JP4956805B2 - 3D photonic crystal manufacturing method and 3D photonic crystal manufacturing apparatus used therefor - Google Patents

3D photonic crystal manufacturing method and 3D photonic crystal manufacturing apparatus used therefor Download PDF

Info

Publication number
JP4956805B2
JP4956805B2 JP2006217173A JP2006217173A JP4956805B2 JP 4956805 B2 JP4956805 B2 JP 4956805B2 JP 2006217173 A JP2006217173 A JP 2006217173A JP 2006217173 A JP2006217173 A JP 2006217173A JP 4956805 B2 JP4956805 B2 JP 4956805B2
Authority
JP
Japan
Prior art keywords
photosensitive material
photonic crystal
beam interference
dimensional photonic
interference exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006217173A
Other languages
Japanese (ja)
Other versions
JP2008040334A (en
Inventor
雄三 小野
隆 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Original Assignee
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust filed Critical Ritsumeikan Trust
Priority to JP2006217173A priority Critical patent/JP4956805B2/en
Publication of JP2008040334A publication Critical patent/JP2008040334A/en
Application granted granted Critical
Publication of JP4956805B2 publication Critical patent/JP4956805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)

Description

本発明は、フォトニックバンドギャップを利用した各種光導波路デバイスや、バンド端での光学特性を利用した各種光デバイスを作製するための光学媒質である3次元フォトニック結晶の製造方法及びそれに使用する製造装置に関する。   The present invention relates to a method of manufacturing a three-dimensional photonic crystal, which is an optical medium for manufacturing various optical waveguide devices using a photonic band gap, and various optical devices using optical characteristics at the band edge, and to be used in the method. It relates to a manufacturing apparatus.

近年、各種光デバイスを作製するための新たな光学媒質としてフォトニック結晶が提唱されている。このフォトニック結晶は、光の波長オーダーの周期的屈折率分布を有し、光子のエネルギーに対してバンド構造が形成されるという特徴を有している。特に、3次元周期の屈折率分布を持つ3次元フォトニック結晶の場合、全ての方向に対して光の存在が禁止される完全フォトニックバンドギャップが形成されるため、線欠陥を導入して光の存在を許容することによって極微小光導波路を形成することができ、また点欠陥を導入して微小点への光の捕獲を可能とすることによって微小光共振器を形成することができる。これにより、導波現象や発光現象の根元制御が可能となり、各種発光デバイスの性能向上を図ることができる。また、その他にも、光の群速度が零になるバンド端に着目して、定在波状態を共振器として用いることで大面積レーザ等を実現することや、光が伝搬可能な透過バンドに着目して、特異な分散関係に基づき様々な光制御を可能にすることも期待されている。   In recent years, a photonic crystal has been proposed as a new optical medium for manufacturing various optical devices. This photonic crystal has a periodic refractive index distribution in the wavelength order of light, and has a feature that a band structure is formed with respect to photon energy. In particular, in the case of a three-dimensional photonic crystal having a refractive index profile with a three-dimensional period, a complete photonic band gap is formed in which light is prohibited in all directions. By allowing the existence of the optical waveguide, it is possible to form a very small optical waveguide, and it is possible to form a micro optical resonator by introducing a point defect and allowing light to be captured at a minute point. As a result, the fundamental control of the waveguide phenomenon and the light emission phenomenon can be performed, and the performance of various light emitting devices can be improved. In addition, paying attention to the band edge where the group velocity of light becomes zero, using a standing wave state as a resonator realizes a large area laser, etc. It is also expected that various light controls will be possible based on unique dispersion relationships.

この3次元フォトニック結晶の製造方法は4つに大別される。第1の製造方法は、微粒子の凝集を用いる方法である。この方法では、例えば、数ミクロン径の一定の大きさのプラスチック球を水中に分散させ、静かに放置して水を蒸発させると、プラスチック球がエネルギー的に最も安定な面心立方格子を形成する。しかし、この第1の製造方法によれば、形成された結晶の一部に不整列の欠陥が入りやすい反面、人工的に欠陥を導入して導波路化する手法がないという問題がある。また、形成できる結晶が面心立方格子に限られるという問題もある。   The three-dimensional photonic crystal manufacturing method is roughly classified into four methods. The first manufacturing method is a method using agglomeration of fine particles. In this method, for example, when plastic spheres with a diameter of several microns are dispersed in water and left to stand to evaporate the water, the plastic spheres form the most stable face-centered cubic lattice in terms of energy. . However, according to the first manufacturing method, a misaligned defect is likely to enter a part of the formed crystal, but there is a problem that there is no method for artificially introducing a defect into a waveguide. Another problem is that the crystals that can be formed are limited to the face-centered cubic lattice.

また、第2の製造方法は、層毎形成方法である。この方法では、エッチングにより2次元格子を形成してこれを積層することで3次元化するか、或いはあらかじめ2次元格子が形成された基板上にスパッタリングにより屈折率の異なる2種類の材料を交互に積層することで3次元化する。しかし、この第2の製造方法によれば、結晶の形成途中で人工的な欠陥を導入することは容易であるが、形成に時間を要するため、大型で原子層数の大きい結晶の形成が難しいという問題がある。   The second manufacturing method is a layer-by-layer formation method. In this method, a two-dimensional lattice is formed by etching and stacked to form a three-dimensional structure, or two types of materials having different refractive indexes are alternately formed on a substrate on which a two-dimensional lattice is formed in advance. It is made three-dimensional by stacking. However, according to the second manufacturing method, it is easy to introduce artificial defects during the formation of the crystal, but it takes time to form the crystal, so it is difficult to form a large crystal with a large number of atomic layers. There is a problem.

また、第3の製造方法は、SOR(Synchrotron Orbital Radiation;シンクロトロン放射)リソグラフィー法である。この方法では、三角配列の2次元のX線マスクを用いて斜入射のX線で3方向から多重露光することで、面心立方格子が形成される。しかし、この第3の製造方法では、過去作製が報告されているのは面心立方格子だけである上に、SORを用いるので製造装置が高価になるという問題がある。   The third manufacturing method is a SOR (Synchrotron Orbital Radiation) lithography method. In this method, a face-centered cubic lattice is formed by multiple exposure from three directions with obliquely incident X-rays using a triangular array of two-dimensional X-ray masks. However, this third manufacturing method has a problem that the production is expensive because the SOR is used in addition to the face-centered cubic lattice that has been reported in the past.

第4の製造方法は、ホログラフィックリソグラフィー法と呼ばれるレーザ干渉法である(例えば特許文献1参照)。この方法では、1本のレーザを4つの光束に分割して、これら4光束を1度の露光によって光硬化性樹脂中で同時に干渉させる。すると、周期的な干渉縞が形成されてその部分の光硬化性樹脂が硬化するため、未硬化部分を除去すれば、3次元格子構造を有する硬化部分だけが残留する。この方法によれば、4光束干渉を用いることで14種類のブラベー格子全てを形成できることが証明されており、また、人工的な欠陥の導入方法も提案されており、比較的大型の結晶も形成できるので有力な手法である。   The fourth manufacturing method is a laser interference method called a holographic lithography method (see, for example, Patent Document 1). In this method, one laser beam is divided into four light beams, and these four light beams are simultaneously interfered in the photo-curable resin by one exposure. Then, since periodic interference fringes are formed and the photo-curing resin in the portion is cured, if the uncured portion is removed, only the cured portion having the three-dimensional lattice structure remains. According to this method, it has been proved that all 14 types of Bravey lattices can be formed by using four-beam interference, and a method for introducing artificial defects has also been proposed, so that relatively large crystals can be formed. It can be a powerful technique.

特開2000−329920号公報JP 2000-329920 A

しかし、3次元フォトニック結晶の従来の製造方法のうち、前記第4の製造方法では、4光束干渉の光学系が複雑で、形成する結晶系によっては光学系を構成するのが難しいという問題がある。また、干渉においては、4光束の偏光間の内積で干渉縞のコントラストが決まるが、4光束ゆえに、例えば偏光方向を全て一致させることができないことからもわかるように、偏光方向を任意に設定できないという問題もある。   However, among the conventional manufacturing methods of three-dimensional photonic crystals, the fourth manufacturing method has a problem that the optical system for four-beam interference is complicated and it is difficult to configure the optical system depending on the crystal system to be formed. is there. Further, in interference, the contrast of interference fringes is determined by the inner product between the polarizations of the four light beams. However, because the four light beams are used, for example, the polarization directions cannot be set arbitrarily, as can be seen from the fact that the polarization directions cannot all be matched. There is also a problem.

本発明は、このような問題に鑑みてなされたものであり、複数の光束を感光材中で干渉させて干渉縞を生じさせることで3次元フォトニック結晶を製造するいわゆるホログラフィックリソグラフィー法において、簡易な構成の光学系を用いて短時間で大型のフォトニック結晶を製造する手段及びそれに使用する製造装置を提供する。   The present invention has been made in view of such problems, and in a so-called holographic lithography method for producing a three-dimensional photonic crystal by causing interference fringes by causing a plurality of light beams to interfere in a photosensitive material, Provided is a means for manufacturing a large-scale photonic crystal in a short time using an optical system having a simple configuration, and a manufacturing apparatus used therefor.

上記目的を達成するための請求項1記載の3次元フォトニック結晶の製造方法は、3次元周期で屈折率が変化する3次元フォトニック結晶の製造方法において、照射された光強度に応じて屈折率が変化する感光材の同一の表面に対し、相異なる3方向から2光束干渉露光を行うことにより、所定厚みの壁状の潜像が複数並設されてなる潜像群を前記3方向に向かってそれぞれ形成し、これら3つの潜像群が重なり合う部分とそれ以外の部分とで屈折率に差を生じさせることにより、前記感光材に3次元周期の屈折率変化を形成するものである。 The method for producing a three-dimensional photonic crystal according to claim 1 for achieving the above object is characterized in that the method for producing a three-dimensional photonic crystal whose refractive index changes in a three-dimensional period is refracted in accordance with the intensity of irradiated light. By performing two-beam interference exposure from three different directions on the same surface of the photosensitive material having a variable rate, a latent image group in which a plurality of wall-shaped latent images having a predetermined thickness are arranged in parallel in the three directions. Each of the three latent image groups is formed toward each other, and a difference in refractive index is generated between the portion where these three latent image groups overlap and the other portion, thereby forming a three-dimensional period refractive index change in the photosensitive material.

請求項2記載の3次元フォトニック結晶の製造方法は、前記感光材に対する相異なる3方向からの2光束干渉露光は、前記感光材に対して同じ入射角で所定時間差をおいて3回の2光束干渉露光を行い、各2光束干渉露光の合間に前記感光材を同一平面内で所定角度ずつ回転させることにより行うものである。   3. The method for producing a three-dimensional photonic crystal according to claim 2, wherein the two-beam interference exposure from three different directions with respect to the photosensitive material is performed two times with a predetermined time difference with respect to the photosensitive material at a predetermined time. Light beam interference exposure is performed, and the photosensitive material is rotated by a predetermined angle within the same plane between each two light beam interference exposures.

請求項3記載の3次元フォトニック結晶の製造方法は、前記感光材に対する相異なる3方向からの2光束干渉露光は、前記感光材に対して異なる入射角で所定時間差をおいて3回の2光束干渉露光を行い、各2光束干渉露光の合間に前記感光材を同一平面内で所定角度ずつ回転させることにより行うものである。   4. The method of manufacturing a three-dimensional photonic crystal according to claim 3, wherein two-beam interference exposure from three different directions with respect to the photosensitive material is performed three times with a predetermined time difference at different incident angles with respect to the photosensitive material. Light beam interference exposure is performed, and the photosensitive material is rotated by a predetermined angle within the same plane between each two light beam interference exposures.

請求項4記載の3次元フォトニック結晶製造装置は、3次元周期で屈折率が変化する3次元フォトニック結晶を製造するための3次元フォトニック結晶製造装置において、光強度が周期的に変化する光の場を2光束干渉露光によって作り出す光学系と、照射された光強度に応じて屈折率が変化する感光材の表面に対し、前記光学系によって2光束干渉露光が行われるように、前記感光材を同一平面内で回転可能に保持する可動ステージと、を具備するものである。 5. The three-dimensional photonic crystal manufacturing apparatus according to claim 4, wherein the light intensity changes periodically in the three-dimensional photonic crystal manufacturing apparatus for manufacturing a three-dimensional photonic crystal whose refractive index changes in a three-dimensional cycle. The optical system for creating a light field by two-beam interference exposure, and the photosensitive system so that the two-beam interference exposure is performed by the optical system on the surface of the photosensitive material whose refractive index changes according to the intensity of the irradiated light. And a movable stage that holds the material rotatably in the same plane.

請求項5記載の3次元フォトニック結晶製造装置は、前記光学系が、2光束干渉露光の前記感光材への入射角を変更可能に設けられたものである。   In the three-dimensional photonic crystal manufacturing apparatus according to claim 5, the optical system is provided so that an incident angle of the two-beam interference exposure to the photosensitive material can be changed.

本発明に係る3次元フォトニック結晶の製造方法によれば、感光材に対し、相異なる3方向から2光束干渉露光を行うことで3つの壁群を形成するので、簡易な構成の光学系で、短時間に大型の3次元フォトニック結晶を形成することができる。また、光学系を動かすことなく、感光材を回転させることで相異なる3方向から2光束干渉露光を行うので、光学系の構成を更に簡略化することができる。   According to the method for producing a three-dimensional photonic crystal according to the present invention, three wall groups are formed on a photosensitive material by performing two-beam interference exposure from three different directions, so that an optical system with a simple configuration can be used. A large three-dimensional photonic crystal can be formed in a short time. Further, since the two-beam interference exposure is performed from three different directions by rotating the photosensitive material without moving the optical system, the configuration of the optical system can be further simplified.

また、2光束干渉露光を用いることにより、偏光方向を同一とすることができるので、コントラストの大きい干渉縞を形成することができる。逆に、偏光方向や、強度比を変えることでコントラストを調整することもでき、原子のつながり具合や、形をコントロールすることができる。   Also, by using two-beam interference exposure, the polarization direction can be made the same, so that interference fringes with a high contrast can be formed. On the contrary, the contrast can be adjusted by changing the polarization direction and the intensity ratio, and it is possible to control the connection and shape of the atoms.

また、各2光束干渉露光毎に感光材への入射角を変化させることにより、立方晶系以外の、すなわち正方晶系、斜方晶系、菱面体、六方晶系、単斜晶系、三斜晶系の格子を形成することも可能である。これにより、感光材への入射角を一定にして立方晶系の格子を形成する場合と合わせて、14種類のブラベー格子全てを形成することができる。   Further, by changing the incident angle to the photosensitive material for each two-beam interference exposure, other than cubic system, that is, tetragonal system, orthorhombic system, rhombohedral system, hexagonal system, monoclinic system, 3 It is also possible to form an oblique lattice. Accordingly, all 14 types of Bravay lattices can be formed together with the case where a cubic lattice is formed with a constant incident angle to the photosensitive material.

また、本発明に係る3次元フォトニック結晶製造装置によれば、光強度が周期的に変化する光の場を2光束干渉露光によって作り出すので、簡易な構成の光学系で、短時間に大型の3次元フォトニック結晶を形成することができる。また、可動ステージを制御して感光材を同一平面内で回転させることにより、光学系を動かすことなく、感光材の異なる方向から2光束干渉露光を行うことができる。   In addition, according to the three-dimensional photonic crystal manufacturing apparatus according to the present invention, a light field whose light intensity changes periodically is generated by two-beam interference exposure. A three-dimensional photonic crystal can be formed. Further, by controlling the movable stage and rotating the photosensitive material in the same plane, two-beam interference exposure can be performed from different directions of the photosensitive material without moving the optical system.

また、本発明に係る3次元フォトニック結晶製造装置によれば、3回の2光束干渉露光毎に感光材への入射角を変化させることにより、立方晶系以外の、すなわち正方晶系、斜方晶系、菱面体、六方晶系、単斜晶系、三斜晶系の格子を形成することも可能である。これにより、感光材への入射角を一定にして立方晶系の格子を形成する場合と合わせて、14種類のブラベー格子全てを形成することができる。   Further, according to the three-dimensional photonic crystal manufacturing apparatus according to the present invention, the incident angle to the photosensitive material is changed every three two-beam interference exposures, so that other than the cubic system, that is, the tetragonal system, the oblique system, and the like. It is also possible to form a tetragonal, rhombohedral, hexagonal, monoclinic or triclinic lattice. Accordingly, all 14 types of Bravay lattices can be formed together with the case where a cubic lattice is formed with a constant incident angle to the photosensitive material.

以下、本発明の実施例に係る3次元フォトニック結晶の製造方法及びその製造装置について図面に基づいて説明する。図1は、本実施例に係る3次元フォトニック結晶製造装置1の構成を示す概略図である。3次元フォトニック結晶製造装置1は、空間内に光の波長オーダーの周期で光強度が変化する光の場を作り出す光学系2と、該光学系2によって作り出される光の場の中に感光材3を回転可能に保持する可動ステージ4と、を備えてなるものである。 Hereinafter, a method for manufacturing a three-dimensional photonic crystal and an apparatus for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating the configuration of a three-dimensional photonic crystal manufacturing apparatus 1 according to the present embodiment. The three-dimensional photonic crystal manufacturing apparatus 1 includes an optical system 2 that generates a light field whose light intensity changes in a space with a period in the order of the wavelength of light, and a photosensitive material in the light field generated by the optical system 2. And a movable stage 4 that rotatably holds 3.

光学系2は、いわゆる2光束干渉露光系であって、図1に示すように、レーザ光L1を放射するレーザ光源5と、該レーザ光源5から発せられたレーザ光L1を2つの光束L2,L3に分割するためのビームスプリッタ6と、各光束L2,L3を可動ステージ4上の感光材3へと導くための光路ミラー群7と、各光束L2,L3のビーム径を拡げるためのビームエクスパンダ8と、2つの光束L2,L3のうち一方の光束L2の光路長を補正するための光路長補正機構9とを具備している。   The optical system 2 is a so-called two-beam interference exposure system, and as shown in FIG. 1, a laser light source 5 that emits a laser beam L1 and a laser beam L1 emitted from the laser light source 5 into two beam L2, A beam splitter 6 for dividing the light beam L3, an optical path mirror group 7 for guiding the light beams L2 and L3 to the photosensitive material 3 on the movable stage 4, and a beam extender for expanding the beam diameter of the light beams L2 and L3. A panda 8 and an optical path length correction mechanism 9 for correcting the optical path length of one of the two light beams L2 and L3 are provided.

レーザ光源5は、シャッタ装置10を備え、このシャッタ装置10の制御によって所望のタイミングでレーザ光L1を射出可能となっている。また、ビームスプリッタ6は、いわゆるハーフミラー11を備え、このハーフミラー11でレーザ光L1を反射し又は透過することによって2分割するものである。また、ビームエクスパンダ8は、集光レンズ12と空間フィルタ13と平行化レンズ14とを備え、集光レンズ12で各光束L2,L3を集光して空間フィルタ13に形成されたピンホール15を通過させた後、平行化レンズ14で平行光に変換することにより、そのビーム径を拡大するものである。また、光路長補正機構9は、ハーフミラー11で反射された光束L2の光路上に配置され、その光路長をハーフミラー11を透過した光束L3の光路長との関係で適宜補正するためのものである。   The laser light source 5 includes a shutter device 10 and can control the shutter device 10 to emit laser light L1 at a desired timing. The beam splitter 6 includes a so-called half mirror 11, and the half mirror 11 reflects or transmits the laser light L1 into two parts. The beam expander 8 includes a condenser lens 12, a spatial filter 13, and a collimating lens 14, and condenses the light beams L <b> 2 and L <b> 3 by the condenser lens 12 and is formed in the spatial filter 13. Then, the beam diameter is expanded by converting it into parallel light by the parallelizing lens 14. The optical path length correction mechanism 9 is disposed on the optical path of the light beam L2 reflected by the half mirror 11, and corrects the optical path length appropriately in relation to the optical path length of the light beam L3 transmitted through the half mirror 11. It is.

このように構成される光学系2によれば、レーザ光源5から射出された1本のレーザ光L1が、光路ミラー7Aによってビームスプリッタ6へ案内され、2つの光束L2,L3に分割される。このうち、ハーフミラー11を透過した光束L3は、光路ミラー7Bによってビームエクスパンダ8へ案内されてそのビーム径が拡大された後、光路ミラー7Cで反射されることにより可動ステージ4へ向けて照射される。一方、ハーフミラー11で反射された光束L2は、ビームエクスパンダ8によってビーム径が拡大され、光路長補正機構9によってその光路長が補正された後、光路ミラー7Dで反射されることにより可動ステージ4へ向けて照射される。これにより、可動ステージ4近傍の空間では、光路ミラー7Cからの光束L3と光路ミラー7Dからの光束L2とが所定角度をなして交差し、その干渉によって周期的な干渉縞、すなわち光の波長オーダーの周期で光強度が変化する光の場が作り出される。   According to the optical system 2 configured as described above, one laser light L1 emitted from the laser light source 5 is guided to the beam splitter 6 by the optical path mirror 7A and is divided into two light beams L2 and L3. Of these, the light beam L3 that has passed through the half mirror 11 is guided to the beam expander 8 by the optical path mirror 7B, the beam diameter is expanded, and then reflected by the optical path mirror 7C to irradiate the movable stage 4. Is done. On the other hand, the light beam L2 reflected by the half mirror 11 is expanded in beam diameter by the beam expander 8, and its optical path length is corrected by the optical path length correction mechanism 9, and then reflected by the optical path mirror 7D. 4 is irradiated. Thereby, in the space near the movable stage 4, the light beam L3 from the optical path mirror 7C and the light beam L2 from the optical path mirror 7D intersect at a predetermined angle, and due to the interference, periodic interference fringes, that is, the wavelength order of light. A light field whose light intensity changes with a period of is created.

一方、可動ステージ4は、図に詳細は示さないが、光学系2によって作り出された光の場の中に感光材3を保持するための保持トレイと、感光材3をその法線を中心として回転可能に支持する回転ステージとからなるものである。   On the other hand, the movable stage 4 is not shown in detail in the figure, but a holding tray for holding the photosensitive material 3 in the light field created by the optical system 2 and the photosensitive material 3 centered on the normal line. The rotary stage is rotatably supported.

以下、3次元フォトニック結晶製造装置1を用いた3次元フォトニック結晶の製造方法について説明する。まず、可動ステージ4上に感光材3をセットする。本実施例では、感光材3として、ある閾値以上の光強度で露光されることで硬化する光硬化性樹脂を使用し、この感光材3を所定の基板の上に塗布することにより、感光材3の薄膜を形成する。そして、この感光材3の薄膜が形成された基板を可動ステージ4の上に移動不能に固定する。   Hereinafter, a method for manufacturing a three-dimensional photonic crystal using the three-dimensional photonic crystal manufacturing apparatus 1 will be described. First, the photosensitive material 3 is set on the movable stage 4. In this embodiment, as the photosensitive material 3, a photocurable resin that is cured by being exposed with a light intensity equal to or higher than a certain threshold is used, and the photosensitive material 3 is applied onto a predetermined substrate, whereby 3 thin film is formed. Then, the substrate on which the thin film of the photosensitive material 3 is formed is fixed on the movable stage 4 so as not to move.

次に、シャッタ装置10を操作してレーザ光源5から第1回目の露光を行う。レーザ光源5から射出されたレーザ光L1は、前述のように、ビームスプリッタ6によって2つの光束L2,L3に分割され、ハーフミラー11を透過した光束L3はビームエクスパンダ8を経て反射ミラー7Cで反射されることにより、またハーフミラー11で反射された光束L2はビームエクスパンダ8と光路長補正機構9を経て反射ミラー7Dで反射されることにより、それぞれ所定の入射角で可動ステージ4上の感光材3に露光される。この2つの光束L2,L3は、感光材3中で交差して干渉することで周期的な干渉縞を形成し、感光材3はこの干渉縞に対応する部分が露光されていわゆる潜像を形成している。これにより、図2(a)に示すように、感光材3中には、所定厚みの壁状の潜像16が一定間隔で並設されてなる潜像群17が所定方向に向かって形成される。   Next, the shutter device 10 is operated to perform the first exposure from the laser light source 5. As described above, the laser light L1 emitted from the laser light source 5 is divided into two light beams L2 and L3 by the beam splitter 6, and the light beam L3 transmitted through the half mirror 11 passes through the beam expander 8 and is reflected by the reflecting mirror 7C. The light beam L2 reflected by the half mirror 11 is reflected by the reflecting mirror 7D via the beam expander 8 and the optical path length correcting mechanism 9, thereby being reflected on the movable stage 4 at a predetermined incident angle. The photosensitive material 3 is exposed. The two light beams L2 and L3 intersect with each other in the photosensitive material 3 to form periodic interference fringes, and the photosensitive material 3 is exposed to a portion corresponding to the interference fringes to form a so-called latent image. is doing. As a result, as shown in FIG. 2A, a latent image group 17 in which wall-shaped latent images 16 having a predetermined thickness are arranged in parallel at a predetermined interval is formed in the photosensitive material 3 in a predetermined direction. The

そして、第1回目の露光が終了した後、可動ステージ4を動作制御することで感光材3を所定角度だけ回転させる。より詳細には、感光材3の位置を原点として空間内に(X,Y,Z)の直交座標系を考えた場合、XY平面内でZ軸廻りに120°だけ感光材3を回転させる。そして、この状態から、シャッタ装置10を操作してレーザ光源5から第2回目の露光を行い、第1回目の露光時と同じ入射角で2つの光束L2,L3を感光材3に露光する。これにより、感光材3中には、周期的な干渉縞が形成され、図2(b)に示すように、第1回目の露光時とは異なる方向に向かって延びる潜像群18が形成される。   Then, after the first exposure is finished, the photosensitive material 3 is rotated by a predetermined angle by controlling the operation of the movable stage 4. More specifically, when an orthogonal coordinate system of (X, Y, Z) is considered in the space with the position of the photosensitive material 3 as the origin, the photosensitive material 3 is rotated by 120 ° around the Z axis in the XY plane. In this state, the shutter device 10 is operated to perform the second exposure from the laser light source 5, and the two light fluxes L2 and L3 are exposed to the photosensitive material 3 at the same incident angle as in the first exposure. As a result, periodic interference fringes are formed in the photosensitive material 3, and as shown in FIG. 2B, a latent image group 18 extending in a direction different from that at the time of the first exposure is formed. The

更に、第2回目の露光が終了した後、再び可動ステージ4を動作制御して感光材3を回転させる。より詳細には、XY平面内でZ軸廻りに、且つ、第1回目と第2回目の露光の間に回転させた方向と同じ廻り方向に、120°だけ感光材3を回転させる。そして、この状態から、シャッタ装置10を操作してレーザ光源5から第3回目の露光を行い、第1回目及び第2回目と同じ入射角で2つの光束L2,L3を感光材3に露光する。これにより、感光材3中には、周期的な干渉縞が形成され、図2(c)に示すように、第1回目及び第2回目の露光時とは異なる方向に向かって延びる潜像群19が形成される。   Further, after the second exposure is completed, the operation of the movable stage 4 is again controlled to rotate the photosensitive material 3. More specifically, the photosensitive material 3 is rotated by 120 ° around the Z axis in the XY plane and in the same direction as the direction rotated between the first exposure and the second exposure. From this state, the shutter device 10 is operated to perform the third exposure from the laser light source 5, and the two light beams L2 and L3 are exposed to the photosensitive material 3 at the same incident angle as the first and second times. . As a result, periodic interference fringes are formed in the photosensitive material 3, and as shown in FIG. 2C, a latent image group extending in a direction different from that in the first and second exposures. 19 is formed.

最後に、溶剤等を用いて感光材3を現像する。すなわち、第3回目の露光が終了した時点において、感光材3中には異なる3方向に延びる3つの潜像群17,18,19が形成されるが、この3つの潜像群17,18,19が重なり合う部分では、3回の露光を受けてその露光量が感光材3の閾値を超えるようになっている。これにより、感光材3は、3つの潜像群17が重なり合う部分のみが硬化し、その他の部分は未硬化のままとなっている。従って、溶剤等を用いて未硬化部分を除去すれば、感光材3は、硬化部分だけを残してその他の部分が空洞状態となる。これにより、感光材3の残留部分と空洞部内の空気とで3次元周期の屈折率変化を形成する3次元フォトニック結晶が得られる。本実施例では、2つの光束L2,L3の感光材3への入射角を適宜設定することにより、図3に模式的に示すように、感光材3の硬化部分20すなわち3つの潜像群17が重なり合う部分が、面心立方格子の格子点に相当する位置となるようにして、面心立方格子の3次元フォトニック結晶を形成している。尚、図3では、各硬化部分20が棒状の連結部材21を介して互いに結合された状態を示したが、この連結部材21は説明の便宜上図示したものに過ぎない。実際には、連結部材21は形成されず、且つ、硬化部分20は互いに接触するほど大径であって、この接触部分を介して各硬化部分20同士が互いに結合された状態となっている。   Finally, the photosensitive material 3 is developed using a solvent or the like. That is, when the third exposure is completed, three latent image groups 17, 18, and 19 extending in three different directions are formed in the photosensitive material 3, and these three latent image groups 17, 18, and 19 are formed. In the portion where 19 overlaps, the exposure amount exceeds the threshold value of the photosensitive material 3 after three exposures. As a result, the photosensitive material 3 is cured only in the portion where the three latent image groups 17 overlap, and the other portions remain uncured. Therefore, if the uncured portion is removed using a solvent or the like, the photosensitive material 3 is left in a hollow state with only the cured portion remaining. As a result, a three-dimensional photonic crystal that forms a three-dimensional period refractive index change between the remaining portion of the photosensitive material 3 and the air in the cavity is obtained. In this embodiment, by appropriately setting the incident angles of the two light beams L2 and L3 to the photosensitive material 3, as shown schematically in FIG. 3, the cured portion 20 of the photosensitive material 3, that is, the three latent image groups 17 are provided. A three-dimensional photonic crystal having a face-centered cubic lattice is formed such that the overlapping portion is located at a position corresponding to a lattice point of the face-centered cubic lattice. 3 shows a state in which the respective hardened portions 20 are coupled to each other via a rod-shaped connecting member 21, this connecting member 21 is merely shown for convenience of explanation. Actually, the connecting member 21 is not formed, and the cured portions 20 have a large diameter so as to come into contact with each other, and the cured portions 20 are coupled to each other through the contact portions.

尚、本実施例では、各光束L2,L3の感光材3への入射角を変えることなく2光束干渉露光を3回行い、各露光の合間に感光材3をXY平面内でZ軸廻りに120°ずつ回転させることで面心立方格子の3次元フォトニック結晶を形成したが、各光束L2,L3の感光材3への入射角や感光材3の回転角を適宜変更すれば、単純立方格子や体心立方格子といった立方晶系の格子を形成することも可能である。また、各露光の合間に感光材3を回転させることに加えて、各露光時毎に感光材3への光束L2,L3の入射角を適宜変更すれば、立方晶系以外の、すなわち正方晶系、斜方晶系、菱面体、六方晶系、単斜晶系、三斜晶系の格子を形成することも可能である。このようにして、本発明によれば14種類全てのブラベー格子を形成することができる。   In this embodiment, two-beam interference exposure is performed three times without changing the incident angles of the light beams L2 and L3 to the photosensitive material 3, and the photosensitive material 3 is moved around the Z axis in the XY plane between the exposures. A three-dimensional photonic crystal having a face-centered cubic lattice was formed by rotating 120 ° at a time. However, if the incident angle of the light beams L2 and L3 to the photosensitive material 3 and the rotation angle of the photosensitive material 3 are appropriately changed, a simple cubic is obtained. It is also possible to form cubic lattices such as lattices and body-centered cubic lattices. Further, in addition to rotating the photosensitive material 3 between each exposure, if the incident angles of the light beams L2 and L3 to the photosensitive material 3 are appropriately changed for each exposure, other than the cubic system, that is, a tetragonal crystal , Orthorhombic, rhombohedral, hexagonal, monoclinic and triclinic lattices can be formed. Thus, according to the present invention, it is possible to form all 14 types of Bravais lattices.

また、本実施例によれば、感光材3をXY平面内でZ軸廻りに回転させたため、形成される格子は特定方位のものに限定されるが、感光材3を例えばY軸及びZ軸の2軸廻りに回転させれば、任意の方位の格子を形成することが可能である。   Further, according to the present embodiment, since the photosensitive material 3 is rotated around the Z axis in the XY plane, the formed grating is limited to a specific orientation, but the photosensitive material 3 is, for example, the Y axis and the Z axis. It is possible to form a lattice having an arbitrary orientation by rotating around the two axes.

また、感光材3の内部に3つの潜像群17を形成する手段としては、各露光の合間に感光材3を回転させる方法以外に、例えば、光学系2を移動可能に設けて、感光材3を位置固定したまま各露光の合間に光学系2を移動させる方法や、複数の光学系2を設けて、感光材3を位置固定したまま各露光の合間に光学系2を切り替える方法も採用可能である。しかし、本実施例のように感光材3を回転させた方が、光学系2の構成を簡略化することができるという利点がある。   Further, as a means for forming the three latent image groups 17 inside the photosensitive material 3, for example, the optical system 2 is movably provided in addition to a method of rotating the photosensitive material 3 between exposures, and the photosensitive material 3 is provided. A method of moving the optical system 2 between exposures while fixing the position of 3 and a method of switching the optical system 2 between exposures by providing a plurality of optical systems 2 while fixing the position of the photosensitive material 3 are also adopted. Is possible. However, rotating the photosensitive material 3 as in this embodiment has an advantage that the configuration of the optical system 2 can be simplified.

また、本実施例では、露光された部分が硬化するいわゆるネガ型の感光材3を使用したが、これに替えて露光された部分が分解するいわゆるポジ型の感光材3を使用することも可能である。この場合、3つの壁状の潜像群が重なり合う部分においてのみ感光材3が分解するようにして、この分解部分を溶剤等で除去すれば、感光材3は、3次元格子の格子点に相当する位置が空洞状態となる。これにより、感光材3の残留部分と空洞部分の空気とで3次元周期の屈折率変化を形成する3次元フォトニック結晶が得られる。 Further, in this embodiment, the so-called negative photosensitive material 3 in which the exposed portion is cured is used, but a so-called positive photosensitive material 3 in which the exposed portion is decomposed can be used instead. It is. In this case, if the photosensitive material 3 is decomposed only in a portion where the three wall- like latent image groups overlap, and the decomposed portion is removed with a solvent or the like, the photosensitive material 3 corresponds to a lattice point of a three-dimensional lattice. The position to do is a hollow state. As a result, a three-dimensional photonic crystal that forms a change in refractive index with a three-dimensional period between the remaining portion of the photosensitive material 3 and the air in the hollow portion is obtained.

また、感光材3に対して2光束干渉露光を行うことに替えて、アクリル樹脂に代表されるX線レジスト材料に対してX線照射を3回行い、各照射の合間にアクリル樹脂を適宜回転させることも可能である。この場合、各X線が重なった部分においてのみアクリル樹脂に穴が開くようにスリットアレイ状のX線マスクを通して露光すれば、アクリル樹脂の残留部分と穴の開いた部分とで3次元周期の屈折率変化を形成する3次元フォトニック結晶が得られる。   Instead of performing two-beam interference exposure on the photosensitive material 3, X-ray irradiation is performed three times on an X-ray resist material typified by acrylic resin, and the acrylic resin is appropriately rotated between each irradiation. It is also possible to make it. In this case, if exposure is made through a slit array X-ray mask so that a hole is opened in the acrylic resin only in a portion where each X-ray overlaps, a three-dimensional period of refraction occurs in the residual portion of the acrylic resin and the portion where the hole is opened. A three-dimensional photonic crystal forming a rate change is obtained.

本発明は、フォトニックバンドギャップを利用した各種光導波路デバイスや、バンド端での光学特性を利用した各種光デバイスの作製に適用可能である。   The present invention is applicable to the production of various optical waveguide devices using a photonic band gap and various optical devices using optical characteristics at the band edge.

本実施例に係る3次元フォトニック結晶製造装置1の構成を示す概略図。Schematic which shows the structure of the three-dimensional photonic crystal manufacturing apparatus 1 which concerns on a present Example. 感光材3中に形成される3つの潜像群17,18,19を説明するための説明図。FIG. 3 is an explanatory diagram for explaining three latent image groups 17, 18, and 19 formed in the photosensitive material 3. 面心立方格子の3次元フォトニック結晶を説明するための説明図。Explanatory drawing for demonstrating the three-dimensional photonic crystal of a face-centered cubic lattice.

符号の説明Explanation of symbols

1 3次元フォトニック結晶製造装置
2 光学系
3 感光材
4 可動ステージ
16 潜像
17,18,19 潜像群
20 感光材の硬化部分
L2,L3 光束
DESCRIPTION OF SYMBOLS 1 3D photonic crystal manufacturing apparatus 2 Optical system 3 Photosensitive material 4 Movable stage 16 Latent image 17, 18, 19 Latent image group 20 Curing part of photosensitive material L2, L3 Light beam

Claims (5)

3次元周期で屈折率が変化する3次元フォトニック結晶の製造方法において、
照射された光強度に応じて屈折率が変化する感光材の同一の表面に対し、相異なる3方向から2光束干渉露光を行うことにより、所定厚みの壁状の潜像が複数並設されてなる潜像群を前記3方向に向かってそれぞれ形成し、これら3つの潜像群が重なり合う部分とそれ以外の部分とで屈折率に差を生じさせることにより、前記感光材に3次元周期の屈折率変化を形成することを特徴とする3次元フォトニック結晶の製造方法。
In the method of manufacturing a three-dimensional photonic crystal whose refractive index changes with a three-dimensional period,
By performing two-beam interference exposure from three different directions on the same surface of the photosensitive material whose refractive index changes according to the intensity of the irradiated light, a plurality of wall-like latent images having a predetermined thickness are arranged in parallel. Each of the latent image groups is formed in the three directions, and a difference in refractive index is produced between the portion where the three latent image groups overlap and the other portion, thereby refraction of the photosensitive material in a three-dimensional period. A method for producing a three-dimensional photonic crystal, characterized by forming a rate change.
前記感光材に対する相異なる3方向からの2光束干渉露光は、前記感光材に対して同じ入射角で所定時間差をおいて3回の2光束干渉露光を行い、各2光束干渉露光の合間に前記感光材を同一平面内で所定角度ずつ回転させることにより行うことを特徴とする請求項1に記載の3次元フォトニック結晶の製造方法。   In the two-beam interference exposure from three different directions on the photosensitive material, the two-beam interference exposure is performed three times with the same incident angle and a predetermined time difference on the photosensitive material. The method for producing a three-dimensional photonic crystal according to claim 1, wherein the photosensitive material is rotated by a predetermined angle in the same plane. 前記感光材に対する相異なる3方向からの2光束干渉露光は、前記感光材に対して異なる入射角で所定時間差をおいて3回の2光束干渉露光を行い、各2光束干渉露光の合間に前記感光材を同一平面内で所定角度ずつ回転させることにより行うことを特徴とする請求項1に記載の3次元フォトニック結晶の製造方法。   In the two-beam interference exposure from three different directions on the photosensitive material, the two-beam interference exposure is performed three times with a predetermined time difference at different incident angles on the photosensitive material, and the two-beam interference exposure is performed between each two-beam interference exposure. The method for producing a three-dimensional photonic crystal according to claim 1, wherein the photosensitive material is rotated by a predetermined angle in the same plane. 3次元周期で屈折率が変化する3次元フォトニック結晶を製造するための3次元フォトニック結晶製造装置において、
光強度が周期的に変化する光の場を2光束干渉露光によって作り出す光学系と、
照射された光強度に応じて屈折率が変化する感光材の表面に対し、前記光学系によって2光束干渉露光が行われるように、前記感光材を同一平面内で回転可能に保持する可動ステージと、を具備することを特徴とする3次元フォトニック結晶製造装置。
In a three-dimensional photonic crystal manufacturing apparatus for manufacturing a three-dimensional photonic crystal whose refractive index changes with a three-dimensional period,
An optical system that creates a light field whose light intensity changes periodically by two-beam interference exposure;
A movable stage that rotatably holds the photosensitive material in the same plane so that two-beam interference exposure is performed by the optical system on the surface of the photosensitive material whose refractive index changes according to the intensity of the irradiated light. And a three-dimensional photonic crystal manufacturing apparatus.
前記光学系が、2光束干渉露光の前記感光材への入射角を変更可能に設けられたことを特徴とする請求項4記載の3次元フォトニック結晶製造装置。   The three-dimensional photonic crystal manufacturing apparatus according to claim 4, wherein the optical system is provided so as to change an incident angle to the photosensitive material in two-beam interference exposure.
JP2006217173A 2006-08-09 2006-08-09 3D photonic crystal manufacturing method and 3D photonic crystal manufacturing apparatus used therefor Expired - Fee Related JP4956805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217173A JP4956805B2 (en) 2006-08-09 2006-08-09 3D photonic crystal manufacturing method and 3D photonic crystal manufacturing apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217173A JP4956805B2 (en) 2006-08-09 2006-08-09 3D photonic crystal manufacturing method and 3D photonic crystal manufacturing apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2008040334A JP2008040334A (en) 2008-02-21
JP4956805B2 true JP4956805B2 (en) 2012-06-20

Family

ID=39175379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217173A Expired - Fee Related JP4956805B2 (en) 2006-08-09 2006-08-09 3D photonic crystal manufacturing method and 3D photonic crystal manufacturing apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4956805B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061815A (en) * 2014-09-16 2016-04-25 日本電信電話株式会社 Optical resonator structure
JP7018082B2 (en) * 2020-02-18 2022-02-09 Nttエレクトロニクス株式会社 Drawing device and drawing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9717407D0 (en) * 1997-08-18 1997-10-22 Isis Innovation Photonic crystal materials and a method of preparation thereof
JP3348668B2 (en) * 1998-12-24 2002-11-20 日本電気株式会社 Method for manufacturing three-dimensional diffraction grating
JP3811840B2 (en) * 1999-05-21 2006-08-23 独立行政法人科学技術振興機構 Method for creating photonic crystal structure by laser interference
JP3670534B2 (en) * 1999-09-30 2005-07-13 株式会社東芝 Optical element manufacturing method and manufacturing apparatus
JP2002365454A (en) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd Photonic crystal and manufacturing apparatus and manufacturing method for the same as well as manufacturing apparatus and manufacturing method for waveguide

Also Published As

Publication number Publication date
JP2008040334A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
WO2016015389A1 (en) Femtosecond laser two-photon polymerization micro/nanoscale machining system and method
JP5858995B2 (en) Method and apparatus for printing periodic patterns with large depth of focus
US7867692B2 (en) Method for manufacturing a microstructure, exposure device, and electronic apparatus
JP6450497B2 (en) Maskless photolithography system in collaborative work of cross-scale structure
US9182672B2 (en) System and method for production of nanostructures over large areas
US9036133B2 (en) Lithographic fabrication of general periodic structures by exposing a photosensitive layer to a range of lateral intensity distributions
JP6768067B2 (en) Methods and systems for printing an array of geometric elements
US20140307242A1 (en) Method and apparatus for printing periodic patterns using multiple lasers
JP2006135324A (en) Lithographic system and lithographic method thereby
KR101179939B1 (en) Computer generated hologram, generation method, and exposure apparatus
TWI413868B (en) Method and apparatus for generating periodic patterns by step-and-align interference lithography
WO2017051443A1 (en) Exposure method, method for manufacturing microperiodical structure, method for manufacturing grid polarizer elements, and exposure equipment
JP6221849B2 (en) Exposure method, method for manufacturing fine periodic structure, method for manufacturing grid polarizing element, and exposure apparatus
CN113728249A (en) Optical super-surface and related manufacturing method and system
JP4956805B2 (en) 3D photonic crystal manufacturing method and 3D photonic crystal manufacturing apparatus used therefor
CN106842823B (en) Surface plasma repeatedly interferes the sub-wavelength structure preparation method of exposure
JP6547283B2 (en) Method of manufacturing structure on substrate
CN110119071B (en) Interference lithography system, printing device and interference lithography method
KR101364431B1 (en) Interference exposure apparatus, interference exposure method, and manufacturing method of semiconductor device
JP6528394B2 (en) Method of manufacturing structure on substrate
JP7576687B2 (en) Optical molding device and manufacturing method
JP2017054006A (en) Light irradiation method, manufacturing method of on-substrate structure, and on-substrate structure
JP5012266B2 (en) Interference fringe pattern forming method and interference fringe pattern forming apparatus
JP2020060690A (en) Light irradiation method, method for manufacturing functional element and light irradiation device
Sarkar et al. Fabrication of sub-micrometer helical photonic structures using top-cut hexa-prism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees