JP2000218139A - Membrane separator, method and apparatus for predicting its performance, and recording medium - Google Patents

Membrane separator, method and apparatus for predicting its performance, and recording medium

Info

Publication number
JP2000218139A
JP2000218139A JP11019502A JP1950299A JP2000218139A JP 2000218139 A JP2000218139 A JP 2000218139A JP 11019502 A JP11019502 A JP 11019502A JP 1950299 A JP1950299 A JP 1950299A JP 2000218139 A JP2000218139 A JP 2000218139A
Authority
JP
Japan
Prior art keywords
permeate
membrane
permeation
concentration
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11019502A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Tanida
克義 谷田
Kazutaka Takada
一貴 高田
Yoshio Konishi
嘉雄 小西
Yoshie Takeo
由重 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP11019502A priority Critical patent/JP2000218139A/en
Publication of JP2000218139A publication Critical patent/JP2000218139A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To predict the performance of a membrane separator simply and correctly and to obviate the need for a large scale testing apparatus by installing an input means and a calculating means in order to predict the performance of the membrane separator for separating raw liquid supplied to one side of a permeable membrane in a membrane module into permeate and non-permeate. SOLUTION: A function exhibiting the relationship between the concentration and permeation flow velocity of raw liquid, the amount of the raw liquid to be introduced, the number of stages, surface area, intermembrane distance of permeable membranes, and the initial concentration of the raw liquid are input into an input means 15. The permeation flow velocity in the membrane of the first stage is calculated from the initial concentration by a calculation means 16, the permeation flow velocity is calculated from the permeation flow velocity by a calculation means 17, and the concentration, flow rate, and retention time of nonfiltrate are calculated from its permeation flow rate. Similar calculations are conducted for the permeable membranes in the following stages. After that, the total permeation amount of a whole membrane module is calculated by a calculation means 19, and the average permeation flow velocity of the whole membrane module and the concentration of the nonfiltrate are calculated from the total permeation amount by a calculation means 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は膜分離装置及びその
性能予測方法並びにその性能予測装置と記録媒体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation device, a performance prediction method thereof, a performance prediction device and a recording medium.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、被処理液を膜分離する方法としては、微小孔を有す
る透過性膜を備えたクロスフロー型膜分離装置により膜
分離する方法が知られている。クロスフロー型膜分離装
置は、透過性膜により被処理液を透過成分と非透過成分
とに分離し、この非透過成分を再び装置入側に供給して
同じく透過性膜により透過成分と非透過成分に分離し、
以降同様の操作を行うことによって非透過成分の濃度を
高める一方、透過液の透過度を増していく方法である。
この場合、実際の膜分離装置を使用する前に、あらかじ
めその膜分離装置の性能を知ることができれば、対象と
する被処理液に好適な操作条件で膜分離を行うことがで
きるため、実機を導入する前に小型のテスト機で膜分離
試験が行われることがある。
2. Description of the Related Art Heretofore, as a method of separating a liquid to be treated into a membrane, a method of separating a liquid by a cross-flow type membrane separation apparatus having a permeable membrane having micropores is known. ing. In the cross-flow type membrane separation device, the liquid to be treated is separated into a permeated component and a non-permeated component by a permeable membrane, and the non-permeated component is supplied again to the apparatus inlet side, and is not permeated with the permeated component by the same permeable membrane. Separated into components,
Thereafter, the same operation is performed to increase the concentration of the non-permeable component and increase the transmittance of the permeated liquid.
In this case, if the performance of the actual membrane separation device can be known in advance before using the actual membrane separation device, membrane separation can be performed under suitable operating conditions for the target liquid to be treated. Membrane separation tests may be performed on small test machines before introduction.

【0003】ところが小型のテスト機で膜分離試験を行
った場合に得られるデータは、実際の膜分離装置で膜分
離した場合に得られるデータと異なることが多い。例え
ば、小型のテスト機では、透過性膜表面を被処理液が流
通するときの膜面流速の値などが実機と異なることがあ
る。例えば、小型のテスト機で実機よりも膜面流速など
が大きくなると、実機の設置計画を策定するに当たっ
て、実機の規模を正確に把握できず、対象とする被処理
液に最適の設備設計を行うことができない。また、膜分
離装置の膜分離性能を把握できないため、実際に膜モジ
ュールを製作し、性能確認テストを行う必要がある。そ
のために、膜モジュール製作費用が多大になり、テスト
のために多くの時間も必要になる。
However, data obtained when performing a membrane separation test using a small-sized test machine often differs from data obtained when performing membrane separation using an actual membrane separation apparatus. For example, in a small test machine, the value of the membrane surface flow rate when the liquid to be treated flows on the surface of the permeable membrane may be different from the actual machine. For example, if the film surface flow rate becomes larger than the actual machine in a small test machine, it is not possible to accurately grasp the scale of the actual machine in formulating the installation plan of the actual machine, and the optimal equipment design for the target liquid to be treated is performed. Can not do. In addition, since the membrane separation performance of the membrane separation device cannot be grasped, it is necessary to actually manufacture a membrane module and perform a performance confirmation test. Therefore, the cost of fabricating the membrane module becomes large, and much time is required for testing.

【0004】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、実際
に使用する膜分離装置の性能を比較的簡単な方法で正確
に予測し、大規模な試験設備が不要である膜分離装置の
性能予測方法及びその性能予測装置並びにその方法を適
用した膜分離装置と記録媒体を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to accurately predict the performance of an actually used membrane separation device by a relatively simple method. It is an object of the present invention to provide a method for predicting the performance of a membrane separation apparatus which does not require a large-scale test facility, a performance prediction apparatus, a membrane separation apparatus to which the method is applied, and a recording medium.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、透過性膜を多段に積層してなる膜モジュー
ルを有し、透過性膜の一方側に供給した被処理液を透過
液と非透過液に分離する膜分離装置の性能を予測するた
めに入力手段と計算手段を有している。 その入力手段
には、所定のデータを入力する。
In order to achieve the above-mentioned object, the present invention has a membrane module comprising a plurality of permeable membranes laminated in a multi-layer, and allows a liquid to be treated supplied to one side of the permeable membrane to pass through. It has input means and calculation means for predicting the performance of the membrane separation device for separating liquid and non-permeate liquid. Predetermined data is input to the input means.

【0006】そして、計算手段によって、以下の計算を
行う。
Then, the following calculation is performed by the calculation means.

【0007】すなわち、入力手段に入力したデータの中
の被処理液の初期濃度から第一段目の透過性膜における
透過流束を計算し、該透過流束に基づいて透過流量を計
算し、さらに、該透過流量から非透過液の濃度と非透過
液の流量と滞留時間を計算する。
That is, the permeation flux in the first-stage permeable membrane is calculated from the initial concentration of the liquid to be treated in the data inputted to the input means, and the permeation flow rate is calculated based on the permeation flux. Further, the concentration of the non-permeate, the flow rate of the non-permeate, and the residence time are calculated from the permeate flow.

【0008】さらに、第二段目以降の透過性膜について
は直前の透過性膜における非透過液の濃度から当該段の
透過性膜における透過流束を計算し、該透過流束に基づ
いて透過流量を計算し、さらに、該透過流量から非透過
液の濃度と非透過液の流量と滞留時間を計算する。膜モ
ジュールを構成するすべての透過性膜についてこの計算
を行う。
Further, for the permeable membranes of the second and subsequent stages, the permeation flux in the permeable membrane of the stage is calculated from the concentration of the non-permeate in the immediately preceding permeable membrane, and the permeation flux is calculated based on the permeation flux. The flow rate is calculated, and the concentration of the non-permeate, the flow rate of the non-permeate, and the residence time are calculated from the permeate. Perform this calculation for all permeable membranes that make up the membrane module.

【0009】次いで、膜モジュール全体の総透過量を計
算し、該総透過量から膜分離装置の性能を表す指数であ
る平均透過流束および膜モジュール出口での非透過液の
濃度を計算する。
Next, the total permeation amount of the entire membrane module is calculated, and the average permeation flux, which is an index indicating the performance of the membrane separation device, and the concentration of the non-permeate at the outlet of the membrane module are calculated from the total permeation amount.

【0010】[0010]

【発明の実施の形態】すなわち、本発明は、透過性膜を
多段に積層してなる膜モジュールを有し、透過性膜の一
方側に供給した被処理液を透過液と非透過液に分離する
膜分離装置の性能予測方法であって、以下の工程(a)
〜(f)からなることを特徴とする膜分離装置の性能予
測方法を第一の発明とする。 (a)所定のデータを入力手段に入力し、(b)入力手
段に入力したデータの中の被処理液の初期濃度から第一
段目の透過性膜における透過流束を計算し、該透過流束
に基づいて透過流量を計算し、さらに、該透過流量から
非透過液の濃度と非透過液の流量と滞留時間を計算し、
(c)第二段目以降の透過性膜については、直前の透過
性膜における非透過液の濃度から当該段の透過性膜にお
ける透過流束を計算し、該透過流束に基づいて透過流量
を計算し、さらに、該透過流量から非透過液の濃度と非
透過液の流量と滞留時間を計算し、(d)膜モジュール
を構成するすべての透過性膜について上記(c)の計算
を行い、(e)次いで、膜モジュール全体の総透過量を
計算し、(f)該総透過量から膜モジュール全体の平均
透過流束および膜モジュール出口での非透過液の濃度を
計算する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS That is, the present invention has a membrane module in which permeable membranes are stacked in multiple stages, and separates the liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid. A method for predicting the performance of a membrane separation apparatus, comprising:
A first aspect of the present invention is a method for predicting the performance of a membrane separation device, comprising: (A) inputting predetermined data to the input means; (b) calculating the permeation flux in the first-stage permeable membrane from the initial concentration of the liquid to be treated in the data input to the input means; Calculate the permeate flow rate based on the flux, further calculate the concentration of the non-permeate and the flow rate and residence time of the non-permeate from the permeate flow,
(C) For the permeable membranes of the second and subsequent stages, the permeation flux in the permeation membrane of this stage is calculated from the concentration of the non-permeate in the immediately preceding permeation membrane, and the permeation flow rate is calculated based on the permeation flux. Is calculated, and the concentration of the non-permeate liquid, the flow rate of the non-permeate liquid, and the residence time are calculated from the permeate flow rate. (D) The above-mentioned calculation (c) is performed for all the permeable membranes constituting the membrane module. (E) Next, the total permeation amount of the entire membrane module is calculated, and (f) the average permeation flux of the entire membrane module and the concentration of the non-permeate at the membrane module outlet are calculated from the total permeation amount.

【0011】この第一の発明は、膜モジュールを被処理
液が1回通過(ワンパス濃縮)する場合の性能予測方法
であるが、被処理液が多数回通過(循環濃縮)する場合
は、以下の第二の発明に従って、膜分離装置の性能を予
測することができる。
The first invention is a method for predicting the performance when the liquid to be treated passes through the membrane module once (one-pass concentration). According to the second invention, the performance of the membrane separation device can be predicted.

【0012】すなわち、透過性膜を多段に積層してなる
膜モジュールを有し、透過性膜の一方側に供給した被処
理液を透過液と非透過液に分離する膜分離装置の性能予
測方法であって、以下の工程(a)〜(j)からなるこ
とを特徴とする膜分離装置の性能予測方法を第二の発明
とする。 (a)所定のデータを入力手段に入力し、(b)入力手
段に入力したデータの中の被処理液の初期濃度から第一
段目の透過性膜における透過流束を計算し、該透過流束
に基づいて透過流量を計算し、さらに、該透過流量から
非透過液の濃度と非透過液の流量と滞留時間を計算し、
(c)第二段目以降の透過性膜については、直前の透過
性膜における非透過液の濃度から当該段の透過性膜にお
ける透過流束を計算し、該透過流束に基づいて透過流量
を計算し、さらに、該透過流量から非透過液の濃度と非
透過液の流量と滞留時間を計算し、(d)膜モジュール
を構成するすべての透過性膜について上記(c)の計算
を行い、(e)次いで、膜モジュール全体の総透過量を
計算し、(f)該総透過量から膜モジュール全体の平均
透過流束および膜モジュール出口での非透過液の濃度と
非透過液総量を計算し、(g)該非透過液総量と上記総
透過量から再度膜分離装置に流入する被処理液の濃度を
計算し、(h)上記(g)で得た被処理液の濃度から第
一段目の透過性膜における透過流束を計算し、該透過流
束に基づいて透過流量を計算し、さらに、該透過流量か
ら非透過液の濃度と非透過液の流量と滞留時間を計算
し、(i)次いで、上記(c)〜(f)と同様の計算を
行った後、(j)さらに、(g)、(h)、(c)〜
(f)の計算を繰り返す。
That is, a method for predicting the performance of a membrane separation apparatus having a membrane module in which permeable membranes are stacked in multiple stages and separating a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid. A second aspect of the present invention is a method for predicting the performance of a membrane separation apparatus, which comprises the following steps (a) to (j). (A) inputting predetermined data to the input means; (b) calculating the permeation flux in the first-stage permeable membrane from the initial concentration of the liquid to be treated in the data input to the input means; Calculate the permeate flow rate based on the flux, further calculate the concentration of the non-permeate and the flow rate and residence time of the non-permeate from the permeate flow,
(C) For the permeable membranes of the second and subsequent stages, the permeation flux in the permeation membrane of this stage is calculated from the concentration of the non-permeate in the immediately preceding permeation membrane, and the permeation flow rate is calculated based on the permeation flux. Is calculated, and the concentration of the non-permeate liquid, the flow rate of the non-permeate liquid, and the residence time are calculated from the permeate flow rate. (D) The above-mentioned calculation (c) is performed for all the permeable membranes constituting the membrane module. (E) Next, the total permeation amount of the entire membrane module is calculated, and (f) the average permeation flux of the entire membrane module, the concentration of the non-permeate at the outlet of the membrane module, and the total non-permeate are calculated from the total permeation (G) calculating the concentration of the liquid to be treated again flowing into the membrane separation device from the total amount of the non-permeated liquid and the total amount of permeation, and (h) calculating the first concentration from the concentration of the liquid to be treated obtained in (g) above. Calculate the permeation flux in the permeable membrane at the stage and permeate based on the permeation flux. After calculating the amount, the concentration of the non-permeate, the flow rate of the non-permeate, and the residence time are calculated from the permeate flow rate, and (i) Then, the same calculations as in (c) to (f) above are performed. , (J) and (g), (h), (c)-
The calculation of (f) is repeated.

【0013】そして、第三の発明として、(j)の計算
を一定以上繰り返すことにより、膜分離装置出口におけ
る非透過液の濃度として目標濃度を得ることができる。
According to a third aspect of the present invention, the target concentration can be obtained as the concentration of the non-permeate at the outlet of the membrane separation apparatus by repeating the calculation of (j) for a certain number or more.

【0014】以上のような性能予測方法を実施するため
の装置としては、以下の第四の発明に係るものが好適で
ある。
As an apparatus for performing the above-described performance prediction method, the apparatus according to the following fourth invention is preferable.

【0015】すなわち、透過性膜を多段に積層してなる
膜モジュールを有し、透過性膜の一方側に供給した被処
理液を透過液と非透過液に分離する膜分離装置の性能予
測装置であって、所定のデータを入力するための入力手
段と、入力手段に入力した数値から各段透過性膜におけ
る透過流束を計算するための計算手段と、該透過流束に
基づいて透過流量を計算するための計算手段と、さら
に、該透過流量から非透過液の濃度と非透過液の流量と
滞留時間を計算するための計算手段と、膜モジュール全
体の総透過量を計算するための計算手段と、膜モジュー
ル全体の平均透過流束および膜モジュール出口での非透
過液の濃度を計算するための計算手段とを有することを
特徴とする膜分離装置の性能予測装置を第四の発明とす
る。
That is, a performance predicting apparatus for a membrane separation apparatus which has a membrane module in which permeable membranes are stacked in multiple stages and separates a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid. And input means for inputting predetermined data; calculating means for calculating a permeation flux in each permeable membrane from numerical values input to the input means; and a permeation flow rate based on the permeation flux. Calculating means for calculating the concentration of the non-permeate, the flow rate of the non-permeate and the residence time from the permeation flow rate, and calculating the total permeation amount of the entire membrane module. A fourth aspect of the present invention provides a performance prediction device for a membrane separation device, comprising: calculation means; and calculation means for calculating the average permeation flux of the entire membrane module and the concentration of the non-permeate at the outlet of the membrane module. And

【0016】さらに、性能予測方法で予測した性能で膜
分離を行うための装置としては、以下の第五の発明に係
るものが好適である。
Further, as the apparatus for performing membrane separation with the performance predicted by the performance prediction method, the apparatus according to the following fifth invention is preferable.

【0017】すなわち、透過性膜を多段に積層してなる
膜モジュールを有し、透過性膜の一方側に供給した被処
理液を透過液と非透過液に分離する膜分離装置であっ
て、第四の発明の性能予測装置を用いて計算された、膜
モジュール全体の平均透過流束および膜モジュール出口
での非透過液の濃度にほぼ等しい性能で膜分離を行うこ
とを特徴とする膜分離装置を第五の発明とする。
That is, a membrane separation device having a membrane module in which permeable membranes are stacked in multiple stages, and separating a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid, The membrane separation characterized in that the membrane separation is performed with a performance substantially equal to the average permeation flux of the entire membrane module and the concentration of the non-permeate at the outlet of the membrane module, calculated using the performance prediction device of the fourth invention. The device is a fifth invention.

【0018】そして、第六の発明として、透過性膜を振
動させれば、膜表面近傍の被処理液は振動によるせん断
効果により濃度分極(濃度が異常に高い部分が生じるこ
と)が起きることなく、膜が目詰まりしにくい膜分離装
置を提供することができる。
According to a sixth aspect of the present invention, when the permeable membrane is vibrated, the liquid to be treated in the vicinity of the membrane surface does not undergo concentration polarization (parts having an abnormally high concentration) due to the shearing effect of the vibration. Further, it is possible to provide a membrane separation device in which the membrane is hardly clogged.

【0019】また、第一〜第三の発明に係る方法を実現
できるコンピュータプログラムを記録した記録媒体とし
ては、以下の第七と第八の発明に係るものが好適であ
る。
Further, as a recording medium on which a computer program capable of realizing the method according to the first to third aspects of the present invention, those according to the following seventh and eighth aspects of the present invention are preferable.

【0020】すなわち、透過性膜を多段に積層してなる
膜モジュールを有し、透過性膜の一方側に供給した被処
理液を透過液と非透過液に分離する膜分離装置の性能予
測方法を実施するコンピュータプログラムを記録した記
録媒体であって、(a)所定のデータを入力手段に入力
するステップと、(b)入力手段に入力したデータの中
の被処理液の初期濃度から第一段目の透過性膜における
透過流束を計算し、該透過流束に基づいて透過流量を計
算し、さらに、該透過流量から非透過液の濃度と非透過
液の流量と滞留時間を計算するステップと、(c)第二
段目以降の透過性膜については、直前の透過性膜におけ
る非透過液の濃度から当該段の透過性膜における透過流
束を計算し、該透過流束に基づいて透過流量を計算し、
さらに、該透過流量から非透過液の濃度と非透過液の流
量と滞留時間を計算するステップと、(d)膜モジュー
ルを構成するすべての透過性膜について上記(c)の計
算を行うステップと、(e)次いで、膜モジュール全体
の総透過量を計算するステップと、(f)該総透過量か
ら膜モジュール全体の平均透過流束および膜モジュール
出口での非透過液の濃度を計算するステップとを含むコ
ンピュータプログラムを記録してあることを特徴とする
記録媒体を第七の発明とする。
That is, a method for predicting the performance of a membrane separation apparatus having a membrane module in which permeable membranes are stacked in multiple stages and separating a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid And (b) inputting predetermined data to input means, and (b) determining a first concentration of the liquid to be processed in the data input to the input means. Calculate the permeation flux in the permeable membrane at the stage, calculate the permeation flow rate based on the permeation flux, and further calculate the non-permeate concentration, non-permeate flow rate and residence time from the permeation flow And (c) for the second and subsequent permeable membranes, calculate the permeation flux in the permeation membrane of the relevant stage from the concentration of the non-permeate in the immediately preceding permeation membrane, and calculate the permeation flux based on the permeation flux. To calculate the permeate flow rate,
Calculating the concentration of the non-permeate, the flow rate of the non-permeate, and the residence time from the permeate; and (d) performing the calculation of (c) for all the permeable membranes constituting the membrane module. (E) calculating the total permeation amount of the entire membrane module; and (f) calculating the average permeation flux of the entire membrane module and the concentration of the non-permeate at the membrane module outlet from the total permeation amount. A recording medium characterized by recording a computer program including:

【0021】また、上記第七の発明の記録媒体におい
て、(a)〜(f)のステップに加えて、(f)におい
て非透過液総量を計算するステップと、(g)該非透過
液総量と上記総透過量から再度膜分離装置に流入する被
処理液の濃度を計算するステップと、(h)上記(g)
で得た被処理液の濃度から第一段目の透過性膜における
透過流束を計算し、該透過流束に基づいて透過流量を計
算し、さらに、該透過流量から非透過液の濃度と非透過
液の流量と滞留時間を計算するステップと、(i)次い
で、上記(c)〜(f)と同様の計算を行うステップ
と、(j)さらに、(g)、(h)、(c)〜(f)の
計算を繰り返すステップとを含むコンピュータプログラ
ムを記録してあることを特徴とする記録媒体を第八の発
明とする。
Further, in the recording medium according to the seventh aspect, in addition to the steps (a) to (f), a step of calculating the total amount of the non-permeate liquid in (f); Calculating the concentration of the liquid to be treated flowing into the membrane separation device again from the total permeation amount;
Calculate the permeation flux in the permeable membrane of the first stage from the concentration of the liquid to be treated obtained in the above, calculate the permeation flow rate based on the permeation flux, and further calculate the concentration of the non-permeate liquid from the permeation flow rate Calculating the flow rate and residence time of the non-permeate; (i) then performing the same calculations as in (c) to (f) above; (j) further (g), (h), ( A recording medium characterized by recording a computer program including a step of repeating the calculations of c) to (f) is provided as an eighth invention.

【0022】[0022]

【実施例】以下に本発明の好ましい実施例を図面を参照
しながら説明する。図1は、本発明の方法を適用するに
好適な振動型膜分離装置の概略構成図である。図1にお
いて、1は被処理液の供給タンク、2は被処理液を圧送
するポンプ、3は多数の平膜型の透過性膜を積層したフ
ィルターパック、4はこのフィルターパック3内の透過
性膜に、水平面内の円周方向に振幅1〜2.5cmで振動
周波数40〜60Hzの微小振幅の往復運動を与えるト
ーションバー、5は非透過液の貯槽、6は透過液の貯槽
である。7は供給タンク1から管路8を経てフィルター
パック3に圧送される被処理液の圧力とフィルターパッ
ク3から排出される非透過液の圧力の差(膜間差圧)を
適正な範囲に調節するために非透過液の排出量を調整す
るバルブである。フィルターパック3の内部には、図2
に示すように、上下の透過性膜9、9′の間に2枚の不
織布のドレインクロス10、10′を介して金属板11
が積層されたものが水平方向に配置され、かつ鉛直方向
に所定間隔を設けて多段に設置されている。図2中、上
位の透過性膜9の上側が一方側であり、ドレインクロス
10側が他方側である。この一方側に被処理液を供給す
ると、一方側の内圧は他方側より高圧(約1〜40kg/
cm2)に設定されているため、被処理液中の透過成分、
すなわち、図3に示すように、透過性膜9の微小孔より
小さな粒子(透過成分)が膜孔12を透過し、他方側へ
達する。透過成分が透過した後の非透過液は、図2の次
の段の透過性膜9の一方側に供給され、透過成分が膜孔
を透過する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a vibration type membrane separation apparatus suitable for applying the method of the present invention. In FIG. 1, 1 is a supply tank for the liquid to be treated, 2 is a pump for pumping the liquid to be treated, 3 is a filter pack in which a number of flat membrane type permeable membranes are laminated, and 4 is the permeability in the filter pack 3. A torsion bar that gives the membrane a reciprocating motion with a small amplitude of 1 to 2.5 cm in amplitude and a vibration frequency of 40 to 60 Hz in a circumferential direction in a horizontal plane, 5 is a non-permeate liquid storage tank, and 6 is a permeate liquid storage tank. Numeral 7 adjusts the difference (transmembrane pressure) between the pressure of the liquid to be treated, which is fed from the supply tank 1 to the filter pack 3 via the pipe line 8, and the pressure of the non-permeate liquid discharged from the filter pack 3 within an appropriate range. To adjust the discharge amount of the non-permeated liquid in order to perform FIG. 2 shows the inside of the filter pack 3.
As shown in the figure, a metal plate 11 is interposed between two upper and lower permeable membranes 9 and 9 'via two non-woven drain cloths 10 and 10'.
Are arranged in the horizontal direction, and are arranged in multiple stages at predetermined intervals in the vertical direction. In FIG. 2, the upper side of the upper permeable film 9 is one side, and the side of the drain cross 10 is the other side. When the liquid to be treated is supplied to one side, the internal pressure of one side is higher than that of the other side (about 1 to 40 kg /
cm 2 ), so that the permeated component in the liquid to be treated,
That is, as shown in FIG. 3, particles (permeation components) smaller than the micropores of the permeable membrane 9 pass through the membrane pores 12 and reach the other side. The non-permeate liquid after the permeation component has passed is supplied to one side of the permeable membrane 9 in the next stage in FIG. 2, and the permeation component permeates through the membrane pores.

【0023】この透過処理の間、フィルターパック3内
の透過性膜は上記したトーションバー4の作用により水
平面内の円周方向に微小振幅の往復運動を続けるため、
膜表面近傍の被処理液は振動によるせん断効果により濃
度分極(濃度が異常に高い部分が生じること)が起きる
ことはなく、膜が目詰まりしにくくなる。かくして、ポ
ンプ2により適正な圧力を被処理液に与えることによ
り、高い透過流束のもとで、被処理液を、透過液と非透
過液とに効率的に分離することができる。 このように
して順次透過処理が行われ、得られた透過液は管路13
を経て貯槽6に送られ、管路14内にある非透過液は貯
槽5に送られる。かくして、タンク1内の被処理液を管
路8を経てフィルターパック3に供給し、上記した振動
型膜分離装置によって効率的に透過液と非透過液に分離
することができる。振動型膜分離装置の透過性膜として
は、逆浸透膜、ナノフィルター、限外濾過膜、精密濾過
膜等を好適に用いることができる。
During the permeation process, the permeable membrane in the filter pack 3 continues to reciprocate with a small amplitude in the circumferential direction in the horizontal plane by the action of the torsion bar 4 described above.
The liquid to be treated in the vicinity of the film surface does not undergo concentration polarization (producing an abnormally high concentration portion) due to a shearing effect due to vibration, and the film is less likely to be clogged. Thus, by applying an appropriate pressure to the liquid to be treated by the pump 2, the liquid to be treated can be efficiently separated into a permeate and a non-permeate under a high permeation flux. The permeation process is sequentially performed in this manner, and the obtained permeate is supplied to the line 13.
Then, the non-permeated liquid in the pipe 14 is sent to the storage tank 5. Thus, the liquid to be treated in the tank 1 is supplied to the filter pack 3 via the pipe line 8, and can be efficiently separated into a permeated liquid and a non-permeated liquid by the above-mentioned vibration type membrane separation device. As the permeable membrane of the vibration type membrane separation device, a reverse osmosis membrane, a nanofilter, an ultrafiltration membrane, a microfiltration membrane, or the like can be suitably used.

【0024】このような振動型膜分離装置の実機として
は、約1.7m×1.4m×3.2m高さ以上の大きさ
のもの(フィルターパックには、直径約60cmの平膜が
多段に積層されている)が一般に用いられており、この
ような大型の装置を試作してその性能を確認する作業は
大変煩雑なので、小型のテスト機で膜分離試験を行う方
法が都合がよい。この場合、実機の透過性膜表面の被処
理液の膜面流速およびせん断速度とほぼ同じになるよう
に小型のテスト機の被処理液の流量および振動条件を調
節してテストを行えば、ほぼ実機の操業条件に見合った
データが得られる。具体的には、実機は被処理液中の固
形分による膜面の閉塞を防ぐため、膜面流速を3〜17
cm/秒(被処理液の濃度、粘度等で異なる)として運転
されるが、小型テスト機で被処理液の流量を1〜6リッ
トル/分としてテストを行えば、上記膜面流束を得るこ
とができた。すなわち、実機の透過性膜の振幅が7/8
インチで、振動周波数が52ヘルツで、後記する平均せ
ん断速度を約70000/秒として振動させたい場合、
小型テスト機(直径約30cmの平膜が一枚設置されてい
るもの)の振幅を同じ7/8インチとして振動させる
と、振動周波数は約59ヘルツ、平均せん断速度は約8
0000/秒になり、平均せん断速度が大きくなる分だ
け膜分離性能は向上するので、正確なシミュレーション
が行えなかった。そこで、小型テスト機の振幅を実機よ
りやや少なくして3/4〜13/16インチとすること
により平均せん断速度を実機の場合と同じ約70000
/秒にすることができた。なお、振動数はほとんど変化
せず、約59ヘルツであった。そして、この条件で被処
理液の濃度を変えてテストを行い、濃度と透過流束の関
係を予め把握し、このデータに基づいて図4に示すフロ
ーチャートに従った方法で計算するステップがプログラ
ミングされたコンピュータのプログラムに従い、実機の
膜分離装置の性能を予測できる。
As an actual machine of such a vibration type membrane separation apparatus, one having a size of about 1.7 m × 1.4 m × 3.2 m or more (a filter membrane is a multi-stage flat membrane having a diameter of about 60 cm). Is generally used, and the work of prototyping such a large-sized apparatus and confirming its performance is very complicated. Therefore, a method of conducting a membrane separation test using a small-sized test machine is convenient. In this case, if the test is performed by adjusting the flow rate and vibration conditions of the liquid to be treated in a small test machine so that the flow rate and shear rate of the liquid to be treated on the surface of the permeable membrane of the actual machine are almost the same, Data suitable for the operating conditions of the actual machine can be obtained. Specifically, in order to prevent the membrane surface from being clogged by the solid content in the liquid to be treated, the actual machine has a membrane surface flow rate of 3 to 17 times.
The operation is performed at a rate of cm / sec (differs depending on the concentration, viscosity, etc. of the liquid to be treated), but if the test is carried out with a small test machine at a flow rate of the liquid to be treated of 1 to 6 L / min, the above-mentioned film surface flux is obtained. I was able to. That is, the amplitude of the permeable membrane of the actual machine is 7/8.
In inches, the vibration frequency is 52 Hz, and if you want to vibrate with an average shear rate of about 70,000 / sec described below,
When a small test machine (with one flat membrane of about 30 cm in diameter) is vibrated with the same amplitude of 7/8 inch, the vibration frequency is about 59 Hz and the average shear rate is about 8
0000 / sec, and the membrane separation performance was improved by an increase in the average shear rate, so that accurate simulation could not be performed. Therefore, by making the amplitude of the small test machine slightly smaller than that of the actual machine to be 3/4 to 13/16 inch, the average shear rate is about 70000 which is the same as that of the actual machine.
/ Sec. The frequency hardly changed, and was about 59 Hz. Then, a test is performed by changing the concentration of the liquid to be treated under these conditions, a relationship between the concentration and the permeation flux is grasped in advance, and a step of calculating based on this data by a method according to the flowchart shown in FIG. 4 is programmed. According to the computer program, the performance of the actual membrane separation device can be predicted.

【0025】すなわち、(a)上記のようにしてあらか
じめ測定した被処理液の濃度とこの被処理液が透過性膜
を透過するときの透過流束の関係を示す関数と、膜分離
装置に流入する被処理液の流入量と、透過性膜の段数
と、透過性膜の表面積と、透過性膜の膜間距離(当該段
の透過性膜9と次の段の透過性膜9との間の距離)と、
被処理液の初期濃度を入力手段15に入力し、(b)被
処理液の初期濃度から第一段目の透過性膜における透過
流束を計算手段16で計算し、該透過流束に基づいて透
過流量を計算手段17で計算し、さらに、該透過流量か
ら非透過液の濃度と非透過液の流量と滞留時間を計算手
段18で計算し、(c)第二段目以降の透過性膜につい
ては、直前の透過性膜における非透過液の濃度から当該
段の透過性膜における透過流束を計算手段16で計算
し、該透過流束に基づいて透過流量を計算手段17で計
算し、さらに、該透過流量から非透過液の濃度と非透過
液の流量と滞留時間を計算手段18で計算し、(d)膜
モジュールを構成するすべての透過性膜について上記
(c)の計算を行い、(e)次いで、膜モジュール全体
の総透過量を計算手段19で計算し、(f)該総透過量
から膜モジュール全体の平均透過流束および膜モジュー
ル出口での非透過液の濃度を計算手段20で計算する。
このとき、膜モジュール全体の滞留時間を計算してもよ
い。
That is, (a) a function indicating the relationship between the concentration of the liquid to be treated measured in advance as described above and the permeation flux when the liquid to be treated permeates the permeable membrane; Flow rate of the liquid to be treated, the number of permeable membranes, the surface area of the permeable membrane, and the distance between the permeable membranes (between the permeable membrane 9 of this stage and the permeable membrane 9 of the next stage). Distance) and
The initial concentration of the liquid to be treated is input to the input means 15, and (b) the permeation flux in the first-stage permeable membrane is calculated from the initial concentration of the liquid to be treated by the calculation means 16, and based on the permeation flux. The permeation flow rate is calculated by the calculation means 17, and the concentration of the non-permeate, the flow rate of the non-permeate and the residence time are calculated from the permeation flow by the calculation means 18, and (c) the permeability of the second and subsequent stages With respect to the membrane, the permeation flux in the permeation membrane of this stage is calculated by the calculation means 16 from the concentration of the non-permeate in the immediately preceding permeation membrane, and the permeation flow rate is calculated by the calculation means 17 based on the permeation flux. Further, the concentration of the non-permeate liquid, the flow rate of the non-permeate liquid, and the residence time are calculated from the permeation flow rate by the calculating means 18, and (d) the calculation of (c) is performed for all the permeable membranes constituting the membrane module. (E) Next, the total permeation amount of the whole membrane module is calculated. Calculated in 9 calculates the calculation means 20 the concentration of the non-permeate at an average flux and membrane module outlet of the entire membrane module from the (f) said total transmission amount.
At this time, the residence time of the entire membrane module may be calculated.

【0026】以上の工程は、膜モジュールを被処理液が
1回通過(ワンパス濃縮)する場合の性能予測法である
が、被処理液が多数回通過(循環濃縮)する場合は、被
処理液の総量を入力手段に入力し、(f)工程において
非透過液総量を計算し、(f)工程に続いて、(g)該
非透過液総量と上記総透過量から再度膜分離装置に流入
する被処理液の濃度を計算手段21で計算し、(h)上
記(g)で得た被処理液の濃度から第一段目の透過性膜
における透過流束を計算手段16で計算し、該透過流束
に基づいて透過流量を計算手段17で計算し、さらに、
該透過流量から非透過液の濃度と非透過液の流量と滞留
時間を計算手段18で計算し、(i)次いで、上記
(c)〜(f)と同様の計算を行った後、(j)さら
に、(g)、(h)、(c)〜(f)の計算を繰り返し
て行えばよい。
The above process is a method for predicting the performance when the liquid to be treated passes through the membrane module once (one-pass concentration). Is input to the input means, and the total amount of the non-permeate is calculated in step (f). After step (f), (g) the non-permeate flows into the membrane separation device again from the total amount and the total permeate. The concentration of the liquid to be treated is calculated by the calculating means 21, and (h) the permeation flux in the first-stage permeable membrane is calculated by the calculating means 16 from the concentration of the liquid to be treated obtained in the above (g). The permeation flow rate is calculated by the calculation means 17 based on the permeation flux.
From the permeation flow rate, the concentration of the non-permeate, the flow rate of the non-permeate, and the residence time are calculated by the calculation means 18, and (i) Then, after performing the same calculations as in the above (c) to (f), (j) And (g), (h) and (c) to (f) may be repeated.

【0027】そして、(j)の計算を一定以上繰り返す
ことにより、膜分離装置出口における非透過液の濃度と
して目標濃度を得ることができ、計算は終了する。
Then, by repeating the calculation of (j) for a certain number or more, the target concentration can be obtained as the concentration of the non-permeate at the outlet of the membrane separation apparatus, and the calculation is completed.

【0028】図5は膜モジュール内の被処理液の流れを
示す図であり、被処理液は22から膜モジュール内に流
入し、透過性膜を透過した透過液は23から排出され、
非透過液は24から排出される。
FIG. 5 is a diagram showing the flow of the liquid to be treated in the membrane module. The liquid to be treated flows into the membrane module from 22, the permeate that has passed through the permeable membrane is discharged from 23,
The non-permeate is drained from 24.

【0029】以下に小型テスト機のテストデータから実
機の性能を予測した結果と実際に測定した結果を表1、
表2に示す。表1は被処理液が化成品(ラテックス)の
場合であり、被処理液は膜モジュールを1回通過(ワン
パス濃縮)した。表2は被処理液が食品廃液(イースト
培養廃液)の場合であり、被処理液は膜モジュールを複
数回通過(循環濃縮)した。なお、透過性膜の段数は5
0段(膜は100枚)であり、透過性膜の表面積(片
面)は0.14m2 であり、隣接する透過性膜9−9間
の距離は5mmであり、表1の化成品の場合の初期流入量
は1.8m3/時であり、表2の食品廃液の場合の初期
流入量は2.7m3/時であり、透過流束と濃度の関係
は、表1の化成品の場合は、F=148−88LogC
のように表され、表2の食品廃液の場合は、F=(10
3−1.5C+0.007C2)×0.6のように表さ
れる。なお、Fは透過流束、Cは濃度である。
Table 1 shows the results of the prediction of the performance of the actual machine from the test data of the small test machine and the results of the actual measurement.
It is shown in Table 2. Table 1 shows the case where the liquid to be treated is a chemical product (latex), and the liquid to be treated passed through the membrane module once (one-pass concentration). Table 2 shows the case where the liquid to be treated is food waste liquid (yeast culture waste liquid), and the liquid to be treated passed through the membrane module a plurality of times (circulation concentration). The number of permeable membranes is 5
0 stages (100 membranes), the surface area (one side) of the permeable membrane is 0.14 m 2 , the distance between adjacent permeable membranes 9-9 is 5 mm. Is 1.8 m 3 / h, the initial inflow of food waste liquid in Table 2 is 2.7 m 3 / h, and the relationship between the permeation flux and the concentration is as shown in Table 1. In the case, F = 148-88 LogC
In the case of the food waste liquid in Table 2, F = (10
Represented as 3-1.5C + 0.007C 2) × 0.6. Note that F is the permeation flux and C is the concentration.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1に明らかなように、化成品を被処理液
とする場合、予測結果と実測結果はほぼ完全に一致して
おり、正確に実機の性能を予測することができる。膜分
離装置の運転条件を変えた場合も、表1とほぼ同様の結
果が得られた。化成品のように、膜の目詰まりを起こす
懸濁物質が少なくて、膜モジュールを1回通過するだけ
で濃縮を行う場合には、ほぼ完全に実機の膜分離装置の
性能を予測することが可能である。
As is clear from Table 1, when a chemical product is used as the liquid to be treated, the predicted result and the measured result almost completely match, and the performance of the actual machine can be accurately predicted. When the operating conditions of the membrane separation device were changed, almost the same results as in Table 1 were obtained. When the concentration of suspended matter that causes membrane clogging is small, such as in chemical products, and concentration is performed by passing through the membrane module only once, the performance of the actual membrane separation device can be predicted almost completely. It is possible.

【0033】表2に明らかなように、食品廃液を被処理
液とする場合、予測結果と実測結果はほぼ同じ値とな
り、正確に実機の性能を予測することができる。表2の
食品廃液の入口濃度は5%であり、最終的に得られた非
透過液の濃度は24.5%であった。
As is apparent from Table 2, when the food waste liquid is used as the liquid to be treated, the prediction result and the actual measurement result are almost the same value, and the performance of the actual machine can be accurately predicted. The inlet concentration of the food waste liquid in Table 2 was 5%, and the concentration of the finally obtained non-permeate was 24.5%.

【0034】以上の実験において、実機の透過性膜(限
外濾過膜)の振動は、振幅2.2cm、振動周波数51H
zの条件で行った。
In the above experiment, the vibration of the permeable membrane (ultrafiltration membrane) of the actual machine had an amplitude of 2.2 cm and a vibration frequency of 51H.
Performed under the condition of z.

【0035】なお、平均せん断速度は、以下のようにし
て求められるものである。
The average shear rate is determined as follows.

【0036】次元解析より、せん断速度は、代表速度/
代表長さで与えられる。
According to the dimensional analysis, the shear rate is represented by the representative speed /
Given in representative length.

【0037】この代表速度Vrepは次式で表される。The representative speed V rep is represented by the following equation.

【0038】Vrep=2ωP=4πfP (1) ここで、ωは角振動数(rad/sec)、Pは振幅(cm)、
fは振動数(Hz)である。
V rep = 2ωP = 4πfP (1) where ω is the angular frequency (rad / sec), P is the amplitude (cm),
f is the frequency (Hz).

【0039】速度境界層付近では、粘性力と慣性力が等
しくなるので、次式が成立する。
In the vicinity of the velocity boundary layer, since the viscous force and the inertial force become equal, the following equation is established.

【0040】 μ・∂2U/∂y2=ρ・u・∂u/∂x (2) ここで、μは粘性係数(Pa)、uはx方向の速度(m
/sec.)、ρは密度(kg/m3)である。
Μ∂ 2 U / ∂y 2 = ρρu∂u / ∂x (2) where μ is the viscosity coefficient (Pa), and u is the velocity in the x direction (m
/ Sec.) And ρ is the density (kg / m 3 ).

【0041】上式(2)を代表値に置き換えると、次式
で表される。
When the above equation (2) is replaced with a representative value, it is expressed by the following equation.

【0042】μ・U/δ2 =ρ・U・U/d (3) ここで、δは速度境界層の厚さ(m)、Uは速度(m/
sec.)、dは長さ(m)である。上式(3)から境界層
厚さδは次式で表される。
Μ ・ U / δ 2 = ρ ・ U ・ U / d (3) where δ is the thickness (m) of the velocity boundary layer, and U is the velocity (m /
sec.), d is the length (m). From the above equation (3), the boundary layer thickness δ is expressed by the following equation.

【0043】 δ=[(μ/ρ)・(d/U)]0.5 (4) 往復振動におけるd/Uは周期に相当するので、d/U
=1/fとおくことができる。従って、境界層厚さδは
次式のようになる。
Δ = [(μ / ρ) · (d / U)]0.5(4)  Since d / U in the reciprocating vibration corresponds to the period, d / U
= 1 / f. Therefore, the boundary layer thickness δ is
It becomes like the following formula.

【0044】δ=(μ/ρf)0.5 (5) そこで、境界層厚さδを代表長さとすると、せん断速度
は次式で表される。
Δ = (μ / ρf) 0.5 (5) Therefore, assuming that the boundary layer thickness δ is a representative length, the shear rate is expressed by the following equation.

【0045】 せん断速度=代表速度/代表長さ=4πf1.5ρ0.5P/μ0.5 (6) (6)式は膜分離装置内の半径方向の任意の点でのせん
断速度であり、dsと表す。振幅Pは半径rを用いて、
P=2πrωと表すことができるので、せん断速度dsは
rの関数として次式で表される。
Shear rate = representative velocity / representative length = 4πf 1.5 ρ 0.5 P / μ 0.5 (6) Equation (6) is a shear rate at an arbitrary point in the radial direction in the membrane separation device, and is expressed as ds. . The amplitude P is calculated using the radius r,
Since it can be expressed as P = 2πrω, the shear rate ds is expressed by the following equation as a function of r.

【0046】ds=f(r) (7) 膜分離装置全体の膜面での総せん断速度γtotal(m2
sec)は、 dsと微小区間の面積との積を、図5に示す膜
の半径r1とr2の間で積分することにより求めることが
でき、次式(8)で表される。
Ds = f (r) (7) Total shear rate γ total (m 2 /
sec) can be obtained by integrating the product of ds and the area of the minute section between the radii r 1 and r 2 of the film shown in FIG. 5, and is expressed by the following equation (8).

【0047】 γtotal=8π21.5ρ0.52 (r2 3−r1 3)/3μ0.52 (8) 平均せん断速度Save(1/sec)は総せん断速度S
totalを膜面積A(m2)で除することにより求めること
ができる。よって、 γave=γtotal/A =8π21.5ρ0.52 (r2 3−r1 3)/3μ0.52A (9) となる。
The γ total = 8π 2 f 1.5 ρ 0.5 P 2 (r 2 3 -r 1 3) / 3μ 0.5 r 2 (8) the average shear rate S ave (1 / sec) is the total shear rate S
It can be determined by dividing total by the membrane area A (m 2 ). Therefore, the γ ave = γ total / A = 8π 2 f 1.5 ρ 0.5 P 2 (r 2 3 -r 1 3) / 3μ 0.5 r 2 A (9).

【0048】このようにして、平均せん断速度を求める
ことができる。
In this manner, the average shear rate can be obtained.

【0049】なお、本実施例は振動型膜分離装置につい
て説明したが、膜分離装置はこれに限定されるものでは
なく、平膜を用いた(振動しない)膜分離装置や回転型
膜分離装置等にも適用可能である。要するに、透過性膜
を多段に積層してなる膜モジュールを有する膜分離装置
であればよい。
Although the present embodiment has been described with reference to the vibration type membrane separation apparatus, the membrane type separation apparatus is not limited to this, and a membrane separation apparatus using a flat membrane (not vibrating) or a rotary type membrane separation apparatus. And so on. In short, any membrane separation device having a membrane module in which permeable membranes are stacked in multiple stages may be used.

【0050】[0050]

【発明の効果】本発明は上記のとおり構成されているの
で、次の効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0051】請求項1、2、3記載の発明によれば、実
際に使用する膜分離装置の性能を比較的簡単な方法で正
確に予測し、大規模な試験設備が不要である膜分離装置
の性能予測方法を提供することができる。
According to the first, second, and third aspects of the present invention, the performance of a membrane separator actually used is accurately predicted by a relatively simple method, and a large-scale test facility is not required. Can be provided.

【0052】請求項4記載の発明によれば、膜分離装置
の性能予測方法を実施するに好適な性能予測装置を提供
することができる。
According to the fourth aspect of the present invention, it is possible to provide a performance prediction device suitable for performing the performance prediction method of the membrane separation device.

【0053】請求項5記載の発明によれば、膜分離装置
の性能予測方法で予測した性能で膜分離を行うことがで
きる膜分離装置を提供することができる。
According to the fifth aspect of the present invention, it is possible to provide a membrane separation apparatus capable of performing membrane separation with the performance predicted by the performance prediction method of the membrane separation apparatus.

【0054】請求項6記載の発明によれば、膜の目詰ま
りが生じにくい膜分離装置を提供することができる。
According to the sixth aspect of the present invention, it is possible to provide a membrane separation apparatus in which clogging of the membrane hardly occurs.

【0055】請求項7、8記載の発明によれば、請求項
1〜3記載の方法を実現するに好適なコンピュータプロ
グラムを記録した記録媒体を提供することができる。
According to the seventh and eighth aspects of the present invention, it is possible to provide a recording medium on which a computer program suitable for realizing the methods of the first to third aspects is recorded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を適用するに好適である振動型膜
分離装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a vibration type membrane separation apparatus suitable for applying the method of the present invention.

【図2】図1の振動型膜分離装置に使用するフィルター
パックの一部を示す断面図である。
FIG. 2 is a cross-sectional view showing a part of a filter pack used in the vibration type membrane separation device of FIG.

【図3】振動型膜分離装置による透過処理の概念を示す
図である。
FIG. 3 is a diagram showing a concept of a permeation process by a vibration type membrane separation device.

【図4】本発明の性能予測方法の一例を示すフローチャ
ートである。
FIG. 4 is a flowchart illustrating an example of a performance prediction method according to the present invention.

【図5】本発明の膜モジュール内の被処理液の流れを示
す図である。
FIG. 5 is a view showing a flow of a liquid to be treated in a membrane module of the present invention.

【符号の説明】[Explanation of symbols]

1…供給タンク 3…フィルターパック 4…トーションバー 5…非透過液の貯槽 6…透過液の貯槽 9、9’…透過性膜 DESCRIPTION OF SYMBOLS 1 ... Supply tank 3 ... Filter pack 4 ... Torsion bar 5 ... Non-permeate liquid storage tank 6 ... Permeate liquid storage tank 9, 9 '... Permeable membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹尾 由重 兵庫県神戸市須磨区菅の台1−1−79 Fターム(参考) 4D006 GA03 GA05 GA06 GA07 HA42 HA82 HA86 JA51A KE01P KE02P KE12P KE14P KE30Q LA10 MA03 MA06 PA02 PB08 PB20 PC11  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshie Takeo 1-1-79 Suganodai, Suma-ku, Kobe-shi, Hyogo F-term (reference) 4D006 GA03 GA05 GA06 GA07 HA42 HA82 HA86 JA51A KE01P KE02P KE12P KE14P KE30Q LA10 MA03 MA06 PA02 PB08 PB20 PC11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 透過性膜を多段に積層してなる膜モジュ
ールを有し、透過性膜の一方側に供給した被処理液を透
過液と非透過液に分離する膜分離装置の性能予測方法で
あって、以下の工程(a)〜(f)からなることを特徴
とする膜分離装置の性能予測方法。 (a)所定のデータを入力手段に入力し、(b)入力手
段に入力したデータの中の被処理液の初期濃度から第一
段目の透過性膜における透過流束を計算し、該透過流束
に基づいて透過流量を計算し、さらに、該透過流量から
非透過液の濃度と非透過液の流量と滞留時間を計算し、
(c)第二段目以降の透過性膜については、直前の透過
性膜における非透過液の濃度から当該段の透過性膜にお
ける透過流束を計算し、該透過流束に基づいて透過流量
を計算し、さらに、該透過流量から非透過液の濃度と非
透過液の流量と滞留時間を計算し、(d)膜モジュール
を構成するすべての透過性膜について上記(c)の計算
を行い、(e)次いで、膜モジュール全体の総透過量を
計算し、(f)該総透過量から膜モジュール全体の平均
透過流束および膜モジュール出口での非透過液の濃度を
計算する。
1. A method for predicting the performance of a membrane separation device having a membrane module comprising a plurality of permeable membranes stacked in multiple stages and separating a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid. A method for predicting the performance of a membrane separation apparatus, comprising the following steps (a) to (f). (A) inputting predetermined data to the input means; (b) calculating the permeation flux in the first-stage permeable membrane from the initial concentration of the liquid to be treated in the data input to the input means; Calculate the permeate flow rate based on the flux, further calculate the concentration of the non-permeate and the flow rate and residence time of the non-permeate from the permeate flow,
(C) For the permeable membranes of the second and subsequent stages, the permeation flux in the permeation membrane of this stage is calculated from the concentration of the non-permeate in the immediately preceding permeation membrane, and the permeation flow rate is calculated based on the permeation flux. Is calculated, and the concentration of the non-permeate liquid, the flow rate of the non-permeate liquid, and the residence time are calculated from the permeate flow rate. (D) The above-mentioned calculation (c) is performed for all the permeable membranes constituting the membrane module. (E) Next, the total permeation amount of the entire membrane module is calculated, and (f) the average permeation flux of the entire membrane module and the concentration of the non-permeate at the membrane module outlet are calculated from the total permeation amount.
【請求項2】 透過性膜を多段に積層してなる膜モジュ
ールを有し、透過性膜の一方側に供給した被処理液を透
過液と非透過液に分離する膜分離装置の性能予測方法で
あって、以下の工程(a)〜(j)からなることを特徴
とする膜分離装置の性能予測方法。 (a)所定のデータを入力手段に入力し、(b)入力手
段に入力したデータの中の被処理液の初期濃度から第一
段目の透過性膜における透過流束を計算し、該透過流束
に基づいて透過流量を計算し、さらに、該透過流量から
非透過液の濃度と非透過液の流量と滞留時間を計算し、
(c)第二段目以降の透過性膜については、直前の透過
性膜における非透過液の濃度から当該段の透過性膜にお
ける透過流束を計算し、該透過流束に基づいて透過流量
を計算し、さらに、該透過流量から非透過液の濃度と非
透過液の流量と滞留時間を計算し、(d)膜モジュール
を構成するすべての透過性膜について上記(c)の計算
を行い、(e)次いで、膜モジュール全体の総透過量を
計算し、(f)該総透過量から膜モジュール全体の平均
透過流束および膜モジュール出口での非透過液の濃度と
非透過液総量を計算し、(g)該非透過液総量と上記総
透過量から再度膜分離装置に流入する被処理液の濃度を
計算し、(h)上記(g)で得た被処理液の濃度から第
一段目の透過性膜における透過流束を計算し、該透過流
束に基づいて透過流量を計算し、さらに、該透過流量か
ら非透過液の濃度と非透過液の流量と滞留時間を計算
し、(i)次いで、上記(c)〜(f)と同様の計算を
行った後、(j)さらに、(g)、(h)、(c)〜
(f)の計算を繰り返す。
2. A method for predicting the performance of a membrane separation apparatus having a membrane module in which permeable membranes are stacked in multiple stages and separating a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid. A method for predicting the performance of a membrane separation apparatus, comprising the following steps (a) to (j). (A) inputting predetermined data to the input means; (b) calculating the permeation flux in the first-stage permeable membrane from the initial concentration of the liquid to be treated in the data input to the input means; Calculate the permeate flow rate based on the flux, further calculate the concentration of the non-permeate and the flow rate and residence time of the non-permeate from the permeate flow,
(C) For the permeable membranes of the second and subsequent stages, the permeation flux in the permeation membrane of this stage is calculated from the concentration of the non-permeate in the immediately preceding permeation membrane, and the permeation flow rate is calculated based on the permeation flux. Is calculated, and the concentration of the non-permeate liquid, the flow rate of the non-permeate liquid, and the residence time are calculated from the permeate flow rate. (D) The above-mentioned calculation (c) is performed for all the permeable membranes constituting the membrane module. (E) Next, the total permeation amount of the entire membrane module is calculated, and (f) the average permeation flux of the entire membrane module, the concentration of the non-permeate at the outlet of the membrane module, and the total amount of the non-permeate are calculated from the total permeation amount. (G) calculating the concentration of the liquid to be treated again flowing into the membrane separation device from the total amount of the non-permeated liquid and the total amount of permeation, and (h) calculating the first concentration from the concentration of the liquid to be treated obtained in (g) above. Calculate the permeation flux in the permeable membrane at the stage and permeate based on the permeation flux. After calculating the amount, the concentration of the non-permeate, the flow rate of the non-permeate, and the residence time are calculated from the permeate flow rate, and (i) Then, the same calculations as in (c) to (f) above are performed. , (J) and (g), (h), (c)-
The calculation of (f) is repeated.
【請求項3】 膜分離装置出口における非透過液の濃度
が目標値に達するまで(j)の計算を繰り返して行うこ
とを特徴とする請求項2記載の膜分離装置の性能予測方
法。
3. The method for predicting the performance of a membrane separation device according to claim 2, wherein the calculation of (j) is repeated until the concentration of the non-permeate at the outlet of the membrane separation device reaches a target value.
【請求項4】 透過性膜を多段に積層してなる膜モジュ
ールを有し、透過性膜の一方側に供給した被処理液を透
過液と非透過液に分離する膜分離装置の性能予測装置で
あって、所定のデータを入力するための入力手段と、入
力手段に入力した数値から各段透過性膜における透過流
束を計算するための計算手段と、該透過流束に基づいて
透過流量を計算するための計算手段と、さらに、該透過
流量から非透過液の濃度と非透過液の流量と滞留時間を
計算するための計算手段と、膜モジュール全体の総透過
量を計算するための計算手段と、膜モジュール全体の平
均透過流束および膜モジュール出口での非透過液の濃度
を計算するための計算手段とを有することを特徴とする
膜分離装置の性能予測装置。
4. A device for predicting the performance of a membrane separation device having a membrane module comprising a plurality of permeable membranes stacked in layers and separating a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid. And input means for inputting predetermined data; calculating means for calculating a permeation flux in each permeable membrane from numerical values input to the input means; and a permeation flow rate based on the permeation flux. Calculating means for calculating the concentration of the non-permeate, the flow rate of the non-permeate and the residence time from the permeation flow rate, and calculating the total permeation amount of the entire membrane module. An apparatus for predicting the performance of a membrane separation device, comprising: calculation means; and calculation means for calculating an average permeation flux of the entire membrane module and a concentration of a non-permeate at an outlet of the membrane module.
【請求項5】 透過性膜を多段に積層してなる膜モジュ
ールを有し、透過性膜の一方側に供給した被処理液を透
過液と非透過液に分離する膜分離装置であって、請求項
4記載の性能予測装置を用いて計算された、膜モジュー
ル全体の平均透過流束および膜モジュール出口での非透
過液の濃度にほぼ等しい性能で膜分離を行うことを特徴
とする膜分離装置。
5. A membrane separation device, comprising a membrane module comprising a plurality of permeable membranes stacked in multiple stages, wherein a liquid to be treated supplied to one side of the permeable membrane is separated into a permeated liquid and a non-permeated liquid. A membrane separation, wherein the membrane separation is performed with a performance substantially equal to the average permeation flux of the entire membrane module and the concentration of the non-permeate at the outlet of the membrane module, calculated using the performance prediction device according to claim 4. apparatus.
【請求項6】 透過性膜を振動させることを特徴とする
請求項5記載の膜分離装置。
6. The membrane separation device according to claim 5, wherein the permeable membrane is vibrated.
【請求項7】 透過性膜を多段に積層してなる膜モジュ
ールを有し、透過性膜の一方側に供給した被処理液を透
過液と非透過液に分離する膜分離装置の性能予測方法を
実施するコンピュータプログラムを記録した記録媒体で
あって、(a)所定のデータを入力手段に入力するステ
ップと、(b)入力手段に入力したデータの中の被処理
液の初期濃度から第一段目の透過性膜における透過流束
を計算し、該透過流束に基づいて透過流量を計算し、さ
らに、該透過流量から非透過液の濃度と非透過液の流量
と滞留時間を計算するステップと、(c)第二段目以降
の透過性膜については、直前の透過性膜における非透過
液の濃度から当該段の透過性膜における透過流束を計算
し、該透過流束に基づいて透過流量を計算し、さらに、
該透過流量から非透過液の濃度と非透過液の流量と滞留
時間を計算するステップと、(d)膜モジュールを構成
するすべての透過性膜について上記(c)の計算を行う
ステップと、(e)次いで、膜モジュール全体の総透過
量を計算するステップと、(f)該総透過量から膜モジ
ュール全体の平均透過流束および膜モジュール出口での
非透過液の濃度を計算するステップとを含むコンピュー
タプログラムを記録してあることを特徴とする記録媒
体。
7. A method for predicting the performance of a membrane separation apparatus having a membrane module in which permeable membranes are stacked in multiple stages and separating a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid. And (b) inputting predetermined data to input means, and (b) determining a first concentration of the liquid to be processed in the data input to the input means. Calculate the permeation flux in the permeable membrane at the stage, calculate the permeation flow rate based on the permeation flux, and further calculate the non-permeate concentration, non-permeate flow rate and residence time from the permeation flow And (c) for the second and subsequent permeable membranes, calculate the permeation flux in the permeation membrane of the relevant stage from the concentration of the non-permeate in the immediately preceding permeation membrane, and calculate the permeation flux based on the permeation flux. To calculate the permeation flow rate,
Calculating the concentration of the non-permeate, the flow rate of the non-permeate, and the residence time from the permeate; (d) performing the calculation of (c) for all the permeable membranes constituting the membrane module; e) Next, calculating the total permeation amount of the entire membrane module; and (f) calculating the average permeation flux of the entire membrane module and the concentration of the non-permeate at the membrane module outlet from the total permeation amount. A recording medium on which a computer program is recorded.
【請求項8】 透過性膜を多段に積層してなる膜モジュ
ールを有し、透過性膜の一方側に供給した被処理液を透
過液と非透過液に分離する膜分離装置の性能予測方法を
実施するコンピュータプログラムを記録した記録媒体で
あって、(a)〜(f)のステップに加えて、(f)に
おいて非透過液総量を計算するステップと、(g)該非
透過液総量と上記総透過量から再度膜分離装置に流入す
る被処理液の濃度を計算するステップと、(h)上記
(g)で得た被処理液の濃度から第一段目の透過性膜に
おける透過流束を計算し、該透過流束に基づいて透過流
量を計算し、さらに、該透過流量から非透過液の濃度と
非透過液の流量と滞留時間を計算するステップと、
(i)次いで、上記(c)〜(f)と同様の計算を行う
ステップと、(j)さらに、(g)、(h)、(c)〜
(f)の計算を繰り返すステップとを含むコンピュータ
プログラムを記録してあることを特徴とする請求項7記
載の記録媒体。
8. A method for predicting the performance of a membrane separation apparatus having a membrane module in which permeable membranes are stacked in multiple stages and separating a liquid to be treated supplied to one side of the permeable membrane into a permeated liquid and a non-permeated liquid. Is a recording medium on which a computer program for performing the above is recorded, in addition to the steps (a) to (f), a step of calculating the total amount of the non-permeate in (f); Calculating the concentration of the liquid to be treated flowing into the membrane separation device again from the total permeation amount; and (h) permeating flux in the first-stage permeable membrane from the concentration of the liquid to be treated obtained in (g) above. Calculating a permeate flow rate based on the permeate flux, and further calculating a non-permeate concentration, a non-permeate flow rate and a residence time from the permeate flow,
(I) Next, a step of performing the same calculation as in the above (c) to (f), and (j) further, (g), (h), (c) to
8. The recording medium according to claim 7, wherein a computer program including a step of repeating the calculation of (f) is recorded.
JP11019502A 1999-01-28 1999-01-28 Membrane separator, method and apparatus for predicting its performance, and recording medium Withdrawn JP2000218139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11019502A JP2000218139A (en) 1999-01-28 1999-01-28 Membrane separator, method and apparatus for predicting its performance, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11019502A JP2000218139A (en) 1999-01-28 1999-01-28 Membrane separator, method and apparatus for predicting its performance, and recording medium

Publications (1)

Publication Number Publication Date
JP2000218139A true JP2000218139A (en) 2000-08-08

Family

ID=12001161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11019502A Withdrawn JP2000218139A (en) 1999-01-28 1999-01-28 Membrane separator, method and apparatus for predicting its performance, and recording medium

Country Status (1)

Country Link
JP (1) JP2000218139A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021440A (en) * 2005-07-20 2007-02-01 Nishihara Environment Technology Inc Apparatus and method for estimating treatment capability of one-way type multi-stage nano-filtration facility
WO2009054506A1 (en) * 2007-10-25 2009-04-30 Toray Industries, Inc. Film filtration prediction method, prediction apparatus and film filtration prediction program
JP2011045876A (en) * 2009-08-13 2011-03-10 Millipore Corp Method for improved scaling of filter
WO2014155894A1 (en) * 2013-03-28 2014-10-02 株式会社日立製作所 Reverse osmosis equipment performance calculation method, reverse osmosis equipment performance calculation device and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021440A (en) * 2005-07-20 2007-02-01 Nishihara Environment Technology Inc Apparatus and method for estimating treatment capability of one-way type multi-stage nano-filtration facility
WO2009054506A1 (en) * 2007-10-25 2009-04-30 Toray Industries, Inc. Film filtration prediction method, prediction apparatus and film filtration prediction program
JP5365509B2 (en) * 2007-10-25 2013-12-11 東レ株式会社 Membrane filtration prediction method, prediction apparatus, and membrane filtration prediction program
JP2011045876A (en) * 2009-08-13 2011-03-10 Millipore Corp Method for improved scaling of filter
WO2014155894A1 (en) * 2013-03-28 2014-10-02 株式会社日立製作所 Reverse osmosis equipment performance calculation method, reverse osmosis equipment performance calculation device and program

Similar Documents

Publication Publication Date Title
US8231787B2 (en) Tangential flow filtration system
Miller et al. A crossflow filtration system for constant permeate flux membrane fouling characterization
Vela et al. Analysis of membrane pore blocking models applied to the ultrafiltration of PEG
US11975293B2 (en) Tangential flow filtration device for perfusion applications
US20110035195A1 (en) On-line performance management of membrane separation process
Akoum et al. Treatment of dairy process waters using a vibrating filtration system and NF and RO membranes
Al-Akoum et al. Microfiltration and ultrafiltration of UHT skim milk with a vibrating membrane module
JP2001232158A (en) Diafiltration method
Martí-Calatayud et al. On the rejection and reversibility of fouling in ultrafiltration as assessed by hydraulic impedance spectroscopy
JP2000218139A (en) Membrane separator, method and apparatus for predicting its performance, and recording medium
EP1825904B1 (en) Method of estimating stable membrane filtration flux
EP1773475B1 (en) High throughput screening for rapid development of membranes and membrane processes
CN105921017B (en) The on-line performance management of membrane separating process
Niemi et al. Calculation of permeate flux and rejection in simulation of ultrafiltration and reverse osmosis processes
KR100949658B1 (en) Fluid treatment equipment using filtering membrane
JP5587560B2 (en) Method for reducing performance fluctuations of multilayer filters
Bowen Understanding flux patterns in membrane processing of protein solutions and suspensions
Field Mass transport and the design of membrane systems
JP4979519B2 (en) Operation method of membrane separation activated sludge treatment equipment
Slater et al. Development of a simulation model predicting performance of reverse osmosis batch systems
Skinner et al. Predicting transmembrane pressure rise from biofouling layer compressibility and permeability
KR100970842B1 (en) Equipment and method of treating fluid using filtering membrane
Vela et al. Prediction of flux decline in the ultrafiltration of macromolecules
Beicha et al. Dynamic ultrafiltration model based on concentration polarization-cake layer interplay
JP5034337B2 (en) Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404