、基本的に一過型多段ナノろ過実施設と消毒施設から構成され、必要に応じて前処理施設、後処理施設、排水処理施設などが追加される。この実施の形態1における多段型装置1と循環型装置2に供給する供給水は、前処理施設で精密ろ過膜によって前処理したものとするのが好ましい。
Embodiment 1 FIG.
FIG. 1 shows, for example, a single-stage multi-stage nanofiltration device 1 (hereinafter referred to as a multi-stage type) prepared for demonstrating the treatment function (treatment performance or performance) of a single-stage (tree type) multi-stage nanofiltration facility for water purification plants. Device 1). FIG. 2 shows a circulating nanofiltration test apparatus 2 (hereinafter referred to as a circulating apparatus 2) for predicting (evaluating) the processing function of the multistage apparatus 1. The water purification plant basically consists of a single-stage multi-stage nanofiltration facility and a disinfection facility. Pre-treatment facilities, post-treatment facilities, waste water treatment facilities, etc. are added as necessary. The feed water supplied to the multistage apparatus 1 and the circulation apparatus 2 in the first embodiment is preferably pretreated with a microfiltration membrane in a pretreatment facility.

なお、この実施の形態1でいう「一過型多段ナノろ過実施設」という言葉は浄水場に設置しようとする実際の一過型多段ナノろ過施設のことを意味し、一般に「施設」という言葉を「設備」と表現することもある。また、以降においては多段型装置1を大型ナノろ過装置とよぶこともあり、循環型装置2を小型ナノろ過装置とよぶこともある。   In addition, the term “one-step multi-stage nanofiltration implementation facility” in Embodiment 1 means an actual single-stage multi-stage nanofiltration facility to be installed in a water purification plant, and generally the term “facility”. Is sometimes referred to as “equipment”. In the following, the multistage apparatus 1 is sometimes referred to as a large nanofiltration apparatus, and the circulation apparatus 2 is sometimes referred to as a small nanofiltration apparatus.

図1に示すように、多段型装置1は一過型多段ナノろ過実施設と同様なものとしてあり、バンク構成を直列4段とし、ベッセル構成を8−4−2−1としてある。すなわち、多段型装置1は第1(1st)バンク11、第2(2nd)バンク12、第3(3rd)バンク13、および第4(4th)バンク14から構成してある。第1バンク11では、ナノろ過膜を構成する5つの同様な膜エレメント15をベッセル(ハウジングまたはケーシング)16に収容してなる8つの膜モジュール17を並列配置してある。第2バンク12では同様な膜モジュール17を4列に並列配置し、第3バンク13では同様な膜モジュール17を2列に並列配置し、第4バンク14では同様な膜モジュール17を1つだけ配置してある。   As shown in FIG. 1, the multistage apparatus 1 is the same as the one-stage multistage nanofiltration implementation, and has a bank configuration of four stages in series and a vessel configuration of 8-4-2-1. That is, the multi-stage device 1 includes a first (1st) bank 11, a second (2nd) bank 12, a third (3rd) bank 13, and a fourth (4th) bank 14. In the first bank 11, eight membrane modules 17 in which five similar membrane elements 15 constituting a nanofiltration membrane are accommodated in a vessel (housing or casing) 16 are arranged in parallel. In the second bank 12, similar membrane modules 17 are arranged in parallel in four rows, in the third bank 13, similar membrane modules 17 are arranged in two rows, and in the fourth bank 14, only one similar membrane module 17 is arranged. It is arranged.

他方、循環型装置2は、多段型装置1の処理機能に影響を及ぼすと認められる因子(処理機能影響因子)を再現するものとしてある。この処理機能影響因子には、水量収支、運転圧力、供給水水質、供給水温度、浸透圧、溶質濃度などを含めることができる。   On the other hand, the circulation type device 2 reproduces a factor (processing function influence factor) recognized to affect the processing function of the multistage type device 1. The treatment function affecting factors can include water balance, operating pressure, supply water quality, supply water temperature, osmotic pressure, solute concentration, and the like.

図2に示すように、循環型装置2は、多段型装置1の任意の箇所(例えば図1において楕円で囲んだ4つの箇所のうちの1つ)における少なくとも1つの膜エレメント15(例えば第1バンク11の第1、第2の膜エレメント15、15)に相当する2つの上流側膜エレメント21、後流側膜エレメント21を備えている。なお、図1において楕円で囲んだ4つの箇所は、後述する実施例2において対象となる膜エレメント15を指しており、循環型装置2に用いる膜エレメント21は、多段型装置1の膜エレメント15の位置や数に限定されるものではない。 As shown in FIG. 2, the circulation type apparatus 2 includes at least one membrane element 15 (for example, the first element) at an arbitrary position of the multistage apparatus 1 (for example, one of four positions surrounded by an ellipse in FIG. 1). Two upstream side membrane elements 21 corresponding to the first and second membrane elements 15, 15) of the bank 11 and the wake side membrane element 21 are provided. In FIG. 1, four points surrounded by an ellipse indicate the target membrane element 15 in Example 2 described later, and the membrane element 21 used in the circulation type device 2 is the membrane element 15 of the multistage device 1. It is not limited to the position or number.

循環型装置2の上流側膜エレメント21および後流側膜エレメント21は、それぞれ上流側ベッセル22および後流側ベッセル22に収容し、膜モジュール23としてある。循環型装置2には、例えば前処理施設からの原水を貯留して上流側膜エレメント21に供給するための供給水槽24を用意してある。この供給水槽24内の供給水は、供給水管25と供給ポンプ26によって上流側の膜エレメント21に流入させるようにしてある。双方の膜エレメント21、21でろ過したろ過水は、上流側ろ過水管27、後流側ろ過水管27を介してろ過水槽28に導くようにしてある。上流側の膜エレメント21で生じた濃縮水は濃縮水管29によって後流側の膜エレメント21に導くようにし、後流側の膜エレメント21で生じた濃縮水は濃縮水管30を介して系外に排出するようにしてある。そして、後流側の膜エレメント21の濃縮水の一部または全部は、循環水管31を介して供給ポンプ26の上流側の供給水管25に循環させるようにしてある。 The upstream side membrane element 21 and the downstream side membrane element 21 of the circulation type device 2 are accommodated in the upstream side vessel 22 and the downstream side vessel 22, respectively , to form a membrane module 23. In the circulation type apparatus 2, for example, a supply water tank 24 for storing raw water from a pretreatment facility and supplying it to the upstream membrane element 21 is prepared. The supply water in the supply water tank 24 is made to flow into the upstream membrane element 21 by the supply water pipe 25 and the supply pump 26. The filtered water filtered by both the membrane elements 21 and 21 is guided to the filtered water tank 28 through the upstream filtered water pipe 27 and the downstream filtered water pipe 27. The concentrated water generated in the upstream membrane element 21 is guided to the downstream membrane element 21 by the concentrated water pipe 29, and the concentrated water generated in the downstream film element 21 is discharged to the outside of the system via the concentrated water pipe 30. It is supposed to be discharged. A part or all of the concentrated water of the downstream membrane element 21 is circulated to the supply water pipe 25 on the upstream side of the supply pump 26 via the circulation water pipe 31.

なお、上述の供給水槽24およびろ過水槽28は循環型装置2に必須のものではなく、多段型装置1の供給水源やろ過水槽でそれぞれ代用させることができる。   In addition, the above-mentioned supply water tank 24 and the filtration water tank 28 are not essential for the circulation type apparatus 2, and can be substituted by the supply water source and the filtration water tank of the multistage apparatus 1, respectively.

ここで、多段型装置1のn番目の膜エレメント15における水回収率、物質除去率、ろ過水量、濃縮水量、累積システム水回収率、濃縮水濃度、ろ過水濃度は図3を参照して以下のように定義する。
n番目の膜エレメント15におけるエレメント水回収率rn
n=Qpn/Qfn ・・・(式1)
n番目の膜エレメント15におけるエレメント物質除去率Rn
n=1−Cpn/{(Cfn+Cbn)/2} ・・・(式2)
n番目の膜エレメント15のろ過水量Qpn
pn=Qfn・rn ・・・(式3)
n番目の膜エレメント15における濃縮水量Qbn
bn=Qfn・(1−rn) ・・・(式4)
n番目の膜エレメント15までの累積システム水回収率rsys
sys=1/Qf1・ΣQpn(n=1〜n) ・・・(式5)
n番目の膜エレメント15における濃縮水濃度Cbn
bn=Cfn・{rn(1−rn)−2}/{rn(1+Rn)−2} ・・・(式6)
n番目の膜エレメント15におけるろ過水濃度Cpn
pn=Cfn・(rn−2)(1−Rn)/{rn(1+Rn)−2} ・・・(式7)
ただし、Cfnは供給水濃度とする。
Here, the water recovery rate, substance removal rate, filtered water amount, concentrated water amount, cumulative system water recovery rate, concentrated water concentration, filtered water concentration in the n-th membrane element 15 of the multistage apparatus 1 are as follows with reference to FIG. Define as follows.
element water recovery rate r n in the n-th membrane element 15;
r n = Q pn / Q fn (Formula 1)
Element substance removal rate R n in the nth membrane element 15;
R n = 1−C pn / {(C fn + C bn ) / 2} (Formula 2)
the amount of filtered water Q pn of the n-th membrane element 15;
Q pn = Q fn · r n (Formula 3)
the amount of concentrated water Q bn in the nth membrane element 15;
Q bn = Q fn · (1-r n ) (Formula 4)
cumulative system water recovery rate r sys up to the n th membrane element 15;
r sys = 1 / Q f1 · ΣQ pn (n = 1 to n) (Formula 5)
concentrated water concentration C bn in the nth membrane element 15;
C bn = C fn · {r n (1-r n ) -2} / {r n (1 + R n ) -2} (Formula 6)
the filtrate concentration C pn in the nth membrane element 15;
C pn = C fn · (r n −2) (1−R n ) / {r n (1 + R n ) −2} (Expression 7)
However, C fn is the supply water concentration.

そして、循環型装置2の循環水量比、回収率、質除去率、供給水量、濃縮水量、ろ過水量、濃縮排水量、循環水量、水回収率、供給水濃度、濃縮水濃度、ろ過水濃度は図4を参照して以下のように定義する。
循環水量比a;
a=Qr/Q0 ・・・(式8)
エレメント水回収率r;
r=Qp/Qf ・・・(式9)
エレメント物質除去率R;
R=1−Cp/{(Cf+Cb)/2} ・・・(式10)
膜供給水量Qf
f=Q0・(1+a) ・・・(式11)
濃縮水量Qb
b=Q0・(1+a)(1−r) ・・・(式12)
ろ過水量Qp
p=Q0・(1+a)r ・・・(式13)
濃縮排水量Qd
d=Q0−Q0・(1+a)r ・・・(式14)
循環水量Qr
r=a・Q0 ・・・(式15)
水回収率rsys
sys=1−(1+a)r ・・・(式16)
膜供給水濃度Cf
f=C0・{r(1+R)−2}/{r(1+(1+2a)R)−2}・・・(式17)
濃縮水濃度Cb
b=C0・{r(1−R)−2}/{r(1+(1+2a)R)−2}・・・(式18)
ろ過水濃度Cp
p=C0・(r−2)(1−R)/{r(1+(1+2a)R)−2}・・・(式19)
The circulating water volume ratio of circulating apparatus 2, water recovery, object substance removal rate, feed water, concentrated water, filtered water, concentrated water discharge amount, the circulation water, water recovery, feed water concentration, concentrated water concentration, the filtered water concentration Is defined as follows with reference to FIG.
Circulating water volume ratio a;
a = Q r / Q 0 (Expression 8)
Element water recovery rate r;
r = Q p / Q f ··· ( Equation 9)
Element substance removal rate R;
R = 1−C p / {(C f + C b ) / 2} (Equation 10)
Membrane supply water volume Q f ;
Q f = Q 0 · (1 + a) (Formula 11)
Concentrated water amount Q b ;
Q b = Q 0 · (1 + a) (1-r) (Formula 12)
Filtered water volume Q p ;
Q p = Q 0 · (1 + a) r (Formula 13)
Concentrated wastewater Q d ;
Q d = Q 0 −Q 0 · (1 + a) r (Expression 14)
Circulating water volume Q r ;
Q r = a · Q 0 (Formula 15)
Water recovery rate r sys ;
r sys = 1− (1 + a) r (Expression 16)
Membrane feed water concentration C f ;
C f = C 0. {R (1 + R) -2} / {r (1+ (1 + 2a) R) -2} (Expression 17)
Concentrated water concentration C b ;
C b = C 0 · {r (1-R) -2} / {r (1+ (1 + 2a) R) -2} ··· ( Formula 18)
Filtrate concentration C p ;
C p = C 0 · (r -2) (1-R) / {r (1+ (1 + 2a) R) -2} ··· ( 19)

以上により、多段型装置1と循環型装置2では、エレメント水回収率とエレメント物質除去率が決まれば、濃縮水濃度、ろ過水濃度などを求めることができる。具体的な数値で例えれば、多段型装置1の例えば第2バンク12の第1の膜エレメント15に流入する供給水量を100とし、そのエレメント水回収率を10%と仮定すると、第2バンク12の第1〜第5の膜エレメント15でのろ過水量はそれぞれ10、9、約8、約7.3、約6.5となり、次位の膜エレメント15に流入する濃縮水量は順次に90、81、約73、約65となる。したがって、第1〜第5の膜エレメント15のろ過水量の累積(合計)は約41となり、そのうちの第4、第5の膜エレメント15のろ過水量の累積は約13.8となる。 As described above, in the multistage device 1 and the circulation device 2, if the element water recovery rate and the element material removal rate are determined, the concentrated water concentration, the filtrate concentration, and the like can be obtained. For example, assuming that the amount of supplied water flowing into the first membrane element 15 of the second bank 12 of the multistage apparatus 1 is 100 and the element water recovery rate is 10%, the second bank 12 The filtered water amounts in the first to fifth membrane elements 15 are 10, 9, about 8, about 7.3, and about 6.5, respectively, and the amount of concentrated water flowing into the subsequent membrane element 15 is 90, 81, about 73, is about 6 5. Therefore, the accumulation (total) of the filtrate amount of the first to fifth membrane elements 15 is about 41, and the accumulation of the filtrate amount of the fourth and fifth membrane elements 15 is about 13.8.

他方、循環型装置2において多段型装置1の第2バンク12の第4、第5の膜エレメント15、15の水量収支を再現する場合には、循環型装置2に流入する(循環水量を含む)供給水量は約73となる。多段型装置1の第1〜第5の膜エレメント15の累積ろ過水量は約41であり、第4、第5の膜エレメント15、15(上流側膜エレメント21、後流側膜エレメント21)のろ過水量の累計は約13.8であるので、循環型装置2の系外からの供給水量は(約13.8/約41)・100=約33.6となる。したがって、循環水量は約73−約33.6=約39.4となる。そして、循環型装置2から系外に流出するろ過水量は約33.6−約13.8=約19.2となる。 On the other hand, when the water amount balance of the fourth and fifth membrane elements 15 and 15 of the second bank 12 of the multistage device 1 is reproduced in the circulation type device 2, it flows into the circulation type device 2 (including the circulation water amount). ) The amount of water supplied is about 73. The accumulated amount of filtered water of the first to fifth membrane elements 15 of the multistage apparatus 1 is about 41, and the fourth and fifth membrane elements 15 and 15 ( upstream membrane element 21 and wake membrane element 21). Since the total amount of filtered water is about 13.8, the amount of water supplied from outside the system of the circulation type apparatus 2 is (about 13.8 / about 41) · 100 = about 33.6. Therefore, the amount of circulating water is about 73−about 33.6 = about 39.4. The amount of filtered water flowing out of the circulation type apparatus 2 is about 33.6 to about 13.8 = about 19.2.

次に、多段型装置1の処理機能を循環型装置2によって実証実験するための全般的な手順を説明する。先ず、多段型装置1の任意の膜エレメント15における水量収支を上記式1〜7によって算出する。次に、その算出結果に基づいた水量収支を用いて循環型装置2を運転する。次に、多段型装置1の同じ膜エレメント15における水量収支を再現した循環型装置2の水量収支を実測すると共に、供給水水質、ろ過水水質、および濃縮水水質の物質濃度を実測する。次に、循環型装置2で得た水量および水質の実測値から物質除去率を上記式8〜19によって算出する。次に、算出した物質除去率を用いて多段型装置1の供給水水質、ろ過水水質、および濃縮水水質の物質濃度を算出する。
次に、多段型装置1の同じ膜エレメント15における水量収支を実測すると共に、供給水水質、ろ過水水質、および濃縮水水質を実測する。そして、この多段型装置1の物質濃度と上記循環型装置2の物質濃度とがほぼ一致することを確認する。
Next, a general procedure for demonstrating the processing function of the multistage apparatus 1 by the circulation apparatus 2 will be described. First, the water balance in any membrane element 15 of the multistage apparatus 1 is calculated by the above formulas 1-7. Next, the circulation type apparatus 2 is operated using the water amount balance based on the calculation result. Next, the water amount balance of the circulation type device 2 that reproduces the water amount balance in the same membrane element 15 of the multistage device 1 is measured, and the substance concentrations of the quality of the feed water, the filtered water, and the concentrated water are measured. Next, the substance removal rate is calculated by the above formulas 8 to 19 from the actually measured values of the water amount and the water quality obtained by the circulation type device 2. Next, the substance concentration of the feed water quality, filtered water quality, and concentrated water quality of the multistage apparatus 1 is calculated using the calculated substance removal rate.
Next, the water balance in the same membrane element 15 of the multistage apparatus 1 is measured, and the quality of the feed water, the quality of the filtered water, and the quality of the concentrated water are measured . Then, it is confirmed that the substance concentration of the multistage apparatus 1 and the substance concentration of the circulation apparatus 2 are substantially the same.

実施の形態2.
なお、上述の実施の形態1では1基の循環型装置2によって多段型装置1の処理機能を予測したが、多段型装置1の任意の膜エレメント15における処理機能影響因子を再現できる2基以上の循環型装置2を用意し、この循環装置2に前記処理機能影響因子を再現してそれを運転することによっても、多段型装置1の処理機能を予測できる。この場合には、循環型装置2から物質除去率を算出し、この物質除去率を用いることにより、多段型装置1で得られるであろう濃度を算出する。
Embodiment 2. FIG.
In the first embodiment described above, the processing function of the multistage apparatus 1 is predicted by one circulating apparatus 2, but two or more apparatuses that can reproduce the processing function influencing factors in any membrane element 15 of the multistage apparatus 1 can be reproduced. The processing function of the multistage apparatus 1 can also be predicted by preparing the circulating apparatus 2 and reproducing the processing function influencing factors in the circulating apparatus 2 and operating it. In this case, the substance removal rate is calculated from the circulation type apparatus 2, and the concentration that would be obtained by the multistage apparatus 1 is calculated by using this substance removal rate.

多段型装置1の流量予測式の確認を次のように行なった。ただし、以下の表1にも示すように、多段型装置1はバンクの構成を直列3段とし、ベッセル16の構成を6−3−1とし、各ベッセル16には5つの膜エレメント15を収容した。表1において、3つのバンクは第1(1st)バンク、第2(2nd)バンク、第3(3rd)バンクと表し、5つの膜エレメント15は、上流側から順次に1エレメント〜5エレメントと表してある。このような多段型装置1の構成で次の手順を進めた。
(1)各バンクのフラックスとバンク毎のエレメント水回収率とをそれぞれ一定と仮定し、多段型装置1のろ過水量の予測値を上記式3から得た。
(2)多段型装置1を表1に示す条件で運転し、多段型装置1のろ過水量の実測値を得た。
(3)多段型装置1のろ過水量の予測値と実測値の関係は図5に示すようになった。
(4)図5から明らかなように、多段型装置1のろ過水量を実用上問題のない程度に予測することが可能となり、流量予測式の妥当性を確認できた。なお、実際には膜エレメント15の圧力損失によって膜ろ過圧力が膜エレメント15毎に変化するので、エレメント水回収率は同一ベッセル16内であっても異なり、ベッセル16の上流側で高く、下流側で低くなる。しかし、エレメント水回収率が同一ベッセル16内で一定であると仮定すれば、多段型装置1のろ過水量を実用上問題のない程度に予測することが可能となる。
The flow rate prediction formula of the multi-stage apparatus 1 was confirmed as follows. However, as shown in Table 1 below, the multi-stage apparatus 1 has a bank configuration of three stages in series, a vessel 16 of 6-3-1, and each vessel 16 accommodates five membrane elements 15. did. In Table 1, the three banks are represented as a first (1st) bank, a second (2nd) bank, and a third (3rd) bank, and the five membrane elements 15 are represented as 1 to 5 elements sequentially from the upstream side. It is. The following procedure was advanced with such a configuration of the multistage apparatus 1.
(1) Assuming that the flux of each bank and the element water recovery rate for each bank are constant, the predicted value of the filtered water amount of the multi-stage apparatus 1 was obtained from Equation 3 above.
(2) The multi-stage apparatus 1 was operated under the conditions shown in Table 1, and an actual measured value of the filtrate amount of the multi-stage apparatus 1 was obtained.
(3) The relationship between the predicted value of the filtered water amount of the multi-stage apparatus 1 and the actual measurement value is as shown in FIG.
(4) As is clear from FIG. 5, the amount of filtered water of the multistage apparatus 1 can be predicted to a practically satisfactory level, and the validity of the flow rate prediction formula can be confirmed. Actually, since the membrane filtration pressure changes for each membrane element 15 due to the pressure loss of the membrane element 15, the element water recovery rate is different even in the same vessel 16, and is higher on the upstream side of the vessel 16, and on the downstream side. At low. However, if it is assumed that the element water recovery rate is constant in the same vessel 16, it is possible to predict the amount of filtered water of the multistage apparatus 1 to a practically satisfactory level.

Figure 0004959157
Figure 0004959157

多段型装置1および循環型装置2の濃度予測式の確認を次のように行なった。
(1)以下の表2に示す条件(フラックスおよびエレメント水回収率を一定)の下で多段型装置1の濃度の予測値を上記式6および式7から算出した。
(2)表2に示す条件(図1に4つの楕円で示す箇所の水量収支の再現、すなわち第1バンク11の第1、第2の膜エレメント15の水量収支または第2〜第4バンク12〜14のそれぞれの第3、第4の膜エレメント15の水量収支の再現)の下で循環型装置2の物質濃度(供給水濃度、濃縮水濃度、およびろ過水濃度)の予測値を上記式17〜式19から得た。
(3)多段型装置1と循環型装置2を表2に示す条件で運転した。
(4)例として有機物質の一指標であるTOC(全有機性炭素)濃度の実測値を得た。
(5)濃度予測式による多段型装置1のTOC濃度の予測値と実測値の関係は図6に示すようになり、濃度予測式による循環型装置2のTOC濃度の予測値と実測値の関係は図7に示すようになった。
(6)図6および図7から明らかなように、多段型装置1と循環型装置2の双方において濃度の予測値と実測値に優れた一致が見られ、濃度予測式の妥当性を確認できた。なお、多段型装置1の濃度の実測値と循環型装置2の濃度の実測値とを比較すると、高濃縮域になるにつれて前者が後者よりも大きかった。
The concentration prediction formulas of the multistage apparatus 1 and the circulation type apparatus 2 were confirmed as follows.
(1) The predicted value of the concentration of the multistage apparatus 1 was calculated from the above formulas 6 and 7 under the conditions shown in Table 2 below (fixed flux and element water recovery rates).
(2) Conditions shown in Table 2 (reproduction of the water balance at the locations indicated by four ellipses in FIG. 1, ie, the water balance of the first and second membrane elements 15 of the first bank 11 or the second to fourth banks 12 ˜14 (reproduction of water amount balance of each of the third and fourth membrane elements 15), the predicted values of the substance concentration (feed water concentration, concentrated water concentration, and filtrate concentration) of the circulating apparatus 2 are expressed by the above formula. Obtained from 17-19.
(3) The multistage device 1 and the circulation device 2 were operated under the conditions shown in Table 2.
(4) As an example, an actual measurement value of TOC (total organic carbon) concentration, which is an index of organic substances, was obtained.
(5) The relationship between the predicted value of the TOC concentration of the multistage apparatus 1 based on the concentration prediction formula and the actual measurement value is as shown in FIG. 6, and the relationship between the predicted value of the TOC concentration of the circulating apparatus 2 based on the concentration prediction formula and the actual measurement value. As shown in FIG.
(6) As is clear from FIGS. 6 and 7, both the multistage apparatus 1 and the circulation apparatus 2 have excellent agreement between the predicted value of the concentration and the actual measurement value, and the validity of the concentration prediction formula can be confirmed. It was. In addition, when the measured value of the density | concentration of the multistage type apparatus 1 and the measured value of the density | concentration of the circulation type apparatus 2 were compared, the former was larger than the latter as it became a high concentration area | region.

Figure 0004959157
Figure 0004959157

多段型装置1の流量予測式と濃度予測式では、膜エレメント15毎の水回収率と物質除去率が求まれば、多段型装置1の全体の水量分布と濃度分布を算出することができる。一過型多段ナノろ過実施設を設計する際には、エレメント水回収率は初期条件(ろ過水量とシステム水回収率=供給水量)によって算出できるので、膜エレメント15毎のエレメント物質除去率を与えることができれば、一過型多段ナノろ過実施設の濃度分布の予測が可能となる。ここでは、循環型装置2で得た水回収率と物質除去率の関係を多段型装置1の濃度予測式に適用することにより、循環型装置2による多段型装置1の水質予測を行ない、得られた水質の予測値と多段型装置1の水質の実測値から循環型装置2による多段型装置1の水質予測を次の手順で行なった。
(1)多段型装置1は、図1に示す構成とし、そのフラックス(流束)を各バンク当たり0.6m/dとし、回収率を95%として運転した。循環型装置2は、多段型装置1の第1バンク11の第1、第2エレメント15または第2〜第4バンク12〜14の第4、第5エレメント15の水量収支を再現して運転した。
(2)循環型装置2で得た水回収率と物質除去率の関係を上記式6および式7に適用して多段型装置1の濃度の予測値を算出した。
(3)多段型装置1の濃度の実測値を得た。
(4)多段型装置1と循環型装置2のシステム水回収率と物質除去率の関係について、TOCでの比較結果は図8のようになった。
(5)循環型装置2による多段型装置1の濃度の予測値と実測値の関係について、TOCでの比較結果は図9のようになった。ただし、縦軸は供給水濃度に対するろ過水濃度および濃縮水濃度の比としてある。
(6)循環型装置2による多段型装置1の濃度の予測値と実測値の関係について、多段型装置1のバンク11〜14の各々および全体のTOCでのろ過水水質の比較結果は図10のようになった。ただし、縦軸は供給水濃度に対するろ過水濃度の比としてある。
(7)図8から明らかなように、多段型装置1と循環型装置2の双方において、システム水回収率に対する物質除去率の変化が同程度となった。したがって、図9および図10から明らかなように、システム水回収率に対する供給水濃度を1とした場合に、ろ過水の濃度比と濃縮水の濃度比も予測値と実測値でほぼ等しくなった。これにより、多段型装置1の水質予測が実用上極めて有効であることが分かった。
If the water recovery rate and the substance removal rate for each membrane element 15 are obtained in the flow rate prediction formula and the concentration prediction formula of the multistage apparatus 1, the entire water amount distribution and concentration distribution of the multistage apparatus 1 can be calculated. When designing a single-stage multi-stage nanofiltration facility, the element water recovery rate can be calculated based on the initial conditions (filtered water amount and system water recovery rate = feed water amount), thus giving an element material removal rate for each membrane element 15 If possible, it is possible to predict the concentration distribution of the transient multi-stage nanofiltration facility. Here, the water quality prediction of the multistage apparatus 1 by the circulation type apparatus 2 is performed by applying the relationship between the water recovery rate and the substance removal rate obtained by the circulation type apparatus 2 to the concentration prediction formula of the multistage apparatus 1. The water quality prediction of the multistage apparatus 1 by the circulation apparatus 2 was performed from the estimated value of the water quality and the actually measured value of the water quality of the multistage apparatus 1 according to the following procedure.
(1) The multistage apparatus 1 has the configuration shown in FIG. 1 and was operated with a flux (flux) of 0.6 m / d for each bank and a recovery rate of 95%. The circulation type apparatus 2 was operated by reproducing the water amount balance of the first and second elements 15 of the first bank 11 of the multistage apparatus 1 or the fourth and fifth elements 15 of the second to fourth banks 12 to 14. .
(2) The predicted value of the concentration of the multi-stage apparatus 1 was calculated by applying the relationship between the water recovery rate and the substance removal rate obtained in the circulation type apparatus 2 to the above formulas 6 and 7.
(3) The measured value of the concentration of the multistage apparatus 1 was obtained.
(4) Regarding the relationship between the system water recovery rate and the material removal rate of the multi-stage type device 1 and the circulation type device 2, the comparison result in the TOC is as shown in FIG.
(5) As for the relationship between the predicted value of the concentration of the multi-stage apparatus 1 by the circulation apparatus 2 and the actual measurement value, the comparison result in the TOC is as shown in FIG. However, the vertical axis represents the ratio of the filtrate concentration and the concentrated water concentration to the supply water concentration.
(6) Regarding the relationship between the predicted value of the concentration of the multistage apparatus 1 by the circulation apparatus 2 and the actually measured value, the comparison results of the filtered water quality in each of the banks 11 to 14 of the multistage apparatus 1 and the entire TOC are shown in FIG. It became like this. However, the vertical axis represents the ratio of the filtrate concentration to the supply water concentration.
(7) As is apparent from FIG. 8, the change in the material removal rate with respect to the system water recovery rate is about the same in both the multistage device 1 and the circulation device 2. Therefore, as apparent from FIGS. 9 and 10, when the supply water concentration with respect to the system water recovery rate is 1, the concentration ratio of the filtrate and the concentration ratio of the concentrated water are substantially equal between the predicted value and the actual measurement value. . Thereby, it turned out that the water quality prediction of the multistage apparatus 1 is very effective practically.

以上のように、多段型装置1の流量予測式と濃度予測式から算出した流量と濃度の予測値が実測値とほぼ一致し、かつ循環型装置2の濃度予測式から算出した濃度の予測値と実測値もほぼ一致し、各予測式の妥当性を確認した。また、循環型装置2で得た水回収率と物質除去率の関係を用いて算出した多段型装置1のろ過水と濃縮水の濃度の予測値と実測値はほぼ一致し、循環型装置2による多段型装置1の濃度予測が可能であることを明らかにした。   As described above, the predicted value of the flow rate and the concentration calculated from the flow rate prediction formula and the concentration prediction formula of the multistage device 1 substantially match the actual measurement value, and the predicted value of the concentration calculated from the concentration prediction formula of the circulation type device 2 The measured values almost coincided with each other, and the validity of each prediction formula was confirmed. In addition, the predicted value and the measured value of the concentration of filtrate and concentrated water of the multi-stage apparatus 1 calculated using the relationship between the water recovery rate and the substance removal rate obtained by the circulation apparatus 2 are almost the same, and the circulation apparatus 2 It was clarified that the concentration prediction of the multi-stage apparatus 1 can be performed.

したがって、多段型装置1の機能評価が必要な場合には、多段型装置1の任意の箇所の少なくとも1つの膜エレメント15の周りの処理機能影響因子を循環型装置2で再現して物質除去率を求めることにより、多段型装置1の物質濃度を理論的に算出できる。この多段型装置1は一過型多段ナノろ過実施設に他ならないので、一過型多段ナノろ過実施設の研究開発にあたっては一過型多段ナノろ過実施設を必要とせず、循環型装置2のみによって一過型多段ナノろ過実施設の処理機能を予測できる。よって、一過型多段ナノろ過実施設の研究開発コスト、設備コスト、運転管理コストなどを大幅に削減できる。   Therefore, when it is necessary to evaluate the function of the multistage apparatus 1, the circulation function apparatus 2 reproduces the processing function influencing factors around the at least one membrane element 15 at an arbitrary position of the multistage apparatus 1. , The substance concentration of the multistage apparatus 1 can be calculated theoretically. Since this multi-stage apparatus 1 is nothing but a single-stage multi-stage nanofiltration facility, the R & D of the single-stage multi-stage nano-filtration apparatus does not require a single-stage multi-stage nano-filtration apparatus, and only the circulation-type apparatus 2 Can predict the processing function of the temporary multi-stage nanofiltration facility. Therefore, the R & D cost, facility cost, operation management cost, etc. of the temporary multistage nanofiltration facility can be greatly reduced.

この発明の実施の形態1における多段型装置の構成図である。It is a block diagram of the multistage apparatus in Embodiment 1 of this invention. この発明の実施の形態1における循環型装置の構成図である。It is a block diagram of the circulation type apparatus in Embodiment 1 of this invention. 多段型装置のエレメント周りの収支を説明する図である。It is a figure explaining the balance around the element of a multistage type apparatus. 循環型装置のエレメント周りの収支を説明する図である。It is a figure explaining the balance around the element of a circulation type device. ろ過水量の予測値と実測値の関係を示すグラフ図である。It is a graph which shows the relationship between the predicted value of the amount of filtrate water, and an actual value. 濃度予測式による多段型装置のTOC濃度の予測値と実測値の関係を示すグラフ図である。It is a graph which shows the relationship between the predicted value of TOC density | concentration of a multistage type | mold apparatus by a density | concentration prediction formula, and an actual value. 濃度予測式による循環型装置のTOC濃度の予測値と実測値の関係を示すグラフ図である。It is a graph which shows the relationship between the predicted value and actual value of the TOC density | concentration of a circulation type apparatus by a density | concentration prediction type | formula. システム水回収率とTOC除去率の関係を示すグラフ図である。It is a graph which shows the relationship between a system water collection | recovery rate and a TOC removal rate. 循環型装置による多段型装置のTOC濃度の予測値と実測値の関係を示すグラフ図である。It is a graph which shows the relationship between the predicted value of TOC density | concentration of a multistage type apparatus by a circulation type apparatus, and an actual value. 循環型装置による多段型装置のTOC濃度の予測値と実測値の関係を示すグラフ図である。It is a graph which shows the relationship between the predicted value of TOC density | concentration of a multistage type apparatus by a circulation type apparatus, and an actual value.

符号の説明Explanation of symbols

15 膜エレメント
17 膜モジュール
21 上流側膜エレメント、後流側膜エレメント
16 ベッセル
22 上流側ベッセル、後流側ベッセル
24 供給水槽
25 供給水管
26 供給ポンプ
27 上流側ろ過水管、後流側ろ過水管
28 ろ過水槽
29 上流側濃縮水管
30 後流側濃縮水管

15 Membrane element
17 Membrane module
21 Upstream membrane element, wake membrane element 16 Vessel
22 upstream vessel, downstream vessel
24 Supply water tank 25 Supply water pipe
26 Supply pump 27 upstream-side filtered water pipe , wake-side filtered water pipe
28 Filtration tank
29 Upstream concentrated water pipe
30 Concentrated water pipe on the downstream side

Claims (2)

前処理された供給水をナノろ過する一過型多段ナノろ過実施設の処理機能を予測する循環型ナノろ過試験装置において、In the circulation type nanofiltration test device that predicts the treatment function of the transient multistage nanofiltration implementation that nanofilters the pretreated feed water,
前記供給水を貯留する供給水槽、前記供給水をナノろ過する上流側膜エレメント、前記供給水槽から該上流側膜エレメントへ前記供給水を供給する供給水管、該供給水管に設けられた供給ポンプ、前記上流側膜エレメントの濃縮水をナノろ過する後流側膜エレメント、該後流側膜エレメントへ前記上流側膜エレメントの濃縮水を導く上流側濃縮水管、前記後流側膜エレメントで生じた濃縮水を系外に排出する後流側濃縮水管、前記上流側膜エレメントと前記後流側膜エレメントのろ過水を貯留するろ過水槽、前記上流側膜エレメントのろ過水をろ過水槽へ導く上流側ろ過水管、前記後流側膜エレメントのろ過水をろ過水槽へ導く後流側ろ過水管、および前記後流側膜エレメントの濃縮水の一部を前記供給水管の前記供給ポンプより上流に循環させる循環水管を備えたことを特徴とする循環型ナノろ過試験装置。A feed water tank for storing the feed water, an upstream membrane element for nano-filtering the feed water, a feed water pipe for feeding the feed water from the feed water tank to the upstream membrane element, a feed pump provided in the feed water pipe, A downstream membrane element that nano-filters the concentrated water of the upstream membrane element, an upstream concentrated water pipe that guides the concentrated water of the upstream membrane element to the downstream membrane element, and a concentration generated in the downstream membrane element A downstream-side concentrated water pipe for discharging water out of the system, a filtration water tank for storing the filtered water of the upstream-side membrane element and the downstream-side membrane element, and an upstream-side filtration for guiding the filtered water of the upstream-side membrane element to the filtered water tank A water pipe, a wake-side filtered water pipe that guides the filtered water of the wake-side membrane element to the filtration water tank, and a part of the concentrated water of the wake-side membrane element are circulated upstream from the supply pump of the supply water pipe. Recycling nanofiltration test apparatus characterized by comprising a circulating water pipe for.
請求項1に記載の循環型ナノろ過試験装置を用いて、供給水濃度、水回収率、および物質除去率の関係を前記一過型多段ナノろ過実施設の濃度予測式に適用することによって前記一過型多段ナノろ過実施設の処理機能を予測する循環型ナノろ過試験方法において、
供給水濃度をC fn 、水回収率をr 、物質除去率をR とした場合に、前記一過型多段ナノろ過実施設のn番目の膜エレメントにおける濃縮水濃度C bn の予測式は、
bn=Cfn・{rn(1−rn)−2}/{rn(1+Rn)−2}
であり、ろ過水濃度C pn の予測式は
pn=Cfn・(rn−2)(1−Rn)/{rn(1+Rn)−2}
であることを特徴とする循環型ナノろ過試験方法。
Using the circulating nanofiltration test apparatus according to claim 1, the relationship between the supply water concentration, the water recovery rate, and the substance removal rate is applied to the concentration prediction formula of the one-step multistage nanofiltration facility. In the circulation type nanofiltration test method for predicting the processing function of the one-stage multistage nanofiltration facility,
The feed water concentration C fn, the water recovery rate r n, the material removal rate in case of the R n, the prediction type of concentrated water concentration C bn in n-th of the membrane element of the transient multistage nanofiltration real property ,
C bn = C fn · {r n (1-r n ) -2} / {r n (1 + R n ) -2}
And the prediction formula of the filtrate concentration C pn is C pn = C fn · (r n −2) (1−R n ) / {r n (1 + R n ) −2}
A circulating nanofiltration test method characterized by the following.
JP2005210378A 2005-07-20 2005-07-20 Circulating nanofiltration test apparatus and circulating nanofiltration test method Active JP4959157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210378A JP4959157B2 (en) 2005-07-20 2005-07-20 Circulating nanofiltration test apparatus and circulating nanofiltration test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210378A JP4959157B2 (en) 2005-07-20 2005-07-20 Circulating nanofiltration test apparatus and circulating nanofiltration test method

Publications (2)

Publication Number Publication Date
JP2007021440A JP2007021440A (en) 2007-02-01
JP4959157B2 true JP4959157B2 (en) 2012-06-20

Family

ID=37782887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210378A Active JP4959157B2 (en) 2005-07-20 2005-07-20 Circulating nanofiltration test apparatus and circulating nanofiltration test method

Country Status (1)

Country Link
JP (1) JP4959157B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229708A (en) * 2006-02-06 2007-09-13 Univ Nagoya Filter
AU2008339450B2 (en) * 2007-12-17 2012-06-07 Nitto Denko Corporation Spiral film element, spiral film-filtration device having the film element, and film-filtration device managing system and film-filtration device managing method using the device
JP5271608B2 (en) * 2008-06-06 2013-08-21 日東電工株式会社 Membrane filtration device management system, membrane filtration device used therefor, and membrane filtration device management method
CN102046272B (en) * 2008-06-06 2013-08-28 日东电工株式会社 Membrane filtration equipment management system and membrane filtration equipment for use therein, and membrane filtration equipment management method
JP5271607B2 (en) * 2008-06-06 2013-08-21 日東電工株式会社 Membrane filtration device management system, membrane filtration device used therefor, and membrane filtration device management method
JP5699271B2 (en) * 2009-12-10 2015-04-08 パナソニックIpマネジメント株式会社 Desalination method and apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779996B2 (en) * 1992-06-30 1995-08-30 株式会社神戸製鋼所 Desalination equipment by reverse osmosis
JPH0871375A (en) * 1994-08-29 1996-03-19 Holland Sweetener Co Vof Method and device for collection of material in aspartame manufacturing process
JP2000218139A (en) * 1999-01-28 2000-08-08 Shinko Pantec Co Ltd Membrane separator, method and apparatus for predicting its performance, and recording medium

Also Published As

Publication number Publication date
JP2007021440A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4959157B2 (en) Circulating nanofiltration test apparatus and circulating nanofiltration test method
JP6762258B2 (en) Reverse osmosis treatment system and reverse osmosis treatment method
JP5597122B2 (en) Reverse osmosis processing equipment
SA516371234B1 (en) Water treatment method
US10527370B2 (en) Cooling process
US12012347B2 (en) Cooling pond water treatment system
Hosseinzadeh et al. Evaluation of membrane bioreactor for advanced treatment of industrial wastewater and reverse osmosis pretreatment
Nazif et al. Artificial intelligence–based optimization of reverse osmosis systems operation performance
JP5791767B2 (en) Reverse osmosis processing equipment
JP6554781B2 (en) Operation method of reverse osmosis membrane device and reverse osmosis membrane device
Ferrero et al. A knowledge-based control system for air-scour optimisation in membrane bioreactors
BRPI1004491A2 (en) water filtration method and system
Gidstedt et al. Chemically enhanced primary treatment, microsieving, direct membrane filtration and GAC filtration of municipal wastewater: a pilot-scale study
Chen et al. Desalination of seawater by reverse osmosis
Lebron et al. Screening cost effectiveness and salinity build up control in osmotic membrane bioreactors for refinery wastewater treatment: a draw solute with lower diffusivity and ultrafiltration implementation
JPWO2014192619A1 (en) Operation method of water treatment equipment
JP6344114B2 (en) Water treatment apparatus and water treatment equipment cleaning method
Al-Shammari et al. Comparative performance evaluation of microfiltration submerged and pressurized membrane treatment of wastewater
JP2014221459A (en) Seawater desalination system
Mortensen et al. Evaluation of membrane processes for reducing total dissolved solids discharged to the Truckee River
KR102037008B1 (en) Membrane fouling dispersion system of the RO unit using directional switching valve and maintenance method for membrane fouling dispersion
JP2016215205A (en) Reverse osmosis treatment device
Wilf Membrane technology for wastewater reclamation
Kim et al. A study on scale determination of FO-RO hybrid process based on FO recovery rate
JP2024124994A (en) Containers and water treatment systems

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250