JP4957105B2 - Method for producing dihalogenononadien - Google Patents

Method for producing dihalogenononadien Download PDF

Info

Publication number
JP4957105B2
JP4957105B2 JP2006197832A JP2006197832A JP4957105B2 JP 4957105 B2 JP4957105 B2 JP 4957105B2 JP 2006197832 A JP2006197832 A JP 2006197832A JP 2006197832 A JP2006197832 A JP 2006197832A JP 4957105 B2 JP4957105 B2 JP 4957105B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
butene
metathesis reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006197832A
Other languages
Japanese (ja)
Other versions
JP2008024627A (en
Inventor
嘉彦 森
元宏 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006197832A priority Critical patent/JP4957105B2/en
Publication of JP2008024627A publication Critical patent/JP2008024627A/en
Application granted granted Critical
Publication of JP4957105B2 publication Critical patent/JP4957105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は新規なジハロゲノノナジエンの製造方法に関する。さらに詳しくは1,4−ジハロゲノ−2−ブテンとシクロペンテンの開環クロスメタセシス反応からなるジハロゲノノナジエンの製造方法である。   The present invention relates to a novel process for producing dihalogenononadienes. More specifically, it is a method for producing a dihalogenononadien comprising a ring-opening cross metathesis reaction of 1,4-dihalogeno-2-butene and cyclopentene.

近年、高耐熱及び低吸水性のポリアミド樹脂が鉛フリーハンダ対応の材料として注目されている。一方、無黄変性、耐候性及び柔軟性のポリウレタン樹脂が塗料や接着剤用途の材料として注目されている。いずれの樹脂も炭素数6以上で、しかも鎖状構造の脂肪族炭化水素を骨格に持つモノマー原料(末端にアミノ基又はヒドロキシル基等の官能基を持つ)が用いられている。   In recent years, polyamide resins with high heat resistance and low water absorption have attracted attention as materials for lead-free solder. On the other hand, non-yellowing, weather-resistant and flexible polyurethane resins are attracting attention as materials for paints and adhesives. Each resin uses a monomer raw material (having a functional group such as an amino group or a hydroxyl group at the terminal) having 6 or more carbon atoms and having an aliphatic hydrocarbon having a chain structure in the skeleton.

ジハロゲノノナジエンは炭素鎖の末端にアミノ基やヒドロキシル基に容易に転換可能なハロゲン基を持つことから、上記のポリアミドやポリウレタン樹脂のモノマー原料の中間体として期待されている。ジハロゲノノナジエンの製造法として、1,6−ヘプタジインを原料に、パラホルムアルデヒドによるホルミル化、還元、次いで塩素化による製造ルートが知られている(例えば、非特許文献1参照)。   Dihalogenononadiene has a halogen group that can be easily converted into an amino group or a hydroxyl group at the end of the carbon chain, and therefore is expected as an intermediate for the monomer raw materials of the above polyamide and polyurethane resins. As a method for producing dihalogenononadienes, a production route by formylation with 1,6-heptadiine as a raw material, reduction with paraformaldehyde, reduction, and then chlorination is known (for example, see Non-Patent Document 1).

しかしながら、この製造方法は入手が難しい1,6−ヘプタジインを用いること、この1,6−ヘプタジインは三重結合を2個有するため取り扱いが難しいこと、還元には取り扱いが難しい液体アンモニアを使う必要があること、さらには多段プロセスを経由しなければならない等の問題があった。   However, it is necessary to use 1,6-heptadiyne, which is difficult to obtain in this manufacturing method, this 1,6-heptadiine is difficult to handle because it has two triple bonds, and liquid ammonia that is difficult to handle must be used for reduction. In addition, there are problems such as having to go through a multistage process.

P.Lennonら、J.Am.Chem.Soc.105、1233−1241(1983)P. Lennon et al. Am. Chem. Soc. 105, 1233-1124 (1983)

本発明は上記の課題に鑑みてなされたものであり、その目的は入手の容易な原料を用い、しかも1段プロセスで製造できるジハロゲノノナジエンの新規な製造方法を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel method for producing dihalogenononadienes which can be produced in a one-stage process using readily available raw materials.

本発明者らは、上記の課題を解決するため鋭意検討を行った結果、新規なジハロゲノノナジエンの製造方法を見出し、本発明を完成するに至った。即ち、本発明は、下記一般式(1)で表される1,4−ジハロゲノ−2−ブテンとシクロペンテンを、メタセシス反応触媒の存在下で開環クロスメタセシス反応を行うことを特徴とするジハロゲノノナジエンの製造方法である。   As a result of intensive studies to solve the above-described problems, the present inventors have found a novel method for producing dihalogenononadienes and have completed the present invention. That is, the present invention is characterized in that 1,4-dihalogeno-2-butene and cyclopentene represented by the following general formula (1) are subjected to a ring-opening cross-metathesis reaction in the presence of a metathesis reaction catalyst. This is a method for producing nonadiene.

Figure 0004957105
(式中、Xはそれぞれ独立して塩素原子、臭素原子又はヨウ素原子を表す。)
以下、本発明について詳細に説明する。
Figure 0004957105
(In the formula, each X independently represents a chlorine atom, a bromine atom or an iodine atom.)
Hereinafter, the present invention will be described in detail.

本発明は、下記一般式(1)で表される1,4−ジハロゲノ−2−ブテンとシクロペンテンを、メタセシス反応触媒の存在下で開環クロスメタセシス反応を行う下記一般式(2)で表されるジハロゲノノナジエンの製造方法である。   The present invention is represented by the following general formula (2) in which 1,4-dihalogeno-2-butene and cyclopentene represented by the following general formula (1) are subjected to a ring-opening cross-metathesis reaction in the presence of a metathesis reaction catalyst. This is a method for producing dihalogenononadienes.

Figure 0004957105
(式中、Xはそれぞれ独立して塩素原子、臭素原子又はヨウ素原子を表す。)
Figure 0004957105
(In the formula, each X independently represents a chlorine atom, a bromine atom or an iodine atom.)

Figure 0004957105
(式中、Xはそれぞれ独立して塩素原子、臭素原子又はヨウ素原子を示す。)
本発明の製造方法で製造される上記一般式(2)で表されるジハロゲノノナジエンとしては、例えば、1,9−ジクロロ−2,7−ノナジエン、1,9−ジブロモ−2,7−ノナジエン、1,9−ジヨード−2,7−ノナジエン、1−クロロ−9−ブロモ−2,7−ノナジエン、1−クロロ−9−ヨード−2,7−ノナジエン、1−ブロモ−9−ヨード−2,7−ノナジエン等があげられる。これらのうち、安定性が高いこと等から、一般式(2)におけるXが両方とも塩素原子である1,9−ジクロロ−2,7−ノナジエン、一般式(2)におけるXが両方とも臭素原子である1,9−ジブロモ−2,7−ノナジエン、一般式(2)におけるXが両方ともヨウ素原子である1,9−ジヨード−2,7−ノナジエンが好ましい。特に安定性が高いこと及び原料の入手が容易であること等から、一般式(2)におけるXが両方とも塩素原子である1,9−ジクロロ−2,7−ノナジエンがさらに好ましい。
Figure 0004957105
(In the formula, each X independently represents a chlorine atom, a bromine atom or an iodine atom.)
Examples of the dihalogenononadiene represented by the general formula (2) produced by the production method of the present invention include 1,9-dichloro-2,7-nonadiene and 1,9-dibromo-2,7-. Nonadiene, 1,9-diiodo-2,7-nonadiene, 1-chloro-9-bromo-2,7-nonadiene, 1-chloro-9-iodo-2,7-nonadiene, 1-bromo-9-iodo- 2,7-nonadiene and the like. Among these, because of high stability, X in the general formula (2) is 1,9-dichloro-2,7-nonadiene, both of which are chlorine atoms, and both X in the general formula (2) are bromine atoms. 1,9-dibromo-2,7-nonadiene and 1,9-diiodo-2,7-nonadiene in which X in the general formula (2) are both iodine atoms are preferable. In particular, 1,9-dichloro-2,7-nonadiene, in which both X in the general formula (2) are chlorine atoms, is more preferable because of its high stability and easy availability of raw materials.

本発明の製造方法に用いられる上記一般式(1)で表される1,4−ジハロゲノ−2−ブテンは、ブタジエンと塩素との反応により、またシクロペンテンはシクロペンタジエンの部分水添により、工業的に製造されているものであり、容易に入手が可能であり、例えば、1,4−ジクロロ−2−ブテン、1,4−ジブロモ−2−ブテン、1,4−ジヨード−2−ブテン、1−クロロ−4−ブロモ−2−ブテン、1−クロロ−4−ヨード−2−ブテン、1−ブロモ−4−ヨード−2−ブテン等があげられる。   The 1,4-dihalogeno-2-butene represented by the above general formula (1) used in the production method of the present invention is produced by the reaction of butadiene and chlorine, and the cyclopentene is produced by partial hydrogenation of cyclopentadiene. For example, 1,4-dichloro-2-butene, 1,4-dibromo-2-butene, 1,4-diiodo-2-butene, 1 -Chloro-4-bromo-2-butene, 1-chloro-4-iodo-2-butene, 1-bromo-4-iodo-2-butene and the like.

ここで、開環クロスメタセシス反応とは、環状オレフィンと非環状オレフィンを原料に用い、環状オレフィンがメタセシス反応により開環し、さらに非環状オレフィンとメタセシス反応を起こすことによりカップリング生成物を与える反応であり、例えば、「第5版 実験化学講座18 有機化合物の合成VI 金属を用いる有機合成」(日本化学会編・丸善株式会社)第311頁、第322頁に記載されている。   Here, the ring-opening cross-metathesis reaction is a reaction that uses a cyclic olefin and an acyclic olefin as raw materials, the cyclic olefin opens by the metathesis reaction, and further causes a metathesis reaction with the acyclic olefin to give a coupling product. For example, “Fifth Edition Experimental Chemistry Course 18 Synthesis of Organic Compounds VI Organic Synthesis Using Metals” (edited by Chemical Society of Japan, Maruzen Co., Ltd.), pages 311 and 322.

本発明の製造方法における開環クロスメタセシス反応には、通常、メタセシス反応触媒が用いられる。メタセシス反応触媒は周期表第4〜9族の遷移金属化合物であって、前記の1,4−ジハロゲノ−2−ブテンとシクロペンテンとの開環クロスメタセシス反応が進行する触媒であればどのようなものでもよく、メタセシス反応触媒としては、例えば、(i)遷移金属化合物と助触媒として機能するアルキル化剤又はルイス酸との組み合わせによる触媒、(ii)遷移金属−カルベン錯体触媒、(iii)担体に遷移金属化合物を担持した固体触媒等があげられ、例えば、「第5版 実験化学講座18 有機化合物の合成VI 金属を用いる有機合成」(日本化学会編・丸善株式会社)第313頁〜第314頁や、「触媒講座 第8巻(工業触媒反応編2)工業触媒反応I」(触媒学会編・講談社サイエンティフィク)第70頁〜第71頁に記載されている触媒が使用できる。   In the ring-opening cross metathesis reaction in the production method of the present invention, a metathesis reaction catalyst is usually used. The metathesis reaction catalyst is a transition metal compound of Groups 4 to 9 of the periodic table, and any catalyst that undergoes the ring-opening cross-metathesis reaction of 1,4-dihalogeno-2-butene and cyclopentene can be used. As the metathesis reaction catalyst, for example, (i) a catalyst by a combination of a transition metal compound and an alkylating agent or a Lewis acid that functions as a co-catalyst, (ii) a transition metal-carbene complex catalyst, (iii) a support Examples include solid catalysts carrying transition metal compounds. For example, “Fifth Edition Experimental Chemistry Lecture 18 Synthesis of Organic Compounds VI Organic Synthesis Using Metals” (edited by Chemical Society of Japan, Maruzen Co., Ltd.) pp. 313 to 314 Page, "Catalyst Course Vol. 8 (Industrial Catalysis Reaction 2) Industrial Catalysis Reaction I" (Catalyst Society, Kodansha Scientific), pages 70-71 The catalyst can be used that is.

前記(i)の触媒における遷移金属化合物としては、高い触媒活性と安定性を保持するものであれば、特に限定されるものではないが、例えば、TiCl、TiBr等のチタン化合物類;VOCl、VOBr等のバナジウム化合物類;NbBr、NbCl、Nb(OEt)等のニオブ化合物類;TaBr、TaCl、Ta(OMe)、Ta(OBu)等のタンタル化合物類;MoBr、MoBr、MoBr、MoCl、MoCl、MoF、MoOCl、MoOF等のモリブデン化合物類;WBr、WCl、WBr、WCl、WCl、WCl、WF、WI、WOBr、WOCl、WOF、WCl(OCCl、W(CO)等のタングステン化合物類;CHReO、ReCl、ReCl(CO)等のレニウム化合物類、RuBr、RuCl、Ru(CO)12等のルテニウム化合物類;RhCl等のロジウム化合物類;IrCl等のイリジウム化合物類等があげられる。 The transition metal compound in the catalyst (i) is not particularly limited as long as it retains high catalytic activity and stability. For example, titanium compounds such as TiCl 4 and TiBr 4 ; VOCl 3 , vanadium compounds such as VOBr 3 ; niobium compounds such as NbBr 5 , NbCl 5 and Nb (OEt) 5 ; tantalum compounds such as TaBr 5 , TaCl 5 , Ta (OMe) 5 and Ta (OBu) 5 ; MoBr 2 , MoBr 3 , MoBr 4 , MoCl 4 , MoCl 5 , MoF 4 , MoOCl 4 , MoOF 4 and other molybdenum compounds; WBr 2 , WCl 2 , WBr 4 , WCl 4 , WCl 5 , WCl 6 , WF 4 , WF 4 , WF 4 WI 2, WOBr 4, WOCl 4 , WOF 4, WCl 4 (OC 6 H 4 Cl 2) 2, W ( O) tungsten compounds such as 6; CH 3 ReO 3, ReCl 5, ReCl (CO) rhenium compounds such as 5, RuBr 3, RuCl 3, Ru 3 (CO) ruthenium compounds such as 12; RhCl 3, etc. Rhodium compounds; iridium compounds such as IrCl 3 and the like.

前記(i)の触媒における助触媒として機能するアルキル化剤又はルイス酸としては、高い触媒活性を発現できるものであれば、特に限定されるものではないが、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリへキシルアルミニウム、トリオクチルアルミニウム、トリフェニルアルミニウム、トリベンジルアルミニウム、ジエチルアルミニウムモノクロリド、ジ−n−ブチルアルミニウムモノクロリド、ジエチルアルミニウムモノヒドリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、メチルアルミノキサン、イソブチルアルミノキサン等の有機アルミニウム化合物類;テトラメチルスズ、ジエチルジメチルスズ、テトラエチルスズ、ジブチルジエチルスズ、テトラブチルスズ、テトラオクチルスズ、トリオクチルスズフロリド、トリオクチルスズクロリド、トリオクチルスズブロミド、トリオクチルスズアイオダイド、ジブチルスズジフロリド、ジブチルスズジクロリド、ジブチルスズジブロミド、ジブチルスズジアイオダイド、ブチルスズトリフロリド、ブチルスズトリクロリド、ブチルスズトリブロミド等の有機スズ化合物類;メチルリチウム、エチルリチウム、n−ブチルリチウム、sec−ブチルリチウム、フェニルリチウム等の有機リチウム化合物類;メチルマグネシウムアイオダイド、エチルマグネシウムブロミド、メチルマグネシウムブロミド、n−プロピルマグネシウムブロミド、t−ブチルマグネシウムクロリド、アリールマグネシウムクロリド等の有機マグネシウム化合物類;ジエチル亜鉛等の有機亜鉛化合物類;シクロペンチルナトリウム等の有機ナトリウム化合物類;トリメチルホウ素、トリエチルホウ素、トリ−n−ブチルホウ素、トリフェニルホウ素、トリス(パーフルオロフェニル)ホウ素、N,N−ジメチルアニリニウムテトラキス(パーフルオロフェニル)ボレート、トリチルテトラキス(パーフルオロフェニル)ボレート等の有機ホウ素化合物類;トリフェニルアンチモン等の有機アンチモン化合物類等があげられる。   The alkylating agent or Lewis acid that functions as a co-catalyst in the catalyst (i) is not particularly limited as long as it can exhibit high catalytic activity. For example, trimethylaluminum, triethylaluminum, Isobutylaluminum, trihexylaluminum, trioctylaluminum, triphenylaluminum, tribenzylaluminum, diethylaluminum monochloride, di-n-butylaluminum monochloride, diethylaluminum monohydride, ethylaluminum sesquichloride, ethylaluminum dichloride, methylaluminoxane , Organoaluminum compounds such as isobutylaluminoxane; tetramethyltin, diethyldimethyltin, tetraethyltin, dibutyldiethyltin, teto Butyltin, tetraoctyltin, trioctyltin fluoride, trioctyltin chloride, trioctyltin bromide, trioctyltin iodide, dibutyltin difluoride, dibutyltin dichloride, dibutyltin dibromide, dibutyltin diiodide, butyltin trifluoride, Organotin compounds such as butyltin trichloride and butyltin tribromide; Organolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium and phenyllithium; methylmagnesium iodide, ethylmagnesium bromide, methylmagnesium Organomagnesium compounds such as bromide, n-propylmagnesium bromide, t-butylmagnesium chloride, arylmagnesium chloride; Organic zinc compounds such as tilzinc; Organic sodium compounds such as cyclopentyl sodium; trimethylboron, triethylboron, tri-n-butylboron, triphenylboron, tris (perfluorophenyl) boron, N, N-dimethylanilinium And organic boron compounds such as tetrakis (perfluorophenyl) borate and trityltetrakis (perfluorophenyl) borate; and organic antimony compounds such as triphenylantimony.

さらに第3成分として、開環クロスメタセシス反応に影響を及ぼさない程度で、メタノール、エタノール等のアルコール、フェノール等を加えても良い。   Furthermore, alcohols such as methanol and ethanol, phenols and the like may be added as a third component to the extent that the ring-opening cross-metathesis reaction is not affected.

前記(ii)の遷移金属−カルベン錯体触媒としては、高い触媒活性を発現できるものであれば特に限定されるものではないが、例えば、W(N−2,6−Pr )(CHBu)(OBu、W(N−2,6−Pr )(CHBu)(OCMeCF、W(N−2,6−Pr )(CHBu)(OCMe(CF、W(N−2,6−Pr )(CHCMePh)(OBu、W(N−2,6−Pr )(CHCMePh)(OCMeCF、W(N−2,6−Pr )(CHCMePh)(OCMe(CF等のタングステン−カルベン錯体類;Mo(N−2,6−Pr )(CHBu)(OBu、Mo(N−2,6−Pr )(CHBu)(OCMeCF、Mo(N−2,6−Pr )(CHBu)(OCMe(CF、Mo(N−2,6−Pr )(CHCMePh)(OBu、Mo(N−2,6−Pr )(CHCMePh)(OCMeCF、Mo(N−2,6−Pr )(CHCMePh)(OCMe(CF、Mo(N−2,6−Pr )(CHCMePh)(BIPHEN)、Mo(N−2,6−Pr )(CHCMePh)(BINO)(THF)等のモリブデン−カルベン錯体類、Re(CBu)(CHBu)(O−2,6−Pr 、Re(CBu)(CHBu)(O−2−Bu、Re(CBu)(CHBu)(OCMeCF、Re(CBu)(CHBu)(OCMe(CF、Re(CBu)(CHBu)(O−2,6−Me等のレニウム−カルベン錯体類;ベンジリデン(1,3−ジメシチル−2−イミダゾリジンイリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3−ジメシチル−2−イミダゾリジンイリデン)(3−メチル−2−ブテンイリデン)(トリシクロペンチルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチル−2−オクタヒドロベンズイミダゾールイリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン[1,3−ビス(1−フェニルエチル)−4−イミダゾリン−2−イリデン](トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチル−2,3−ジヒドロベンズイミダゾール−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(トリシクロヘキシルホスフィン)(1,3,4−トリフェニル−2,3,4,5−テトラヒドロ−1H−1,2,4−トリアゾール−5−イリデン)ルテニウムジクロリド、(1,3−ジイソプロピルヘキサヒドロピリミジン−2−イリデン)(エトキシメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチル−2−イミダゾリジンイリデン)ピリジンルテニウムジクロリド、ベンジリデンビス(1,3−ジシクロヘキシル−2−イミダゾリジンイリデン)ルテニウムジクロリド、ベンジリデンビス(1,3−ジイソプロピル−4−イミダゾリン−2−イリデン)ルテニウムジクロリド、(1,3−ジメシチルイミダゾリジン−2−イリデン)(フェニルビニリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(t−ブチルビニリデン)(1,3−ジイソプロピル−4−イミダゾリン−2−イリデン)(トリシクロペンチルホスフィン)ルテニウムジクロリド、ビス(1,3−ジシクロヘキシル−4−イミダゾリン−2−イリデン)フェニルビニリデンルテニウムジクロリド、ベンジリデン−ビス(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3−ジメシチル−2−イミダゾリジンイリデン)(o−イソプロポキシフェニルメチレン)ルテニウムジクロリド、トリシクロヘキシルホスフィン(o−イソプロポキシフェニルメチレン)ルテニウムジクロリド、(3−メチル−2−ブテンイリデン)ビス(トリシクロペンチルホスフィン)ルテニウムジクロリド、(3−メチル−2−ブテンイリデン)ビス(トリシクロヘキシルホスフィン)ルテニウムジクロリド等のルテニウム−カルベン錯体類等があげられる。 The transition metal (ii) - The carbene complex catalyst is not particularly limited as long as it can exhibit a high catalytic activity, for example, W (N-2,6-Pr i 2 C 6 H 3 ) (CHBu t) (OBu t ) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OCMe 2 CF 3) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t ) (OCMe (CF 3) 2) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OBu t) 2, W (N- 2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OCMe 2 CF 3) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OCMe (CF 3 ) 2 ) Tungsten-carbene complexes such as 2 ; Mo (N-2) , 6-Pr i 2 C 6 H 3) (CHBu t) (OBu t) 2, Mo (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OCMe 2 CF 3) 2, Mo (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OCMe (CF 3) 2) 2, Mo (N-2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OBu t) 2, Mo ( N-2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OCMe 2 CF 3) 2, Mo (N-2,6-Pr i 2 C 6 H 3 ) (CHCMe 2 Ph) (OCMe (CF 3) 2) 2, Mo (N-2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (BIPHEN), Mo (N-2,6-Pr i 2 C 6 H 3) ( CHCMe 2 Ph) (BINO) (THF) , etc. Molybdenum - carbene complexes, Re (CBu t) (CHBu t) (O-2,6-Pr i 2 C 6 H 3) 2, Re (CBu t) (CHBu t) (O-2-Bu t C 6 H 4 ) 2 , Re (CBu t ) (CHBu t ) (OCMe 2 CF 3 ) 2 , Re (CBu t ) (CHBu t ) (OCMe (CF 3 ) 2 ) 2 , Re (CBu t ) (CHBu t ) Rhenium-carbene complexes such as (O-2,6-Me 2 C 6 H 3 ) 2 ; benzylidene (1,3-dimesityl-2-imidazolidineylidene) (tricyclohexylphosphine) ruthenium dichloride, (1,3 -Dimesityl-2-imidazolidineylidene) (3-methyl-2-buteneylidene) (tricyclopentylphosphine) ruthenium dichloride, benzylidene (1 3-Dimesityl-2-octahydrobenzimidazolylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene [1,3-bis (1-phenylethyl) -4-imidazoline-2-ylidene] (tricyclohexylphosphine) ruthenium dichloride , Benzylidene (1,3-dimesityl-2,3-dihydrobenzimidazol-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (tricyclohexylphosphine) (1,3,4-triphenyl-2,3,4) , 5-Tetrahydro-1H-1,2,4-triazole-5-ylidene) ruthenium dichloride, (1,3-diisopropylhexahydropyrimidin-2-ylidene) (ethoxymethylene) (tricyclohexylphos ) Ruthenium dichloride, benzylidene (1,3-dimesityl-2-imidazolidine ylidene) pyridine ruthenium dichloride, benzylidene bis (1,3-dicyclohexyl-2-imidazolidine ylidene) ruthenium dichloride, benzylidene bis (1,3 -Diisopropyl-4-imidazoline-2-ylidene) ruthenium dichloride, (1,3-dimesitylmimidazolidine-2-ylidene) (phenylvinylidene) (tricyclohexylphosphine) ruthenium dichloride, (t-butylvinylidene) (1, 3-diisopropyl-4-imidazoline-2-ylidene) (tricyclopentylphosphine) ruthenium dichloride, bis (1,3-dicyclohexyl-4-imidazoline-2-ylidene) phenylvinylidenerutheniumdi Chloride, benzylidene-bis (tricyclohexylphosphine) ruthenium dichloride, (1,3-dimesityl-2-imidazolidineylidene) (o-isopropoxyphenylmethylene) ruthenium dichloride, tricyclohexylphosphine (o-isopropoxyphenylmethylene) ruthenium Examples thereof include ruthenium-carbene complexes such as dichloride, (3-methyl-2-buteneylidene) bis (tricyclopentylphosphine) ruthenium dichloride, and (3-methyl-2-buteneylidene) bis (tricyclohexylphosphine) ruthenium dichloride.

ここで、上記式中、Prはイソプロピル基を、Buはtert−ブチル基を、Meはメチル基を、Phはフェニル基を、BIPHENは、5,5',6,6'−テトラメチル−3,3'−ジ−tert−ブチル−1,1'−ビフェニル−2,2'−ジオキシ基を、BINOは、1,1'−ジナフチル−2,2'−ジオキシ基を、THFはテトラヒドロフランを、それぞれ表す。 Here, in the above formula, the Pr i isopropyl group, a Bu t is tert- butyl group, Me is a a methyl group, Ph refers to a phenyl group, BIPHEN is 5,5 ', 6,6'-tetramethyl −3,3′-di-tert-butyl-1,1′-biphenyl-2,2′-dioxy group, BINO represents 1,1′-dinaphthyl-2,2′-dioxy group, and THF represents tetrahydrofuran. Respectively.

前記(iii)の固体触媒における遷移金属化合物としては、安定性が高いものであれば、特に限定されるものではないが、例えば、V、Nb、Ta、MoO、MoO、WO、Re、ReO、CHReO、RuO、Rh、Ir等の酸化物類;MoS、MoS、WS、Re等の硫化物類等があげられる。また、担体としては、特に限定されるものではないが、例えば、Al、SiO、TiO、MgO、ZrO、Ta、Nb、WO、SnO、SiO−Al等があげられる。 The transition metal compound in the solid catalyst (iii) is not particularly limited as long as it has high stability. For example, V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 , MoO 2 , oxides such as MoO 3 , WO 3 , Re 2 O 7 , ReO 3 , CH 3 ReO 7 , RuO 2 , Rh 2 O 3 , Ir 2 O 3 ; MoS 3 , MoS 2 , WS 2 , Re 2 sulfides such as S 7, and the like. Further, the carrier is not particularly limited. For example, Al 2 O 3 , SiO 2 , TiO 2 , MgO, ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , WO 3 , SnO 2 , SiO 2- Al 2 O 3 and the like.

これらのメタセシス反応触媒は単独で使用し得るのみならず、二種以上を混合して用いることも可能である。これらのうち、触媒活性が高く且つ取り扱いの安全性に優れることから、遷移金属−カルベン錯体触媒を使用することが好ましく、さらに好ましくはルテニウム−カルベン錯体類が用いられる。   These metathesis reaction catalysts can be used alone or in combination of two or more. Of these, a transition metal-carbene complex catalyst is preferably used because of its high catalytic activity and excellent handling safety, and ruthenium-carbene complexes are more preferably used.

メタセシス反応触媒の使用量は特に制限はなく、開環クロスメタセシス反応が効率的に行えることから、原料である1,4−ジハロゲノ−2−ブテン1モルに対して0.000001〜10.0モル%であり、好ましくは0.00001〜5.0モル%、より好ましくは0.0001〜1.0モル%ある。   The amount of the metathesis reaction catalyst used is not particularly limited, and the ring-opening cross-metathesis reaction can be efficiently performed. Therefore, 0.000001 to 10.0 mol with respect to 1 mol of 1,4-dihalogeno-2-butene as a raw material. %, Preferably 0.00001 to 5.0 mol%, more preferably 0.0001 to 1.0 mol%.

本発明の開環クロスメタセシス反応における1,4−ジハロゲノ−2−ブテンとシクロペンテンの仕込み比率は、特に制限されないが、触媒活性が高くなることから、1,4−ジハロゲノ−2−ブテン1モルに対してシクロペンテンの量は0.001〜200モル、好ましくは0.01〜100モル、より好ましくは0.05〜50モルである。ここで、1,4−ジハロゲノ−2−ブテンは、トランス体とシス体の幾何異性体を持つが、本発明のジハロゲノノナジエン製造における原料として大きな違いはなく、いずれかを、又、混合物として使用しても差し支えない。   The charging ratio of 1,4-dihalogeno-2-butene and cyclopentene in the ring-opening cross-metathesis reaction of the present invention is not particularly limited, but since the catalytic activity is increased, 1 mol of 1,4-dihalogeno-2-butene is added. On the other hand, the amount of cyclopentene is 0.001 to 200 mol, preferably 0.01 to 100 mol, more preferably 0.05 to 50 mol. Here, 1,4-dihalogeno-2-butene has a trans isomer and a cis isomer, but there is no significant difference as a raw material in the production of the dihalogenononadiene of the present invention. It can be used as.

ここで、上記一般式(1)で示される1,4−ジハロゲノ−2−ブテンとシクロペンテンとの開環クロスメタセシス反応は、溶媒中又は無溶媒で行うことができる。そのような溶媒としては、特に限定するものではないが、例えば、ブタン、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、シクロオクタン、デカヒドロナフタレン等の脂環族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;エチルエーテル、テトラヒドロフラン、ジオキサン、ジグライム、トリグライム等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、テトラクロロエタン等のハロゲン化炭化水素類等が挙げられる。さらに、原料の一方であるシクロペンテン、又は1,4−ジハロゲノ−2−ブテンを溶媒に用いることも可能である。これらの溶媒は単独で使用し得るのみならず、二種以上を混合して用いることも可能である。   Here, the ring-opening cross metathesis reaction of 1,4-dihalogeno-2-butene and cyclopentene represented by the general formula (1) can be performed in a solvent or without a solvent. Examples of such a solvent include, but are not limited to, aliphatic hydrocarbons such as butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; Cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, cyclooctane, decahydronaphthalene and other alicyclic hydrocarbons; benzene, toluene, xylene and other aromatic hydrocarbons; ethyl ether, tetrahydrofuran, dioxane, diglyme, triglyme, etc. Ethers such as acetone, methyl ethyl ketone, cyclohexanone, etc .; esters such as methyl acetate, ethyl acetate; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethane, etc. It is. Further, cyclopentene or 1,4-dihalogeno-2-butene, which is one of the raw materials, can be used as a solvent. These solvents can be used alone or in combination of two or more.

開環クロスメタセシス反応における温度は特に制限はなく、例えば−50〜250℃、好ましくは−20〜150℃である。反応圧力は特に制限されないが、通常、絶対圧で0.01〜30kg/cmであり、好ましくは0.1〜3kg/cmである。また、反応時間は温度や原料の基質濃度に左右され、一概に決めることはできないが、通常、5分〜500時間である。反応中の雰囲気は、特に限定されないが、空気と水分を避けて行うことが望ましく、例えば窒素、アルゴン、ヘリウム等の不活性ガス雰囲気で反応が行うことが好ましい。また、原料及び溶媒は十分に乾燥しておくことが好ましい。 The temperature in the ring-opening cross metathesis reaction is not particularly limited, and is, for example, −50 to 250 ° C., preferably −20 to 150 ° C. The reaction pressure is not particularly limited, but is usually 0.01 to 30 kg / cm 2 in absolute pressure, preferably 0.1 to 3 kg / cm 2 . The reaction time depends on the temperature and the substrate concentration of the raw material and cannot be determined in general, but is usually 5 minutes to 500 hours. The atmosphere during the reaction is not particularly limited, but it is desirable to perform the reaction while avoiding air and moisture. For example, the reaction is preferably performed in an inert gas atmosphere such as nitrogen, argon, or helium. Moreover, it is preferable that the raw material and the solvent are sufficiently dried.

本発明の開環クロスメタセシス反応においては、反応方法に特に制限はなく、原料である1,4−ジハロゲノ−2−ブテン、シクロペンテン、触媒及び必要であれば溶媒を一度に反応装置に仕込む回分式、原料である1,4−ジハロゲノ−2−ブテン、シクロペンテン及び必要であれば溶媒等を連続的に供給すると共に未反応原料、及び反応液を連続的に抜出す固定床又は懸濁床の連続式のいずれでも実施できる。また、反応状態は特に制限されず、液相又は気相状態、さらに気液混合状態で行うことができる。   In the ring-opening cross-metathesis reaction of the present invention, the reaction method is not particularly limited, and a batch type in which raw materials 1,4-dihalogeno-2-butene, cyclopentene, a catalyst and, if necessary, a solvent are charged into a reactor at once. 1,4-dihalogeno-2-butene as raw materials, cyclopentene, and if necessary, a solvent or the like is continuously supplied, and unreacted raw materials and a fixed bed or a suspension bed in which a reaction solution is continuously extracted Any of the equations can be implemented. The reaction state is not particularly limited, and the reaction can be performed in a liquid phase or a gas phase, and further in a gas-liquid mixed state.

本発明のジハロゲノノナジエンは、アミノ基やヒドロキシル基等に容易に転換可能な官能基を鎖状炭化水素の両末端に持つことから、ポリアミド樹脂やポリウレタン樹脂のモノマー原料及び医農薬原料の中間体として、好適に使用することができる。   Since the dihalogenononadiene of the present invention has functional groups that can be easily converted into amino groups, hydroxyl groups, etc. at both ends of the chain hydrocarbons, it is an intermediate between monomer raw materials and raw materials for pharmaceutical and agrochemicals of polyamide resins and polyurethane resins. It can be suitably used as a body.

本発明は、ポリアミドやポリウレタン樹脂のモノマー原料及び医農薬原料の中間体として有用なジハロゲノノナジエンの効率的な製造方法を提供するものであり、工業的にも非常に有用である。   The present invention provides an efficient production method of dihalogenononadiene useful as an intermediate for a monomer raw material of polyamide or polyurethane resin and a raw material for medical and agricultural chemicals, and is very useful industrially.

以下に、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited to these examples.

以下に実施例に用いた測定方法を示す。   The measurement methods used in the examples are shown below.

<ガスクロマトグラフ分析>
反応液に内標としてテトラデカンを加え、ジーエルサイエンス製TC−1カラム(商品名)が備わったガスクロマトグラフ(島津製作所製GC−1700)に反応液0.4μlを注入し、分析を行った。
<Gas chromatographic analysis>
Tetradecane was added as an internal standard to the reaction solution, and 0.4 μl of the reaction solution was injected into a gas chromatograph (GC-1700 manufactured by Shimadzu Corporation) equipped with a TC-1 column (trade name) manufactured by GL Sciences, and analysis was performed.

H−核磁気共鳴吸収(以下、NMRと記す)測定>
核磁気共鳴装置(日本電子製、商品名JNMGX400)を用い、H−NMR測定を行った。
<1 H- nuclear magnetic resonance (hereinafter, referred to as NMR) measurement>
1 H-NMR measurement was performed using a nuclear magnetic resonance apparatus (trade name JNMGX400, manufactured by JEOL Ltd.).

<GC−MS測定>
ガスクロマトグラフ質量分析計(GC部; ヒューレット・パッカード製、商品名HP6890、MS部; 日本電子製、商品名JMS−700)を用い測定を行った。
<GC-MS measurement>
Measurement was performed using a gas chromatograph mass spectrometer (GC part; manufactured by Hewlett-Packard, trade name HP6890, MS part; manufactured by JEOL, trade name JMS-700).

実施例1
(1,3−ジメシチル−2−イミダゾリジンイリデン)(o−イソプロポキシフェニルメチレン)ルテニウムジクロリド(Aldrich製、商品名Hoveyda−Grubbs Catalyst 2nd Generation)6.8mg(10.9μmol)とジクロロメタン20mlを50mlのシュレンク管に入れた。次いでシクロペンテン2.11g(31.0mmol)を加え、さらに、1,4−ジクロロ−2−ブテン(cis体:trans体=36:64)1.50g(12.0mmol)を加えた。シュレンク管をオイルバス中で40℃に加温し、3時間攪拌することにより開環クロスメタセシス反応を行った。反応終了後、シュレンク管を冷却し、反応液を得た。
Example 1
(1,3 dimesityl-2-imidazolidine ylidene) (o-isopropoxyphenylmethylene) ruthenium dichloride (Aldrich, trade name Hoveyda-Grubbs Catalyst 2 nd Generation) and 6.8 mg (10.9Myumol) and dichloromethane 20ml Place in a 50 ml Schlenk tube. Next, 2.11 g (31.0 mmol) of cyclopentene was added, and further 1.50 g (12.0 mmol) of 1,4-dichloro-2-butene (cis isomer: trans isomer = 36: 64) was added. The Schlenk tube was heated to 40 ° C. in an oil bath and stirred for 3 hours to perform a ring-opening cross metathesis reaction. After completion of the reaction, the Schlenk tube was cooled to obtain a reaction solution.

シリカゲル(和光純薬工業製、商品名ワコーゲル)が充填されたカラムクロマトグラフに反応液を入れ、ヘキサンとジクロロメタンの混合物(体積比2:1)300mlで展開し、反応液から触媒を除去した。得られた液を真空蒸留(40℃、4mmHgにより、無色透明液体を分離した。   The reaction solution was placed in a column chromatograph packed with silica gel (trade name Wakogel, manufactured by Wako Pure Chemical Industries, Ltd.) and developed with 300 ml of a mixture of hexane and dichloromethane (volume ratio 2: 1) to remove the catalyst from the reaction solution. The obtained liquid was subjected to vacuum distillation (40 ° C., 4 mmHg to separate a colorless transparent liquid).

得られた液体のH−NMR及びGC-MS測定を行った。 1 H-NMR and GC-MS measurement of the obtained liquid was performed.

H−NMR(CDCl溶媒)測定の結果、δ1.46〜1.55ppm(m)に炭素鎖中央の3個のメチレン基の内、中央1個のメチレン基に基づくピーク、δ2.00〜2.10ppm(m)に炭素鎖中央の3個のメチレン基の内、二重結合に隣接する2個のメチレン基に基づくピーク、δ4.06ppm(d)に塩素原子に隣接する炭素差末端の2個のメチレン基に基づくピーク、δ5.60〜5.75ppm(m)に二重結合部位の4個の水素原子に基づくピークが観察された。 As a result of 1 H-NMR (CDCl 3 solvent) measurement, a peak based on one methylene group in the middle of the three methylene groups in the center of the carbon chain at δ 1.46 to 1.55 ppm (m), δ 2.00 to 2.10 ppm (m) is the peak based on two methylene groups adjacent to the double bond among the three methylene groups in the center of the carbon chain, and δ 4.06 ppm (d) is the carbon-terminated terminal adjacent to the chlorine atom. A peak based on four hydrogen atoms at the double bond site was observed at δ 5.60-5.75 ppm (m), a peak based on two methylene groups.

GC−MS測定の結果、主成分はm/e192と194に分子イオンピークが確認された。   As a result of GC-MS measurement, molecular ion peaks were confirmed at m / e 192 and 194 as main components.

これらの結果から、この液体は1,9−ジクロロ−2,7−ノナジエンと同定された。   From these results, this liquid was identified as 1,9-dichloro-2,7-nonadiene.

一方、反応液をガスクロマトグラフで分析した結果、1,4−ジクロロ−2−ブテンの転化率は55.0%、1,9−ジクロロ−2,7−ノナジエンの選択率は60.0%であった。これらを表1に示す。   On the other hand, as a result of analyzing the reaction solution by gas chromatography, the conversion rate of 1,4-dichloro-2-butene was 55.0%, and the selectivity of 1,9-dichloro-2,7-nonadiene was 60.0%. there were. These are shown in Table 1.

Figure 0004957105
実施例2〜4
表1に示すメタセシス反応触媒、1,4−ジクロロ−2−ブテン及び反応条件を用いた以外は、実施例1と同様にして開環クロスメタセシス反応を行い、反応液を得た。
Figure 0004957105
Examples 2-4
A ring-opening cross-metathesis reaction was performed in the same manner as in Example 1 except that the metathesis reaction catalyst, 1,4-dichloro-2-butene and reaction conditions shown in Table 1 were used to obtain a reaction solution.

反応液をガスクロマトグラフで分析した結果、1,9−ジクロロ−2,7−ノナジエンであると同定でき、1,4−ジクロロ−2−ブテンの転化率、1,9−ジクロロ−2,7−ノナジエンの選択率は、それぞれ表1に示す通りであった。   As a result of analyzing the reaction liquid by gas chromatography, it can be identified as 1,9-dichloro-2,7-nonadiene, the conversion rate of 1,4-dichloro-2-butene, 1,9-dichloro-2,7- The selectivity for nonadiene was as shown in Table 1, respectively.

実施例5
1,4−ジクロロ−2−ブテンの代わりに1,4−ジブロモ−2−ブテン(trans体)2.57g(12.0mmol)を用いた以外は、実施例1と同様にして開環クロスメタセシス反応を行い、反応液を得た。
Example 5
Ring-opening cross metathesis in the same manner as in Example 1 except that 2.57 g (12.0 mmol) of 1,4-dibromo-2-butene (trans form) was used instead of 1,4-dichloro-2-butene. Reaction was performed and the reaction liquid was obtained.

シリカゲル(和光純薬工業製、商品名ワコーゲル)が充填されたカラムクロマトグラフに反応液を入れ、ヘキサンとジクロロメタンの混合物(体積比2:1)300mlで展開し、反応液から触媒を除去した。得られた液を真空蒸留(40℃、4mmHgにより、無色透明液体を分離した。   The reaction solution was placed in a column chromatograph packed with silica gel (trade name Wakogel, manufactured by Wako Pure Chemical Industries, Ltd.) and developed with 300 ml of a mixture of hexane and dichloromethane (volume ratio 2: 1) to remove the catalyst from the reaction solution. The obtained liquid was subjected to vacuum distillation (40 ° C., 4 mmHg to separate a colorless transparent liquid).

得られた液体のH−NMR及びGC-MS測定を行った。 1 H-NMR and GC-MS measurement of the obtained liquid was performed.

H−NMR(CDCl溶媒)測定の結果、δ1.5.0〜1.60ppm(m)に炭素鎖中央の3個のメチレン基の内、中央1個のメチレン基に基づくピーク、δ2.02〜2.13ppm(m)に炭素鎖中央の3個のメチレン基の内、二重結合に隣接する2個のメチレン基に基づくピーク、δ3.95ppm(d)に臭素原子に隣接する炭素鎖末端の2個のメチレン基に基づくピーク、δ5.64〜5.88ppm(m)に二重結合部位の4個の水素原子に基づくピークが観察された。 As a result of 1 H-NMR (CDCl 3 solvent) measurement, a peak based on one methylene group in the middle of the three methylene groups in the middle of the carbon chain at δ 1.5.0 to 1.60 ppm (m), δ 2. A peak based on two methylene groups adjacent to a double bond among three methylene groups at the center of the carbon chain at 02 to 2.13 ppm (m), a carbon chain adjacent to a bromine atom at δ 3.95 ppm (d) A peak based on the two methylene groups at the end and a peak based on four hydrogen atoms at the double bond site were observed at δ 5.64 to 5.88 ppm (m).

GC−MS測定の結果、主成分はm/e280と282に分子イオンピークが確認された。   As a result of GC-MS measurement, molecular ion peaks were confirmed at m / e 280 and 282 as main components.

これらの結果から、この液体の主成分は1,9−ジブロモ−2,7−ノナジエンと同定された。   From these results, the main component of this liquid was identified as 1,9-dibromo-2,7-nonadiene.

一方、反応液をガスクロマトグラフで分析した結果、1,4−ジブロモ−2−ブテンの転化率は42.5%、1,9−ジブロモ−2,7−ノナジエンの選択率は59.3%であった。   On the other hand, as a result of analyzing the reaction solution by gas chromatography, the conversion rate of 1,4-dibromo-2-butene was 42.5%, and the selectivity of 1,9-dibromo-2,7-nonadiene was 59.3%. there were.

比較例
シクロペンテンを用いなかった以外は、実施例1と同様にして開環クロスメタセシス反応を行い、反応液を得た。
Comparative Example A ring-opening cross-metathesis reaction was performed in the same manner as in Example 1 except that cyclopentene was not used, to obtain a reaction solution.

反応液をガスクロマトグラフで分析した結果、1,9−ジクロロ−2,7−ノナジエンは得られなかった。その結果を表1に示す。
As a result of analyzing the reaction solution by gas chromatography, 1,9-dichloro-2,7-nonadiene was not obtained. The results are shown in Table 1.

Claims (4)

下記一般式(1)で表される1,4−ジハロゲノ−2−ブテンとシクロペンテンを、メタセシス反応触媒の存在下で開環クロスメタセシス反応を行うことを特徴とする下記一般式(2)で表されるジハロゲノノナジエンの製造方法。
Figure 0004957105
(式中、Xはそれぞれ独立して塩素原子、臭素原子又はヨウ素原子を表す。)
Figure 0004957105
(式中、Xはそれぞれ独立して塩素原子、臭素原子又はヨウ素原子を示す。)
1,4-dihalogeno-2-butene represented by the following general formula (1) and cyclopentene are subjected to a ring-opening cross-metathesis reaction in the presence of a metathesis reaction catalyst, and represented by the following general formula (2) Process for producing dihalogenononadienes.
Figure 0004957105
(In the formula, each X independently represents a chlorine atom, a bromine atom or an iodine atom.)
Figure 0004957105
(In the formula, each X independently represents a chlorine atom, a bromine atom or an iodine atom.)
一般式(2)におけるXが両方とも塩素原子、臭素原子又はヨウ素原子であることを特徴とする請求項1に記載のジハロゲノノナジエンの製造方法。 2. The method for producing dihalogenononadiene according to claim 1, wherein both X in the general formula (2) are a chlorine atom, a bromine atom or an iodine atom. メタセシス反応触媒が遷移金属−カルベン錯体触媒であることを特徴とする請求項1又は請求項2に記載のジハロゲノノナジエンの製造方法。 The method for producing a dihalogenononadiene according to claim 1 or 2, wherein the metathesis reaction catalyst is a transition metal-carbene complex catalyst. 遷移金属−カルベン錯体触媒がルテニウム−カルベン錯体類であることを特徴とする請求項1〜請求項3のいずれかの項に記載のジハロゲノノナジエンの製造方法。
The method for producing a dihalogenononadiene according to any one of claims 1 to 3, wherein the transition metal-carbene complex catalyst is a ruthenium-carbene complex.
JP2006197832A 2006-07-20 2006-07-20 Method for producing dihalogenononadien Active JP4957105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197832A JP4957105B2 (en) 2006-07-20 2006-07-20 Method for producing dihalogenononadien

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197832A JP4957105B2 (en) 2006-07-20 2006-07-20 Method for producing dihalogenononadien

Publications (2)

Publication Number Publication Date
JP2008024627A JP2008024627A (en) 2008-02-07
JP4957105B2 true JP4957105B2 (en) 2012-06-20

Family

ID=39115636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197832A Active JP4957105B2 (en) 2006-07-20 2006-07-20 Method for producing dihalogenononadien

Country Status (1)

Country Link
JP (1) JP4957105B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007314A (en) * 2007-06-29 2009-01-15 Tosoh Corp Method for producing linear aliphatic diol
JP2009007315A (en) * 2007-06-29 2009-01-15 Tosoh Corp Method for producing linear aliphatic diol
JP2009007316A (en) * 2007-06-29 2009-01-15 Tosoh Corp Method for producing linear aliphatic diamine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045011B2 (en) * 2006-07-20 2012-10-10 東ソー株式会社 Diallyl halide and method for producing the same
JP6586953B2 (en) * 2014-06-19 2019-10-09 日本ゼオン株式会社 Cyclopentene ring-opening polymer, method for producing the same, polymer composition, and polymer cross-linked product
JP6607200B2 (en) * 2015-02-09 2019-11-20 Agc株式会社 Method for producing fluorine-containing diene

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1330566C (en) * 1988-12-10 1994-07-05 Wolfgang Anton Herrmann Organic derivatives of rhenium oxides and their preparation and use for the metathesis of olefins
JPH08176022A (en) * 1994-12-19 1996-07-09 Sumitomo Chem Co Ltd Production of 1,6-hepatdiene or 1,6-octadiene
JP5045011B2 (en) * 2006-07-20 2012-10-10 東ソー株式会社 Diallyl halide and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007314A (en) * 2007-06-29 2009-01-15 Tosoh Corp Method for producing linear aliphatic diol
JP2009007315A (en) * 2007-06-29 2009-01-15 Tosoh Corp Method for producing linear aliphatic diol
JP2009007316A (en) * 2007-06-29 2009-01-15 Tosoh Corp Method for producing linear aliphatic diamine

Also Published As

Publication number Publication date
JP2008024627A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4957105B2 (en) Method for producing dihalogenononadien
Kajetanowicz et al. Nitro and other electron withdrawing group activated ruthenium catalysts for olefin metathesis reactions
Keitz et al. Z-selective homodimerization of terminal olefins with a ruthenium metathesis catalyst
Hou et al. Ring-opening metathesis polymerization of cyclic olefins by (arylimido) vanadium (V)-alkylidenes: highly active, thermally robust cis specific polymerization
Vougioukalakis et al. Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands
Mitsudo et al. Novel Ruthenium Complex-Catalyzed Dimerization of 2, 5-Norbornadiene to Pentacyclo [6.6. 0.02, 6.03, 13.010, 14] tetradeca-4, 11-diene Involving Carbon− Carbon Bond Cleavage
Buchmeiser et al. Pseudo-halide and nitrate derivatives of Grubbs and Grubbs–Hoveyda initiators: some structural features related to the alternating ring-opening metathesis copolymerization of norborn-2-ene with cyclic olefins
Brown et al. Effects of donor molecules on the palladium-catalyzed cyclocotrimerization of acetylenes with olefins. Preparation of dimeric tetrakis (methoxycarbonyl) palladiacyclopentadiene (base) complexes and structure with base= 2, 6-lutidine
JP4466272B2 (en) Method for producing hydride of norbornene ring-opening polymer and hydride of norbornene ring-opening polymer
Mutlu et al. On the Polymerization Behavior of Telomers: Metathesis versus Thiol–Ene Chemistry
Farrell Vanadium-catalyzed cross metathesis: Limitations and implications for future catalyst design
Farrell et al. Decomposition of vanadium (V) alkylidenes relevant to olefin metathesis
JP5045011B2 (en) Diallyl halide and method for producing the same
Farrell Pushing the bounds of olefin metathesis with vanadium
JP5387727B2 (en) Diallyl halide and method for producing the same
JP2008050304A (en) Method for producing dihalogenoalkadiene
JP5158326B2 (en) Method for producing chain aliphatic diamine
US8962516B2 (en) Heterogeneous rhodium metal catalysts
JP5158325B2 (en) Process for producing chain aliphatic diol
JP5158324B2 (en) Process for producing chain aliphatic diol
US20090124772A1 (en) Process for producing organic transition metal complex compound, metathesis catalyst produced by using the same, ring-opening metathesis polymer obtainable with the metathesis catalyst, and process for producing the polymer
Malinowska et al. A novel catalytic route to 2-bicyclo [2.2. 1] hept-2-ylidenebicyclo [2.2. 1]-heptane involving CH bond activation of bicyclo [2.2. 1] hept-2-ene
Dereli et al. The WCl6–e−–Al–CH2Cl2 catalyzed polypentenamer formation via ring-opening metathesis polymerization (ROMP)
Aime et al. Ring-opening polymerisation of norbornene by (μ-H) 2Os3 (CO) 10 complex
JP4115799B2 (en) Olefin metathesis catalyst system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4957105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151