JPH09101137A - Shape measuring device - Google Patents

Shape measuring device

Info

Publication number
JPH09101137A
JPH09101137A JP7256159A JP25615995A JPH09101137A JP H09101137 A JPH09101137 A JP H09101137A JP 7256159 A JP7256159 A JP 7256159A JP 25615995 A JP25615995 A JP 25615995A JP H09101137 A JPH09101137 A JP H09101137A
Authority
JP
Japan
Prior art keywords
shape
component
polishing
work
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7256159A
Other languages
Japanese (ja)
Inventor
Hajime Ichikawa
元 市川
Nobuo Maeda
伸夫 前田
Kengo Yasui
健吾 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7256159A priority Critical patent/JPH09101137A/en
Publication of JPH09101137A publication Critical patent/JPH09101137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate the wear distribution state of uniform grinding by a high elastic body polisher and its reproducibility by measuring having a reference surface provided on an object as a reference, and decomposing a shape change into a DC component, a power component, and a waviness component to display it. SOLUTION: The measuring device 1 is equipped with a main body 10, a moving stage part 11, a probe part 12, and a sample base 13, and a work 3 is fitted on the sample base 13 with good reproducibility. A probe 12a fitted to the probe part 12 is moved along the object surface 3a of the work 3 by the stage part 11, and obtained shape data is output to a processing device 2 so as to be processed. The probe 12a picks up the standard reference surface 3b of a high precision plane provide on the outer peripheral part of the work 3 before and after the measurement so that the zero standard of a Z coordinate of the work 3 is taken. A shape change obtained from shape data measure before and after the object surface 3a receives the shape change, is decomposed into a DC component, a power component, and a waviness component to be displayed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ研磨時の面
形状変化の評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating surface shape changes during lens polishing.

【0002】[0002]

【従来の技術】通常、球面で構成される光学レンズ(以
下、研磨される対象物を「ワーク」と称す)は、ワーク
より比較的大きな面積のポリシャを用いて研磨される。
この場合、先ず、設計形状に概略研削されたワークの加
工変質層を砂目抜き研磨により除去し、研磨面とする。
次に、その形状(曲率半径、及び真球度)誤差をニュー
トンゲージ等を用いて光学測定し、その形状誤差が小さ
くなるように研磨機の研磨条件を設定し直して修正研磨
を行い、所望の面形状を得る。
2. Description of the Related Art Usually, an optical lens formed of a spherical surface (hereinafter, an object to be polished is referred to as "workpiece") is polished by using a polisher having a relatively larger area than the workpiece.
In this case, first, the work-affected layer of the work roughly ground into the designed shape is removed by grain removal polishing to obtain a polished surface.
Next, the shape (curvature radius and sphericity) error is optically measured using a Newton gauge or the like, and the polishing conditions of the polishing machine are set again so that the shape error becomes smaller, and the correction polishing is performed. Get the surface shape of.

【0003】この修正研磨工程は、砂目抜き後の被研磨
面の形状の制御が目的であるため、研磨の除去量よりも
制御性が重要であった。なお、研磨前後で生ずる被研磨
面の相対変位は、ワークが有する非被研磨面(例えば、
被研磨面と反対側の裏面等の被研磨面以外の面)を絶対
位置の基準とし、被研磨面の偏差形状で表すものとす
る。この偏差形状に対しては、後で詳述するが、さらに
DC成分を含む場合と、DC成分は含まない場合が考え
られる。本明細書では、前者を「除去分布形状」、後者
を「磨耗分布形状」と称して区別する。
Since the purpose of this correction polishing step is to control the shape of the surface to be polished after grain removal, controllability is more important than the removal amount of polishing. Note that the relative displacement of the surface to be polished that occurs before and after polishing is due to the non-polishing surface (for example,
A surface other than the surface to be polished, such as a back surface opposite to the surface to be polished) is used as a reference for an absolute position and is represented by a deviation shape of the surface to be polished. The deviation shape will be described in detail later, but it is considered that the deviation component further includes a DC component and does not include a DC component. In the present specification, the former is referred to as "removal distribution shape" and the latter is referred to as "wear distribution shape" to distinguish them.

【0004】一方、少なくとも一面が非球面で構成され
る非球面レンズの場合にも、ワークよりも比較的大きな
面積のポリシャが、砂目抜き研磨に適用されている。こ
の砂目抜き研磨としては、高弾性体ポリシャの採用によ
り前工程で創成した非球面(以下、「前加工面」と称
す)形状を極力崩さずに、ワークの全面において均等に
加工変質層を研磨除去する、所謂、「均等研磨」が知ら
れている。
On the other hand, even in the case of an aspherical lens having at least one aspherical surface, a polisher having a relatively larger area than the work is applied to the grain removal polishing. For this grain removal polishing, a high-elasticity polisher is used to create a work-affected layer evenly on the entire surface of the workpiece without destroying the aspherical surface (hereinafter referred to as "pre-machined surface") created in the previous process as much as possible. A so-called "uniform polishing" is known in which polishing and removal are performed.

【0005】この均等研磨における除去分布形状の再現
性は、効率良く加工変質層を除去するための、非常に重
要な要件となる。それは以下の理由による。先ず、被加
工面の形状精度を上げるためには、最低限、磨耗分布形
状の再現性が必要となるのは、以下の理由による。即
ち、前加工面が所望の形状に仕上がっている場合には、
後工程である均等研磨の均等性(再現性も含め)が確保
できてさえいれば、均等研磨後の面形状も所望の面形状
を達成することが可能となる。また、この均等性が確保
できず、磨耗分布形状にパワー成分やうねり成分が含ま
れてしまう場合にも、最低限、均等研磨による磨耗分布
形状の再現性が確保できてさえいれば、その磨耗分布形
状の、例えば逆形状を、前加工面に重畳させることによ
り、均等研磨後の面形状を所望の面形状に仕上げること
が可能となるからである。
The reproducibility of the removal distribution shape in this uniform polishing is a very important requirement for efficiently removing the work-affected layer. It is for the following reasons. First, in order to improve the shape accuracy of the surface to be processed, at least reproducibility of the wear distribution shape is required for the following reason. That is, when the pre-processed surface is finished in the desired shape,
As long as the uniformity (including reproducibility) of the uniform polishing which is a post-process can be secured, the surface shape after the uniform polishing can also achieve a desired surface shape. In addition, even if this uniformity cannot be ensured and the wear distribution shape contains a power component and a swell component, as long as the reproducibility of the wear distribution shape by uniform polishing is ensured at least, the wear This is because it is possible to finish the surface shape after uniform polishing into a desired surface shape by superimposing a reverse shape of the distribution shape on the pre-processed surface.

【0006】ただし、前者の(均等性が確保できる)場
合には、研磨時間が増加してもワーク面形状は変化しな
いのに反し、後者の(均等性が確保できない)場合に
は、研磨時間が増加するに連れて均等性も悪くなる(パ
ワー成分やうねり成分も増加する)ため、均等研磨の磨
耗分布形状を考える場合には、研磨時間を一定にして評
価する必要がある。
However, in the former case (uniformity can be ensured), the work surface shape does not change even if the polishing time increases, whereas in the latter case (uniformity cannot be ensured), the polishing time Since the uniformity becomes worse as the number of times increases (the power component and the waviness component also increase), it is necessary to make the polishing time constant and evaluate when considering the wear distribution shape of the uniform polishing.

【0007】次に、加工能率を上げるためには、以下の
理由から磨耗分布形状の再現性のみならず、除去分布形
状の再現性も必要となる。即ち、前加工で発生した加工
変質層の深さが一定と仮定した時、さらに、均等研磨に
費やすエネルギーを一定と仮定した時、均等性の有無に
係わらず、均等研磨の最小除去量は加工変質層の深さ以
上を必要とする。この時、確実に加工変質層を除去する
ためには、除去分布形状のバラツキに対する安全を見込
んで研磨時間を多めに設定する必要があり、除去分布形
状の再現性が良ければ、この余分な研磨時間を少なくす
ることが可能となるからである。
Next, in order to improve the machining efficiency, not only the reproducibility of the wear distribution shape but also the reproducibility of the removal distribution shape is required for the following reasons. That is, assuming that the depth of the work-affected layer generated in the pre-processing is constant, and further assuming that the energy spent for uniform polishing is constant, the minimum removal amount of uniform polishing is It requires more than the depth of the altered layer. At this time, in order to surely remove the work-affected layer, it is necessary to set a long polishing time in consideration of safety against variations in the removal distribution shape, and if the removal distribution shape has good reproducibility, this extra polishing This is because it is possible to reduce the time.

【0008】なお、前記2つの仮定を前提とした場合、
加工変質層を均等研磨により最短時間(最小研磨除去
量)で除去するための必要条件としては、やはり均等性
(再現性も含め)が要求されることとなる。
If the above two assumptions are assumed,
Uniformity (including reproducibility) is also required as a necessary condition for removing the work-affected layer by uniform polishing in the shortest time (minimum polishing removal amount).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
測定では、除去分布形状の再現性を評価する際に基本と
なる磨耗分布形状そのものの評価、さらには、除去分布
形状のDC成分の測定に正確さが欠けると言う問題点が
あった。例えば前者に関しては、面形状の測定データに
は、被検面の面性状(表面粗さ等)や測定環境の温度変
動に起因した、パワー誤差が混入しやすいため、結果的
に磨耗分布形状にもパワー誤差の混入が避けられないと
言う問題点があった。
However, in the conventional measurement, the wear distribution shape itself, which is the basis for evaluating the reproducibility of the removal distribution shape, and the DC component of the removal distribution shape are accurately measured. There was a problem that it lacked. For example, regarding the former, the surface shape measurement data is apt to include power errors due to surface characteristics (surface roughness, etc.) of the surface to be inspected and temperature fluctuations in the measurement environment, resulting in a wear distribution shape. However, there was a problem that mixing of power errors was unavoidable.

【0010】また、後者に関しても、測定基準面に例え
ばワークの裏面を採用した場合、研磨前後のワークの支
持状態のばらつきに起因した、DC成分誤差が生じ易い
と言う問題点があった。本発明は上記従来技術の欠点に
鑑みなされたもので、高弾性体ポリシャによる均等研磨
の磨耗分布形状、及びその再現性を正確に評価すること
が可能な形状測定装置の提供を目的とする。
Also in the latter case, when the back surface of the work is adopted as the measurement reference surface, for example, there is a problem that a DC component error is likely to occur due to variations in the support state of the work before and after polishing. The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide a shape measuring apparatus capable of accurately evaluating the wear distribution shape of uniform polishing by a highly elastic polisher and its reproducibility.

【0011】[0011]

【課題を解決する為の手段】上記問題点の解決のため
に、本発明は、「被検面の形状を測定するための測定器
と、該測定器で得られた形状データを演算処理するため
の演算装置とからなり、該被検面が形状変化を受ける前
後に測定された該形状データから該形状変化を求める形
状測定装置であって、該被検物に設けられた参照面を基
準に測定することにより、該形状変化を、DC成分、パ
ワー成分、及びうねり成分に分解して表示することを特
徴とする形状測定装置」を提供する。
In order to solve the above problems, the present invention provides a "measuring device for measuring the shape of a surface to be inspected and a shape data obtained by the measuring device. A shape measuring device for determining the shape change from the shape data measured before and after the shape change of the surface to be inspected, wherein a reference surface provided on the object to be inspected is used as a reference. The shape measuring device is characterized in that the shape change is decomposed into a DC component, a power component, and an undulation component and displayed by performing the measurement.

【0012】[0012]

【発明の実施の形態】先ず、以下に述べる作用に基づ
き、磨耗分布形状を評価する。図1(a)は、均等研磨
を1回だけ行った際の、研磨前の被研磨面の形状測定デ
ータを基準とし(フラットに置き直し)、研磨後の被研
磨面の形状測定データをXZ直交座標上に偏差形状とし
てプロットしたものである。即ち、X軸方向にn個の等
間隔の測定点をサンプリングし、研磨前後の被研磨面の
偏差形状をbj(j=1〜n)として、Z軸の正の方向
(図の下向き)にプロットしている。なお、各測定点に
おける、研磨前後の被研磨面の形状測定データのバラツ
キを、等しくσS と仮定している(図の両矢印で表して
いる)。
BEST MODE FOR CARRYING OUT THE INVENTION First, the wear distribution shape is evaluated based on the following actions. FIG. 1A is based on the shape measurement data of the surface to be polished before polishing when the uniform polishing is performed only once (replaced flat), and the shape measurement data of the surface to be polished after polishing is XZ. It is plotted as a deviation shape on Cartesian coordinates. That is, n measurement points at equal intervals are sampled in the X-axis direction, and the deviation shape of the surface to be polished before and after polishing is taken as b j (j = 1 to n), and the positive direction of the Z-axis (downward in the figure). Is plotted. It is assumed that the variation in the shape measurement data of the surface to be polished before and after polishing at each measurement point is equal to σ S (represented by a double arrow in the figure).

【0013】磨耗分布形状、及び除去分布形状は共に、
研磨前後で生ずる、被研磨面の相対変位(偏差形状)と
して定義しているため、本質的に相対的な性質を有す
る。従って、一旦得られた除去分布形状を評価する場合
に図1(a)のように研磨前の面形状をフラットに置き
直しても何ら一般性を失わない(ただし、実際の除去分
布形状は、均等研磨を施す対象となる前加工面の形状に
依存して変化することに注意する必要がある)。この
時、偏差形状bj が除去分布形状を、また除去分布形状
からDC成分を除去した、bj の変化量Δbj が磨耗分
布形状を与える。
Both the wear distribution shape and the removal distribution shape are
Since it is defined as the relative displacement (deviation shape) of the surface to be polished that occurs before and after polishing, it essentially has a relative property. Therefore, when the removal distribution shape obtained once is evaluated, even if the surface shape before polishing is replaced flat as shown in FIG. 1A, the generality is not lost (however, the actual removal distribution shape is It should be noted that it changes depending on the shape of the pre-processed surface to which uniform polishing is applied). At this time, the deviation shape b j gives the removal distribution shape, and the variation Δb j of b j obtained by removing the DC component from the removal distribution shape gives the wear distribution shape.

【0014】図1(b)は、m回の均等研磨を行うこと
によって得られたm個の除去分布形状を、図1(a)と
同様に前加工面の形状をゼロ規準(フラット)として、
XZ直交座標上に重ね合わせたものであり、n個のサン
プリング点のX座標値は装置上で、研磨前後における2
×m回の測定において変えないようにする。また、m個
の除去分布形状の偏差データを図1(c)のように、a
ij(i=1〜m、j=1〜n)と置く。a1j(j=1〜
n)は、図1(a)のbj (j=1〜n)と等しい。ま
た、このm個の磨耗分布形状をMBKi (i=1〜m)
で表す。
FIG. 1B shows the removal distribution shape of m pieces obtained by performing uniform polishing m times, with the shape of the pre-machined surface as zero standard (flat) as in FIG. 1A. ,
It is superimposed on the XZ orthogonal coordinates, and the X coordinate values of n sampling points are 2 on the device before and after polishing.
Do not change during xm measurements. Further, as shown in FIG. 1 (c), the deviation data of m removal distribution shapes are
ij (i = 1 to m, j = 1 to n). a 1j (j = 1 to 1
n) is equal to b j (j = 1 to n) in FIG. In addition, the wear distribution shapes of the m pieces are set to MBK i (i = 1 to m)
Expressed by

【0015】さて、磨耗分布形状の平均形状を求める際
に、全てのm×n個のデータに関して、その平均値から
の自乗総和Sが最小となるように、MBKi を各々di
(i=1〜m)だけオフセットさせるものとする。ここ
に、Sは次式で定義する。 [数1]S≡ΣΣ(aij−di −hj 2 但し、総和はi=1〜m、j=1〜nで行う。また、式
中のhj (j=1〜n)は、各測定点における、m個の
偏差の平均値であり、次式で定義する。 [数2]hj ≡Σ(aij−di )/m 但し、総和はi=1〜mで行う。このSが最小となる条
件 [数3]∂S/∂di =0(i=1〜m) を連立方程式として解けば、di がd1 の関数として以
下の手順で求まる。先ず、各MBKi 毎のライン方向の
測定データの平均値vi を次式で定義する。 [数4]vi ≡Σaij/n 但し、総和はj=1〜nで行う。この時、[数3]の連
立方程式は [数5]di −di-1 =vi −vi-1 と解ける。第1回目の「ライン方向の測定データ(サン
プリング点の移動方向のライン状データ)」を規準と
し、「d1 =0」と置いても、一般性を失わない。この
時、 [数6]di =vi −v1 と変形できる。これは、「Z=vi 」の直線をMBKi
の規準線に採用して、各MBKi をvi基準で(即ち、
i だけオフセットさせて)第1回目のライン方向の測
定データの規準線「Z=v1 」に重ね合わせれば、磨耗
分布形状の、自乗平均的に最適な重ね合わせが可能とな
ることを示している。
Now, when obtaining the average shape of the wear distribution shape, MBK i is d i for each m × n data so that the sum of squares S from the average value is minimized.
The offset is (i = 1 to m). Here, S is defined by the following equation. [Equation 1] S≡ΣΣ (a ij −d i −h j ) 2 However, the summation is performed at i = 1 to m and j = 1 to n. Further, h j (j = 1 to n) in the equation is an average value of m deviations at each measurement point and is defined by the following equation. [Equation 2] h j ≡Σ (a ij −d i ) / m However, the total sum is i = 1 to m. By solving the condition [Equation 3] ∂S / ∂d i = 0 (i = 1 to m) that minimizes S as a simultaneous equation, d i can be obtained as a function of d 1 by the following procedure. First, the average value v i of the measured data in the line direction for each MBK i is defined by the following equation. [Equation 4] v i ≡Σa ij / n However, the summation is performed with j = 1 to n. At this time, the simultaneous equations of [Equation 3] can be solved as [Equation 5] d i −d i−1 = v i −v i−1 . Even if "d 1 = 0" is set as the standard with the first "measurement data in the line direction (line-shaped data in the moving direction of the sampling point)" as standard, the generality is not lost. At this time, [Formula 6] can be transformed into d i = v i −v 1 . This is "Z = v i" a straight line of MBK i
Of each MBK i on the basis of v i (ie,
It is shown that, by superimposing it on the reference line “Z = v 1 ” of the measurement data in the first line direction (offset by d i ), it is possible to superimpose the wear distribution shape on a root-mean-square basis. ing.

【0016】さらに、各MBKi の基準線は、研磨前後
のZ方向の絶対的な座標値が分からなくても求まるた
め、磨耗分布形状の再現性のみを評価する際には、研磨
前後のZ座標値の相関は、必ずしも必要では無いことが
分かる。また、第1回目のライン方向の測定データの規
準線に関しても「vi =0」と置いて良い。このよう
に、「Z=0」のラインまでMBKi の規準線をオフセ
ットした磨耗分布形状をMBK i で表すこととする。
Further, since the reference line of each MBK i can be obtained without knowing the absolute coordinate values in the Z direction before and after polishing, when evaluating only the reproducibility of the wear distribution shape, the Z before and after polishing can be evaluated. It can be seen that the coordinate value correlation is not always necessary. In addition, the reference line of the measurement data in the first line direction may be set as “v i = 0”. In this way, the wear distribution shape obtained by offsetting the reference line of MBK i up to the line of "Z = 0" is represented by MBK i .

【0017】以上の理由から、研磨前後の2個の形状デ
ータの偏差形状として定義された磨耗分布形状は、その
測定データの平均線を基準としてオフセットさせて重ね
合わせることにより、DC成分の除去量を除いた再現性
評価が可能となる。次に、磨耗分布形状をパワー成分と
うねり成分に分解して考える。パワー成分は種々の定義
が可能であるが、本発明では以下のように定義する。
For the above reasons, the wear distribution shape defined as the deviation shape of the two shape data before and after polishing is overlapped by offsetting the average line of the measurement data as a reference and superimposing it. It becomes possible to evaluate reproducibility excluding. Next, consider the wear distribution shape by decomposing it into a power component and a swell component. The power component can be defined in various ways, but in the present invention, it is defined as follows.

【0018】先ず、均等研磨を施す対象となる回転対称
なワーク面形状を次式で表す。 [数7]Z=X2 /R/{1+√(1−κX2
2 )}+C2 2 +C4 4 +C6 6 +C8 8
1010 この式の前半は2次非球面成分であり、式中の係数κ、
及びRは、それぞれ、非球面係数、及び中心曲率半径で
ある。なお、式の簡略化のため、一般的な表記法に対し
て、「1+κ」を「κ」と置き直している。また、式の
後半は高次非球面成分である。
First, the rotationally symmetrical work surface shape to be uniformly polished is expressed by the following equation. [Equation 7] Z = X 2 / R / {1 + √ (1-κX 2 /
R 2 )} + C 2 X 2 + C 4 X 4 + C 6 X 6 + C 8 X 8 +
C 10 X 10 The first half of this equation is the second-order aspherical component, and the coefficient κ in the equation,
And R are the aspherical coefficient and the central radius of curvature, respectively. To simplify the formula, “1 + κ” is replaced with “κ” in the general notation. The latter half of the equation is a high-order aspherical component.

【0019】この基本式を次式の関数形式で表すことと
する。ただし、iは10次までの偶数である。 [数8]Z=Z(κ、R、Ci ) また、研磨後の状態を上添字a、研磨前の状態を上添字
bで表すこととする。この時、磨耗分布形状は一般的に
次式で表される。 [数9]MBK=Z(κa 、Ra 、Ci a )−Z
(κb 、Rb 、Ci b ) 本発明では、「κは非球面形状を表す指数であり、温度
変化等により研磨前後でワーク面形状のパワーが変わっ
ても、研磨前後のκは共通である」として扱い、パワー
変化はRの変化「ΔR」のみとする。この時、数9は、 [数10]MBK=Z(κb 、Rb +ΔR、Ci a )−Z
(κb 、Rb 、Ci b ) と表現されることになる。このようにパワー成分を定義
すれば、うねり成分は、磨耗分布形状からこのパワー成
分を除去した残差形状で定義できる。
This basic equation will be expressed in the functional form of the following equation. However, i is an even number up to the tenth order. [Equation 8] Z = Z (κ, R, C i ) Further, the state after polishing is represented by an upper subscript a and the state before polishing is represented by an upper subscript b. At this time, the wear distribution shape is generally expressed by the following equation. [Expression 9] MBK = Z (κ a , R a, C i a) -Z
b , R b , C i b ) In the present invention, “κ is an index representing an aspherical shape, and even if the power of the work surface shape changes before and after polishing due to temperature change and the like, κ before and after polishing is common. The power change is limited to the change of R “ΔR”. At this time, Expression 9 is [Expression 10] MBK = Z (κ b , R b + ΔR, C i a ) −Z
It will be expressed as (κ b , R b , C i b ). By defining the power component in this way, the swell component can be defined by a residual shape obtained by removing the power component from the wear distribution shape.

【0020】次に、うねり成分が無くパワー成分のみを
有する断面のMBK i (i=1〜m)を考え、図1
(d)のように重ね合わせるものとする。この場合、図
中の●で示すような、バラツキが略ゼロの領域が2箇所
存在することになる。しかるに、磨耗分布形状のバラツ
キに関しては、この領域に特異性を有することには何ら
必然性が無い。これは、パワー成分を含んだ磨耗分布形
状の再現性評価が適切で無いことを示している。従っ
て、各MBK i からパワー成分pi (i=1〜m)を除
去した残差、即ち、うねり成分qijにより均等研磨のバ
ラツキを評価することとする。
Next, consider MBK i (i = 1 to m) of a cross section having no waviness component but only power component, and FIG.
It should be overlapped as shown in (d). In this case, there are two regions where the variation is substantially zero, as indicated by the solid circles in the figure. However, with respect to the variation of the wear distribution shape, it is inevitable that the area has peculiarity. This indicates that the reproducibility evaluation of the wear distribution shape including the power component is not appropriate. Therefore, the variation of the uniform polishing is evaluated by the residual obtained by removing the power component p i (i = 1 to m) from each MBK i , that is, the waviness component q ij .

【0021】なお、前記パワー成分の除去は、断面の形
状評価を行う場合には、あくまでも断面のパワー成分の
除去であることが必要である。何故ならば、もし、「得
られた断面形状をレンズ中心軸に関して回転させた、3
次元形状データ」に対して3次元的なパワー除去を行っ
た場合、その3次元のうねり成分の、レンズ中心軸を通
る断面形状には、パワー成分が残っていることが予想さ
れ(何故ならば、ある断面形状にパワー除去を施した、
「断面のうねり成分」に関しては、その規準線の上下の
面積は等しくなるが、その「断面のうねり成分」をレン
ズ中心軸に関して回転させた3次元うねりデータに関し
ては、その規準線の上下の体積は等しくならないからで
ある)、その時には図1(d)の●近傍の特異性が排除
できなくなるからである。
Incidentally, the removal of the power component must be the removal of the power component of the cross section when the shape of the cross section is evaluated. Because, if "the obtained cross-sectional shape is rotated about the lens center axis, 3
When the three-dimensional power removal is performed on the “dimensional shape data”, it is expected that the power component remains in the cross-sectional shape of the three-dimensional waviness component passing through the center axis of the lens (because of this. , Power removal was applied to a certain cross-sectional shape,
Regarding the "waviness component of the cross section", the areas above and below the reference line are equal, but for the three-dimensional waviness data obtained by rotating the "waviness component of the cross section" about the lens center axis, the volume above and below the reference line Is not equal to each other), and at that time, the singularity in the vicinity of ● in FIG. 1 (d) cannot be excluded.

【0022】また、特異性を有する●近傍は、パワー成
分と等価な「周期=WD」のcos波で形成されるうね
り成分の場合には2個存在し得るが、例えば「周期=2
×WD」のcos波で形成されるうねり成分の場合に
は、●近傍は4個となり得る。ここで、WDは被検面の
直径を表している。このように、●近傍は、パワー成分
以外のうねり成分でも生じ得るが、パワー成分のみを磨
耗分布形状から除去する対象とする理由は、[発明が解
決しようとする課題]で述べたように、被検面の形状デ
ータには、被検面の面性状や測定環境の温度変動に起因
したパワー誤差が乗り易く、結果的に磨耗分布形状も前
記パワー誤差の影響を受けることが予想され、純粋に均
等研磨そのものに起因するバラツキを評価することを目
的とするためである。
In addition, there are two peculiar neighborhoods in the case of a waviness component formed by a cos wave of "period = WD" equivalent to the power component. For example, "period = 2"
In the case of the waviness component formed by the cos wave of “× WD”, there may be four in the vicinity. Here, WD represents the diameter of the test surface. As described above, ● The vicinity may be generated by a swell component other than the power component, but the reason for removing only the power component from the wear distribution shape is as described in [Problems to be Solved by the Invention]. In the shape data of the surface to be inspected, a power error due to the surface property of the surface to be inspected or temperature fluctuation of the measurement environment is likely to occur, and as a result it is expected that the wear distribution shape will also be affected by the power error. This is for the purpose of evaluating the variation caused by the uniform polishing itself.

【0023】さて、断面のうねり成分qijに着目した
時、前述の手法と全く同様に、うねり成分qijの平均化
が可能となる。この平均化されたライン方向の測定デー
タをLとし、n個の各測定サンプリング点でのうねり成
分qijのバラツキをσuj(j=1〜n)と置く(図2
(a)参照)。また、パワー成分pi (i=1〜m)の
平均値をph 、そのバラツキをσp と置く。ph 、σp
共、Z軸方向のサグ量と考えても良い。
[0023] Now, when attention is paid to the undulation component q ij cross-section, just like the above-described process, it is possible to average the waviness component q ij. Let L be the averaged measurement data in the line direction, and let σ uj (j = 1 to n) be the variation in the waviness component q ij at each of the n measurement sampling points (FIG. 2).
(A)). The average value of the power components p i (i = 1 to m) is p h , and its variation is σ p . p h , σ p
Both may be considered as the amount of sag in the Z-axis direction.

【0024】この時、磨耗分布形状の平坦性は、「L+
h ±3×σp 」で表すことが可能となる。また、図2
(b)のようにn個のσuj(j=1〜n)の、平均値σ
ave 、バラツキσsgm は、各々、次式で表される。 [数11]σave ≡Σσuj/n 但し、総和はj=1〜nとする。 [数12]σsgm 2 ≡Σ(σuj−σave 2 /(n−
1) 但し、総和はj=1〜nとする。
At this time, the flatness of the wear distribution shape is "L +
it is possible to represent by p h ± 3 × σ p ". FIG.
An average value σ of n σ uj (j = 1 to n) as shown in (b)
The ave and the variation σ sgm are respectively expressed by the following equations. [Equation 11] σ ave ≡ Σσ uj / n However, the total sum is j = 1 to n. [Equation 12] σ sgm 2 ≡Σ (σ uj −σ ave ) 2 / (n−
1) However, the total sum is j = 1 to n.

【0025】この時、うねり成分Lのバラツキは、この
σave とσsgm を用いて以下のように表現することがで
きる。例えば、うねり成分Lの概略のバラツキ幅は、
「ΔL=σave +k×σsgm 」を用いて、「±3×Δ
L」で算出することが可能となる。kの値は信頼区間の
パーセンテージによって異なるが、概略2〜3で良い。
At this time, the variation of the waviness component L can be expressed as follows using the σ ave and σ sgm . For example, the approximate variation width of the swell component L is
Using “ΔL = σ ave + k × σ sgm ”, “± 3 × Δ
It becomes possible to calculate by "L". The value of k depends on the percentage of the confidence interval, but may be approximately 2-3.

【0026】なお、以上の議論はバラツキがランダムで
略正規分布に従うものとしている。
The above discussion assumes that the variations are random and follow a substantially normal distribution.

【0027】[0027]

【実施例】作用で述べた演算例は、本発明の第1の実施
例であり、磨耗分布形状の再現性評価が可能な、形状測
定装置を使用した演算例であり、図3は形状測定装置の
構成概要である。測定器1は、本体10、移動ステ−ジ
部11、プローブ部12、及び試料台13等から構成さ
れる。ワ−ク3は試料台13に再現性良く取付け可能で
ある。プロ−部12に取付けられたプローブ12aが、
移動ステージ部11により、ワークの被検面3aに沿っ
て移動し、得られた形状データを演算装置2に送出し、
演算処理を行う。プローブ12aは、測定の前後に、ワ
ークの外周部に設けられた高精度平面の基準参照面3b
を拾うことにより、ワークのZ座標のゼロ基準を取って
いる。
EXAMPLE The operation example described in the operation is the first embodiment of the present invention, which is an example of operation using a shape measuring device capable of evaluating reproducibility of wear distribution shape, and FIG. It is an outline of a device configuration. The measuring instrument 1 is composed of a main body 10, a moving stage unit 11, a probe unit 12, a sample table 13 and the like. The work 3 can be attached to the sample table 13 with good reproducibility. The probe 12a attached to the professional section 12
The movement stage unit 11 moves along the surface 3a to be inspected of the work, sends the obtained shape data to the arithmetic unit 2,
Perform arithmetic processing. The probe 12a has a high precision plane reference reference surface 3b provided on the outer peripheral portion of the work before and after the measurement.
The zero reference of the Z coordinate of the work is taken by picking up.

【0028】参照面としては、ワークの裏面側に設けて
も良い。例えば、ワークがミラーとして使用され、裏面
形状が自由な場合には、ワークの裏面そのものを高精度
平面に仕上げておけば良い。また、ワークがレンズとし
て使用される場合でも、研磨雇に貼り付けた状態で、雇
の裏面を同様に高精度に仕上げておけば良い。いずれの
場合にも、形状測定機のプローブが参照面を拾うことは
出来ないが、参照面と被検面の相対関係を崩さなければ
問題無い。
The reference surface may be provided on the back surface side of the work. For example, when the work is used as a mirror and the back surface shape is free, the back surface of the work itself may be finished into a highly accurate flat surface. Further, even when the work is used as a lens, it is sufficient to finish the back surface of the work piece with high accuracy in a state where the work piece is attached to the work piece. In either case, the probe of the profilometer cannot pick up the reference surface, but there is no problem unless the relative relationship between the reference surface and the surface to be inspected is destroyed.

【0029】なお、均等研磨を施す前加工面(非球面)
は、それを創成する方法にも依存するが、一般的には軸
回転対称になっている。従って、再現性を評価すべき磨
耗分布形状(断面形状)も軸対称性を有することが期待
できる。もし、均等研磨の結果、この軸対称性がうねり
のレベルで崩れていた場合には、均等研磨そのものに起
因する理由以外に、例えば、再現性を評価する時に用い
た前加工面が最初に有していた、軸対称で無いうねりが
原因として考えられる。何故ならば、弾性体研磨には、
前加工面の形状(但し、周波数の低いうねり成分)を崩
さずに前加工で発生した加工変質層を除去する能力(特
に、高弾性体ポリシャを使用する場合)以外に、うねり
(但し、周波数の高いうねり成分)除去能力(特に、低
弾性体ポリシャを使用する場合)も併せ持っているから
である。従って、前加工面に、軸対称で無く、かつ、周
波数の高いうねりが重畳している場合、得られる磨耗分
布形状は軸対称性が崩れることになる。逆に、そのよう
なうねりが重畳していない場合に磨耗分布形状の軸対称
性が崩れるならば、均等研磨自身が非対称性を発生させ
ていると判断できる。
A pre-processed surface (aspherical surface) on which uniform polishing is performed
Is generally rotationally symmetric, though it depends on how it is created. Therefore, it can be expected that the wear distribution shape (cross-sectional shape) whose reproducibility should be evaluated also has axial symmetry. If this axial symmetry is broken at the level of waviness as a result of uniform polishing, for example, the pre-processed surface used when evaluating reproducibility is the first cause other than the reason due to uniform polishing itself. It is thought that this is due to the axial symmetry and no waviness. Because, for elastic body polishing,
In addition to the ability to remove the work-affected layer generated in the pre-processing without breaking the shape of the pre-processed surface (however, the undulation component of low frequency) (especially when using a high elastic body polisher) This is because it also has a high swell component removal ability (particularly when a low elastic body polisher is used). Therefore, when the pre-machined surface does not have axial symmetry and undulations of high frequency are superimposed, the obtained wear distribution shape loses axial symmetry. On the contrary, if the axial symmetry of the wear distribution shape collapses when such waviness does not overlap, it can be determined that the uniform polishing itself causes asymmetry.

【0030】また、周波数の極めて高いうねり(表面粗
さのレベル)が前加工面全面に重畳している場合、前加
工面の形状測定のバラツキσs が大きくなってしまい
(均等研磨後の研磨面形状測定のバラツキと比較しては
るかに大きくなることが予想される)、前述のσujの値
も必然的に大きくなってしまう。従って、通常の加工変
質層除去の目的で用いられる均等研磨の場合、図1
(a)で、2×n回の測定で等しいと仮定した測定誤差
σs に関して、各測定毎の実際の測定精度を事前に評価
しておくと共に、例えば、表面粗さをカットするための
ローパスフィルタを、磨耗分布形状の評価時に併用する
ことも必要となってくる。
When waviness (level of surface roughness) having an extremely high frequency is superimposed on the entire surface of the pre-processed surface, the variation σ s in measuring the shape of the pre-processed surface becomes large (polishing after uniform polishing. It is expected that it will be much larger than the variation in surface shape measurement), and the value of σ uj will inevitably become large. Therefore, in the case of uniform polishing that is used for the purpose of removing a normal work-affected layer,
In (a), the actual measurement accuracy of each measurement is evaluated in advance with respect to the measurement error σ s , which is assumed to be the same in the measurement of 2 × n times, and, for example, a low pass for cutting the surface roughness is used. It is also necessary to use a filter together when evaluating the wear distribution shape.

【0031】図4は、本発明の第1の実施例の第1の変
形例であり、得られる磨耗分布形状にローパスフィルタ
ーをかけて処理する場合である。これは、前述したとお
り、前加工面の非対称なうねり成分や、前加工面の表面
性状に起因したバラツキが、磨耗分布形状に重畳してし
まうことを防ぐためのものである。このローパスフィル
ターは、加工前のワーク面形状を測定する際に用いても
良いし、パワー成分を除去した後のうねり成分に用いて
も良い。
FIG. 4 shows a first modification of the first embodiment of the present invention, in which the obtained wear distribution shape is processed by a low-pass filter. As described above, this is to prevent the asymmetrical waviness component of the pre-machined surface and the variation caused by the surface texture of the pre-machined surface from being superimposed on the wear distribution shape. This low-pass filter may be used when measuring the shape of the work surface before processing, or may be used as the swell component after removing the power component.

【0032】また、本発明の第1の実施例の第2の変形
例として、異なる研磨形態による均等研磨の除去分布形
状の比較評価のための演算例をあげる。前述のように、
一定時間、一定のエネルギーを与えて、同じ硝種のワー
クに対して均等研磨を行っても、研磨形態に依存して、
除去分布形状(磨耗分布形状+研磨除去量)が異なって
くる。この時、これらの研磨形態の優劣を判断する基準
は、単位加工除去量当たりの磨耗分布形状の平坦性(再
現性も含め)と単位加工時間当たりの研磨除去量とに、
区別して考える必要が出てくる。何故ならば、加工変質
層を除去するのに、「加工時間はかかるが、均等研磨自
身の均等性は良い」場合もあれば、同じ加工変質層を除
去するのに「加工時間は短くても形状が大きく崩れてし
まう」場合もあるからである。
As a second modification of the first embodiment of the present invention, a calculation example for comparative evaluation of removal distribution shapes of uniform polishing by different polishing modes will be given. As aforementioned,
Even if uniform polishing is performed on a workpiece of the same glass type by applying constant energy for a certain period of time, depending on the polishing mode,
The removal distribution shape (wear distribution shape + polishing removal amount) is different. At this time, the criteria for judging the superiority or inferiority of these polishing forms are the flatness (including reproducibility) of the wear distribution shape per unit processing removal amount and the polishing removal amount per unit processing time,
It is necessary to distinguish them. The reason is that removing the work-affected layer may require "processing takes time, but the uniformity of the uniform polishing itself is good," and removal of the same work-affected layer may require "working time is short. This is because the shape may be greatly destroyed. ”

【0033】後者の「単位加工時間当たりの研磨除去
量」は、除去分布形状から容易に算出可能となる。但
し、除去分布形状が断面形状である場合には、ワークの
回転対称軸を中心に回転させて得られる形状の体積で、
除去量を算出する必要があるのは言うまでも無い。前者
の「単位加工除去量当たりの磨耗分布形状の平坦性」を
算出する際に、分母となる加工除去量を除去分布形状か
ら特定することも可能となる。
The latter "polishing removal amount per unit processing time" can be easily calculated from the removal distribution shape. However, when the removal distribution shape is a cross-sectional shape, the volume of the shape obtained by rotating the workpiece about the rotational symmetry axis,
It goes without saying that it is necessary to calculate the removal amount. When the former "flatness of wear distribution shape per unit machining removal amount" is calculated, it is possible to specify the machining removal amount serving as a denominator from the removal distribution shape.

【0034】[0034]

【発明の効果】以上のように本発明に係る形状測定装置
を採用すれば、高弾性体ポリシャによる均等研磨の磨耗
分布形状、及び、その再現性を正確に評価することが可
能となる。
As described above, by adopting the shape measuring apparatus according to the present invention, it becomes possible to accurately evaluate the wear distribution shape of uniform polishing by the high elastic body polisher and its reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明に係る原理図である。FIG. 1 is a principle diagram according to the present invention.

【図2】は、本発明に係る原理図である。FIG. 2 is a principle diagram according to the present invention.

【図3】は、本発明に係る第1の実施例である。FIG. 3 is a first embodiment according to the present invention.

【図4】は、本発明に係る第1の実施例の第1の変形例
である。
FIG. 4 is a first modification of the first embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・測定機 2・・・・・演算装置 3・・・・・ワーク(被測定物) 3a・・・・被検面 3b・・・・基準参照面 10・・・・・測定機本体 11・・・・・移動ステージ部 12・・・・・プローブ部 12a・・・・プローブ 13・・・・・試料台 以上 1 ... Measuring machine 2 ... Arithmetic device 3 ... Work (object to be measured) 3a ... Surface to be inspected 3b ... Reference reference surface 10 ... Measuring machine main body 11 ・ ・ ・ Movement stage part 12 ・ ・ ・ Probe part 12a ・ ・ ・ ・ Probe 13 ・ ・ ・ Sample stand

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被検面の形状を測定するための測定器と、
該測定器で得られた形状データを演算処理するための演
算装置とからなり、該被検面が形状変化を受ける前後に
測定された該形状データから該形状変化を求める形状測
定装置であって、該被検物に設けられた参照面を基準に
測定することにより、該形状変化を、DC成分、パワー
成分、及びうねり成分に分解して表示することを特徴と
する形状測定装置。
1. A measuring device for measuring the shape of a surface to be inspected,
A shape measuring device for calculating the shape change from the shape data measured before and after the surface to be inspected undergoes a shape change, which comprises an arithmetic device for arithmetically processing the shape data obtained by the measuring device. A shape measuring device characterized in that the shape change is decomposed into a DC component, a power component, and a waviness component and displayed by performing measurement with reference to a reference surface provided on the test object.
JP7256159A 1995-10-03 1995-10-03 Shape measuring device Pending JPH09101137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7256159A JPH09101137A (en) 1995-10-03 1995-10-03 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7256159A JPH09101137A (en) 1995-10-03 1995-10-03 Shape measuring device

Publications (1)

Publication Number Publication Date
JPH09101137A true JPH09101137A (en) 1997-04-15

Family

ID=17288729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7256159A Pending JPH09101137A (en) 1995-10-03 1995-10-03 Shape measuring device

Country Status (1)

Country Link
JP (1) JPH09101137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138673A (en) * 2004-11-10 2006-06-01 Hitachi Industries Co Ltd Method and system for surface shape measurement
JP2007121126A (en) * 2005-10-28 2007-05-17 Yokohama Rubber Co Ltd:The Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2007321185A (en) * 2006-05-31 2007-12-13 Olympus Corp Superprecision polishing method and superprecision polishing device by gas cluster ion beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138673A (en) * 2004-11-10 2006-06-01 Hitachi Industries Co Ltd Method and system for surface shape measurement
JP2007121126A (en) * 2005-10-28 2007-05-17 Yokohama Rubber Co Ltd:The Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2007321185A (en) * 2006-05-31 2007-12-13 Olympus Corp Superprecision polishing method and superprecision polishing device by gas cluster ion beam

Similar Documents

Publication Publication Date Title
US6442857B1 (en) Portable surface inspector
Leach The measurement of surface texture using stylus instruments.
JP4504818B2 (en) Workpiece inspection method
KR100869110B1 (en) Profilometer and method for measuring, and method for manufacturing object of surface profiling
US11092430B2 (en) Measurement of toothed articles utilizing multiple sensors
TW201111100A (en) Machine tool calibration method
EP0607240A1 (en) Measuring the accuracy of multi-axis machines
CN111536876B (en) In-situ measurement method for sealing surface of three-eccentric center butterfly valve
JP2023090783A (en) Method of calibrating surface sensing device, corresponding calibration program for control computer, and corresponding calibration kit
JPH06285762A (en) Method of teaching optional curve surface to robot
JPH09101137A (en) Shape measuring device
JP4948336B2 (en) Rolling roll diameter measuring device of grinding machine and diameter measuring method of rolling roll
JPH11347930A (en) Correcting method for twisted groove forming and grinding process and twisted groove forming and grinding device
Buhmann et al. Investigation on probe positioning errors affecting on-machine measurements on ultra-precision turning machines
Pfeifer et al. Task-specific gauge for the inspection of coordinate measuring machines
US20080052035A1 (en) Three-Dimensional Measurement Method and Device
JPH01174907A (en) Method and apparatus for measuring shape of curved surface
JPH10221053A (en) Method for measuring radius of curvature of spherical face
JP4400309B2 (en) Cutting blade position measuring method, cutting blade position measuring program, recording medium, and NC machine tool
Doughty et al. Fabrication techniques for geodesic lenses in lithium niobate
CN110014197A (en) For check milling tool method and corresponding device
JPH11281306A (en) Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data
JP3589774B2 (en) High-precision planar shape measurement method
Vladimirovna et al. Measurement on the Plate-Measuring Machine
JPH08226815A (en) Surface condition distortion measuring device