JP4956896B2 - Polymer compound and polymer light emitting device using the same - Google Patents

Polymer compound and polymer light emitting device using the same Download PDF

Info

Publication number
JP4956896B2
JP4956896B2 JP2004373147A JP2004373147A JP4956896B2 JP 4956896 B2 JP4956896 B2 JP 4956896B2 JP 2004373147 A JP2004373147 A JP 2004373147A JP 2004373147 A JP2004373147 A JP 2004373147A JP 4956896 B2 JP4956896 B2 JP 4956896B2
Authority
JP
Japan
Prior art keywords
group
substituted
light emitting
polymer
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004373147A
Other languages
Japanese (ja)
Other versions
JP2006176705A (en
Inventor
保則 上谷
公信 野口
弘俊 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004373147A priority Critical patent/JP4956896B2/en
Publication of JP2006176705A publication Critical patent/JP2006176705A/en
Application granted granted Critical
Publication of JP4956896B2 publication Critical patent/JP4956896B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer illuminant capable of giving a highly efficient light-emitting element. <P>SOLUTION: The polymer illuminant bears a terminal group selected from among the groups represented by formulae (1a), (1b) and (1c) at the end of the molecular chain. In the formulae, R<SP>1</SP>-R<SP>15</SP>are each independently a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group or the like; and Q is a hydrogen atom, a halogen atom an alkyl group, an alkyloxy group, an alkylthio group, an aryl group or the like and the plural Q's may be the same or different. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、高分子化合物およびそれを用いた高分子発光素子(高分子LED)に関する。   The present invention relates to a polymer compound and a polymer light emitting device (polymer LED) using the polymer compound.

高分子化合物の発光材料(高分子発光体)は低分子化合物のそれとは異なり溶媒に可溶であるため塗布法により発光素子における発光層を形成でき、素子の大面積化の要求に合致している。このため、近年種々の高分子化合物が提案されている(例えば、非特許文献1)。   The light emitting material (polymer light emitter) of a polymer compound is soluble in a solvent unlike that of a low molecular compound, so that a light emitting layer in a light emitting device can be formed by a coating method, which meets the requirements for a large area of the device. Yes. For this reason, various polymer compounds have been proposed in recent years (for example, Non-Patent Document 1).

Advanced Materials Vol.12 1737-1750 (2000)Advanced Materials Vol.12 1737-1750 (2000)

ところで、発光素子は、その効率が高い、すなわち電流あたりの発光輝度が高いことが望まれる。
しかしながら、発光素子の材料として、公知の高分子化合物を用いたときに、その素子の効率は未だ十分なものではなかった。
本発明の目的は、発光素子に用いたとき、効率の高い発光素子を与えることができる高分子化合物を提供することにある。
By the way, it is desired that the light emitting element has high efficiency, that is, high light emission luminance per current.
However, when a known polymer compound is used as a material for the light emitting element, the efficiency of the element has not been sufficient.
An object of the present invention is to provide a polymer compound that can provide a highly efficient light-emitting element when used in a light-emitting element.

本発明者等は、上記課題を解決すべく検討した結果、発光素子の材料として、特定の構造の末端基を分子鎖末端に有する高分子化合物を用いると、効率の著しく向上した発光素子を与えることを見出し、本発明に至った。   As a result of investigations to solve the above problems, the inventors of the present invention provide a light-emitting element with significantly improved efficiency when a polymer compound having a terminal group having a specific structure at the molecular chain terminal is used as a material of the light-emitting element. As a result, they have reached the present invention.

すなわち本発明は、
下記式(1a)、(1b)および(1c)から選ばれる末端基を分子鎖末端に有する高分子化合物を提供するものである。

Figure 0004956896
〔式中R1〜R15は、それぞれ独立にハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換アミノ基、アミド基、酸イミド基、アシルオキシ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、シアノ基またはニトロ基を表し、Qは、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換アミノ基、アミド基、酸イミド基、アシルオキシ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、シアノ基またはニトロ基を表し、複数のQはそれぞれ同一であっても異なっていてもよい。〕 That is, the present invention
The present invention provides a polymer compound having a terminal group selected from the following formulas (1a), (1b) and (1c) at the molecular chain terminal.

Figure 0004956896
[Wherein R 1 to R 15 are each independently a halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl Group, alkynyl group, arylalkenyl group, arylalkynyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, substituted amino group, amide group, acid imide group, acyloxy group, monovalent heterocyclic group, heteroaryloxy group Represents a heteroarylthio group, a cyano group or a nitro group, Q is a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy Group, arylalkyl Thio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, substituted amino group, amide group, acid imide group, acyloxy group, monovalent heterocyclic group, A heteroaryloxy group, a heteroarylthio group, a cyano group, or a nitro group is represented, and a plurality of Q may be the same or different. ]

また、本発明は、上記高分子化合物と溶媒とを含有する溶液組成物に関する。   The present invention also relates to a solution composition containing the polymer compound and a solvent.

発光素子の材料として、本発明の高分子化合物を用いると、効率の著しく向上した発光素子を与える。したがって、本発明の高分子化合物を使用した高分子LEDは、液晶ディスプレイのバックライトまたは照明用としての曲面状や平面状の光源、セグメントタイプの表示素子、ドットマトリックスのフラットパネルディスプレイ等の装置に好ましく使用できる。   When the polymer compound of the present invention is used as a material for a light emitting device, a light emitting device with significantly improved efficiency is obtained. Therefore, the polymer LED using the polymer compound of the present invention can be used in devices such as curved or flat light sources for liquid crystal display backlights or illumination, segment type display elements, dot matrix flat panel displays, and the like. It can be preferably used.

本発明の高分子化合物は、上記式(1a)、(1b)および(1c)から選ばれる末端基を分子鎖末端に有することを特徴とする。
本発明の高分子化合物は、式(1a)、(1b)、(1c)から選ばれる末端基を2種以上含んでいてもよい。
The polymer compound of the present invention is characterized by having an end group selected from the above formulas (1a), (1b) and (1c) at the end of the molecular chain.
The polymer compound of the present invention may contain two or more end groups selected from the formulas (1a), (1b) and (1c).

上記式(1a)、(1b)、(1c)で示される末端基において、R1〜R15は、それぞれ独立にハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換アミノ基、アミド基、酸イミド基、アシルオキシ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、シアノ基またはニトロ基を表し、Qは、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換アミノ基、アミド基、酸イミド基、アシルオキシ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、シアノ基またはニトロ基を表し、複数のQはそれぞれ同一であっても異なっていてもよい。 In the terminal groups represented by the above formulas (1a), (1b) and (1c), R 1 to R 15 are each independently a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, Arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, substituted amino group, amide group, acid Represents an imide group, an acyloxy group, a monovalent heterocyclic group, a heteroaryloxy group, a heteroarylthio group, a cyano group or a nitro group, Q is a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, Aryl group, aryloxy group, arylthio group, arylal Group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, substituted amino group, amide group, acid imide group, acyloxy Group, a monovalent heterocyclic group, a heteroaryloxy group, a heteroarylthio group, a cyano group or a nitro group, and a plurality of Qs may be the same or different.

ここに、ハロゲン原子としては、フッ素、塩素、臭素、よう素が例示される。 Examples of the halogen atom include fluorine, chlorine, bromine and iodine.

アルキル基は、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよく、
全炭素数が通常1〜20程度であり、その具体例としては、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、 i−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基などが例示される。置換基としては、ハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。
The alkyl group may be linear, branched or cyclic, and may have a substituent,
The total number of carbon atoms is usually about 1 to 20, and specific examples thereof include methyl group, ethyl group, propyl group, i-propyl group, butyl group, i-butyl group, t-butyl group, pentyl group, and hexyl group. Cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, lauryl group, trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl Group, perfluorooctyl group and the like. Examples of the substituent include halogen, oxetane group, epoxy group, oxetidinyl group, oxolidinyl group, oxolanyl group, oxanyl group, oxonanyl group, oxathiolanyl group, piperidyl group and the like.

アルキルオキシ基は、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよく、全炭素数が通常1〜20程度であり、その具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、i−プロピルオキシ基、ブトキシ基、 i−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2−メトキシエチルオキシ基などが例示される。置換基としてはハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。   The alkyloxy group may be linear, branched or cyclic, and may have a substituent, and the total number of carbon atoms is usually about 1 to 20, and specific examples thereof include a methoxy group, an ethoxy group, Propyloxy group, i-propyloxy group, butoxy group, i-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy Group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, trifluoromethoxy group, pentafluoroethoxy group, perfluorobutoxy group, perfluorohexyl group, perfluorooctyl group, methoxymethyloxy group, 2- A methoxyethyloxy group etc. are illustrated. Examples of the substituent include halogen, oxetane group, epoxy group, oxetidinyl group, oxolidinyl group, oxolanyl group, oxanyl group, oxonanyl group, oxathiolanyl group, piperidyl group and the like.

アルキルチオ基は、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよく、全炭素数が通常1〜20程度であり、その具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、 i−プロピルチオ基、ブチルチオ基、 i−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基などが例示される。置換基としてはハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。   The alkylthio group may be linear, branched or cyclic, and may have a substituent. The total number of carbon atoms is usually about 1 to 20, and specific examples thereof include methylthio group, ethylthio group, propylthio group. Group, i-propylthio group, butylthio group, i-butylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3, Examples thereof include 7-dimethyloctylthio group, laurylthio group, trifluoromethylthio group and the like. Examples of the substituent include halogen, oxetane group, epoxy group, oxetidinyl group, oxolidinyl group, oxolanyl group, oxanyl group, oxonanyl group, oxathiolanyl group, piperidyl group and the like.

アリール基は、置換基を有していてもよく、全炭素数が通常3〜60程度であり、その具体例としては、フェニル基、C1〜C12アルコキシフェニル基(C1〜C12は、炭素数1〜12であることを示す。以下も同様である。)、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基、ペンタフルオロフェニル基などが例示される。置換基としてはハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。 The aryl group may have a substituent, and the total carbon number is usually about 3 to 60. Specific examples thereof include a phenyl group, a C 1 to C 12 alkoxyphenyl group (C 1 to C 12 are , C 1 -C 12 alkylphenyl group, 1-naphthyl group, 2-naphthyl group, pentafluorophenyl group, and the like. Examples of the substituent include halogen, oxetane group, epoxy group, oxetidinyl group, oxolidinyl group, oxolanyl group, oxanyl group, oxonanyl group, oxathiolanyl group, piperidyl group and the like.

アリールオキシ基は、芳香環上に置換基を有していてもよく、全炭素数が通常3〜60程度であり、その具体例としては、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基などが例示される。置換基としてはアルコキシ基、アルキル基、ハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。 The aryloxy group may have a substituent on the aromatic ring and generally has about 3 to 60 carbon atoms. Specific examples thereof include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, a C Examples thereof include 1 to C 12 alkylphenoxy groups, 1-naphthyloxy group, 2-naphthyloxy group, pentafluorophenyloxy group and the like. Examples of the substituent include an alkoxy group, an alkyl group, a halogen, an oxetane group, an epoxy group, an oxetidinyl group, an oxolidinyl group, an oxolanyl group, an oxanyl group, an oxonanyl group, an oxathiolanyl group, and a piperidyl group.

アリールチオ基は、芳香環上に置換基を有していてもよく、全炭素数が通常3〜60程度であり、その具体例としては、フェニルチオ基、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、ペンタフルオロフェニルチオ基などが例示される。置換基としてはアルコキシ基、アルキル基、ハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。 Arylthio group may have a substituent on the aromatic ring, the total carbon number of usually about 3 to 60, and specific examples thereof include phenylthio groups, C 1 -C 12 alkoxyphenyl-thio groups, C 1 -C 12 alkyl phenylthio group, 1-naphthylthio group, 2-naphthylthio group, pentafluorophenylthio group and the like. Examples of the substituent include an alkoxy group, an alkyl group, a halogen, an oxetane group, an epoxy group, an oxetidinyl group, an oxolidinyl group, an oxolanyl group, an oxanyl group, an oxonanyl group, an oxathiolanyl group, and a piperidyl group.

アリールアルキル基は、置換基を有していてもよく、全炭素数が通常7〜60程度であり、その具体例としては、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基などが例示される。
置換基としてはアルコキシ基、アルキル基、ハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。
The arylalkyl group may have a substituent, and the total number of carbon atoms is usually about 7 to 60. Specific examples thereof include a phenyl-C 1 -C 12 alkyl group and a C 1 -C 12 alkoxyphenyl. -C 1 -C 12 alkyl group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkyl group, 1-naphthyl -C 1 -C 12 alkyl group, 2-naphthyl -C 1 -C 12 alkyl group Illustrated.
Examples of the substituent include an alkoxy group, an alkyl group, a halogen, an oxetane group, an epoxy group, an oxetidinyl group, an oxolidinyl group, an oxolanyl group, an oxanyl group, an oxonanyl group, an oxathiolanyl group, and a piperidyl group.

アリールアルキルオキシ基は、置換基を有していてもよく、全炭素数が通常7〜60程度であり、その具体例としては、フェニル−C1〜C12アルコキシ基、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基、1−ナフチル−C1〜C12アルコキシ基、2−ナフチル−C1〜C12アルコキシ基などが例示される。置換基としてはアルコキシ基、アルキル基、ハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。 The arylalkyloxy group may have a substituent, and the total number of carbon atoms is usually about 7 to 60. Specific examples thereof include a phenyl-C 1 -C 12 alkoxy group and a C 1 -C 12 alkoxy group. phenyl -C 1 -C 12 alkoxy group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkoxy groups, 1-naphthyl -C 1 -C 12 alkoxy groups, 2-naphthyl -C 1 -C 12 alkoxy group Is exemplified. Examples of the substituent include an alkoxy group, an alkyl group, a halogen, an oxetane group, an epoxy group, an oxetidinyl group, an oxolidinyl group, an oxolanyl group, an oxanyl group, an oxonanyl group, an oxathiolanyl group, and a piperidyl group.

アリールアルキルチオ基は、置換基を有していてもよく、全炭素数が通常7〜60程度であり、その具体例としては、フェニル−C1〜C12アルキルチオ基、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基、2−ナフチル−C1〜C12アルキルチオ基などが例示される。置換基としてはアルコキシ基、アルキル基、ハロゲン、オキセタン基、エポキシ基、オキセチジニル基、オキソリジニル基、オキソラニル基、オキサニル基、オキソナニル基、オキサチオラニル基、ピペリジル基などが挙げられる。 Arylalkylthio group may have a substituent, the total carbon number of usually about 7 to 60, and specific examples thereof include a phenyl -C 1 -C 12 alkylthio group, C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkylthio group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkylthio group, 1-naphthyl -C 1 -C 12 alkylthio group, 2-naphthyl -C 1 -C 12 alkylthio group Illustrated. Examples of the substituent include an alkoxy group, an alkyl group, a halogen, an oxetane group, an epoxy group, an oxetidinyl group, an oxolidinyl group, an oxolanyl group, an oxanyl group, an oxonanyl group, an oxathiolanyl group, and a piperidyl group.

アルケニル基は、炭素数が通常2〜20程度であり、その具体例としてはビニル基、1−プロピレニル基、2−プロピレニル基、3−プロピレニル基、ブテニル基、ペンテニル基、へキセニル基、ヘプテニル基、オクテニル基、シクロヘキセニル基が挙げられる。
また、アルケニル基には1,3−ブタジエニル基などのアルカジエニル基も含まれる。
The alkenyl group usually has about 2 to 20 carbon atoms. Specific examples thereof include a vinyl group, a 1-propylenyl group, a 2-propylenyl group, a 3-propylenyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group. Octenyl group and cyclohexenyl group.
Alkenyl groups also include alkadienyl groups such as 1,3-butadienyl groups.

アルキニル基は、炭素数が通常2〜20程度であり、その具体例としてはエチニル基、1−プロピニル基、2−プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプテニル基、オクチニル基、シクロヘキシルエチニル基が挙げられる。また、アルキニル基には1,3−ブタジイニル基などのアルキジエニル基も含まれる。   The alkynyl group usually has about 2 to 20 carbon atoms, and specific examples thereof include ethynyl group, 1-propynyl group, 2-propynyl group, butynyl group, pentynyl group, hexynyl group, heptenyl group, octynyl group, cyclohexylethynyl. Groups. In addition, the alkynyl group includes an alkydenyl group such as a 1,3-butadiynyl group.

アリールアルケニル基は、炭素数が通常8〜50程度であり、アリールアルケニルにおけるアリール基、アルケニル基としては、上記記載のアリール基、アルケニル基とそれぞれ同様のものが挙げられる。その具体例としては、1−アリールビニル基、2−アリールビニル基、1−アリール−1−プロピレニル基、2−アリール−1−プロピレニル基、2−アリール−2−プロピレニル基、3−アリール−2−プロピレニル基などが挙げられる。また、4−アリール1,3−ブタジエニル基などのアリールアルカジエニル基も含まれる。   The arylalkenyl group usually has about 8 to 50 carbon atoms, and examples of the aryl group and alkenyl group in arylalkenyl include the same aryl groups and alkenyl groups as those described above. Specific examples thereof include 1-arylvinyl group, 2-arylvinyl group, 1-aryl-1-propylenyl group, 2-aryl-1-propylenyl group, 2-aryl-2-propylenyl group, and 3-aryl-2. -A propylenyl group etc. are mentioned. Also included are aryl alkadienyl groups such as 4-aryl 1,3-butadienyl groups.

アリールアルキニル基は、炭素数が通常8〜50程度であり、アリールアルキニル基におけるアリール基、アルキニル基としては、上記のアリール基、アルキニル基とそれぞれ同様である。その具体例としては、アリールエチニル基、3−アリール−1−プロピオニル基、3−アリール−2−プロピオニル基等が挙げられる。また、4−アリールー1,3−ブタジイニルなどのアリールアルカジイニル基も含まれる。 The arylalkynyl group usually has about 8 to 50 carbon atoms, and the aryl group and alkynyl group in the arylalkynyl group are the same as the above aryl group and alkynyl group, respectively. Specific examples thereof include an arylethynyl group, a 3-aryl-1-propionyl group, and a 3-aryl-2-propionyl group. Also included are arylalkadiynyl groups such as 4-aryl-1,3-butadiynyl.

置換シリルオキシ基における置換シリル基としては、アルキル基、アリール基、アリールアルキル基および1価の複素環基から選ばれる1、2または3個の基で置換されたシリル基があげられ、炭素数は通常1〜60程度であり、好ましくは炭素数3〜30である。なお該アルキル基、アリール基、アリールアルキル基または1価の複素環基は置換基を有していてもよい。具体的にはトリメチルシリルオキシ基、トリエチルシリルオキシ基、トリ−n−プロピルシリルオキシ基、トリ−i−プロピルシリルオキシ基、t−ブチルシリルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、t−ブチルジフェニルシリルオキシ基、ジメチルフェニルシリルオキシ基などが例示される。   Examples of the substituted silyl group in the substituted silyloxy group include a silyl group substituted with 1, 2 or 3 groups selected from an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group. Usually, it is about 1-60, Preferably it is C3-C30. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. Specifically, trimethylsilyloxy group, triethylsilyloxy group, tri-n-propylsilyloxy group, tri-i-propylsilyloxy group, t-butylsilyldimethylsilyloxy group, triphenylsilyloxy group, tri-p- Examples include xylylsilyloxy group, tribenzylsilyloxy group, diphenylmethylsilyloxy group, t-butyldiphenylsilyloxy group, dimethylphenylsilyloxy group and the like.

置換シリルチオ基における置換シリル基としては、アルキル基、アリール基、アリールアルキル基および1価の複素環基から選ばれる1、2または3個の基で置換されたシリル基があげられ、炭素数は通常1〜60程度であり、好ましくは炭素数3〜30である。なお該アルキル基、アリール基、アリールアルキル基または1価の複素環基は置換基を有していてもよい。具体的には、トリメチルシリルチオ基、トリエチルシリルチオ基、トリ−n−プロピルシリルチオ基、トリ−i−プロピルシリルチオ基、t−ブチルシリルジメチルシリルチオ基、トリフェニルシリルチオ基、トリ−p−キシリルシリルチオ基、トリベンジルシリルチオ基、ジフェニルメチルシリルチオ基、t−ブチルジフェニルシリルチオ基、ジメチルフェニルシリルチオ基などが例示される。   Examples of the substituted silyl group in the substituted silylthio group include a silyl group substituted with 1, 2 or 3 groups selected from an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group. Usually, it is about 1-60, Preferably it is C3-C30. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. Specifically, trimethylsilylthio group, triethylsilylthio group, tri-n-propylsilylthio group, tri-i-propylsilylthio group, t-butylsilyldimethylsilylthio group, triphenylsilylthio group, tri-p -Xylylsilylthio group, tribenzylsilylthio group, diphenylmethylsilylthio group, t-butyldiphenylsilylthio group, dimethylphenylsilylthio group and the like are exemplified.

置換シリルアミノ基としては、アルキル基、アリール基、アリールアルキル基および1価の複素環基から選ばれる1〜6個の基で置換されたシリルアミノ基(H3SiNH−または(H3Si)2N−)が挙げられ、炭素数は通常1〜120であり、好ましくは炭素数3〜60である。なお、該アルキル基、アリール基、アリールアルキル基、1価の複素環基は置換基を有していてもよい。具体的には、トリメチルシリルアミノ基、トリエチルシリルアミノ基、トリ−n−プロピルシリルアミノ基、トリ−i−プロピルシリルアミノ基、t−ブチルシリルジメチルシリルアミノ基、トリフェニルシリルアミノ基、トリ−p−キシリルシリルアミノ基、トリベンジルシリルアミノ基、ジフェニルメチルシリルアミノ基、t−ブチルジフェニルシリルアミノ基、ジメチルフェニルシリルアミノ基、ジ(トリメチルシリル)アミノ基、ジ(トリエチルシリル)アミノ基、ジ(トリ−n−プロピルシリル)アミノ基、ジ(トリ−i−プロピルシリル)アミノ基、ジ(t−ブチルシリルジメチルシリル)アミノ基、ジ(トリフェニルシリル)アミノ基、ジ(トリ−p−キシリルシリル)アミノ基、ジ(トリベンジルシリル)アミノ基、ジ(ジフェニルメチルシリル)アミノ基、ジ(t−ブチルジフェニルシリル)アミノ基、ジ(ジメチルフェニルシリル)アミノ基などが例示される。 The substituted silylamino group includes a silylamino group (H 3 SiNH— or (H 3 Si) 2 N substituted with 1 to 6 groups selected from an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. -) Is mentioned, and carbon number is 1-120 normally, Preferably it is C3-C60. The alkyl group, aryl group, arylalkyl group, and monovalent heterocyclic group may have a substituent. Specifically, trimethylsilylamino group, triethylsilylamino group, tri-n-propylsilylamino group, tri-i-propylsilylamino group, t-butylsilyldimethylsilylamino group, triphenylsilylamino group, tri-p -Xylylsilylamino group, tribenzylsilylamino group, diphenylmethylsilylamino group, t-butyldiphenylsilylamino group, dimethylphenylsilylamino group, di (trimethylsilyl) amino group, di (triethylsilyl) amino group, di ( Tri-n-propylsilyl) amino group, di (tri-i-propylsilyl) amino group, di (t-butylsilyldimethylsilyl) amino group, di (triphenylsilyl) amino group, di (tri-p-xylylsilyl) ) Amino group, di (tribenzylsilyl) amino group, di (di E methylpropenylmethyl silyl) amino, di (t-butyldiphenylsilyl) amino group, such as di (dimethylphenyl silyl) amino groups.

置換アミノ基としては、アルキル基、アリール基、アリールアルキル基および1価の複素環基から選ばれる1または2個の基で置換されたアミノ基があげられ、該アルキル基、アリール基、アリールアルキル基または1価の複素環基は置換基を有していてもよい。炭素数は通常1〜40程度であり、具体的には、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、t−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1〜C12アルコキシフェニルアミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル−C1〜C12アルキルアミノ基、C1〜C12アルコキシフェニル−C1〜C12アルキルアミノ基、C1〜C12アルキルフェニル−C1〜C12アルキルアミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基などが例示される。 Examples of the substituted amino group include an amino group substituted with one or two groups selected from an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. The alkyl group, aryl group, arylalkyl The group or the monovalent heterocyclic group may have a substituent. The number of carbon atoms is usually about 1 to 40. Specifically, methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group Group, isobutylamino group, t-butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctyl amino group, laurylamino group, cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, C 1 -C 12 Turkey hydroxyphenyl amino group, di (C 1 -C 12 alkoxyphenyl) amino group, di (C 1 -C 12 alkylphenyl) amino groups, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, pyridazinylamino group, pyrimidylamino group, Pirajiruamino group, triazyl amino group, phenyl -C 1 -C 12 alkylamino groups, C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkylamino groups, C 1 -C 12 alkylphenyl -C 1 -C 12 alkylamino group, di (C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkyl) amino group, di (C 1 -C 12 alkylphenyl -C 1 -C 12 alkyl) amino group, 1-naphthyl-C 1 -C 12 alkylamino group, 2-naphthyl-C 1 -C 12 alkylamino group and the like.

アミド基は、炭素数が通常2〜20程度であり、その具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基などが例示される。   The amide group usually has about 2 to 20 carbon atoms. Specific examples thereof include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, Examples include a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, a ditrifluoroacetamide group, a dipentafluorobenzamide group, and the like.

酸イミド基としては、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基があげられ、通常炭素数2〜60程度であり、好ましくは炭素数2〜20である。具体的には以下に示す基が例示される。

Figure 0004956896
The acid imide group includes a residue obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide, and usually has about 2 to 60 carbon atoms, preferably 2 to 20 carbon atoms. Specific examples include the following groups.

Figure 0004956896

アシルオキシ基は、炭素数が通常2〜20程度であり、その具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基などが例示される。   The acyloxy group usually has about 2 to 20 carbon atoms, and specific examples thereof include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, Examples thereof include a pentafluorobenzoyloxy group.

1価の複素環基とは、複素環化合物から水素原子1個を除いた残りの原子団をいい、炭素数は通常2〜60程度であり、具体的には、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、オキサゾリル基、チアゾール基、チアジアゾール基などが例示される。 The monovalent heterocyclic group means a remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound, and usually has about 2 to 60 carbon atoms. Specifically, a thienyl group, C 1 to C Examples include 12 alkylthienyl groups, pyrrolyl groups, furyl groups, pyridyl groups, C 1 -C 12 alkylpyridyl groups, imidazolyl groups, pyrazolyl groups, triazolyl groups, oxazolyl groups, thiazole groups, thiadiazole groups, and the like.

ヘテロアリールオキシ基(Q4-O−で示される基、Q4は1価の複素環基を表す)は、炭素数が通常2〜60程度であり、その具体例としては、チエニルオキシ基、C1〜C12アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C1〜C12アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基、チアジアゾールオキシ基などが例示される。 A heteroaryloxy group (a group represented by Q 4 —O—, Q 4 represents a monovalent heterocyclic group) usually has about 2 to 60 carbon atoms. Specific examples thereof include a thienyloxy group, C 1 -C 12 alkyl thienyl group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C 1 -C 12 alkyl pyridyl group, imidazolyloxy group, pyrazolyloxy group, triazolyl group, benzoxazolyl group, Examples include a thiazoleoxy group and a thiadiazoleoxy group.

ヘテロアリールチオ基(Q5−S−で示される。Q5は1価の複素環基を表す。)は、炭素数が、通常2〜60程度で、その具体例としては、チエニルメルカプト基、C1〜C12アルキルチエニルメルカプト基、ピロリルメルカプト基、フリルメルカプト基、ピリジルメルカプト基、C1〜C12アルキルピリジルメルカプト基、イミダゾリルメルカプト基、ピラゾリルメルカプト基、トリアゾリルメルカプト基、オキサゾリルメルカプト基、チアゾールメルカプト基、チアジアゾールメルカプト基などが例示される。 (The .Q 5 represented by Q 5 -S- represents a monovalent heterocyclic group.) Heteroarylthio group has a carbon number in usually about 2 to 60, and specific examples thereof include thienylmercapto group, C 1 -C 12 alkyl thienylmercapto group, pyrrolyl mercapto group, a furyl mercapto group, pyridyl mercapto group, C 1 -C 12 alkyl pyridyl mercapto group, imidazolylmethyl mercapto group, a pyrazolyl mercapto group, benzotriazolyl mercapto group, oxazolyl Examples include mercapto group, thiazole mercapto group, thiadiazole mercapto group and the like.

式(1a)で示される末端基として、具体的には、以下に示すものが挙げられる。

Figure 0004956896
Specific examples of the terminal group represented by the formula (1a) include those shown below.
Figure 0004956896

Figure 0004956896
式(1b)で示される末端基として、具体的には、以下に示すものが挙げられる。
Figure 0004956896
Specific examples of the terminal group represented by the formula (1b) include those shown below.

Figure 0004956896
式(1c)で示される末端基として、具体的には、以下に示すものが挙げられる。
Figure 0004956896
Specific examples of the terminal group represented by the formula (1c) include those shown below.

(1a)、(1b)、(1c)の末端基において、R1〜R15は、それぞれ独立にアルキル基またはアルキルオキシ基であることが好ましい。 In the end groups of (1a), (1b) and (1c), R 1 to R 15 are preferably each independently an alkyl group or an alkyloxy group.

また、(1a)、(1b)、(1c)の末端基において、Qが、全て水素原子であることが好ましい。 In the end groups (1a), (1b) and (1c), it is preferable that all Qs are hydrogen atoms.

本発明の高分子化合物は、分子鎖末端に上記特定の末端基を有するものであれば特に限定されず、ポリスチレン換算の数平均分子量が通常103〜108である。本発明に用いられる高分子化合物は、単独重合体であっても共重合体でもよい。
本発明の高分子化合物のなかでは、共役系高分子化合物であるものが好ましい。ここに、共役系高分子化合物とは高分子化合物の主鎖骨格に沿って非局在π電子対が存在している高分子化合物を意味する。この非局在電子としては、2重結合のかわりに不対電子または孤立電子対が共鳴に加わる場合もある。
The polymer compound of the present invention is not particularly limited as long as it has the specific end group at the molecular chain terminal, and the polystyrene-equivalent number average molecular weight is usually from 10 3 to 10 8 . The polymer compound used in the present invention may be a homopolymer or a copolymer.
Among the polymer compounds of the present invention, those that are conjugated polymer compounds are preferred. Here, the conjugated polymer compound means a polymer compound in which a delocalized π electron pair exists along the main chain skeleton of the polymer compound. As this delocalized electron, an unpaired electron or a lone electron pair may participate in resonance instead of a double bond.

本発明の高分子化合物としては、例えば、ポリフルオレン〔例えば、ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Jpn.J.Appl.Phys.)第30巻、L1941頁(1991年)〕、ポリパラフェニレン〔例えば、アドバンスト・マテリアルズ(Adv.Mater.)第4巻、36頁(1992年)〕、ポリピロール、ポリピリジン、ポリアニリン、ポリチオフェン等のポリアリーレン系
;ポリパラフェニレンビニレン、ポリチエニレンビニレン等のポリアリーレンビニレン系(例えば、WO98/27136号公開明細書)
;ポリフェニレンサルファイド、ポリカルバゾール等
〔総説としては、例えば「Advanced Materials Vol.12 1737-1750 (2000)」や、「有機ELディスプレイ技術 月刊ディスプレイ 12月号増刊 P68〜73」〕
の公知の高分子発光体がさらに分子鎖末端に上記特定の末端基を含むものがあげられる。
Examples of the polymer compound of the present invention include polyfluorene [eg, Japanese Journal of Applied Physics, Volume 30, L1941 (1991)], polyparaphenylene. [For example, Advanced Materials (Adv. Mater.) Vol. 4, p. 36 (1992)], polyarylenes such as polypyrrole, polypyridine, polyaniline, polythiophene; polyparaphenylene vinylene, polythienylene vinylene and other polyarylenes Arylene vinylene series (for example, WO 98/27136 published specification)
Polyphenylene sulfide, polycarbazole, etc. [For review, see, for example, “Advanced Materials Vol.12 1737-1750 (2000)” and “Organic EL Display Technology Monthly Display December Special Issue P68-73”)
Examples of the known polymer light-emitting material further include the above-mentioned specific end group at the end of the molecular chain.

中でも、ポリアリーレン系の高分子化合物が好ましい。
ポリアリーレン系の高分子化合物が含む繰り返し単位としては、アリーレン基、2価の複素環基があげられる。
ここに、アリーレン基の環を構成する炭素数は通常6〜60程度であり、その具体例として、フェニレン基、ビフェニレン基、ターフェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ペンタレンジイル基、インデンジイル基、ヘプタレンジイル基、インダセンジイル基、トリフェニレンジイル基、ビナフチルジイル基、フェニルナフチレンジイル基、スチルベンジイル基、フルオレンジイル基(例えば、下式(2)で、A=−CR’R’−である場合)等があげられる。
また、2価の複素環基の環を構成する炭素数は通常3〜60程度であり、具体例としては、ピリジンージイル基、ジアザフェニレン基、キノリンジイル基、キノキサリンジイル基、アクリジンジイル基、ビピリジルジイル基、フェナントロリンジイル基、下式(2)で、A=-O-、-S-、-Se-、−NR''−、または−SiR'R'−である場合があげられる。
Among these, polyarylene polymer compounds are preferable.
Examples of the repeating unit contained in the polyarylene polymer include an arylene group and a divalent heterocyclic group.
Here, the number of carbon atoms constituting the ring of the arylene group is usually about 6 to 60. Specific examples thereof include a phenylene group, a biphenylene group, a terphenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthrene diyl group, and a pentarange. Yl group, indenediyl group, hepterenediyl group, indacenediyl group, triphenylenediyl group, binaphthyldiyl group, phenylnaphthylenediyl group, stilbenediyl group, fluorenediyl group (for example, in the following formula (2), A = -CR 'R'-).
The number of carbon atoms constituting the ring of the divalent heterocyclic group is usually about 3 to 60. Specific examples include pyridine-diyl group, diazaphenylene group, quinolinediyl group, quinoxalinediyl group, acridinediyl group, bipyridyldiyl. A group, a phenanthrolinediyl group, and the following formula (2), A = —O—, —S—, —Se—, —NR ″ —, or —SiR′R′—.

更に好ましくは、下記式(2)で示される繰返し単位を含む場合である。   More preferably, it includes a repeating unit represented by the following formula (2).

Figure 0004956896


(式中、Aは、式中の2個のベンゼン環上の4個の炭素原子と一緒になって5員環または6員環を完成させるための原子または原子群を表し、R4a、R4b、R4c、R5a、R5bおよびR5cは、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはカルボキシル基を表し、R4bとR4c、およびR5bとR5cは、それぞれ一緒になって環を形成していてもよい。)
Figure 0004956896


(In the formula, A represents an atom or atomic group for completing a two 5- or 6-membered ring together with four carbon atoms on the benzene ring in the formula, R 4a, R 4b , R 4c , R 5a , R 5b and R 5c are each independently a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, aryl Alkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group Substituted silylthio group, substituted silylamino group, cyano group, nitro group, monovalent heterocyclic group, heteroaryloxy group, heteroaryl Represents a thio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an arylalkyloxycarbonyl group, a heteroaryloxycarbonyl group or a carboxyl group, and R 4b and R 4c , and R 5b and R 5c are each taken together to form a ring May be formed.)

Aの具体例としては、下記に示すが、これらに限定されるものではない。     Specific examples of A are shown below, but are not limited thereto.

Figure 0004956896

式中、Rはそれぞれ独立にハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシルオキシ基、置換アミノ基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基または1価の複素環基を表す。R’はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基または1価の複素環基を表す。R''はそれぞれ独立に水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基または1価の複素環基を表す。
Figure 0004956896

In the formula, each R is independently a halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, An arylalkenyl group, an arylalkynyl group, an acyloxy group, a substituted amino group, a substituted silyloxy group, a substituted silylthio group, a substituted silylamino group, a cyano group, or a monovalent heterocyclic group is represented. R ′ is independently hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group , Arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, nitro Represents a monovalent heterocyclic group. R '' is independently hydrogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, aryl An alkenyl group, an arylalkynyl group, an acyl group, a substituted silyl group, a substituted silyloxy group, a substituted silylthio group, a substituted silylamino group, or a monovalent heterocyclic group is represented.

R、R’、R''におけるハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、置換アミノ基、アミド基、酸イミド基、アシル基、アシルオキシ基、1価の複素環基の具体例としては、式(1a)、(1b)、(1c)のR1〜R15に例示のものが挙げられる。 R, R ′, R ″ halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group Specific examples of arylalkenyl groups, arylalkynyl groups, substituted silyloxy groups, substituted silylthio groups, substituted silylamino groups, substituted amino groups, amide groups, acid imide groups, acyl groups, acyloxy groups, and monovalent heterocyclic groups are as follows: Examples of R 1 to R 15 in the formulas (1a), (1b) and (1c) are exemplified.

Aの中では、−O−、−S−、−Se−、−NR''−、−CR'R’−または−SiR’R’−が好ましく、-O-、-S-、−CR’R’−がより好ましい。 In A, —O—, —S—, —Se—, —NR ″ —, —CR′R′— or —SiR′R′— are preferable, —O—, —S—, —CR ′. R'- is more preferred.

4a、R4b、R4c、R5a、R5bおよびR5cにおけるハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシルオキシ基、アミド基、酸イミド基、置換アミノ基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、及びカルボキシル基、は前記と同様である。 R 4a, R 4b, R 4c , R 5a, halogen atom definitive to R 5b and R 5c, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group , Arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, acyloxy group, amide group, acid imide group, substituted amino group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic ring The group, heteroaryloxy group, heteroarylthio group, and carboxyl group are the same as described above.

また、イミン残基は、イミン化合物(分子内に、−N=C-を持つ有機化合物のことをいう。その例として、アルジミン、ケチミン及びこれらのN上の水素原子が、アルキル基等で置換された化合物があげられる)から水素原子1個を除いた残基があげられ、炭素数2〜20程度であり、具体的には、以下の基などが例示される。

Figure 0004956896
The imine residue refers to an imine compound (an organic compound having —N═C— in the molecule. For example, aldimine, ketimine, and hydrogen atoms on these N are substituted with alkyl groups or the like. And a residue obtained by removing one hydrogen atom from the compound having about 2 to 20 carbon atoms. Specific examples include the following groups.
Figure 0004956896

アシル基は、炭素数が通常2〜20程度であり、その具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基などが例示される。 The acyl group usually has about 2 to 20 carbon atoms. Specific examples thereof include acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, benzoyl group, trifluoroacetyl group, and pentafluorobenzoyl group. Illustrated.

置換シリル基は、アルキル基、アリール基、アリールアルキル基および1価の複素環基から選ばれる1、2または3個の基で置換されたシリル基があげられる。置換シリル基は、炭素数が通常1〜60程度であり、その具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ−i−プロピルシリル基、ジメチル−i−プロピルシリル基、ジエチル−i−プロピルシリル基、t−ブチルシリルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシル−ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチル−ジメチルシリル基、ラウリルジメチルシリル基、フェニル−C1〜C12アルキルシリル基、C1〜C12アルコキシフェニル−C1〜C12アルキルシリル基、C1〜C12アルキルフェニル−C1〜C12アルキルシリル基、1−ナフチル−C1〜C12アルキルシリル基、2−ナフチル−C1〜C12アルキルシリル基、フェニル−C1〜C12アルキルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t−ブチルジフェニルシリル基、ジメチルフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基、トリプロピルオキシシリル基、トリ−i−プロピルシリル基、ジメチル−i−プロピルシリル基、メチルジメトキシシリル基、エチルジメトキシシリル基、などが例示される。 Examples of the substituted silyl group include a silyl group substituted with 1, 2 or 3 groups selected from an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group. The substituted silyl group usually has about 1 to 60 carbon atoms, and specific examples thereof include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tri-i-propylsilyl group, dimethyl-i-propylsilyl group, Diethyl-i-propylsilyl group, t-butylsilyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyl-dimethylsilyl group, nonyldimethylsilyl group, decyl butyldimethylsilyl group, a 3,7-- dimethylsilyl group, lauryldimethylsilyl group, a phenyl -C 1 -C 12 alkylsilyl group, C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkylsilyl group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkylsilyl group 1-naphthyl -C 1 -C 12 alkylsilyl group, 2-naphthyl -C 1 -C 12 alkylsilyl group, a phenyl -C 1 -C 12 alkyldimethylsilyl group, triphenylsilyl group, tri -p- Kishirirushiriru group, Tribenzylsilyl group, diphenylmethylsilyl group, t-butyldiphenylsilyl group, dimethylphenylsilyl group, trimethoxysilyl group, triethoxysilyl group, tripropyloxysilyl group, tri-i-propylsilyl group, dimethyl-i- Examples include propylsilyl group, methyldimethoxysilyl group, ethyldimethoxysilyl group, and the like.

アルキルオキシカルボニル基におけるアルキルオキシ基は、炭素数が通常2〜20程度であり、その具体例として、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基などが例示される。 The alkyloxy group in the alkyloxycarbonyl group usually has about 2 to 20 carbon atoms. Specific examples thereof include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, Examples include a fluoroacetyloxy group and a pentafluorobenzoyloxy group.

アリールオキシカルボニル基におけるアリールオキシ基は、炭素数が通常6〜60程度であり、その具体的例としては、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基などが例示され、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基が好ましい。 The aryloxy group in the aryloxycarbonyl group usually has about 6 to 60 carbon atoms. Specific examples thereof include phenoxy group, C 1 to C 12 alkoxyphenoxy group, C 1 to C 12 alkylphenoxy group, 1 - naphthyloxy group, 2-naphthyloxy group, pentafluorophenyloxy group are exemplified, C 1 -C 12 alkoxy phenoxy group, a C 1 -C 12 alkylphenoxy group are preferable.

アリールアルキルオキシカルボニル基におけるアリールアルキル基は、炭素数が通常7〜60程度であり、その具体例としては、フェニルメチル基、フェニルエチル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル基、フェニルオクチル基などのフェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基が好ましい。 The arylalkyl group in the arylalkyloxycarbonyl group usually has about 7 to 60 carbon atoms, and specific examples thereof include a phenylmethyl group, a phenylethyl group, a phenylbutyl group, a phenylpentyl group, a phenylhexyl group, and a phenylheptyl group. group, a phenyl -C 1 -C 12 alkyl group, C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkyl group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkyl group such as a phenyl octyl group, 1 - naphthyl -C 1 -C 12 alkyl group, 2-naphthyl -C 1 -C 12 alkyl groups and the like, C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkyl group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkyl group are preferable.

ヘテロアリールオキシカルボニル基におけるヘテロアリールオキシ基(Q6-O−で示される基、Q6は1価の複素環基を表す)は、炭素数が通常2〜60程度であり、その具体例としては、チエニルオキシ基、C1〜C12アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C1〜C12アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基、チアジアゾールオキシ基などが例示される。Q6としては1価の芳香族複素環基が好ましい。 The heteroaryloxy group in the heteroaryloxycarbonyl group (the group represented by Q 6 —O—, Q 6 represents a monovalent heterocyclic group) usually has about 2 to 60 carbon atoms. is thienyloxy group, C 1 -C 12 alkyl thienyl group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C 1 -C 12 alkyl pyridyl group, imidazolyloxy group, pyrazolyloxy group, triazolyl group, Examples thereof include an oxazolyloxy group, a thiazoleoxy group, and a thiadiazoleoxy group. Q 6 is preferably a monovalent aromatic heterocyclic group.

上記式(2)で示される繰返し単位としては、下記の構造が例示される。

Figure 0004956896

Examples of the repeating unit represented by the above formula (2) include the following structures.

Figure 0004956896


Figure 0004956896

式中、ベンゼン環上の水素原子は、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基または1価の複素環基に置換されていてもよい。

Figure 0004956896

In the formula, a hydrogen atom on the benzene ring is a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an alkenyl group, Alkynyl group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group , A nitro group or a monovalent heterocyclic group may be substituted.

本発明の高分子化合物が含むことができる繰り返し単位の例として、アリーレン基、2価の複素環基の他に、例えば、芳香族アミンから誘導される繰り返し単位があげられる。この場合、正孔注入性、輸送性を付与し得る。
この場合、アリーレン基、2価の複素環基からなる繰り返し単位と芳香族アミンから誘導される繰り返しのモル比率は、通常99:1〜20:80の範囲である。
Examples of the repeating unit that can be contained in the polymer compound of the present invention include, for example, a repeating unit derived from an aromatic amine in addition to an arylene group and a divalent heterocyclic group. In this case, hole injection property and transport property can be imparted.
In this case, the molar ratio of repeating units derived from an arylene group and a repeating unit consisting of a divalent heterocyclic group and an aromatic amine is usually in the range of 99: 1 to 20:80.

芳香族アミンから誘導される繰返し単位としては、下記式(3)で表される繰返し単位が好ましい。 As the repeating unit derived from an aromatic amine, a repeating unit represented by the following formula (3) is preferable.


Figure 0004956896

Figure 0004956896

式中、Ar4、Ar5、Ar6およびAr7は、それぞれ独立にアリーレン基または2価の複素環基を表す。Ar8、Ar9およびAr10は、それぞれ独立にアリール基または1価の複素環基を表す。oおよびpはそれぞれ独立に0または1を表し、0≦o+p≦2である。 In the formula, Ar 4 , Ar 5 , Ar 6 and Ar 7 each independently represent an arylene group or a divalent heterocyclic group. Ar 8 , Ar 9 and Ar 10 each independently represent an aryl group or a monovalent heterocyclic group. o and p each independently represent 0 or 1, and 0 ≦ o + p ≦ 2.

ここで、アリーレン基、2価の複素環基の具体例は、ポリアリーレン系の高分子化合物が含む繰り返し単位としてのそれらの具体例と同様であり、
アリール基および1価の複素環基の具体例は、上記式(1a)、(1b)、(1c)におけるR1〜R15の具体例と同様である。
Here, specific examples of the arylene group and the divalent heterocyclic group are the same as those specific examples as a repeating unit contained in the polyarylene polymer compound,
Specific examples of the aryl group and the monovalent heterocyclic group are the same as the specific examples of R 1 to R 15 in the above formulas (1a), (1b), and (1c).

上記式(3)で示される繰り返し単位の具体例としては、以下の繰返し単位があげられる。

Figure 0004956896
Specific examples of the repeating unit represented by the above formula (3) include the following repeating units.
Figure 0004956896

式中、芳香環上の水素原子はハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基およびカルボキシル基から選ばれる置換基で置換されていてもよい。   In the formula, the hydrogen atom on the aromatic ring is a halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl Group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, A substituent selected from a nitro group, a monovalent heterocyclic group, a heteroaryloxy group, a heteroarylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an arylalkyloxycarbonyl group, a heteroaryloxycarbonyl group and a carboxyl group It may be conversion.

上記式(3)で表される繰返し単位の中で、下式(4)で表される繰り返し単位が特に好ましい。   Among the repeating units represented by the above formula (3), the repeating unit represented by the following formula (4) is particularly preferable.


Figure 0004956896

Figure 0004956896

式中、Q1、Q2およびQ3は、それぞれ独立にハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはカルボキシル基を表す。xおよびyはそれぞれ独立に0〜4の整数を示す。zは0〜2の整数を示す。wは0〜5の整数を示す。 In the formula, Q 1 , Q 2 and Q 3 are each independently a halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio Group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted Silylamino group, cyano group, nitro group, monovalent heterocyclic group, heteroaryloxy group, heteroarylthio group, alkyloxycarbonyl group, aryloxycarbonyl group, arylalkyloxycarbonyl group, heteroaryloxycarbonyl group or carboxyl group The table The x and y each independently represents an integer of 0 to 4. z shows the integer of 0-2. w shows the integer of 0-5.

本発明の高分子化合物は、ランダム、ブロックまたはグラフト共重合体であってもよいし、それらの中間的な構造を有する高分子、例えばブロック性を帯びたランダム共重合体であってもよい。発光の量子収率の高い高分子発光体を得る観点からは完全なランダム共重合体よりブロック性を帯びたランダム共重合体やブロックまたはグラフト共重合体が好ましい。主鎖に枝分かれがあり、末端部が3つ以上ある場合やデンドリマーも含まれる。   The polymer compound of the present invention may be a random, block or graft copolymer, or may be a polymer having an intermediate structure thereof, for example, a random copolymer having a block property. From the viewpoint of obtaining a polymer light emitter having a high quantum yield of light emission, a random copolymer having a block property and a block or graft copolymer are preferable to a completely random copolymer. A case in which the main chain is branched and there are three or more terminal portions and dendrimers are also included.

本発明の高分子化合物の末端基は、重合活性基がそのまま残っていると、素子にしたときの発光特性や寿命が低下する可能性があるので、安定な基で保護されていても良い。主鎖の共役構造と連続した共役結合を有しているものが好ましく、例えば、炭素―炭素結合を介してアリール基または複素環基と結合している構造が例示される。具体的には、特開平9−45478号公報の化10に記載の置換基等が例示される。   The terminal group of the polymer compound of the present invention may be protected with a stable group because if the polymerization active group remains as it is, there is a possibility that the light emission characteristics and lifetime when the device is made will be reduced. Those having a conjugated bond continuous with the conjugated structure of the main chain are preferable, and examples thereof include a structure in which an aryl group or a heterocyclic group is bonded via a carbon-carbon bond. Specific examples include substituents described in Chemical formula 10 of JP-A-9-45478.

本発明の高分子化合物は、数平均分子量がポリスチレン換算で103〜108程度であることが好ましく、中でも、数平均分子量がポリスチレン換算で104〜106程度である場合、更に好ましい。 The polymer compound of the present invention preferably has a number average molecular weight of about 10 3 to 10 8 in terms of polystyrene, and more preferably has a number average molecular weight of about 10 4 to 10 6 in terms of polystyrene.

また、本発明の高分子化合物を高分子発光体として用いる場合、は、薄膜からの発光を利用するので固体状態で発光を有するものが好適に用いられる。   In the case where the polymer compound of the present invention is used as a polymer light emitter, those having light emission in a solid state are preferably used because light emission from a thin film is used.

本発明の高分子化合物の合成法としては、例えば、該高分子化合物が有する繰り返し単位、末端基等に該当するモノマーからSuzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)触媒により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、あるいは適当な脱離基を有する中間体高分子の分解による方法などが例示される。これらのうち、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)触媒により重合する方法が、反応制御が容易であり、好ましい。
(1a)、(1b)、(1c)の末端基に該当するモノマーとしては、例えば、(1a)、(1b)、(1c)の結合手に重合活性基を有するものがあげられ、その具体例として、該結合手に臭素原子が結合してなるモノブロモアミン誘導体等があげられる。
これを、重合中に共存させるかまたは重合後に添加する等することにより、式(1a)、(1b)、(1c)の末端基を高分子化合物の分枝鎖末端に有させることができる。
高分子化合物を高分子LEDの発光材料として用いる場合、その純度が発光特性に影響を与えるため、重合前のモノマーを蒸留、昇華精製、再結晶等の方法で精製したのちに重合することが好ましく、また合成後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。
Examples of the method for synthesizing the polymer compound of the present invention include, for example, a method of polymerizing a monomer corresponding to a repeating unit or terminal group of the polymer compound by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, Ni (0 ) A method of polymerizing with a catalyst, a method of polymerizing with an oxidizing agent such as FeCl 3, a method of electrochemically oxidatively polymerizing, or a method of decomposing an intermediate polymer having an appropriate leaving group. Among these, a method of polymerizing by Suzuki coupling reaction, a method of polymerizing by Grignard reaction, and a method of polymerizing by Ni (0) catalyst are preferable because of easy reaction control.
Examples of the monomer corresponding to the end group of (1a), (1b), and (1c) include those having a polymerization active group in the bond of (1a), (1b), and (1c). Examples include a monobromoamine derivative in which a bromine atom is bonded to the bond.
By making it coexist during polymerization or adding it after polymerization, the terminal groups of the formulas (1a), (1b) and (1c) can be provided at the branched chain ends of the polymer compound.
When a polymer compound is used as a light emitting material of a polymer LED, the purity affects the light emission characteristics, and therefore it is preferable to polymerize after purifying the monomer before polymerization by a method such as distillation, sublimation purification, recrystallization, etc. Further, after the synthesis, it is preferable to carry out a purification treatment such as reprecipitation purification and fractionation by chromatography.

本発明の高分子化合物は、式(1a)、(1b)および(1c)から選ばれる末端基を有することを特徴とするが、式(1a)、(1b)および(1c)から選ばれる末端基の含有量が、高分子化合物が有する繰り返し単位の全モル数の、通常0.1〜50モル%程度であり、好ましくは、1〜50モル%、より好ましくは2〜40モル%、さらに好ましくは5〜20モル%である。   The polymer compound of the present invention is characterized by having a terminal group selected from the formulas (1a), (1b) and (1c), and has a terminal selected from the formulas (1a), (1b) and (1c) The content of the group is usually about 0.1 to 50 mol%, preferably 1 to 50 mol%, more preferably 2 to 40 mol%, based on the total number of moles of repeating units of the polymer compound. Preferably it is 5-20 mol%.

本発明の高分子化合物は、高分子発光体として有用である。   The polymer compound of the present invention is useful as a polymer light emitter.

また本発明の溶液組成物は、上記本発明の高分子化合物と、溶媒とを含有することを特徴とする。この溶液組成物を用いて、塗布法により、発光層を形成できる。   The solution composition of the present invention is characterized by containing the polymer compound of the present invention and a solvent. A light emitting layer can be formed by a coating method using this solution composition.

溶媒としては、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレン、メシチレン、テトラリン、デカリン、n−ブチルベンゼンなどが例示される。高分子化合物の構造や分子量にもよるが、通常はこれらの溶媒に0.1重量%以上溶解させることができる。   Examples of the solvent include chloroform, methylene chloride, dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, tetralin, decalin, n-butylbenzene and the like. Although depending on the structure and molecular weight of the polymer compound, it can usually be dissolved in these solvents in an amount of 0.1% by weight or more.

溶媒の量は、高分子化合物100重量部に対して、通常1000〜100000重量部程度である。   The amount of the solvent is usually about 1000 to 100000 parts by weight with respect to 100 parts by weight of the polymer compound.

本発明の溶液組成物は、必要に応じ、色素、電荷輸送材料等を含有していてもよい。   The solution composition of the present invention may contain a dye, a charge transport material, and the like, if necessary.

本発明の高分子LEDは、陽極および陰極からなる電極間に、発光層を有し、該発光層が本発明の高分子化合物を含むことを特徴とする。
また、本発明の高分子LEDは、 陽極および陰極からなる電極間に、発光層を有し、該発光層が本発明の溶液組成物を用いて形成されることを特徴とする。
The polymer LED of the present invention has a light emitting layer between electrodes composed of an anode and a cathode, and the light emitting layer contains the polymer compound of the present invention.
The polymer LED of the present invention is characterized in that it has a light emitting layer between electrodes composed of an anode and a cathode, and the light emitting layer is formed using the solution composition of the present invention.

また、本発明の高分子LEDとしては、陰極と発光層との間に、電子輸送層を設けた高分子LED、陽極と発光層との間に、正孔輸送層を設けた高分子LED、陰極と発光層との間に、電子輸送層を設け、かつ陽極と発光層との間に、正孔輸送層を設けた高分子LED等が挙げられる。   In addition, as the polymer LED of the present invention, a polymer LED having an electron transport layer provided between the cathode and the light emitting layer, a polymer LED having a hole transport layer provided between the anode and the light emitting layer, Examples include a polymer LED in which an electron transport layer is provided between the cathode and the light emitting layer, and a hole transport layer is provided between the anode and the light emitting layer.

例えば、具体的には、以下のa)〜d)の構造が例示される。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)

ここで、発光層とは、発光する機能を有する層であり、正孔輸送層とは、正孔を輸送する機能を有する層であり、電子輸送層とは、電子を輸送する機能を有する層である。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。
発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。
For example, the following structures a) to d) are specifically exemplified.
a) Anode / light emitting layer / cathode b) Anode / hole transport layer / light emitting layer / cathode c) Anode / light emitting layer / electron transport layer / cathode d) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (Here, / indicates that each layer is laminated adjacently. The same shall apply hereinafter.)

Here, the light emitting layer is a layer having a function of emitting light, the hole transporting layer is a layer having a function of transporting holes, and the electron transporting layer is a layer having a function of transporting electrons. It is. The electron transport layer and the hole transport layer are collectively referred to as a charge transport layer.
Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently.

また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と一般に呼ばれることがある。   Further, among the charge transport layers provided adjacent to the electrodes, those having a function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the element are particularly charge injection layers (hole injection layers). , An electron injection layer).

さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。   Further, in order to improve adhesion with the electrode and charge injection from the electrode, the charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode, and the adhesion at the interface may be improved. In order to prevent mixing, a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer.

積層する層の順番や数、および各層の厚さについては、発光効率や素子寿命を勘案して適宜用いることができる。   The order and number of layers to be laminated, and the thickness of each layer can be appropriately used in consideration of light emission efficiency and element lifetime.

本発明において、電荷注入層(電子注入層、正孔注入層)を設けた高分子LEDとしては、陰極に隣接して電荷注入層を設けた高分子LED、陽極に隣接して電荷注入層を設けた高分子LEDが挙げられる。   In the present invention, a polymer LED provided with a charge injection layer (electron injection layer, hole injection layer) includes a polymer LED provided with a charge injection layer adjacent to the cathode, and a charge injection layer adjacent to the anode. The provided polymer LED is mentioned.

例えば、具体的には、以下のe)〜p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電子輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極

電荷注入層の具体的な例としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層などが例示される。
For example, the following structures e) to p) are specifically mentioned.
e) Anode / charge injection layer / light emitting layer / cathode
f) Anode / light emitting layer / charge injection layer / cathode
g) Anode / charge injection layer / light emitting layer / charge injection layer / cathode
h) Anode / charge injection layer / hole transport layer / light emitting layer / cathode
i) Anode / hole transport layer / light emitting layer / charge injection layer / cathode
j) Anode / charge injection layer / hole transport layer / light emitting layer / charge injection layer / cathode
k) Anode / charge injection layer / light emitting layer / electron transport layer / cathode
l) Anode / light-emitting layer / electron transport layer / charge injection layer / cathode
m) Anode / charge injection layer / light emitting layer / electron transport layer / charge injection layer / cathode
n) Anode / charge injection layer / hole transport layer / light emitting layer / electron transport layer / cathode o) Anode / hole transport layer / light emitting layer / electron transport layer / charge injection layer / cathode p) Anode / charge injection layer / Hole transport layer / light emitting layer / electron transport layer / charge injection layer / cathode

Specific examples of the charge injection layer include a layer containing a conductive polymer, an anode and a hole transport layer provided between the anode material and the hole transport material included in the hole transport layer. A layer containing a material having an ionization potential of a value, a layer provided between a cathode and an electron transport layer, and a layer containing a material having an electron affinity of an intermediate value between the cathode material and the electron transport material contained in the electron transport layer, etc. Is exemplified.

上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上103S/cm以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上102S/cm以下がより好ましく、10-5S/cm以上101S/cm以下がさらに好ましい。 When the charge injection layer is a layer containing a conductive polymer, the electrical conductivity of the conductive polymer is preferably 10 −5 S / cm or more and 10 3 S / cm or less. in order to reduce the current, more preferably less 10 -5 S / cm or more and 10 2 S / cm, more preferably less 10 -5 S / cm or more and 10 1 S / cm.

通常は該導電性高分子の電気伝導度を10-5S/cm以上103S/cm以下とするために、該導電性高分子に適量のイオンをドープする。 Usually, in order to set the electric conductivity of the conductive polymer to 10 −5 S / cm or more and 10 3 S / cm or less, the conductive polymer is doped with an appropriate amount of ions.

ドープするイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンなどが例示され、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンなどが例示される。   The type of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer. Examples of anions include polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, and examples of cations include lithium ions, sodium ions, potassium ions, tetrabutylammonium ions, and the like.

電荷注入層の膜厚としては、例えば1nm〜100nmであり、2nm〜50nmが好ましい。   The thickness of the charge injection layer is, for example, 1 nm to 100 nm, and preferably 2 nm to 50 nm.

電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、芳香族アミン構造を主鎖または側鎖に含む重合体などの導電性高分子、金属フタロシアニン(銅フタロシアニンなど)、カーボンなどが例示される。   The material used for the charge injection layer may be appropriately selected in relation to the material of the electrode and the adjacent layer. Polyaniline and its derivatives, polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene And derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain, metal phthalocyanines (such as copper phthalocyanine), and carbon .

膜厚2nm以下の絶縁層は電荷注入を容易にする機能を有するものである。上記絶縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。膜厚2nm以下の絶縁層を設けた高分子LEDとしては、陰極に隣接して膜厚2nm以下の絶縁層を設けた高分子LED、陽極に隣接して膜厚2nm以下の絶縁層を設けた高分子LEDが挙げられる。   An insulating layer having a thickness of 2 nm or less has a function of facilitating charge injection. Examples of the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials. As the polymer LED provided with the insulating layer having a thickness of 2 nm or less, the polymer LED provided with the insulating layer having a thickness of 2 nm or less adjacent to the cathode, or the insulating layer having a thickness of 2 nm or less provided adjacent to the anode. Polymer LED is mentioned.

具体的には、例えば、以下のq)〜ab)の構造が挙げられる。
q)陽極/膜厚2nm以下の絶縁層/発光層/陰極
r)陽極/発光層/膜厚2nm以下の絶縁層/陰極
s)陽極/膜厚2nm以下の絶縁層/発光層/膜厚2nm以下の絶縁層/陰極
t)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/陰極
u)陽極/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
v)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
w)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/陰極
x)陽極/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
y)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
z)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
ab)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
Specific examples include the following structures q) to ab).
q) Anode / insulating layer with a thickness of 2 nm or less / light emitting layer / cathode r) Anode / light emitting layer / insulating layer with a thickness of 2 nm or less / cathode s) Anode / insulating layer with a thickness of 2 nm or less / light emitting layer / film thickness 2 nm Insulating layer / cathode t) Anode / insulating layer with a thickness of 2 nm or less / hole transport layer / light emitting layer / cathode
u) Anode / hole transport layer / light emitting layer / insulating layer with a thickness of 2 nm or less / cathode
v) Anode / insulating layer with a thickness of 2 nm or less / hole transport layer / light emitting layer / insulating layer with a thickness of 2 nm or less / cathode
w) Anode / insulating layer with a thickness of 2 nm or less / light emitting layer / electron transport layer / cathode
x) Anode / light-emitting layer / electron transport layer / insulating layer with a thickness of 2 nm or less / cathode
y) Anode / insulating layer with a thickness of 2 nm or less / light emitting layer / electron transport layer / insulating layer with a thickness of 2 nm or less / cathode
z) Anode / insulating layer with a thickness of 2 nm or less / hole transport layer / light emitting layer / electron transport layer / cathode
aa) Anode / hole transport layer / light emitting layer / electron transport layer / insulating layer with a thickness of 2 nm or less / cathode
ab) Anode / insulating layer with a thickness of 2 nm or less / hole transporting layer / light emitting layer / electron transporting layer / insulating layer with a thickness of 2 nm or less / cathode

発光層は、例えば、本発明の溶液組成物を用いて、溶液から成膜する場合、この溶液を塗布後乾燥により溶媒を除去するだけでよく、また電荷輸送材料や発光材料を混合した場合においても同様な手法が適用でき、製造上非常に有利である。溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。   For example, in the case where the light emitting layer is formed from a solution using the solution composition of the present invention, it is only necessary to remove the solvent by drying after coating the solution, and when the charge transporting material or the light emitting material is mixed. A similar technique can be applied to this method, which is very advantageous in manufacturing. As a film forming method from a solution, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a spray coating method, a screen printing method, Application methods such as a flexographic printing method, an offset printing method, and an ink jet printing method can be used.

発光層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。   As the film thickness of the light emitting layer, the optimum value varies depending on the material to be used, and it may be selected so that the drive voltage and the light emission efficiency are appropriate values. For example, the thickness is 1 nm to 1 μm, preferably 2 nm to 500 nm. More preferably, it is 5 nm-200 nm.

本発明の高分子LEDにおいては、発光層に上記高分子化合物以外の発光材料を混合して使用してもよい、上記高分子化合物以外の発光材料を含む発光層が、上記高分子化合物を含む発光層と積層されていてもよい。   In the polymer LED of the present invention, a light emitting material other than the above polymer compound may be mixed and used in the light emitting layer, and the light emitting layer containing a light emitting material other than the above polymer compound contains the above polymer compound. It may be laminated with a light emitting layer.

該発光材料としては、公知のものが使用できる。低分子化合物では、例えば、ナフタレン誘導体、アントラセンもしくはその誘導体、ペリレンもしくはその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系などの色素類、8−ヒドロキシキノリンもしくはその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンもしくはその誘導体、またはテトラフェニルブタジエンもしくはその誘導体などを用いることができる。   As the light emitting material, known materials can be used. Examples of the low molecular weight compound include naphthalene derivatives, anthracene or derivatives thereof, perylene or derivatives thereof, polymethine dyes, xanthene dyes, coumarin dyes, cyanine dyes, 8-hydroxyquinoline or metal complexes of derivatives thereof, aromatic amines, and the like. , Tetraphenylcyclopentadiene or a derivative thereof, or tetraphenylbutadiene or a derivative thereof can be used.

具体的には、例えば特開昭57−51781号、同59−194393号公報に記載されているもの等、公知のものが使用可能である。   Specifically, for example, known ones such as those described in JP-A-57-51781 and 59-194393 can be used.

本発明の高分子LEDが正孔輸送層を有する場合、使用される正孔輸送材料としては、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体などが例示される。   When the polymer LED of the present invention has a hole transport layer, the hole transport material used includes polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in a side chain or a main chain. , Pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline or derivatives thereof, polythiophene or derivatives thereof, polypyrrole or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thieni Lembinylene) or a derivative thereof is exemplified.

具体的には、該正孔輸送材料として、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。   Specifically, as the hole transport material, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-209998, Examples described in JP-A-3-37992 and JP-A-3-152184 are exemplified.

これらの中で、正孔輸送層に用いる正孔輸送材料として、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。   Among these, as a hole transport material used for the hole transport layer, polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, polyaniline or a derivative thereof, Preferred is a polymer hole transport material such as polythiophene or a derivative thereof, poly (p-phenylene vinylene) or a derivative thereof, or poly (2,5-thienylene vinylene) or a derivative thereof, more preferably polyvinyl carbazole or a derivative thereof, Polysilane or a derivative thereof, or a polysiloxane derivative having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by being dispersed in a polymer binder.

ポリビニルカルバゾールもしくはその誘導体は、例えばビニルモノマーからカチオン重合またはラジカル重合によって得られる。   Polyvinylcarbazole or a derivative thereof is obtained, for example, from a vinyl monomer by cation polymerization or radical polymerization.

ポリシランもしくはその誘導体としては、ケミカル・レビュー(Chem.Rev.)第89巻、1359頁(1989年)、英国特許GB2300196号公開明細書に記載の化合物等が例示される。合成方法もこれらに記載の方法を用いることができるが、特にキッピング法が好適に用いられる。   Examples of polysilane or derivatives thereof include compounds described in Chem. Rev. 89, 1359 (1989) and GB 2300196 published specification. As the synthesis method, the methods described in these can be used, but the Kipping method is particularly preferably used.

ポリシロキサンもしくはその誘導体は、シロキサン骨格構造には正孔輸送性がほとんどないので、側鎖または主鎖に上記低分子正孔輸送材料の構造を有するものが好適に用いられる。特に正孔輸送性の芳香族アミンを側鎖または主鎖に有するものが例示される。   Since polysiloxane or a derivative thereof has almost no hole transporting property in the siloxane skeleton structure, those having the structure of the low molecular hole transporting material in the side chain or main chain are preferably used. Particularly, those having a hole transporting aromatic amine in the side chain or main chain are exemplified.

正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。   Although there is no restriction | limiting in the film-forming method of a positive hole transport layer, In the low molecular hole transport material, the method by the film-forming from a mixed solution with a polymer binder is illustrated. In the case of a polymer hole transport material, a method of film formation from a solution is exemplified.

溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。   The solvent used for film formation from a solution is not particularly limited as long as it can dissolve a hole transport material. Examples of the solvent include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate, An ester solvent such as ethyl cellosolve acetate is exemplified.

溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。   Examples of film formation methods from solution include spin coating from solution, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen Coating methods such as a printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.

混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が例示される。   As the polymer binder to be mixed, those not extremely disturbing charge transport are preferable, and those showing no strong absorption against visible light are suitably used. Examples of the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.

正孔輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。   The film thickness of the hole transport layer differs depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. However, at least a thickness that does not cause pinholes is required. If it is too thick, the driving voltage of the element becomes high, which is not preferable. Therefore, the film thickness of the hole transport layer is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.

本発明の高分子LEDが電子輸送層を有する場合、使用される電子輸送材料としては公知のものが使用でき、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体等が例示される。   When the polymer LED of the present invention has an electron transport layer, known electron transport materials can be used, such as oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof. Derivatives, anthraquinones or derivatives thereof, tetracyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or Examples thereof include polyfluorene or a derivative thereof.

具体的には、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。   Specifically, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-20988, JP-A-3-37992, The thing etc. which are described in the same 3-152184 gazette are illustrated.

これらのうち、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがさらに好ましい。   Of these, oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof are preferred, 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.

電子輸送層の成膜法としては特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が、高分子電子輸送材料では溶液または溶融状態からの成膜による方法がそれぞれ例示される。溶液または溶融状態からの成膜時には、高分子バインダーを併用してもよい。   There are no particular restrictions on the method for forming the electron transport layer, but for low molecular weight electron transport materials, vacuum deposition from powder, or by film formation from a solution or molten state, and for polymer electron transport materials, solution or Each method is exemplified by film formation from a molten state. In film formation from a solution or a molten state, a polymer binder may be used in combination.

溶液からの成膜に用いる溶媒としては、電子輸送材料および/または高分子バインダーを溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。   The solvent used for film formation from a solution is not particularly limited as long as it can dissolve an electron transport material and / or a polymer binder. Examples of the solvent include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate, An ester solvent such as ethyl cellosolve acetate is exemplified.

溶液または溶融状態からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。   Examples of film formation methods from a solution or a molten state include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen. Coating methods such as a printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.

混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また、可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリ(N−ビニルカルバゾール)、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、ポリ(2,5−チエニレンビニレン)もしくはその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、またはポリシロキサンなどが例示される。   As the polymer binder to be mixed, those not extremely disturbing charge transport are preferable, and those not strongly absorbing visible light are suitably used. As the polymer binder, poly (N-vinylcarbazole), polyaniline or a derivative thereof, polythiophene or a derivative thereof, poly (p-phenylenevinylene) or a derivative thereof, poly (2,5-thienylenevinylene) or a derivative thereof, polycarbonate , Polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, or polysiloxane.

電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該電子輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。   The film thickness of the electron transport layer differs depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. However, at least a thickness that does not cause pinholes is required. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the thickness of the electron transport layer is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.

本発明の高分子LEDを形成する基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えばガラス、プラスチック、高分子フィルム、シリコン基板などが例示される。不透明な基板の場合には、反対の電極が透明または半透明であることが好ましい。   The substrate on which the polymer LED of the present invention is formed may be any substrate that does not change when the electrode is formed and the organic layer is formed, and examples thereof include glass, plastic, polymer film, and silicon substrate. In the case of an opaque substrate, the opposite electrode is preferably transparent or translucent.

本発明の高分子LEDにおいて、通常は、陽極および陰極からなる電極の少なくとも一方が透明または半透明であり、陽極側が透明または半透明であることが好ましい。陽極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性ガラスを用いて作成された膜(NESAなど)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。   In the polymer LED of the present invention, it is usually preferable that at least one of an electrode composed of an anode and a cathode is transparent or translucent, and the anode side is transparent or translucent. As the material for the anode, a conductive metal oxide film, a translucent metal thin film, or the like is used. Specifically, indium oxide, zinc oxide, tin oxide, and a composite film made of conductive glass made of indium / tin / oxide (ITO), indium / zinc / oxide, etc. (NESA) Etc.), gold, platinum, silver, copper and the like are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the production method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Further, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.

陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば10nm〜10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。   The film thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, more preferably 50 nm to 500 nm. is there.

また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボンなどからなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよい。   Further, in order to facilitate charge injection on the anode, a layer made of a phthalocyanine derivative, a conductive polymer, carbon or the like, or an average film thickness of 2 nm or less made of a metal oxide, a metal fluoride, an organic insulating material, or the like. A layer may be provided.

本発明の高分子LEDで用いる陰極の材料としては、仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、およびそれらのうち2つ以上の合金、あるいはそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイトまたはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金などが挙げられる。陰極を2層以上の積層構造としてもよい。   As a material of the cathode used in the polymer LED of the present invention, a material having a small work function is preferable. For example, metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and their Two or more of these alloys, or an alloy of one or more of them and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite or graphite intercalation compound, etc. Is used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy, and the like. The cathode may have a laminated structure of two or more layers.

陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば10nm〜10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。   The film thickness of the cathode can be appropriately selected in consideration of electric conductivity and durability, but is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.

陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けても良く、陰極作製後、該高分子LEDを保護する保護層を装着していてもよい。該高分子LEDを長期安定的に用いるためには、素子を外部から保護するために、保護層および/または保護カバーを装着することが好ましい。   As a method for producing the cathode, a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, or the like is used. Further, a layer made of a conductive polymer or a layer made of a metal oxide, metal fluoride, organic insulating material or the like having an average film thickness of 2 nm or less may be provided between the cathode and the organic layer. A protective layer for protecting the polymer LED may be attached. In order to use the polymer LED stably for a long period of time, it is preferable to attach a protective layer and / or protective cover in order to protect the element from the outside.

該保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物などを用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板などを用いることができ、該カバーを熱効果樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。これらのうち、いずれか1つ以上の方策をとることが好ましい。   As the protective layer, a polymer compound, metal oxide, metal fluoride, metal boride and the like can be used. Further, as the protective cover, a glass plate, a plastic plate having a low water permeability treatment on the surface, or the like can be used, and a method of sealing the cover by bonding it to the element substrate with a heat effect resin or a photo-curing resin is preferable. Used for. If a space is maintained using a spacer, it is easy to prevent the element from being damaged. If an inert gas such as nitrogen or argon is sealed in the space, the cathode can be prevented from being oxidized, and moisture adsorbed in the manufacturing process by installing a desiccant such as barium oxide in the space. It becomes easy to suppress giving an image to an element. Among these, it is preferable to take any one or more measures.

本発明の高分子LEDは面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置のバックライト等として用いることができる。   The polymer LED of the present invention can be used as a planar light source, a segment display device, a dot matrix display device, a backlight of a liquid crystal display device, and the like.

本発明の高分子LEDを用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極または陰極のいずれか一方、または両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にOn/OFFできるように配置することにより、数字や文字、簡単な記号などを表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法や、カラーフィルターまたは発光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFTなどと組み合わせてアクティブ駆動しても良い。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダーなどの表示装置として用いることができる。   In order to obtain planar light emission using the polymer LED of the present invention, the planar anode and cathode may be arranged so as to overlap each other. In addition, in order to obtain pattern-like light emission, a method of installing a mask provided with a pattern-like window on the surface of the planar light-emitting element, an organic material layer of a non-light-emitting portion is formed extremely thick and substantially non- There are a method of emitting light and a method of forming either one of the anode or the cathode or both electrodes in a pattern. By forming a pattern by any of these methods and arranging some electrodes so that they can be turned on / off independently, a segment type display element capable of displaying numbers, letters, simple symbols and the like can be obtained. Further, in order to obtain a dot matrix element, both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a light emission conversion filter. The dot matrix element can be driven passively, or can be actively driven in combination with a TFT or the like. These display elements can be used as display devices for computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.

さらに、前記面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、あるいは面状の照明用光源として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。   Furthermore, the planar light-emitting element is thin and self-luminous, and can be suitably used as a planar light source for a backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source or display device.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
以下、ポリスチレン換算の数平均分子量はSECにより求めた。
カラム: TOSOH TSKgel SuperHM-H(2本)+ TSKgel SuperH2000(4.6mm I.d. × 15cm)、検出器:RI (SHIMADZU RID-10A)を使用。移動相はテトラヒドロフラン(THF)を用いた。
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
Hereinafter, the number average molecular weight in terms of polystyrene was determined by SEC.
Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6mm Id x 15cm), Detector: RI (SHIMADZU RID-10A) is used. Tetrahydrofuran (THF) was used as the mobile phase.

合成例1
<4−t−ブチル−2,6−ジメチルブロモベンゼンの合成>

Figure 0004956896

不活性雰囲気下で、500mlの3つ口フラスコに酢酸225gを入れ、5−t−ブチル−m−キシレン24.3gを加えた。続いて臭素31.2gを加えた後、15〜20℃で3時間反応させた。
反応液を水500mlに加え析出した沈殿をろ過した。水250mlで2回洗浄し、白色の固体34.2gを得た。
1H−NMR(300MHz/CDCl3):
δ(ppm) = 1.3〔s,9H〕、2.4〔s,6H〕、7.1〔s,2H〕
MS(FD+)M+ 241 Synthesis example 1
<Synthesis of 4-t-butyl-2,6-dimethylbromobenzene>

Figure 0004956896

Under an inert atmosphere, 225 g of acetic acid was placed in a 500 ml three-necked flask, and 24.3 g of 5-t-butyl-m-xylene was added. Then, after adding 31.2 g of bromine, it was made to react at 15-20 degreeC for 3 hours.
The reaction solution was added to 500 ml of water, and the deposited precipitate was filtered. This was washed twice with 250 ml of water to obtain 34.2 g of a white solid.
1 H-NMR (300 MHz / CDCl 3 ):
δ (ppm) = 1.3 [s, 9H], 2.4 [s, 6H], 7.1 [s, 2H]
MS (FD + ) M + 241

合成例2
<N,N’−ジフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミンの合成>

Figure 0004956896

不活性雰囲気下で、100mlの3つ口フラスコに脱気した脱水トルエン36mlを入れ、トリ(t−ブチル)ホスフィン0.63gを加えた。続いてトリス(ジベンジリデンアセトン)ジパラジウム0.41g、上記の4−t−ブチル−2,6−ジメチルブロモベンゼン9.6g、t−ブトキシナトリウム5.2g、N,N’−ジフェニル−1,4−フェニレンジアミン4.7gを加えた後、100℃で3時間反応させた。
反応液を飽和食塩水300mlに加え、約50℃に温めたクロロホルム300mlで抽出した。溶媒を留去した後、トルエン100mlを加えて、固体が溶解するまで加熱、放冷した後、沈殿をろ過し、白色の固体9.9gを得た。 Synthesis example 2
<Synthesis of N, N′-diphenyl-N, N′-bis (4-t-butyl-2,6-dimethylphenyl) -1,4-phenylenediamine>

Figure 0004956896

Under an inert atmosphere, 36 ml of degassed dehydrated toluene was placed in a 100 ml three-necked flask, and 0.63 g of tri (t-butyl) phosphine was added. Subsequently, 0.41 g of tris (dibenzylideneacetone) dipalladium, 9.6 g of the above-mentioned 4-t-butyl-2,6-dimethylbromobenzene, 5.2 g of sodium t-butoxy, N, N′-diphenyl-1, After adding 4.7 g of 4-phenylenediamine, the mixture was reacted at 100 ° C. for 3 hours.
The reaction solution was added to 300 ml of saturated brine and extracted with 300 ml of chloroform warmed to about 50 ° C. After the solvent was distilled off, 100 ml of toluene was added, and the mixture was heated and allowed to cool until the solid was dissolved, and then the precipitate was filtered to obtain 9.9 g of a white solid.

合成例3
<N−フェニル,N’−4−ブロモフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミンの合成>

Figure 0004956896

不活性雰囲気下で、1000mlの3つ口フラスコに脱水クロロホルム60mlを入れ、上記のN,N’−ジフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミン7.6gを溶解した後、−2℃に冷却した。N−ブロモスクシンイミド0.3gを5分毎に−2〜−5℃で7回添加した(合計添加量2.1g)。その後1時間攪拌反応させた。反応液を濾過し濾紙上のケーキをクロロホルム30mlで洗浄した。濾液と洗液を合わせ5%チオ硫酸ナトリウム水30mlで洗浄し、次に、イオン交換水50mlで3回洗浄した。クロロホルム層を無水硫酸ナトリウムで乾燥し、80〜85℃、3Torrで濃縮し9.5gの固形物を得た。この固形物をシリカゲル500g、ヘキサン/クロロホルム/トリエチルアミン=20/1/0.1%(V/V/V)で分離精製し白色固体3.9gを得た。
1H−NMR(300MHz、テトラヒドロフラン-d8)
δ7.215(8H、m)、6.911(4H、S)、6.886(3H、m)、6.786(2H、m)
2.065(12H、S)、1.357(18H、S) Synthesis example 3
<Synthesis of N-phenyl, N′-4-bromophenyl-N, N′-bis (4-t-butyl-2,6-dimethylphenyl) -1,4-phenylenediamine>
Figure 0004956896

Under an inert atmosphere, 60 ml of dehydrated chloroform was placed in a 1000 ml three-necked flask, and the above N, N′-diphenyl-N, N′-bis (4-tert-butyl-2,6-dimethylphenyl) -1 After dissolving 7.6 g of 4-phenylenediamine, it was cooled to -2 ° C. N-bromosuccinimide 0.3g was added 7 times at -2 to -5 degreeC every 5 minutes (total addition amount 2.1g). Thereafter, the reaction was stirred for 1 hour. The reaction solution was filtered, and the cake on the filter paper was washed with 30 ml of chloroform. The filtrate and the washing solution were combined and washed with 30 ml of 5% aqueous sodium thiosulfate, and then washed 3 times with 50 ml of ion-exchanged water. The chloroform layer was dried over anhydrous sodium sulfate and concentrated at 80 to 85 ° C. and 3 Torr to obtain 9.5 g of a solid. This solid was separated and purified with 500 g of silica gel and hexane / chloroform / triethylamine = 20/1 / 0.1% (V / V / V) to obtain 3.9 g of a white solid.
1H-NMR (300 MHz, tetrahydrofuran-d8)
δ 7.215 (8H, m), 6.911 (4H, S), 6.886 (3H, m), 6.786 (2H, m)
2.065 (12H, S), 1.357 (18H, S)

合成例4
<N,N’−ジフェニル−N,N’−ビス(4−t‐ブチル−2,6−ジメチルフェニル)−ベンジジンの合成>

Figure 0004956896

不活性雰囲気下で、300mlの3つ口フラスコに脱気した脱水トルエン1660mlを入れ、N,N’−ジフェニルベンジジン275.0g、4−t−ブチル−2,6−ジメチルブロモベンゼン449.0gを加えた。続いてトリス(ジベンジリデンアセトン)ジパラジウム7.48g、t−ブトキシナトリウム196.4g、を加えた後、トリ(t−ブチル)ホスフィン5.0gを加えた。その後、105℃で7時間反応させた。
反応液にトルエン2000mlを加え、セライト濾過し、濾液を水1000mlで3回洗浄した後、700mlまで濃縮した。これにトルエン/メタノール(1:1)溶液1600mlを加え、析出した結晶を濾過し、メタノールで洗浄した。白色の固体479.4gを得た。 Synthesis example 4
<Synthesis of N, N'-diphenyl-N, N'-bis (4-tert-butyl-2,6-dimethylphenyl) -benzidine>
Figure 0004956896

In an inert atmosphere, 1660 ml of degassed toluene was put into a 300 ml three-necked flask, and 275.0 g of N, N′-diphenylbenzidine and 449.0 g of 4-t-butyl-2,6-dimethylbromobenzene were added. added. Subsequently, 7.48 g of tris (dibenzylideneacetone) dipalladium and 196.4 g of sodium t-butoxy were added, and 5.0 g of tri (t-butyl) phosphine was added. Then, it was made to react at 105 degreeC for 7 hours.
Toluene (2000 ml) was added to the reaction mixture, and the mixture was filtered through Celite. The filtrate was washed with 1000 ml of water three times and then concentrated to 700 ml. To this was added 1600 ml of a toluene / methanol (1: 1) solution, and the precipitated crystals were filtered and washed with methanol. 479.4 g of a white solid was obtained.

合成例5
<N,N’− −ビス(4−ブロモフェニル)−N,N’−ビス(4−t‐ブチル−2,6−ジメチルフェニル)−ベンジジンの合成>

Figure 0004956896

不活性雰囲気下で、クロロホルム4730gに、上記N,N’−ジフェニル−N,N’−ビス(4−t‐ブチル−2,6−ジメチルフェニル)−ベンジジン472.8gを溶解した後、遮光および氷浴下でN−ブロモスクシンイミド281.8gを12分割で1時間かけて仕込み、3時間反応させた。
クロロホルム1439mlを反応液に加え、濾過し、濾液のクロロホルム溶液を5%チオ硫酸ナトリウム2159mlで洗浄し、トルエンを溶媒留去して白色結晶を得た。得られた白色結晶をトルエン/エタノールで再結晶し、白色結晶678.7gを得た。
Synthesis example 5
<Synthesis of N, N′-bis (4-bromophenyl) -N, N′-bis (4-tert-butyl-2,6-dimethylphenyl) -benzidine>
Figure 0004956896

In an inert atmosphere, 472.8 g of N, N′-diphenyl-N, N′-bis (4-t-butyl-2,6-dimethylphenyl) -benzidine was dissolved in 4730 g of chloroform, In an ice bath, 281.8 g of N-bromosuccinimide was charged in 12 portions over 1 hour and reacted for 3 hours.
Chloroform 1439 ml was added to the reaction solution, followed by filtration. The chloroform solution of the filtrate was washed with 2159 ml of 5% sodium thiosulfate, and toluene was distilled off to obtain white crystals. The obtained white crystals were recrystallized with toluene / ethanol to obtain 678.7 g of white crystals.

合成例6
(化合物Aの合成)

Figure 0004956896

化合物A
不活性雰囲気下、300ml三つ口フラスコに1‐ナフタレンボロン酸5.00g(29mmol)、2−ブロモベンズアルデヒド6.46g(35mmol)、炭酸カリウム10.0g(73mmol)、トルエン36ml、イオン交換水36mlを入れ、室温で撹拌しつつ20分間アルゴンバブリングした。続いてテトラキス(トリフェニルホスフィン)パラジウム16.8mg(0.15mmol)を入れ、さらに室温で撹拌しつつ10分間アルゴンバブリングした。100℃に昇温し、25時間反応させた。室温まで冷却後、トルエンで有機層を抽出、硫酸ナトリウムで乾燥後、溶媒を留去した。トルエン:シクロヘキサン=1:2混合溶媒を展開溶媒としたシリカゲルカラムで生成することにより、化合物A5.18g(収率86%)を白色結晶として得た。
1H−NMR(300MHz/CDCl3):
δ7.39〜7.62(m、5H)、7.70(m、2H)、7.94(d、2H)、8.12(dd、2H)、9.63(s、1H)
MS(APCI(+)):(M+H)+ 233 Synthesis Example 6
(Synthesis of Compound A)

Figure 0004956896

Compound A
Under an inert atmosphere, in a 300 ml three-necked flask, 5.00 g (29 mmol) of 1-naphthaleneboronic acid, 6.46 g (35 mmol) of 2-bromobenzaldehyde, 10.0 g (73 mmol) of potassium carbonate, 36 ml of toluene, 36 ml of ion-exchanged water And argon bubbling was performed for 20 minutes with stirring at room temperature. Subsequently, 16.8 mg (0.15 mmol) of tetrakis (triphenylphosphine) palladium was added, and argon was bubbled for 10 minutes while stirring at room temperature. The temperature was raised to 100 ° C. and reacted for 25 hours. After cooling to room temperature, the organic layer was extracted with toluene, dried over sodium sulfate, and the solvent was distilled off. By producing on a silica gel column using a mixed solvent of toluene: cyclohexane = 1: 2 as a developing solvent, 5.18 g of Compound A (yield 86%) was obtained as white crystals.
1 H-NMR (300 MHz / CDCl 3 ):
δ 7.39-7.62 (m, 5H), 7.70 (m, 2H), 7.94 (d, 2H), 8.12 (dd, 2H), 9.63 (s, 1H)
MS (APCI (+)): (M + H) <+> 233

合成例7
(化合物Bの合成)

Figure 0004956896

化合物B
不活性雰囲気下で300mlの三つ口フラスコに化合物A8.00g(34.4mmol)と脱水THF46mlを入れ、−78℃まで冷却した。続いてn−オクチルマグネシウムブロミド(1.0mol/lTHF溶液)52mlを30分かけて滴下した。滴下終了後0℃まで昇温し、1時間撹拌後、室温まで昇温して45分間撹拌した。氷浴して1N塩酸20mlを加えて反応を終了させ、酢酸エチルで有機層を抽出、硫酸ナトリウムで乾燥した。溶媒を留去した後トルエン:ヘキサン=10:1混合溶媒を展開溶媒とするシリカゲルカラムで精製することにより、化合物B7.64g(収率64%)を淡黄色のオイルとして得た。HPLC測定では2本のピークが見られたが、LC−MS測定では同一の質量数であることから、異性体の混合物であると判断した。 Synthesis example 7
(Synthesis of Compound B)

Figure 0004956896

Compound B
Under an inert atmosphere, 8.00 g (34.4 mmol) of Compound A and 46 ml of dehydrated THF were placed in a 300 ml three-necked flask and cooled to -78 ° C. Subsequently, 52 ml of n-octylmagnesium bromide (1.0 mol / l THF solution) was added dropwise over 30 minutes. After completion of dropping, the temperature was raised to 0 ° C., stirred for 1 hour, then warmed to room temperature and stirred for 45 minutes. The reaction was terminated by adding 20 ml of 1N hydrochloric acid in an ice bath, and the organic layer was extracted with ethyl acetate and dried over sodium sulfate. After distilling off the solvent, the residue was purified by a silica gel column using a mixed solvent of toluene: hexane = 10: 1 as a developing solvent to obtain 7.64 g (yield: 64%) of Compound B as a pale yellow oil. Although two peaks were observed in the HPLC measurement, they were determined to be a mixture of isomers because they were the same mass number in the LC-MS measurement.

合成例8
(化合物Cの合成)

Figure 0004956896

化合物C
不活性雰囲気下、500ml三つ口フラスコに化合物B(異性体の混合物)5.00g(14.4mmol)と脱水ジクロロメタン74mlを入れ、室温で撹拌、溶解させた。続いて、三フッ化ホウ素のエーテラート錯体を室温で1時間かけて滴下し、的か終了後室温で4時間撹拌した。撹拌しながらエタノール125mlをゆっくりと加え、発熱がおさまったらクロロホルムで有機層を抽出、2回水洗し、硫酸マグネシウムで乾燥した。溶媒を留去後、ヘキサンを展開溶媒とするシリカゲルカラムで精製することにより、化合物C3.22g(収率68%)を無色のオイルとして得た。
1H−NMR(300MHz/CDCl3):
δ0.90(t、3H)、1.03〜1.26(m、14H)、2.13(m、2H)、4.05(t、1H)、7.35(dd、1H)、7.46〜7.50(m、2H)、7.59〜7.65(m、3H)、7.82(d、1H)、7.94(d、1H)、8.35(d、1H)、8.75(d、1H)
MS(APCI(+)):(M+H)+ 329 Synthesis Example 8
(Synthesis of Compound C)

Figure 0004956896

Compound C
Under an inert atmosphere, 5.00 g (14.4 mmol) of Compound B (mixture of isomers) and 74 ml of dehydrated dichloromethane were placed in a 500 ml three-necked flask and stirred and dissolved at room temperature. Subsequently, boron ether trifluoride etherate complex was added dropwise at room temperature over 1 hour, and after completion, the mixture was stirred at room temperature for 4 hours. While stirring, 125 ml of ethanol was slowly added. When the exotherm subsided, the organic layer was extracted with chloroform, washed twice with water, and dried over magnesium sulfate. After distilling off the solvent, the residue was purified by a silica gel column using hexane as a developing solvent to obtain 3.22 g (yield 68%) of Compound C as a colorless oil.
1 H-NMR (300 MHz / CDCl 3 ):
δ 0.90 (t, 3H), 1.03-1.26 (m, 14H), 2.13 (m, 2H), 4.05 (t, 1H), 7.35 (dd, 1H), 7 .46-7.50 (m, 2H), 7.59-7.65 (m, 3H), 7.82 (d, 1H), 7.94 (d, 1H), 8.35 (d, 1H) ), 8.75 (d, 1H)
MS (APCI (+)): (M + H) <+> 329

合成例9
(化合物Dの合成)

Figure 0004956896

化合物D
不活性雰囲気下200ml三つ口フラスコにイオン交換水20mlをいれ、撹拌しながら水酸化ナトリウム18.9g(0.47mol)を少量ずつ加え、溶解させた。水溶液が室温まで冷却した後、トルエン20ml、化合物C5.17g(15.7mmol)、臭化トリブチルアンモニウム1.52g(4.72mmol)を加え、50℃に昇温した。臭化n−オクチルを滴下し、滴下終了後50℃で9時間反応させた。反応終了後トルエンで有機層を抽出し、2回水洗し、硫酸ナトリウムで乾燥した。ヘキサンを展開溶媒とするシリカゲルカラムで精製することにより、化合物D5.13g(収率74%)を黄色のオイルとして得た。
1H−NMR(300MHz/CDCl3):
δ0.52(m、2H)、0.79(t、6H)、1.00〜1.20(m、22H)、2.05(t、4H)、7.34(d、1H)、7.40〜7.53(m、2H)、7.63(m、3H)、7.83(d、1H)、7.94(d、1H)、8.31(d、1H)、8.75(d、1H)
MS(APCI(+)):(M+H)+ 441 Synthesis Example 9
(Synthesis of Compound D)

Figure 0004956896

Compound D
Under an inert atmosphere, 20 ml of ion-exchanged water was placed in a 200 ml three-necked flask, and 18.9 g (0.47 mol) of sodium hydroxide was added little by little with stirring to dissolve. After the aqueous solution was cooled to room temperature, 20 ml of toluene, 5.17 g (15.7 mmol) of Compound C and 1.52 g (4.72 mmol) of tributylammonium bromide were added, and the temperature was raised to 50 ° C. N-Octyl bromide was added dropwise, and after completion of the addition, the mixture was reacted at 50 ° C. for 9 hours. After completion of the reaction, the organic layer was extracted with toluene, washed twice with water, and dried over sodium sulfate. Purification by a silica gel column using hexane as a developing solvent gave 5.13 g (yield 74%) of Compound D as a yellow oil.
1 H-NMR (300 MHz / CDCl 3 ):
δ 0.52 (m, 2H), 0.79 (t, 6H), 1.00-1.20 (m, 22H), 2.05 (t, 4H), 7.34 (d, 1H), 7 40 to 7.53 (m, 2H), 7.63 (m, 3H), 7.83 (d, 1H), 7.94 (d, 1H), 8.31 (d, 1H), 8. 75 (d, 1H)
MS (APCI (+)): (M + H) <+> 441

合成例10
(化合物Eの合成)

Figure 0004956896

化合物E
空気雰囲気下、50mlの三つ口フラスコに化合物D4.00g(9.08mmol)と酢酸:ジクロロメタン=1:1混合溶媒57mlを入れ、室温で撹拌、溶解させた。続いて三臭化ベンジルトリメチルアンモニウム7.79g(20.0mmol)を加えて撹拌しつつ、塩化亜鉛を三臭化ベンジルトリメチルアンモニウムが完溶するまで加えた。室温で20時間撹拌後、5%亜硫酸水素ナトリウム水溶液10mlを加えて反応を停止し、クロロホルムで有機層を抽出、炭酸カリウム水溶液で2回洗浄し、硫酸ナトリウムで乾燥した。ヘキサンを展開溶媒とするフラッシュカラムで2回精製した後、エタノール:ヘキサン=1:1、続いて10:1混合溶媒で再結晶することにより、化合物E4.13g(収率76%)を白色結晶として得た。
1H−NMR(300MHz/CDCl3):
δ0.60(m、2H)、0.91(t、6H)、1.01〜1.38(m、22H)、2.09(t、4H)、7.62〜7.75(m、3H)、7.89(s、1H)、8.20(d、1H)、8.47(d、1H)、8.72(d、1H)
MS(APPI(+)):(M+H)+ 598 Synthesis Example 10
(Synthesis of Compound E)

Figure 0004956896

Compound E
Under an air atmosphere, 4.00 g (9.08 mmol) of Compound D and 57 ml of a mixed solvent of acetic acid: dichloromethane = 1: 1 were placed in a 50 ml three-necked flask, and the mixture was stirred and dissolved at room temperature. Subsequently, 7.79 g (20.0 mmol) of benzyltrimethylammonium tribromide was added and stirred, and zinc chloride was added until benzyltribromide tribromide was completely dissolved. After stirring at room temperature for 20 hours, the reaction was stopped by adding 10 ml of 5% aqueous sodium bisulfite solution, and the organic layer was extracted with chloroform, washed twice with aqueous potassium carbonate solution, and dried over sodium sulfate. After purification twice with a flash column using hexane as a developing solvent, 4.13 g (yield 76%) of Compound E was obtained as white crystals by recrystallization with ethanol: hexane = 1: 1, followed by a 10: 1 mixed solvent. Got as.
1 H-NMR (300 MHz / CDCl 3 ):
δ 0.60 (m, 2H), 0.91 (t, 6H), 1.01-1.38 (m, 22H), 2.09 (t, 4H), 7.62-7.75 (m, 3H), 7.89 (s, 1H), 8.20 (d, 1H), 8.47 (d, 1H), 8.72 (d, 1H)
MS (APPI (+)): (M + H) <+> 598

合成例11
<高分子化合物1の合成>
化合物E(8.0g)、および2,2’−ビピリジル(5.9g)を脱水したテトラヒドロフラン300mLに溶解した後、窒素でバブリングして系内を窒素置換した。窒素雰囲気下において、この溶液を60℃まで昇温し、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(10.4g、0.038mol)加え、5時間反応させた。反応後、この反応液を室温(約25℃)まで冷却し、25%アンモニア水40mL/メタノール300mL/イオン交換水300mL混合溶液中に滴下して30分間攪拌した後、析出した沈殿をろ過して風乾した。その後、トルエン400mLに溶解させてからろ過を行い、ろ液をアルミナカラムを通して精製し、1N塩酸約300mLを加えて3時間攪拌し、水層を除去し、有機層に4%アンモニア水約300mLを加え、2時間攪拌した後に水層を除去した。有機層にイオン交換水約300mLを加え1時間攪拌した後、水層を除去した。有機層にメタノール約100mLを滴下して1時間攪拌し、続いて静置した後、上澄み液をデカンテーションで除去した。得られた沈殿物をトルエン100mLに溶解して、メタノール約200mLに滴下して1時間攪拌し、ろ過して2時間減圧乾燥した。得られた共重合体の収量は4.1gであった(以後、高分子化合物1と呼ぶ)。高分子化合物1のポリスチレン換算の平均分子量および重量平均分子量は、それぞれMn=1.5×105、Mw=2.7×105であった(移動相:テトラヒドロフラン)。
Synthesis Example 11
<Synthesis of Polymer Compound 1>
Compound E (8.0 g) and 2,2′-bipyridyl (5.9 g) were dissolved in 300 mL of dehydrated tetrahydrofuran, and then bubbled with nitrogen to purge the system with nitrogen. In a nitrogen atmosphere, the temperature of the solution was raised to 60 ° C., bis (1,5-cyclooctadiene) nickel (0) {Ni (COD) 2 } (10.4 g, 0.038 mol) was added, and the reaction was performed for 5 hours. I let you. After the reaction, this reaction solution was cooled to room temperature (about 25 ° C.), dropped into a mixed solution of 25% ammonia water 40 mL / methanol 300 mL / ion exchanged water 300 mL and stirred for 30 minutes, and then the deposited precipitate was filtered. Air dried. Then, after dissolving in 400 mL of toluene, filtration is performed, the filtrate is purified through an alumina column, about 300 mL of 1N hydrochloric acid is added and stirred for 3 hours, the aqueous layer is removed, and about 300 mL of 4% aqueous ammonia is added to the organic layer. In addition, the aqueous layer was removed after stirring for 2 hours. About 300 mL of ion exchange water was added to the organic layer and stirred for 1 hour, and then the aqueous layer was removed. About 100 mL of methanol was added dropwise to the organic layer, stirred for 1 hour, and allowed to stand, and then the supernatant was removed by decantation. The obtained precipitate was dissolved in 100 mL of toluene, dropped into about 200 mL of methanol, stirred for 1 hour, filtered and dried under reduced pressure for 2 hours. The yield of the obtained copolymer was 4.1 g (hereinafter referred to as polymer compound 1). The average molecular weight and weight average molecular weight in terms of polystyrene of the polymer compound 1 were Mn = 1.5 × 10 5 and Mw = 2.7 × 10 5 (mobile phase: tetrahydrofuran), respectively.

実施例
<高分子化合物2の合成>
化合物E0.81gとN−フェニル,N’−4−ブロモフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミン0.1gと2,2’―ビピリジル0.56gとを反応容器に仕込んだ後、反応系内を窒素ガスで置換した。これに、あらかじめアルゴンガスでバブリングして、脱気したテトラヒドロフラン(脱水溶媒)50gを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を1.0gを加え、室温で10分間攪拌した後、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。
反応後、この反応溶液を冷却した後、この溶液に、メタノール35ml/イオン交換水35ml混合溶液をそそぎ込み、約1時間攪拌した。次に、生成した沈殿を濾過し、回収した。この沈殿を減圧乾燥した後、トルエンに溶解した。このトルエン溶液を濾過し、不溶物を除去した後、このトルエン溶液を、アルミナを充填したカラムを通すことで精製した。次に、このトルエン溶液を、約1規定塩酸で洗浄し、静置、分液した後、トルエン溶液を回収した。次に、このトルエン溶液を、約3%アンモニア水で洗浄し、静置、分液した後、トルエン溶液を回収した。次に、このトルエン溶液を水洗し、静置、分液した後、トルエン溶液を回収した。次に、このトルエン溶液を、メタノール中にそそぎ込み、再沈精製した。生成した沈殿をろ過により、回収した。次に、この沈殿を減圧乾燥して、重合体0.26gを得た。(以後、高分子化合物2と呼ぶ)。得られた高分子化合物 のポリスチレン換算重量平均分子量は、2.8x104であり、数平均分子量は、1.4x104であった。
Example <Synthesis of Polymer Compound 2>
0.81 g of compound E, 0.1 g of N-phenyl, N′-4-bromophenyl-N, N′-bis (4-t-butyl-2,6-dimethylphenyl) -1,4-phenylenediamine and 2, After charging 0.56 g of 2′-bipyridyl into the reaction vessel, the inside of the reaction system was replaced with nitrogen gas. To this was added 50 g of tetrahydrofuran (dehydrated solvent) deaerated previously by bubbling with argon gas. Next, 1.0 g of bis (1,5-cyclooctadiene) nickel (0) was added to this mixed solution, and the mixture was stirred at room temperature for 10 minutes and then reacted at 60 ° C. for 3 hours. The reaction was performed in a nitrogen gas atmosphere.
After the reaction, this reaction solution was cooled, and a mixed solution of methanol 35 ml / ion-exchanged water 35 ml was poured into this solution and stirred for about 1 hour. Next, the produced precipitate was filtered and collected. This precipitate was dried under reduced pressure and then dissolved in toluene. The toluene solution was filtered to remove insoluble matters, and the toluene solution was purified by passing through a column packed with alumina. Next, this toluene solution was washed with about 1 N hydrochloric acid, allowed to stand and separated, and then the toluene solution was recovered. Next, this toluene solution was washed with about 3% aqueous ammonia, allowed to stand and separated, and then the toluene solution was recovered. Next, this toluene solution was washed with water, allowed to stand and separated, and then the toluene solution was recovered. Next, this toluene solution was poured into methanol and purified by reprecipitation. The produced precipitate was collected by filtration. Next, this precipitate was dried under reduced pressure to obtain 0.26 g of a polymer. (Hereinafter referred to as polymer compound 2). The obtained polymer compound had a polystyrene equivalent weight average molecular weight of 2.8 × 10 4 and a number average molecular weight of 1.4 × 10 4 .

合成例12
<高分子化合物3の合成>
化合物E(5.25g)、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t‐ブチル−2,6−ジメチルフェニル)−ベンジジン(3.06g)および2,2’−ビピリジル(5.3g)を脱水したテトラヒドロフラン226mLに溶解した後、窒素でバブリングして系内を窒素置換した。窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(9.30g)加え、60℃まで昇温し、攪拌しながら3時間反応させた。反応後、この反応液を室温(約25℃)まで冷却し、25%アンモニア水45mL/メタノール約230mL/イオン交換水約230mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥し、その後、トルエン400mLに溶解させてからろ過を行い、ろ液をアルミナカラムを通して精製し、5.2%塩酸水約400mlを加え、3時間攪拌した後に水層を除去した。次に4%アンモニア水約400mLを加え、2時間攪拌した後に水層を除去した。さらに有機層にイオン交換水約400mLを加え1時間攪拌した後、水層を除去した。有機層にトルエン80mlを加え、デカンテーションで析出した沈殿物を捕集し、トルエン200mlに溶かした後、これをメタノール約600mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥した。得られた共重合体(以後、高分子化合物3と呼ぶ)の収量は4.25gであった。ポリスチレン換算の数平均分子量および重量平均分子量は、それぞれMn=2.5x104、Mw=8.0x105であった(移動相:テトラヒドロフラン)。
Synthesis Example 12
<Synthesis of Polymer Compound 3>
Compound E (5.25 g), N, N′-bis (4-bromophenyl) -N, N′-bis (4-tert-butyl-2,6-dimethylphenyl) -benzidine (3.06 g) and 2 2,2′-bipyridyl (5.3 g) was dissolved in 226 mL of dehydrated tetrahydrofuran, and the system was purged with nitrogen by bubbling with nitrogen. Under a nitrogen atmosphere, bis (1,5-cyclooctadiene) nickel (0) {Ni (COD) 2 } (9.30 g) was added to this solution, the temperature was raised to 60 ° C., and the reaction was continued for 3 hours with stirring. I let you. After the reaction, this reaction solution was cooled to room temperature (about 25 ° C.), dropped into a mixed solution of 25% ammonia water 45 mL / methanol about 230 mL / ion exchanged water about 230 mL and stirred for 1 hour, and then the deposited precipitate was filtered. And then dried under reduced pressure for 2 hours, then dissolved in 400 mL of toluene and filtered. The filtrate was purified through an alumina column, added with about 400 ml of 5.2% hydrochloric acid and stirred for 3 hours, and then the aqueous layer was removed. did. Next, about 400 mL of 4% aqueous ammonia was added, and after stirring for 2 hours, the aqueous layer was removed. Further, about 400 mL of ion exchange water was added to the organic layer and stirred for 1 hour, and then the aqueous layer was removed. 80 ml of toluene was added to the organic layer, and the precipitate deposited by decantation was collected and dissolved in 200 ml of toluene. Then, this was dropped into about 600 ml of methanol and stirred for 1 hour, and the deposited precipitate was filtered for 2 hours. It was dried under reduced pressure. The yield of the obtained copolymer (hereinafter referred to as polymer compound 3) was 4.25 g. The number average molecular weight and weight average molecular weight in terms of polystyrene were Mn = 2.5 × 10 4 and Mw = 8.0 × 10 5 (mobile phase: tetrahydrofuran), respectively.

<溶液組成物の調製>
高分子化合物1〜3を用いて、表1の組成でトルエンに1wt%混合し溶解させた。その後0.2ミクロン径のテフロン(登録商標)フィルターでろ過して塗布溶液を調整した。
<Preparation of solution composition>
Using the polymer compounds 1 to 3, 1 wt% was mixed in toluene with the composition shown in Table 1 and dissolved. Thereafter, the solution was filtered through a 0.2 micron diameter Teflon (registered trademark) filter to prepare a coating solution.

Figure 0004956896
Figure 0004956896

<素子の作成および評価>
スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、Baytron)を用いてスピンコートにより70nmの厚みで成膜し、ホットプレート上で200℃で10分間乾燥した。次に、調製した高分子化合物塗布溶液を用いて1400rpmの回転数のスピンコートにより約70nmの厚みで成膜した。さらに、これを減圧下90℃で1時間乾燥した後、陰極バッファー層として、フッ化リチウムを4nm、陰極として、カルシウムを5nm、次いでアルミニウムを100nm蒸着して、高分子LEDを作製した。蒸着のときの真空度は、すべて1〜9×10-5Torrであった。得られた、発光部が2mm×2mm(面積4mm2)の素子に電圧を段階的に印加することにより、高分子化合物からのEL発光の輝度を測定し、それより電流効率値を得た。得られた素子の電流効率の最大値を表1に示す。末端基を含まない比較例1,2の高分子発光素子に比べて、末端基を含む実施例1,2の塗布溶液を用いて作成した高分子発光素子は、著しい効率の改善が見られた。
<Creation and evaluation of device>
A glass substrate with an ITO film having a thickness of 150 nm formed by sputtering is formed to a thickness of 70 nm by spin coating using a solution of poly (ethylenedioxythiophene) / polystyrene sulfonic acid (Bayer, Baytron). Dried on plate for 10 minutes at 200 ° C. Next, a film having a thickness of about 70 nm was formed by spin coating at a rotational speed of 1400 rpm using the prepared polymer compound coating solution. Further, this was dried at 90 ° C. under reduced pressure for 1 hour, and then, as a cathode buffer layer, lithium fluoride was deposited at 4 nm, cathode was deposited as calcium at 5 nm, and then aluminum was deposited at 100 nm to produce a polymer LED. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −5 Torr. By applying voltage stepwise to the obtained device having a light emitting portion of 2 mm × 2 mm (area 4 mm 2 ), the luminance of EL light emission from the polymer compound was measured, and the current efficiency value was obtained therefrom. Table 1 shows the maximum value of current efficiency of the obtained element. Compared to the polymer light-emitting devices of Comparative Examples 1 and 2 that do not contain terminal groups, the polymer light-emitting devices prepared using the coating solutions of Examples 1 and 2 that contain terminal groups showed a marked improvement in efficiency. .

Claims (7)

下記式(1b)および(1c)から選ばれる末端基を分子鎖末端に有し、下式(2)で表される繰返し単位から構成されるか、又は、下式(2)で表される繰返し単位及び芳香族アミンから誘導される繰返し単位から構成され、かつ、ポリスチレン換算の数平均分子量が103〜108であることを特徴とする高分子化合物。
Figure 0004956896
〔式中R4〜R15は、それぞれ独立に、炭素数1〜20のアルキル基、または、炭素数1〜20のアルキルオキシ基を表し、Qは、水素原子を表す。〕
Figure 0004956896
(式中、Aは、−O−、−S−または−CR’R’−を表し、R4a、R4b、R4c、R5a、R5bおよびR5cは、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはカルボキシル基を表し、R4bとR4C、およびR5bとR5cは、それぞれ一緒になって環を形成していてもよい。R’は、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基または1価の複素環基を表す。)
It has a terminal group selected from the following formulas (1b) and (1c) at the molecular chain end, and is composed of a repeating unit represented by the following formula (2) or represented by the following formula (2) A polymer compound comprising a repeating unit derived from a repeating unit and an aromatic amine, and having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
Figure 0004956896
[Wherein R 4 to R 15 each independently represents an alkyl group having 1 to 20 carbon atoms or an alkyloxy group having 1 to 20 carbon atoms, and Q represents a hydrogen atom. ]
Figure 0004956896
(In the formula, A represents —O—, —S— or —CR′R′—, and R 4a , R 4b , R 4c , R 5a , R 5b and R 5c each independently represents a hydrogen atom, Halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, Acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, nitro group, monovalent heterocyclic group, Heteroaryloxy group, heteroarylthio group, alkyloxycarbonyl group, aryloxycarbonyl group, aryla Kill oxycarbonyl group, an heteroaryloxycarbonyl group or carboxyl group, R 4b and R 4C and R 5b and R 5c, respectively together may form a ring .R 'is a hydrogen atom , Halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group , Acyl group, acyloxy group, amide group, acid imide group, imine residue, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, nitro group or monovalent heterocyclic group Represents.)
前記式(1b)で表される末端基を分子鎖末端に有し、前記式(2)で表される繰返し単位から構成されるか、又は、前記式(2)で表される繰返し単位及び芳香族アミンから誘導される繰返し単位から構成され、かつ、ポリスチレン換算の数平均分子量が通常103〜108であることを特徴とする請求項1記載の高分子化合物。 It has a terminal group represented by the formula (1b) at the molecular chain end and is composed of a repeating unit represented by the formula (2), or a repeating unit represented by the formula (2) and The polymer compound according to claim 1, wherein the polymer compound is composed of a repeating unit derived from an aromatic amine and has a polystyrene-equivalent number average molecular weight of usually 10 3 to 10 8 . 4〜R15がそれぞれ独立にメチル基又はt−ブチル基であることを特徴とする請求項1または2に記載の高分子化合物。 R < 4 > -R < 15 > is a methyl group or t-butyl group each independently, The high molecular compound of Claim 1 or 2 characterized by the above-mentioned. 式(1b)および(1c)から選ばれる末端基の含有量が、高分子化合物が有する繰り返し単位の全モル数に対して0.1〜50モル%であることを特徴とする請求項1〜3のいずれかに記載の高分子化合物。 The content of the end group selected from the formulas (1b) and (1c) is 0.1 to 50 mol% with respect to the total number of moles of the repeating unit of the polymer compound . 4. The polymer compound according to any one of 3. 請求項1〜4のいずれかに記載の高分子化合物と溶媒とを含有することを特徴とする溶液組成物。   A solution composition comprising the polymer compound according to claim 1 and a solvent. 陽極および陰極からなる電極間に、発光層を有し、該発光層が請求項1〜4のいずれかに記載の高分子化合物を含むことを特徴とする高分子発光素子。   A polymer light emitting device comprising a light emitting layer between electrodes composed of an anode and a cathode, wherein the light emitting layer contains the polymer compound according to claim 1. 陽極および陰極からなる電極間に、発光層を有し、該発光層が請求項5記載の溶液組成物を用いて形成されることを特徴とする高分子発光素子。   A polymer light emitting device comprising a light emitting layer between electrodes comprising an anode and a cathode, wherein the light emitting layer is formed using the solution composition according to claim 5.
JP2004373147A 2004-12-24 2004-12-24 Polymer compound and polymer light emitting device using the same Expired - Fee Related JP4956896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373147A JP4956896B2 (en) 2004-12-24 2004-12-24 Polymer compound and polymer light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373147A JP4956896B2 (en) 2004-12-24 2004-12-24 Polymer compound and polymer light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2006176705A JP2006176705A (en) 2006-07-06
JP4956896B2 true JP4956896B2 (en) 2012-06-20

Family

ID=36731102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373147A Expired - Fee Related JP4956896B2 (en) 2004-12-24 2004-12-24 Polymer compound and polymer light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4956896B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529794B2 (en) * 2006-12-22 2013-09-10 Merck Patent Gmbh Polymers comprising fused selenophene

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147778B2 (en) * 2001-02-05 2008-09-10 住友化学株式会社 Polymer compound, method for producing the same, and polymer light emitting device
WO2004009668A1 (en) * 2002-07-22 2004-01-29 Sumitomo Chemical Company, Limited Copolymer and polymeric luminescent element comprising the same

Also Published As

Publication number Publication date
JP2006176705A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
KR101224805B1 (en) High-Molecular Luminescent Material Composition and Polymeric Light-Emitting Devices
JP4461762B2 (en) Polymer compound and polymer light emitting device using the same
JP5092199B2 (en) Organic electroluminescence device
JP4321110B2 (en) Polymer compound and polymer light emitting device using the same
JP5018043B2 (en) Polymer compound and polymer light emitting device using the same
WO2007043495A1 (en) Copolymer and polymer light emitting devices made by using the same
JP2009215557A (en) Polymeric compound and polymer light-emitting device using the same
JP4273856B2 (en) Polymer compound and polymer light emitting device using the same
JP2009001804A (en) New polymer and polymer light-emitting device using same
WO2005082969A1 (en) Polymer and polymeric luminescent element comprising the same
JP4982984B2 (en) Polymer light emitter composition and polymer light emitting device
JP5239116B2 (en) Polymer light emitter composition and polymer light emitting device
JP4810873B2 (en) Polymer light emitter composition
WO2005026289A1 (en) Luminescent material and luminescent element comprising the same
JP4329486B2 (en) Polymer compound and polymer light emitting device using the same
JP4696641B2 (en) Polymer composition
JP4496709B2 (en) Metal complex compound, polymer compound, and organic electroluminescence device
JP4904752B2 (en) Polymer compound and polymer light emitting device using the same
JP4957669B2 (en) Polymer compound and polymer light emitting device using the same
JP4734850B2 (en) Polymer light emitter composition
JP4956896B2 (en) Polymer compound and polymer light emitting device using the same
JP5299017B2 (en) Polymer compound and polymer light emitting device using the same
JP4366978B2 (en) Polymeric phosphor composition
JP4724440B2 (en) Polymer compound and polymer light emitting device using the same
JP4639728B2 (en) Polymer light emitting material and polymer light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4956896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees