JP4956960B2 - 3D shape measuring apparatus and 3D shape measuring method - Google Patents

3D shape measuring apparatus and 3D shape measuring method Download PDF

Info

Publication number
JP4956960B2
JP4956960B2 JP2005314151A JP2005314151A JP4956960B2 JP 4956960 B2 JP4956960 B2 JP 4956960B2 JP 2005314151 A JP2005314151 A JP 2005314151A JP 2005314151 A JP2005314151 A JP 2005314151A JP 4956960 B2 JP4956960 B2 JP 4956960B2
Authority
JP
Japan
Prior art keywords
measurement
dimensional
dimensional shape
spheres
shape data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005314151A
Other languages
Japanese (ja)
Other versions
JP2007121126A (en
Inventor
洋 飯塚
直之 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005314151A priority Critical patent/JP4956960B2/en
Publication of JP2007121126A publication Critical patent/JP2007121126A/en
Application granted granted Critical
Publication of JP4956960B2 publication Critical patent/JP4956960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、測定対象物である3次元構造物に、レーザ光等を照射し、そのときの測定対象物からの反射光を受光することにより測定対象物の3次元形状データを取得する3次元形状測定装置及び3次元形状測定方法に関する。   The present invention obtains three-dimensional shape data of a measurement object by irradiating a three-dimensional structure as a measurement object with laser light or the like and receiving reflected light from the measurement object at that time. The present invention relates to a shape measuring apparatus and a three-dimensional shape measuring method.

測定対象物の3次元形状の測定は、レーザ光を測定対象物に照射し、そのとき測定対象物の反射光をCCD素子等の受光センサで受光することにより、測定対象物の3次元形状を測定することが一般的に行われている。
例えば、光切断法を用いてCCD素子で受光することにより測定対象物の3次元形状を測定することができる。
The measurement of the three-dimensional shape of the measurement target is performed by irradiating the measurement target with laser light and then receiving the reflected light of the measurement target with a light receiving sensor such as a CCD element. Measurement is generally performed.
For example, the three-dimensional shape of the measurement object can be measured by receiving light with a CCD element using a light cutting method.

ところで、測定対象物をタイヤとし、タイヤのトレッド部分がタイヤの使用(走行)前後において、タイヤのトレッド部分のどの位置(タイヤの周方向の位置及び幅方向の位置)が摩耗したかを調べるために、タイヤの使用前と使用後における測定データの差を求めることが必要である。このためには、タイヤトレッド部の周上の位置及びタイヤの幅方向の位置を正確に位置合わせすることが必要である。   By the way, the measurement object is a tire, and the tread portion of the tire is used to check which position of the tire tread portion (position in the circumferential direction and width direction of the tire) is worn before and after use (running) of the tire. In addition, it is necessary to obtain a difference between measurement data before and after use of the tire. For this purpose, it is necessary to accurately align the position on the circumference of the tire tread portion and the position in the width direction of the tire.

3次元形状測定を行う際の位置合わせの方法として、下記特許文献1が挙げられる。当該文献では、測定対象物の測定面の平面の向きを揃えるために、測定対象物保持具に3個の球体を、測定対象物を間に挟むように平面上に配置し、この球体を測定対象物とともに測定することを開示している。
当該文献では、平面状に並べた球体の中心座標から測定面を求め、この測定面が傾斜していないかを判断することができる。
As a positioning method when performing three-dimensional shape measurement, the following Patent Document 1 can be cited. In this document, in order to align the orientation of the plane of the measurement surface of the measurement object, three spheres are arranged on the plane so that the measurement object is sandwiched between them, and the sphere is measured. It is disclosed to measure with an object.
In this document, a measurement surface can be obtained from the center coordinates of spheres arranged in a plane, and it can be determined whether the measurement surface is inclined.

特開平11−344329号公報JP-A-11-344329

しかし、タイヤのように一方のサイド部〜トレッド部〜他方のサイド部を有し、回転体形状をしたトロイダル形状の形状測定では、トレッド部を正面に見てレーザ光を照射し、さらに、サイド部を斜めに見てレーザ光を照射する必要があるので、上記公報に開示されるように測定対象物を間に挟むように3個の球体を配置すると、球体の少なくとも1つは測定対象物の陰に隠れてレーザ光の測定ができない。   However, in the toroidal shape measurement that has one side part-tread part-the other side part like a tire and has a rotating body shape, the tread part is seen from the front, and laser light is irradiated. Since it is necessary to irradiate the laser beam while seeing the part obliquely, when three spheres are arranged so as to sandwich the measurement object as disclosed in the above publication, at least one of the spheres is the measurement object. The laser beam cannot be measured behind the screen.

そこで、本発明は、上記問題点を解決するために、測定対象物である3次元構造物に、レーザ光等を照射し、そのときの測定対象物からの反射光を受光することにより測定対象物の3次元形状データを取得する際、確実に3次元形状の向き及び位置合わせを行うことができる3次元形状測定装置及び3次元形状測定方法を提供することを目的とする。   Therefore, in order to solve the above problems, the present invention irradiates a three-dimensional structure, which is a measurement object, with a laser beam or the like, and receives the reflected light from the measurement object at that time, thereby measuring the measurement object. An object of the present invention is to provide a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method capable of surely aligning and aligning a three-dimensional shape when acquiring three-dimensional shape data of an object.

上記目的を達成するために、本発明は、測定空間内において回転可能に配置された測定対象物である、前記測定空間内に固定的に3次元配置された回転軸を持ち、該回転中心軸に対して回転する回転体形状の3次元構造物の3次元形状を測定する3次元形状測定装置であって、前記測定空間内に固定的に3次元配置された少なくとも3個の球体を備え、2つの前記球体の全ての異なる組み合せにおいて、2つの前記球体の中心間を仮想して結んだときの仮想線分がいずれも測定対象物と交差しないように前記測定空間内の前記測定対象物の近傍に固定された基準立体物と、前記測定空間内に固定的に位置する前記基準立体物の3次元形状の形状データを測定すると共に、前記測定空間内において前記測定対象物を前記回転中心軸のまわりを回転させながら前記測定対象物の回転表面の3次元形状の形状データを測定して出力する測定ユニットと、該測定ユニットから出力された前記基準立体物の3次元形状の形状データに基づいて、前記基準立体物の前記少なくとも3個の球体によって定まる、前記測定空間内における前記基準立体物の位置及び向きが、前記測定空間内に予め定めた基準座標系の原点及び座標軸の向きに合うように規定される座標変換を算出し、求められた前記座標変換を用いて、前記測定ユニットから出力された前記測定対象物の3次元形状の形状データを修正して、前記基準座標系における3次元形状の形状データに変換する演算ユニットと、を有し、前記測定ユニットは、光切断法に基づいて、レーザ光を前記測定空間内で回転移動する前記測定対象物及び前記測定空間内に固定された前記球体に同時に照射し、そのときの反射光から生成された画像信号を用いてそれぞれの前記次元形状の形状データを同時に求めて出力するユニットであり、前記球体の表面は、前記レーザ光の鏡面反射を抑制するためにつや消し処理が施されていることを特徴とする3次元形状測定装置を提供する。 In order to achieve the above object, the present invention has a rotating shaft fixedly three-dimensionally arranged in the measurement space, which is a measurement object rotatably arranged in the measurement space, and the rotation center axis. A three-dimensional shape measuring apparatus for measuring a three-dimensional shape of a three-dimensional structure of a rotating body that rotates with respect to the at least three spheres fixedly arranged three-dimensionally in the measurement space, In all the different combinations of the two spheres, the imaginary line segments when virtually connecting the centers of the two spheres do not intersect with the measurement object. Measuring the three-dimensional shape data of the reference solid object fixed in the vicinity and the reference solid object fixedly located in the measurement space, and the rotation target axis in the measurement space Around A measurement unit that measures and outputs the shape data of the three-dimensional shape of the rotating surface of the measurement object, and the reference data based on the shape data of the three-dimensional shape of the reference three-dimensional object output from the measurement unit. The position and orientation of the reference three-dimensional object in the measurement space determined by the at least three spheres of the three-dimensional object are defined so as to match the origin of the reference coordinate system and the direction of the coordinate axis predetermined in the measurement space. The coordinate transformation is calculated, and using the obtained coordinate transformation, the shape data of the three-dimensional shape of the measurement object output from the measurement unit is corrected, and the shape of the three-dimensional shape in the reference coordinate system is corrected. possess an arithmetic unit for converting the data, wherein the measurement unit, based on light-section method, the object to be measured to rotate moving the laser beam in the measurement space and A unit that simultaneously illuminates the sphere fixed in the measurement space, and simultaneously obtains and outputs shape data of each dimensional shape using an image signal generated from the reflected light at that time, surface provides a three-dimensional shape measurement device which is characterized that you have matte treatment is performed in order to suppress the specular reflection of the laser beam.

その際、前記演算ユニットは、前記少なくとも3個の球体の中心の位置座標を求め、この位置座標と前記少なくとも3個の球体の中心の目標位置座標との差分を求め、この差分が0に近づくように前記座標変換を定め、この座標変換を用いて前記測定対象物の3次元形状の形状データを変換することが好ましい。 At this time, the arithmetic unit obtains the position coordinates of the centers of the at least three spheres, obtains the difference between the position coordinates and the target position coordinates of the centers of the at least three spheres, and the difference approaches zero. It is preferable that the coordinate transformation is defined as described above , and the shape data of the three-dimensional shape of the measurement object is transformed using this coordinate transformation.

また、前記球体は、サイズが互いに異なることが好ましい。 The spheres preferably have different sizes.

また、前記測定対象物の前記回転体形状の前記回転中心軸の方向を左右方向というと
き、前記基準立体物は、前記回転体形状を境にして左右方向のいずれか一方の側に設けられていることが好ましい。
Further, the term the rotating body direction in the lateral direction of the rotational center axis of the shape of the measurement object, the reference three-dimensional object is provided on either side of the lateral direction and the boundary of the rotary body shape It is preferable.

さらに、本発明は、測定対象物である回転体形状の3次元構造物の3次元形状を測定する3次元形状測定方法であって、前記測定対象物である前記回転体形状の3次元構造物の回転中心軸を前記測定空間内において固定的に3次元配置して、前記測定対象物を前記測定空間内に回転可能に配置すると共に、前記測定空間内に固定的に3次元配置された少なくとも3個の球体を備える基準立体物を、少なくとも3個の球体の内の2つの前記球体の全ての異なる組み合せにおいて、2つの前記球体の中心間を仮想して結んだときの仮想線分がいずれも前記測定対象物と交差しないように前記測定空間内の前記測定対象物の近傍に予め固定しておき、3次元形状の測定の際、前記測定空間内に固定的に位置する前記基準立体物の3次元形状の形状データを測定すると共に、前記測定空間内において前記測定対象物を前記回転中心軸のまわりを回転させながら前記測定対象物の回転表面の3次元形状の形状データを測定して、測定された前記基準立体物の3次元形状の形状データ、及び前記測定対象物の3次元形状の形状データを出力し、出力された前記基準立体物の3次元形状の形状データに基づいて、前記基準立体物の前記少なくとも3個の球体によって定まる、前記測定空間内における前記基準立体物の位置及び向きが、前記測定空間内に予め定めた基準座標系の原点及び座標軸の向きに合うように規定される座標変換を算出し、求められた前記座標変換を用いて、出力された前記測定対象物の3次元形状の形状データを修正して、前記基準座標系における3次元形状の形状データに変換するものであり、前記測定対象物及び前記球体の前記3次元形状の形状データは、光切断法に基づいて、レーザ光を前記測定空間内で回転移動する測定対象物及び前記測定空間内に固定された前記球体に同時に照射し、そのときの反射光から生成された画像信号を用いてそれぞれ同時に求められたものであり、前記球体の表面は、前記レーザ光の鏡面反射を抑制するためにつや消し処理が施されていることを特徴とする3次元形状測定方法を提供する。 Furthermore, the present invention is a three-dimensional shape measuring method for measuring a three-dimensional shape of a three-dimensional structure having a rotating body that is a measurement object, and the three-dimensional structure having the rotating body shape that is the measurement object. The rotation center axis is fixedly three-dimensionally arranged in the measurement space, the measurement object is rotatably arranged in the measurement space, and at least three-dimensionally fixedly arranged in the measurement space. When a reference solid object including three spheres is virtually connected between the centers of the two spheres in all different combinations of the two spheres out of at least three spheres, the virtual line segment The reference three-dimensional object fixed in advance in the vicinity of the measurement object in the measurement space so as not to cross the measurement object and fixedly positioned in the measurement space when measuring a three-dimensional shape 3D shape And measuring the three-dimensional shape data of the rotating surface of the measurement object while rotating the measurement object around the rotation center axis in the measurement space, and measuring the reference The three-dimensional shape data of the three-dimensional object and the three-dimensional shape data of the measurement object are output, and the three-dimensional shape data of the reference three-dimensional object is output based on the output three-dimensional shape data of the reference three-dimensional object. Coordinate transformation that is defined by at least three spheres so that the position and orientation of the reference three-dimensional object in the measurement space matches the origin of the reference coordinate system and the orientation of the coordinate axes that are predetermined in the measurement space. Using the obtained coordinate transformation, the calculated three-dimensional shape data of the measurement object is corrected to obtain the three-dimensional shape data in the reference coordinate system. Is intended to conversion, the shape data of the three-dimensional shape of the measurement object and the spheres, based on light-section method, the measurement object rotates moving the laser beam in the measuring space and the measurement space In order to suppress the specular reflection of the laser beam, the surface of the sphere is obtained simultaneously by irradiating the fixed sphere at the same time and using the image signal generated from the reflected light at that time. There is provided a three-dimensional shape measuring method characterized in that a matte treatment is performed .

前記測定対象物の3次元形状の形状データを修正する際、前記少なくとも3個の球体の中心の位置座標を求め、この位置座標と前記少なくとも3個の球体の中心の目標位置座標との差分を求め、この差分が0に近づくように前記座標変換を定め、この座標変換を用いて前記測定対象物の3次元形状の形状データを変換することが好ましい。 When modifying the shape data of a three-dimensional shape of the measurement object, the determined position coordinates of at least three center of the sphere, the difference between the position coordinates and the at least three spheres center of the target position coordinates seeking, defines the coordinate transformation as the difference approaches zero, it is preferable to convert the shape data of a three-dimensional shape of the measurement object by using the coordinate transformation.

本発明では、測定空間内に位置する立体物であり、少なくとも3個の球体が3次元配置され、球体の中心間を仮想して結んだときの仮想線分が測定対象物と交差しないように、測定対象物の近傍の、測定空間内に固定された基準立体物を用い、測定空間内に位置する測定対象物とともに3次元形状の形状データを出力する。このため、基準立体物の球体によって定まる測定空間内における基準立体物の位置及び向きを、測定空間内に予め定めた基準座標系の原点及び座標軸の向きに合うように規定される座標変換を用いて、測定対象物の3次元形状データを修正することができる。基準立体物は、測定対象物とともに同時に3次元形状データを出力するので、従来のように、球体が測定対象物に遮断されて測定できない場合は無くなり、測定対象物の3次元形状の向き及び位置合わせを確実にすることができる。   In the present invention, it is a three-dimensional object located in the measurement space, and at least three spheres are three-dimensionally arranged so that a virtual line segment when virtually connecting the centers of the spheres does not intersect the measurement object. Using a reference three-dimensional object fixed in the measurement space in the vicinity of the measurement object, three-dimensional shape data is output together with the measurement object located in the measurement space. For this reason, a coordinate transformation is used in which the position and orientation of the reference three-dimensional object in the measurement space determined by the sphere of the reference three-dimensional object are defined so as to match the origin of the reference coordinate system and the direction of the coordinate axes that are predetermined in the measurement space. Thus, the three-dimensional shape data of the measurement object can be corrected. Since the reference three-dimensional object outputs the three-dimensional shape data simultaneously with the measurement object, there is no case where the sphere is blocked by the measurement object and cannot be measured as in the past, and the direction and position of the three-dimensional shape of the measurement object. Matching can be ensured.

以下、添付の図面に示す実施形態に基づいて、本発明の3次元形状測定装置及び3次元形状測定方法を詳細に説明する。   Hereinafter, a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method of the present invention will be described in detail based on embodiments shown in the accompanying drawings.

図1は、本発明における3次元形状測定装置の実施形態を表す概略構成図である。
図1に示す3次元形状測定装置10は、空気入りタイヤ(以下、タイヤという)Tの3次元形状を予め定めた位置及び向きに合わせて配置したときのタイヤTの3次元形状データを算出して記録保持する装置である。
3次元形状測定装置10は、3次元構造物であるタイヤTの幅方向(左右方向)の一方の側に設けられる基準立体物20と、3次元形状測定ユニット30と、コンピュータ50と、モニタ60とを有して構成される。
FIG. 1 is a schematic configuration diagram showing an embodiment of a three-dimensional shape measuring apparatus according to the present invention.
A three-dimensional shape measuring apparatus 10 shown in FIG. 1 calculates three-dimensional shape data of a tire T when a three-dimensional shape of a pneumatic tire (hereinafter referred to as a tire) T is arranged according to a predetermined position and orientation. Recording and holding device.
The three-dimensional shape measuring apparatus 10 includes a reference three-dimensional object 20, a three-dimensional shape measuring unit 30, a computer 50, and a monitor 60 provided on one side in the width direction (left-right direction) of the tire T that is a three-dimensional structure. And is configured.

基準立体物20は、3つの球体21,22,23が測定空間内に3次元配置され、タイヤTの近傍の、測定空間内に固定された立体物である。さらに、基準立体物20は、球体21,22及び球体21,23及び球体22,23の中心間を仮想して結んだときの仮想線分が測定対象物と交差しないように配置されている。
基準立体物20は、回転体形状であるタイヤTの回転中心軸の方向を左右方向というとき、回転体形状のタイヤTを境にして右方向の側に設けられている。勿論、左方向の側に設けられてもよい。
具体的には、基準立体物20は、タイヤTを回転可能な軸60を保持する固定支持部70からロッド24を介して、球体21,22,23が測定空間に固定配置されるように構成されている。
なお、球体21,22,23は、後述するレーザ光の照射に対して鏡面反射を起こさないように、表面は艶消し処理が施されている。
The reference three-dimensional object 20 is a three-dimensional object in which three spheres 21, 22, and 23 are three-dimensionally arranged in the measurement space and are fixed in the measurement space near the tire T. Further, the reference three-dimensional object 20 is arranged so that a virtual line segment when the centers of the spheres 21 and 22, the spheres 21 and 23, and the spheres 22 and 23 are virtually connected does not intersect the measurement object.
The reference three-dimensional object 20 is provided on the right side with the rotating tire T as a boundary when the direction of the rotation center axis of the rotating tire T is referred to as the left-right direction. Of course, it may be provided on the left side.
Specifically, the reference three-dimensional object 20 is configured such that the spheres 21, 22, and 23 are fixedly disposed in the measurement space via the rod 24 from the fixed support portion 70 that holds the shaft 60 that can rotate the tire T. Has been.
Note that the surfaces of the spheres 21, 22, and 23 are subjected to a matte treatment so as not to cause a specular reflection when irradiated with laser light described later.

球体21,22,23は、いずれも同じサイズの球体であるが、本発明における球体は、サイズが互いに異なるものであってもよい。後述する球体の3次元形状データにおいて、複数の球体のデータがどの球体のデータかを特定する場合、サイズにより識別することが可能となるためである。これにより、球体を間違えることなく自動的に特定することができる。勿論、球体の位置は測定空間内に固定されており、各球体の概略の位置は予め判っているので、複数の球体のデータがどの球体のデータかを、入力指示により間違えることなく特定することはできる。
球体21,22,23の配置に関して、球体21,22,23のいずれか2つはタイヤTの回転中心軸に対して垂直な平面上に配置される必要はない。少なくとも球体21,22,23の配置は、直線上に配置されないように3次元配置されていればよい。
なお、本実施形態では、球体の個数は3個であるが、4個、5個等、3個以上の個数であればよい。
The spheres 21, 22, and 23 are all spheres having the same size, but the spheres in the present invention may be different in size. This is because, in the three-dimensional shape data of a sphere described later, when specifying which sphere the data of a plurality of spheres can be identified by the size. Thereby, it is possible to automatically specify the sphere without making a mistake. Of course, the position of the sphere is fixed in the measurement space, and the approximate position of each sphere is known in advance. I can.
Regarding the arrangement of the spheres 21, 22, 23, any two of the spheres 21, 22, 23 need not be arranged on a plane perpendicular to the rotation center axis of the tire T. It is sufficient that at least the spheres 21, 22, and 23 are arranged three-dimensionally so as not to be arranged on a straight line.
In the present embodiment, the number of spheres is three, but may be three or more such as four or five.

3次元形状測定ユニット30は、測定空間内に位置するタイヤT及び基準立体物20の3次元形状データを出力する装置である。
図2は、3次元形状測定ユニット30の構成を説明する図である。
3次元形状測定ユニット30は、CPU31、ドライバー回路32、レーザダイオード33、ガルバノミラー34、光学系35,36、CCD素子37、AD変換器38、FIFO39,信号処理プロセッサ40、及びフレームメモリ41を有する。
3次元形状測定ユニット30では、コンピュータ50からの測定開始指示に応じて、CPU31は測定開始のトリガー信号を生成し、図示されないクロックジェネレータを起動してクロック信号を生成する。このクロック信号はCCD素子37、AD変換器38、FIFO39、信号処理プロセッサ40に供給される。一方、トリガー信号の生成により、ドライバー回路32はレーザ光照射の信号を生成し、レーザダイオード33に供給する。レーザダイオード33は、これによりレーザ光を照射し、レーザ光をスリット光とし、このレーザ光の照射の信号に合わせて駆動を開始したガルバノミラー34を振らして、光学系35を介して照射されるスリット状のレーザ光をタイヤT及び基準立体物20上でスキャンさせる。
The three-dimensional shape measurement unit 30 is a device that outputs three-dimensional shape data of the tire T and the reference three-dimensional object 20 located in the measurement space.
FIG. 2 is a diagram illustrating the configuration of the three-dimensional shape measurement unit 30.
The three-dimensional shape measurement unit 30 includes a CPU 31, a driver circuit 32, a laser diode 33, a galvano mirror 34, optical systems 35 and 36, a CCD element 37, an AD converter 38, a FIFO 39, a signal processor 40, and a frame memory 41. .
In the three-dimensional shape measurement unit 30, in response to a measurement start instruction from the computer 50, the CPU 31 generates a measurement start trigger signal and activates a clock generator (not shown) to generate a clock signal. This clock signal is supplied to the CCD element 37, AD converter 38, FIFO 39, and signal processor 40. On the other hand, by generating the trigger signal, the driver circuit 32 generates a laser light irradiation signal and supplies it to the laser diode 33. The laser diode 33 irradiates the laser beam by this, turns the laser beam into slit light, shakes the galvano mirror 34 that starts driving in accordance with the irradiation signal of the laser beam, and is irradiated through the optical system 35. A slit-shaped laser beam is scanned on the tire T and the reference three-dimensional object 20.

一方、光学系36を介して集束したレーザ光の反射光をCCD素子37にて受光し、生成された画像信号をAD変換器38によりデジタル信号とし、FIFO39を介して画像信号を順番に信号処理プロセッサ40に供給する。信号処理プロセッサ40は、光切断方法を用いた周知のアルゴリズムを実行する回路が組み込まれており、供給された画像信号から、タイヤT及び基準立体物20の3次元形状データを生成する部分である。この3次元形状データは、フレームメモリ41に逐次書き込まれ、必要に応じて呼び出される。画像信号から3次元形状データを生成する処理方法は、周知の光切断法を用いたアルゴリズムである。光切断法は、スリット光を測定対象物に照射し、測定対象物の曲がった帯状の反射光をCCD素子等のカメラで撮影し、画像における結像位置から3次元形状データを求める方法である。このときの演算は三角測量の原理に基づいて行われる。
生成されたタイヤT及び基準立体物20の3次元形状データは、コンピュータ50に供給される。
3次元形状測定ユニット30は、以上の作用を行うように構成された装置である。
On the other hand, the reflected light of the laser beam focused through the optical system 36 is received by the CCD element 37, the generated image signal is converted into a digital signal by the AD converter 38, and the image signal is sequentially processed through the FIFO 39. This is supplied to the processor 40. The signal processor 40 incorporates a circuit that executes a known algorithm using a light cutting method, and is a part that generates three-dimensional shape data of the tire T and the reference three-dimensional object 20 from the supplied image signal. . This three-dimensional shape data is sequentially written in the frame memory 41 and is called up as necessary. A processing method for generating three-dimensional shape data from an image signal is an algorithm using a known light cutting method. The light cutting method is a method of irradiating a measuring object with slit light, photographing a band-like reflected light of the measuring object with a camera such as a CCD element, and obtaining three-dimensional shape data from an imaging position in the image. . The calculation at this time is performed based on the principle of triangulation.
The generated three-dimensional shape data of the tire T and the reference three-dimensional object 20 are supplied to the computer 50.
The three-dimensional shape measurement unit 30 is a device configured to perform the above-described operation.

コンピュータ50は、タイヤT及び基準立体物20の3次元形状データを用いて、基準立体物20の位置及び向きを、測定空間内に予め定めた基準座標系の原点及び座標軸の向きに合うように規定される座標変換を定め、この座標変換を用いて、タイヤTの3次元形状データを修正する部分である。このような処理は、コンピュータ50にてプログラムを起動することにより機能するソフトウェア処理で行われる。   The computer 50 uses the three-dimensional shape data of the tire T and the reference three-dimensional object 20 so that the position and orientation of the reference three-dimensional object 20 matches the origin of the reference coordinate system and the direction of the coordinate axes that are predetermined in the measurement space. This is a part for defining the specified coordinate transformation and correcting the three-dimensional shape data of the tire T using this coordinate transformation. Such processing is performed by software processing that functions by starting a program on the computer 50.

具体的には、まず、供給された形状データの中から、球体21,22,23の中心位置座標を抽出する。球体21,22,23の画像内の位置は予め判っているので、球体21,22,23の表面の形状データを取り出すことができ、この取り出した形状データから各球体の中心位置座標を求める。   Specifically, first, the center position coordinates of the spheres 21, 22, and 23 are extracted from the supplied shape data. Since the positions of the spheres 21, 22, and 23 in the image are known in advance, the shape data of the surfaces of the spheres 21, 22, and 23 can be extracted, and the center position coordinates of each sphere are obtained from the extracted shape data.

次に、球体21,22,23の各中心位置座標を、図3(a)に示すように、予め定めた仮想球体121,122,123の中心位置を目標座標とし、この目標座標に対する中心位置座標の差分を求める。このときの目標座標は、予め定めた基準座標系の原点及び座標軸の向きを規定するように定められており、この目標座標に球体21,22,23の中心位置座標を一致させることで、予め定めた基準座標系の原点及び座標軸の向きに合うように設定されている。   Next, as shown in FIG. 3 (a), the center positions of the spheres 21, 22, and 23 are set to the center positions of the predetermined virtual spheres 121, 122, and 123 as the target coordinates, and the center positions with respect to the target coordinates. Find the coordinate difference. The target coordinates at this time are determined so as to define the origin of the predetermined reference coordinate system and the direction of the coordinate axes, and by matching the center position coordinates of the spheres 21, 22, and 23 with the target coordinates, It is set to match the origin of the defined reference coordinate system and the direction of the coordinate axes.

次に、求められた差分を用いて、各球体の中心位置座標が、予め定めた目標座標に移動する座標変換(移動変換及び回転変換)の式を求める。すなわち、上記差分が0に近づくように座標変換の式を定める。各差分は、図3(b)に示すように、3次元のベクトルで表されるので、計9個の差分の値があり、この9個の値を用いて、球体21,22,23が仮想球体121,122,123に移動して一致するように、3自由度の移動変換と、2自由度の回転変換とを定める。   Next, using the obtained difference, an equation of coordinate transformation (movement transformation and rotation transformation) in which the center position coordinate of each sphere moves to a predetermined target coordinate is obtained. That is, a coordinate conversion formula is determined so that the difference approaches 0. Since each difference is represented by a three-dimensional vector as shown in FIG. 3B, there are a total of nine difference values. Using these nine values, the spheres 21, 22, and 23 A three-degree-of-freedom movement transformation and a two-degree-of-freedom rotational transformation are determined so that the virtual spheres 121, 122, 123 are moved and matched.

こうして算出された座標変換式を用いて、タイヤTの3次元形状データを座標変換する。これにより、タイヤTの回転中心軸を基準座標系の予め定めた向きに変換することができる。
さらに、図4に示されるように、座標変換されたタイヤTの3次元形状データを用いて得られるタイヤTの図心Gを、回転中心軸上で移動させて、図心Gの位置が予め定められる位置に来るようにタイヤTの形状データを修正する。
こうして、タイヤTの位置と向きが予め定めた位置と向きに揃うように処理されたタイヤTの3次元形状データが得られる。
Using the coordinate conversion formula calculated in this way, the three-dimensional shape data of the tire T is coordinate-converted. Thereby, the rotation center axis of the tire T can be converted into a predetermined direction in the reference coordinate system.
Further, as shown in FIG. 4, the centroid G of the tire T obtained by using the coordinate-transformed three-dimensional shape data of the tire T is moved on the rotation center axis so that the position of the centroid G is previously set. The shape data of the tire T is corrected so as to come to a predetermined position.
Thus, three-dimensional shape data of the tire T processed so that the position and orientation of the tire T are aligned with the predetermined position and orientation are obtained.

このように、タイヤTの位置及び向きを予め定めた位置及び向きに揃うように修正するのは、タイヤTの3次元形状データが、測定によって位置及び向きが変わらないようにするためである。特に、タイヤTの使用後における摩耗形態を正確に知るには、摩耗後のタイヤTの形状と使用前のタイヤTの形状とを比較する必要がある。このため、数週間〜数ヶ月の時間をあけて取得された2つの3次元形状データについて精度高く位置及び向き合わせる必要がある。   In this way, the reason why the position and orientation of the tire T are corrected so as to be aligned with the predetermined position and orientation is to prevent the position and orientation of the three-dimensional shape data of the tire T from being changed by measurement. In particular, in order to accurately know the wear form after use of the tire T, it is necessary to compare the shape of the tire T after wear with the shape of the tire T before use. For this reason, it is necessary to position and face two pieces of three-dimensional shape data acquired with a time of several weeks to several months with high accuracy.

図5(a)は、このようにして得られたタイヤTの形状データの一部を用いてモニタ60に表示される表示画面の一例を示している。図5(b)は、タイヤTの全周についてトレッド部の形状データを取得して、タイヤTの使用前と使用後におけるトレッド部分の形状の変化量(摩耗変化)を求め、変化量に応じて色分けした図である。勿論、タイヤTの周上の位置も、使用前と使用後において同じ周上の位置に位置合わせをして、3次元形状データを減算して求めた摩耗変化の結果である。これによると、図5(b)のトレッド部の表面の左側ショルダー部分において、偏摩耗が生じていることが判る。
本発明では、タイヤTの3次元形状を正確に位置及び向きを合わせて形状変化を求めることができる。
FIG. 5A shows an example of a display screen displayed on the monitor 60 using a part of the shape data of the tire T obtained in this way. FIG. 5B shows the tread portion shape data obtained for the entire circumference of the tire T, and the amount of change (wear change) in the shape of the tread portion before and after use of the tire T is obtained. FIG. Of course, the position on the circumference of the tire T is also the result of a change in wear obtained by aligning the position on the same circumference before and after use and subtracting the three-dimensional shape data. According to this, it can be seen that uneven wear occurs in the left shoulder portion of the surface of the tread portion in FIG.
In the present invention, the three-dimensional shape of the tire T can be accurately determined by matching the position and orientation.

このように、少なくとも3個の球体が3次元配置され、タイヤTの一方の側の近傍に固定された基準立体物20を用い、タイヤTの形状データと少なくとも3個以上の球体の形状データを同時に取得することができるので、予め定めた位置及び向きに正確に合うようにタイヤTの形状データを変換することができる。上記特許文献1では、3個の球体が測定対象物の周りを囲むように配置されている。このため、タイヤTのような立体構造物の3次元形状を測定する場合、3個の球体の配置では、タイヤ3個の球体にレーザ光を照射して測定することができない。   In this way, the reference solid object 20 in which at least three spheres are three-dimensionally arranged and fixed in the vicinity of one side of the tire T is used, and the shape data of the tire T and the shape data of at least three or more spheres are obtained. Since they can be acquired at the same time, the shape data of the tire T can be converted so as to accurately match a predetermined position and orientation. In Patent Document 1, three spheres are arranged so as to surround a measurement object. For this reason, when measuring the three-dimensional shape of a three-dimensional structure such as the tire T, the three spheres cannot be measured by irradiating the three spheres with laser light.

上記実施形態における3次元形状測定ユニット30は、例えば光切断方法を用いた非接触3次元デジタイザVIVID9i((株)コニカ ミノルタ社製)が例示される。本発明においては、光切断方法の他、プロジェクタから格子を測定対象物に投影し、測定対象物上の変形格子像をカメラで撮影するとともに、格子パターンを一定ピッチずつずらしながらその都度撮影し、複数の画像から測定対象物の3次元形状のデータを取得するフェーズシフト法等を用いてもよい。
本発明では、3次元形状測定ユニットで、測定対象物及び基準立体物の3次元形状を現す形状データを同じ測定空間内に配置して測定できれば、どのような方法を用いてもよい。
また、測定対象物は、タイヤのみならず、自動車用ホイールやタービン等の回転体形状であってもよい。回転体形状の場合、回転中心軸を予め設定された向きに合わせるように座標変換することが好ましく、この場合、基準立体物を回転体形状の測定対象物の一方の側に配置して測定するとよい。
Examples of the three-dimensional shape measurement unit 30 in the above embodiment include a non-contact three-dimensional digitizer VIVID9i (manufactured by Konica Minolta Co., Ltd.) using an optical cutting method. In the present invention, in addition to the light cutting method, a grating is projected from the projector onto the measurement object, and a deformed lattice image on the measurement object is photographed with a camera, and the grating pattern is photographed each time while shifting the grating pattern by a certain pitch, You may use the phase shift method etc. which acquire the data of the three-dimensional shape of a measurement object from a some image.
In the present invention, any method may be used as long as shape data representing the three-dimensional shape of the measurement object and the reference three-dimensional object can be arranged and measured in the same measurement space by the three-dimensional shape measurement unit.
The measurement object may be not only a tire but also a rotating body such as an automobile wheel or a turbine. In the case of a rotating body shape, it is preferable to perform coordinate conversion so that the rotation center axis is aligned with a preset direction. In this case, if a reference three-dimensional object is placed on one side of the measuring object having a rotating body shape and measured, Good.

以上、本発明の3次元形状測定装置及び3次元形状測定方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As described above, the three-dimensional shape measuring apparatus and the three-dimensional shape measuring method of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the gist of the present invention. Of course.

本発明における3次元形状測定装置の実施形態を表す概略構成図である。It is a schematic block diagram showing embodiment of the three-dimensional shape measuring apparatus in this invention. 図1に示す3次元形状測定装置の3次元形状測定ユニットの構成を説明する図である。It is a figure explaining the structure of the three-dimensional shape measurement unit of the three-dimensional shape measuring apparatus shown in FIG. 図1に示す3次元形状測定装置で行われる座標変換を説明する図である。It is a figure explaining the coordinate transformation performed with the three-dimensional shape measuring apparatus shown in FIG. 図1に示す3次元形状測定装置で行われる位置の修正を説明する図である。It is a figure explaining the correction of the position performed with the three-dimensional shape measuring apparatus shown in FIG. (a)は図1に示す3次元形状測定装置で得られる3次元形状データの画面表示の例を示す図であり、(b)は、本発明の3次元形状測定装置を用いて求められたタイヤの偏摩耗の結果を示す図である。(A) is a figure which shows the example of the screen display of the three-dimensional shape data obtained with the three-dimensional shape measuring apparatus shown in FIG. 1, (b) was calculated | required using the three-dimensional shape measuring apparatus of this invention. It is a figure which shows the result of the partial wear of a tire.

符号の説明Explanation of symbols

10 3次元形状測定装置
20 基準立体物
21,22,23 球体
30 3次元形状測定ユニット
50 コンピュータ
60 モニタ
DESCRIPTION OF SYMBOLS 10 3D shape measuring apparatus 20 Reference | standard solid object 21, 22, 23 Sphere 30 3D shape measuring unit 50 Computer 60 Monitor

Claims (6)

測定空間内において回転可能に配置された測定対象物である、前記測定空間内に固定的に3次元配置された回転軸を持ち、該回転中心軸に対して回転する回転体形状の3次元構造物の3次元形状を測定する3次元形状測定装置であって、
前記測定空間内に固定的に3次元配置された少なくとも3個の球体を備え、2つの前記球体の全ての異なる組み合せにおいて、2つの前記球体の中心間を仮想して結んだときの仮想線分がいずれも測定対象物と交差しないように前記測定空間内の前記測定対象物の近傍に固定された基準立体物と、
前記測定空間内に固定的に位置する前記基準立体物の3次元形状の形状データを測定すると共に、前記測定空間内において前記測定対象物を前記回転中心軸のまわりを回転させながら前記測定対象物の回転表面の3次元形状の形状データを測定して出力する測定ユニットと、
該測定ユニットから出力された前記基準立体物の3次元形状の形状データに基づいて、前記基準立体物の前記少なくとも3個の球体によって定まる、前記測定空間内における前記基準立体物の位置及び向きが、前記測定空間内に予め定めた基準座標系の原点及び座標軸の向きに合うように規定される座標変換を算出し、求められた前記座標変換を用いて、前記測定ユニットから出力された前記測定対象物の3次元形状の形状データを修正して、前記基準座標系における3次元形状の形状データに変換する演算ユニットと、を有し、
前記測定ユニットは、光切断法に基づいて、レーザ光を前記測定空間内で回転移動する前記測定対象物及び前記測定空間内に固定された前記球体に同時に照射し、そのときの反射光から生成された画像信号を用いてそれぞれの前記3次元形状の形状データを同時に求めて出力するユニットであり、
前記球体の表面は、前記レーザ光の鏡面反射を抑制するためにつや消し処理が施されていることを特徴とする3次元形状測定装置。
A three-dimensional structure of a rotating body having a rotation axis fixedly arranged in three dimensions in the measurement space and rotating with respect to the rotation center axis, which is a measurement object arranged rotatably in the measurement space A three-dimensional shape measuring apparatus for measuring a three-dimensional shape of an object,
An imaginary line segment obtained by virtually connecting between the centers of the two spheres in all different combinations of the two spheres, and including at least three spheres fixedly arranged three-dimensionally in the measurement space A reference three-dimensional object fixed in the vicinity of the measurement object in the measurement space so that none of them intersect the measurement object;
The measurement object is measured while measuring the three-dimensional shape data of the reference three-dimensional object fixedly located in the measurement space and rotating the measurement object around the rotation center axis in the measurement space. A measurement unit for measuring and outputting the shape data of the three-dimensional shape of the rotating surface of
Based on the shape data of the three-dimensional shape of the reference three-dimensional object output from the measurement unit, the position and orientation of the reference three-dimensional object in the measurement space determined by the at least three spheres of the reference three-dimensional object are determined. , Calculating a coordinate transformation defined so as to match the origin and coordinate axis orientation of the reference coordinate system predetermined in the measurement space, and using the obtained coordinate transformation, the measurement output from the measurement unit by modifying the shape data of a three-dimensional shape of the object, it has a, a calculating unit which converts the shape data of a three-dimensional shape of the reference coordinate system,
The measurement unit irradiates the measurement object that rotates and moves in the measurement space and the sphere fixed in the measurement space at the same time based on the light cutting method, and generates from the reflected light at that time A unit that simultaneously obtains and outputs the shape data of each of the three-dimensional shapes using the image signals that have been obtained,
The surface of the sphere, three-dimensional shape measurement device which is characterized that you have matte treatment is performed in order to suppress the specular reflection of the laser beam.
前記演算ユニットは、前記少なくとも3個の球体の中心の位置座標を求め、この位置座標と前記少なくとも3個の球体の中心の目標位置座標との差分を求め、この差分が0に近づくように前記座標変換を定め、この座標変換を用いて前記測定対象物の3次元形状の形状データを変換する請求項1に記載の3次元形状測定装置。   The arithmetic unit obtains a position coordinate of the center of the at least three spheres, obtains a difference between the position coordinate and a target position coordinate of the center of the at least three spheres, so that the difference approaches 0 The three-dimensional shape measuring apparatus according to claim 1, wherein coordinate conversion is determined, and shape data of the three-dimensional shape of the measurement object is converted using the coordinate conversion. 前記球体は、サイズが互いに異なる請求項1又は2に記載の3次元形状測定装置。 The three-dimensional shape measuring apparatus according to claim 1 or 2, wherein the spheres have different sizes. 前記測定対象物の前記回転体形状の前記回転中心軸の方向を左右方向というとき、前記基準立体物は、前記回転体形状を境にして左右方向のいずれか一方の側に設けられている請求項1〜のいずれか1項に記載の3次元形状測定装置。 When the direction of the rotation center axis of the rotating object shape of the measurement object is referred to as a left-right direction, the reference three-dimensional object is provided on either side in the left-right direction with the rotating body shape as a boundary. Item 4. The three-dimensional shape measuring apparatus according to any one of Items 1 to 3 . 測定対象物である回転体形状の3次元構造物の3次元形状を測定する3次元形状測定方法であって、
前記測定対象物である前記回転体形状の3次元構造物の回転中心軸を前記測定空間内において固定的に3次元配置して、前記測定対象物を前記測定空間内に回転可能に配置すると共に、
前記測定空間内に固定的に3次元配置された少なくとも3個の球体を備える基準立体物を、少なくとも3個の球体の内の2つの前記球体の全ての異なる組み合せにおいて、2つの前記球体の中心間を仮想して結んだときの仮想線分がいずれも前記測定対象物と交差しないように前記測定空間内の前記測定対象物の近傍に予め固定しておき、
3次元形状の測定の際、
前記測定空間内に固定的に位置する前記基準立体物の3次元形状の形状データを測定すると共に、前記測定空間内において前記測定対象物を前記回転中心軸のまわりを回転させながら前記測定対象物の回転表面の3次元形状の形状データを測定して、測定された前記基準立体物の3次元形状の形状データ、及び前記測定対象物の3次元形状の形状データを出力し、
出力された前記基準立体物の3次元形状の形状データに基づいて、前記基準立体物の前記少なくとも3個の球体によって定まる、前記測定空間内における前記基準立体物の位置及び向きが、前記測定空間内に予め定めた基準座標系の原点及び座標軸の向きに合うように規定される座標変換を算出し、求められた前記座標変換を用いて、出力された前記測定対象物の3次元形状の形状データを修正して、前記基準座標系における3次元形状の形状データに変換するものであり、
前記測定対象物及び前記球体の前記3次元形状の形状データは、光切断法に基づいて、レーザ光を前記測定空間内で回転移動する測定対象物及び前記測定空間内に固定された前記球体に同時に照射し、そのときの反射光から生成された画像信号を用いてそれぞれ同時に求められたものであり、
前記球体の表面は、前記レーザ光の鏡面反射を抑制するためにつや消し処理が施されていることを特徴とする3次元形状測定方法。
A three-dimensional shape measurement method for measuring a three-dimensional shape of a three-dimensional structure of a rotating body that is a measurement object,
The rotation center axis of the three-dimensional structure of the rotating body that is the measurement object is three-dimensionally fixedly arranged in the measurement space, and the measurement object is rotatably arranged in the measurement space. ,
A reference three-dimensional object comprising at least three spheres fixedly arranged three-dimensionally in the measurement space is converted into a center of two spheres in all different combinations of two of the at least three spheres. Preliminarily fixed in the vicinity of the measurement object in the measurement space so that none of the virtual line segments when connecting the virtual space between the measurement object,
When measuring 3D shapes,
The measurement object is measured while measuring the three-dimensional shape data of the reference three-dimensional object fixedly located in the measurement space and rotating the measurement object around the rotation center axis in the measurement space. Measuring the shape data of the three-dimensional shape of the rotating surface, and outputting the measured three-dimensional shape data of the reference three-dimensional object and the three-dimensional shape data of the measurement object,
Based on the output three-dimensional shape data of the reference three-dimensional object, the position and orientation of the reference three-dimensional object in the measurement space determined by the at least three spheres of the reference three-dimensional object are the measurement space. The coordinate transformation defined so as to match the origin of the reference coordinate system and the coordinate axis defined in advance is calculated, and using the obtained coordinate transformation, the shape of the output three-dimensional shape of the measurement object The data is corrected and converted into shape data of a three-dimensional shape in the reference coordinate system ,
The shape data of the three-dimensional shape of the measurement object and the sphere is based on the measurement object that rotates and moves laser light in the measurement space and the sphere fixed in the measurement space based on a light cutting method. Irradiated at the same time and obtained simultaneously using the image signal generated from the reflected light at that time,
The method of measuring a three-dimensional shape , wherein the surface of the sphere has been subjected to a matte treatment to suppress specular reflection of the laser beam .
前記測定対象物の3次元形状の形状データを修正する際、前記少なくとも3個の球体の中心の位置座標を求め、この位置座標と前記少なくとも3個の球体の中心の目標位置座標との差分を求め、この差分が0に近づくように前記座標変換を定め、この座標変換を用いて前記測定対象物の3次元形状の形状データを変換する請求項5に記載の3次元形状測定方法。 When correcting the shape data of the three-dimensional shape of the measurement object, the position coordinates of the centers of the at least three spheres are obtained, and the difference between the position coordinates and the target position coordinates of the centers of the at least three spheres is calculated. 6. The three-dimensional shape measurement method according to claim 5, wherein the coordinate transformation is determined so that the difference approaches 0, and shape data of the three-dimensional shape of the measurement object is transformed using the coordinate transformation.
JP2005314151A 2005-10-28 2005-10-28 3D shape measuring apparatus and 3D shape measuring method Active JP4956960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314151A JP4956960B2 (en) 2005-10-28 2005-10-28 3D shape measuring apparatus and 3D shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314151A JP4956960B2 (en) 2005-10-28 2005-10-28 3D shape measuring apparatus and 3D shape measuring method

Publications (2)

Publication Number Publication Date
JP2007121126A JP2007121126A (en) 2007-05-17
JP4956960B2 true JP4956960B2 (en) 2012-06-20

Family

ID=38145130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314151A Active JP4956960B2 (en) 2005-10-28 2005-10-28 3D shape measuring apparatus and 3D shape measuring method

Country Status (1)

Country Link
JP (1) JP4956960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019627A1 (en) 2019-07-26 2021-02-04 オムロン株式会社 Calibration method for computer vision system and three-dimensional reference object for use in same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923054B2 (en) * 2013-04-08 2016-05-24 株式会社神戸製鋼所 Shape inspection device
CN103808277B (en) * 2013-12-23 2016-07-06 天津大学 A kind of modification method of multisensor point cloud error

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125610A (en) * 1980-03-08 1981-10-02 Yamada Yuki Seizo Kk Deformation measuring method of automotive body
JPS58131502A (en) * 1982-01-30 1983-08-05 Yokohama Rubber Co Ltd:The Method and apparatus for measuring tire profile
US5054918A (en) * 1990-02-02 1991-10-08 Fmc Corporation Light scanning system for measurement of orientation and physical features of a workpiece
JP3388051B2 (en) * 1995-03-09 2003-03-17 株式会社トキメック Turnout inspection system and turnout inspection method
JP3031529B2 (en) * 1995-03-31 2000-04-10 川崎製鉄株式会社 Method and apparatus for measuring sectional dimensions of H-section steel
JPH09101137A (en) * 1995-10-03 1997-04-15 Nikon Corp Shape measuring device
JP3823758B2 (en) * 2001-05-09 2006-09-20 日産自動車株式会社 Quality evaluation apparatus and quality evaluation method
JP3944091B2 (en) * 2003-02-06 2007-07-11 パルステック工業株式会社 3D image data generation method
US7015473B2 (en) * 2003-09-30 2006-03-21 General Electric Company Method and apparatus for internal feature reconstruction
JP4291178B2 (en) * 2004-03-01 2009-07-08 パルステック工業株式会社 3D shape measuring system, measuring method, and 3D shape measuring stage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019627A1 (en) 2019-07-26 2021-02-04 オムロン株式会社 Calibration method for computer vision system and three-dimensional reference object for use in same

Also Published As

Publication number Publication date
JP2007121126A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5029618B2 (en) Three-dimensional shape measuring apparatus, method and program by pattern projection method
JP5346033B2 (en) Method for optically measuring the three-dimensional shape of an object
JP4667111B2 (en) Image processing apparatus and image processing method
JP2017531558A5 (en)
JP2017528727A (en) Augmented reality camera used in combination with a 3D meter to generate a 3D image from a 2D camera image
JP2007139776A (en) Optical edge break gage
US9709513B2 (en) System and method for measuring an object using X-ray projections
JP2015524916A (en) Coordinate measuring machine with removable accessories
JP2017508151A (en) How to inspect an object using a visual probe
JP2002529685A (en) Tomographic reconstruction of electronic components from shadow sensor data.
JP4419570B2 (en) 3D image photographing apparatus and method
EP3322959B1 (en) Method for measuring an artefact
JP2007132807A (en) Three-dimensional shape measuring device and method
Cajal et al. Simulation of laser triangulation sensors scanning for design and evaluation purposes
JP6293122B2 (en) How to measure dental conditions
JP4956960B2 (en) 3D shape measuring apparatus and 3D shape measuring method
JP7154535B2 (en) Dimensional measurement method using projection image obtained by X-ray CT device
JP2012163346A (en) Apparatus and method for measuring surface shape
JP2009014501A (en) Method for creating three-dimensional shape model data of product
JP6029938B2 (en) Calibration method and three-dimensional processing apparatus
JP2005326405A (en) Method for measuring attitude and/or position of object by means of image processing method
JP2010169636A (en) Shape measuring apparatus
JP4877105B2 (en) Vehicle 3D shape model data creation method
JP2018146348A (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, and computer program
JP2012013593A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4956960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250