JP4956254B2 - Vibration correction apparatus and imaging apparatus - Google Patents

Vibration correction apparatus and imaging apparatus Download PDF

Info

Publication number
JP4956254B2
JP4956254B2 JP2007080756A JP2007080756A JP4956254B2 JP 4956254 B2 JP4956254 B2 JP 4956254B2 JP 2007080756 A JP2007080756 A JP 2007080756A JP 2007080756 A JP2007080756 A JP 2007080756A JP 4956254 B2 JP4956254 B2 JP 4956254B2
Authority
JP
Japan
Prior art keywords
coil
unit
viscoelastic
shake correction
shake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007080756A
Other languages
Japanese (ja)
Other versions
JP2008241967A5 (en
JP2008241967A (en
Inventor
晃一 鷲巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007080756A priority Critical patent/JP4956254B2/en
Publication of JP2008241967A publication Critical patent/JP2008241967A/en
Publication of JP2008241967A5 publication Critical patent/JP2008241967A5/ja
Application granted granted Critical
Publication of JP4956254B2 publication Critical patent/JP4956254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、像振れを補正する振れ補正装置および撮像装置に関するものである。   The present invention relates to a shake correction apparatus and an imaging apparatus that correct image shake.

現在のカメラは露出決定やピント合わせ等の撮影にとって重要な作業は全て自動化され、カメラ操作に未熟な人でも撮影失敗を起こす可能性は非常に少なくなっている。また、最近では、カメラに加わる手振れを防ぐシステムも研究されており、撮影者の撮影ミスを誘発する要因は殆ど無くなってきている。   With the current camera, all the important tasks for shooting such as determining exposure and focusing are automated, and it is very unlikely that people who are unskilled in camera operation will fail to shoot. Recently, a system for preventing camera shake applied to the camera has been studied, and there are almost no factors that cause a photographer to make a shooting mistake.

ここで、手振れを防ぐ防振システムについて簡単に説明する。撮影時のカメラの手振れは、周波数として通常1Hzないし10Hzの振動であり、シャッタのレリーズ時点においてこのような手振れを起こしていても像振れの無い写真を撮影可能とする必要がある。このための基本的な考えとして、上記手振れによるカメラの振動を検出し、その検出値に応じて補正レンズを変位させなければならない。従って、カメラ振れが生じても像振れが生じない写真を撮影するためには、第1に、カメラの振動を正確に検出し、第2に、手振れによる光軸変化を補正することが必要となる。   Here, a vibration-proof system that prevents camera shake will be briefly described. The camera shake at the time of shooting is usually a vibration of 1 Hz to 10 Hz as a frequency, and it is necessary to be able to take a photograph with no image shake even if such a camera shake occurs at the time of shutter release. As a basic idea for this, it is necessary to detect the camera vibration due to the above-mentioned camera shake and displace the correction lens in accordance with the detected value. Therefore, in order to take a photograph in which image shake does not occur even when camera shake occurs, first, it is necessary to accurately detect camera vibration, and secondly, to correct optical axis changes due to camera shake. Become.

上記振動(カメラ振れ)の検出は、原理的にいえば、加速度、角加速度、角速度、角変位等を検出し、カメラ振れ補正の為にその出力を適宜演算処理する手段をカメラに搭載することによって行うことができる。そして、この検出情報に基づき撮影光軸を偏心させる振れ補正用の補正レンズを駆動させて像振れ抑制が行われる。   In principle, the above vibration (camera shake) is detected by detecting the acceleration, angular acceleration, angular velocity, angular displacement, etc., and mounting a means for appropriately calculating the output for camera shake correction. Can be done by. Then, based on this detection information, a shake correction lens that decenters the imaging optical axis is driven to suppress image blur.

図11は防振システムを有するデジタルコンパクトカメラの外観図であり、光軸41に対してカメラ縦振れ42p及び横振れ42yに対して像振れ補正を行う。尚、カメラ本体43において、43aはレリーズボタン、43bはモードダイアル(メインスイッチを含む)、43cはリトラクタブルストロボである。   FIG. 11 is an external view of a digital compact camera having an image stabilization system. Image blur correction is performed on the optical axis 41 with respect to the camera vertical shake 42p and the horizontal shake 42y. In the camera body 43, 43a is a release button, 43b is a mode dial (including a main switch), and 43c is a retractable strobe.

図11ではカメラ本体43の背面に配置されて見えないが、カメラ本体43の背面には液晶モニターが設けられており、後述する撮像素子44で撮像される像を確認できるようになっている。撮影者は液晶モニターで撮影画像の構図を確認して、その後撮影を行う。   In FIG. 11, the liquid crystal monitor is provided on the back surface of the camera main body 43 so that an image picked up by an image pickup device 44 (to be described later) can be confirmed. The photographer confirms the composition of the photographed image on the LCD monitor, and then performs photographing.

図12は図11の防振カメラにおける防振システム構造を示す斜視図であり、44は撮像素子である。53は補正レンズ52を図12の矢印58p,58y方向に自在に駆動して図11の矢印42p,42y方向の像振れ補正を行う振れ補正装置(詳細については後述)である。45p,45yは各々矢印46p,46y回りの振れを検出する角速度計や角加速度計等の振動検出部である。振動検出部45p,45yの出力は後述する演算部47p,47yを介して振れ補正装置53(詳しくは補正レンズ52)の駆動目標値に変換され、振れ補正装置53のコイルに入力される。これにより、像振れ補正が行われる。   FIG. 12 is a perspective view showing the structure of the image stabilization system in the image stabilization camera of FIG. 11, and 44 is an image sensor. Reference numeral 53 denotes a shake correction device (details will be described later) that drive the correction lens 52 freely in the directions of arrows 58p and 58y in FIG. 12 to correct image shake in the directions of arrows 42p and 42y in FIG. Reference numerals 45p and 45y denote vibration detection units such as an angular velocity meter and an angular accelerometer that detect vibrations around the arrows 46p and 46y, respectively. Outputs from the vibration detection units 45p and 45y are converted into drive target values for the shake correction device 53 (specifically, the correction lens 52) via calculation units 47p and 47y described later, and input to the coil of the shake correction device 53. Thereby, image blur correction is performed.

図13は図12に示した演算部47p,47yの詳細を示すブロック図であり、演算部47p,47yとも同様な為に、図13では演算部47pのみを用いて説明する。   FIG. 13 is a block diagram showing the details of the calculation units 47p and 47y shown in FIG. 12. Since the calculation units 47p and 47y are the same, FIG. 13 will be described using only the calculation unit 47p.

演算部47pは、一点鎖線にて囲まれる、DCカットフィルタ兼増幅部48p、ローパスフィルタ兼増幅部49p、A/D変換部410p、カメラマイコン411および駆動部420pを有する。上記カメラマイコン411内には、記憶部412p、差動部413p、DCカットフィルタ414p、積分部415p、敏感度調整部416p、記憶部417p、差動部418pおよびPWMデューティ変換部419pを有する。   The calculation unit 47p includes a DC cut filter / amplification unit 48p, a low-pass filter / amplification unit 49p, an A / D conversion unit 410p, a camera microcomputer 411, and a drive unit 420p, which are surrounded by an alternate long and short dash line. The camera microcomputer 411 includes a storage unit 412p, a differential unit 413p, a DC cut filter 414p, an integration unit 415p, a sensitivity adjustment unit 416p, a storage unit 417p, a differential unit 418p, and a PWM duty conversion unit 419p.

上記振動検出部45pとして、ここではカメラの振れ角速度を検出する振動ジャイロを用いており、振動ジャイロはカメラのメインスイッチのオンと同期して駆動され、カメラに加わる振れ角速度の検出を開始する。振動検出部45pの信号は、アナログ回路で構成されるDCカットフィルタ兼増幅部48pにて信号に重畳しているDCバイアス成分がカットされると共に適宜増幅される。   Here, a vibration gyro that detects a camera shake angular velocity is used as the vibration detection unit 45p. The vibration gyro is driven in synchronization with the camera main switch being turned on, and starts detecting a shake angular velocity applied to the camera. The signal of the vibration detection unit 45p is appropriately amplified while the DC bias component superimposed on the signal is cut by the DC cut filter / amplification unit 48p formed of an analog circuit.

DCカットフィルタ兼増幅部48pは0.1Hz以下の周波数の信号をカットする周波数特性を有しており、カメラに加わる1〜10Hzの手振れ周波数帯域には影響が及ばないようになっている。しかしながら、このように0.1Hz以下をカットする特性にすると、振動検出部45pから振れ信号が入力されて完全にDCがカットされるまでには10秒近くかかってしまう。そこで、カメラのメインスイッチがオンされてから例えば0.1秒まではDCカットフィルタ兼増幅部48pの時定数を小さく(例えば10Hz以下の周波数の信号をカットする特性にする)しておく。この事で、0.1秒位の短い時間でDCをカットし、その後に時定数を大きくして(0.1Hz以下の周波数のみカットする特性にして)、DCカットフィルタ兼増幅部48pにより振れ角速度信号が劣化しないようにしている。   The DC cut filter / amplifier 48p has a frequency characteristic for cutting a signal having a frequency of 0.1 Hz or less, and does not affect the handshake frequency band of 1 to 10 Hz applied to the camera. However, when the characteristic of cutting 0.1 Hz or less is used in this way, it takes nearly 10 seconds until the shake signal is input from the vibration detection unit 45p and the DC is completely cut. Therefore, the time constant of the DC cut filter / amplifier 48p is reduced (for example, a characteristic for cutting a signal having a frequency of 10 Hz or less) until 0.1 second, for example, after the camera main switch is turned on. In this way, DC is cut in a short time of about 0.1 seconds, and then the time constant is increased (only the frequency of 0.1 Hz or less is cut), and the fluctuation is caused by the DC cut filter / amplifier 48p. The angular velocity signal is prevented from deteriorating.

DCカットフィルタ兼増幅部48pの出力は、アナログ回路で構成されるローパスフィルタ兼増幅部49pによりA/D変換の分解能に合わせて適宜増幅されると共に、振れ角速度信号に重畳する高周波のノイズをカットされる。これは振れ角速度信号をカメラマイコン411に入力する時のA/D変換部410pのサンプリングが振れ角速度信号のノイズにより読み誤りが起きるのを避ける為である。   The output of the DC cut filter / amplifier 48p is appropriately amplified in accordance with the A / D conversion resolution by the low-pass filter / amplifier 49p formed of an analog circuit, and cuts high-frequency noise superimposed on the shake angular velocity signal. Is done. This is to avoid reading errors in the sampling of the A / D converter 410p when the shake angular velocity signal is input to the camera microcomputer 411 due to the shake angular velocity signal noise.

ローパスフィルタ兼増幅部49pの出力は、A/D変換部410pによりサンプリングされてカメラマイコン411に取り込まれる。DCカットフィルタ兼増幅部48pによりDCバイアス成分はカットされている訳であるが、その後のローパスフィルタ兼増幅部49pの増幅により再びDCバイアス成分が振れ角速度信号に重畳している。その為に、カメラマイコン411内において再度DCカットを行う必要がある。   The output of the low-pass filter / amplifier 49p is sampled by the A / D converter 410p and taken into the camera microcomputer 411. Although the DC bias component is cut by the DC cut filter / amplifier 48p, the DC bias component is again superimposed on the shake angular velocity signal by the subsequent amplification of the low pass filter / amplifier 49p. Therefore, it is necessary to perform DC cut again in the camera microcomputer 411.

そこで、例えばカメラのメインスイッチのオンから0.2秒後にサンプリングされた振れ角速度信号を記憶部412pで記憶し、差動部413pにより記憶値と振れ角速度信号の差を求めることでDCカットを行う。尚、この動作では大雑把なDCカットしか出来ない(メインスイッチのオンから0.2秒後に記憶された振れ角速度信号の中にはDC成分ばかりでなく、実際の手振れも含まれている為)。その為に後段の、デジタルフィルタで構成されたDCカットフィルタ414pにより十分なDCカットを行っている。   Therefore, for example, a shake angular velocity signal sampled 0.2 seconds after the camera main switch is turned on is stored in the storage unit 412p, and a DC cut is performed by obtaining a difference between the stored value and the shake angular velocity signal by the differential unit 413p. . In this operation, only a rough DC cut can be made (because the shake angular velocity signal stored 0.2 seconds after the main switch is turned on includes not only the DC component but also the actual camera shake). For this purpose, sufficient DC cut is performed by a DC cut filter 414p constituted by a digital filter in the subsequent stage.

DCカットフィルタ414pの時定数も、アナログのDCカットフィルタ兼増幅部48pと同様に、変更可能になっており、カメラのメインスイッチのオンから0.2秒後から更に0.2秒費やしてその時定数を徐々に大きくしている。具体的には、このDCカットフィルタ414pはメインスイッチのオンから0.2秒経過した時には10Hz以下の周波数をカットするフィルタ特性である。そして、その後50msec毎にフィルタでカットする周波数を5Hz、1Hz、0.5Hz、0.2Hzと下げてゆく。   The time constant of the DC cut filter 414p can also be changed in the same manner as the analog DC cut filter / amplifier 48p, and 0.2 seconds after the camera main switch is turned on, it takes another 0.2 seconds. The constant is gradually increased. Specifically, the DC cut filter 414p has a filter characteristic that cuts a frequency of 10 Hz or less when 0.2 seconds have elapsed since the main switch was turned on. Then, the frequency cut by the filter every 50 msec is lowered to 5 Hz, 1 Hz, 0.5 Hz, and 0.2 Hz.

但し、上記動作の間に撮影者がシャッタレリーズボタンを半押し(sw1をオン)して測光、測距を行った時は直ちに撮影を行う可能性があり、時間を費やして時定数変更を行う事が好ましくない場合もある。   However, during the above operation, when the photographer presses the shutter release button halfway (sw1 is turned on) and performs photometry and distance measurement, there is a possibility that the image is taken immediately, and time constant is changed over time. Sometimes things are undesirable.

そこで、その様な時には撮影条件に応じて時定数変更を途中で中止する。例えば、測光結果により撮影シャッタスピードが1/60となる事が判明し、撮影焦点距離が150mmとする。この場合は、防振の精度はさほど要求されない為にDCカットフィルタ414pは0.5Hz以下の周波数をカットする特性まで時定数変更した時点で完了とする(シャッタスピードと撮影焦点距離の積により時定数変更量を制御する)。これにより、時定数変更の時間を短縮でき、シャッタチャンスを優先する事が出来る。勿論より速いシャッタスピード、或いは、より短い焦点距離の時には、DCカットフィルタ414pの特性は1Hz以下の周波数をカットする特性まで時定数変更した時点で完了とする。そして、より遅いシャッタスピード、長い焦点距離の時には時定数が最後まで変更完了するまで撮影を禁止する。   Therefore, in such a case, the time constant change is stopped halfway according to the shooting conditions. For example, it is found from the photometric result that the photographing shutter speed is 1/60, and the photographing focal length is 150 mm. In this case, since the accuracy of image stabilization is not so required, the DC cut filter 414p is completed when the time constant is changed to the characteristic of cutting a frequency of 0.5 Hz or less (the time is calculated by the product of the shutter speed and the photographing focal length). Control the amount of constant change). As a result, the time for changing the time constant can be shortened, and the photo opportunity can be prioritized. Of course, when the shutter speed is faster or the focal length is shorter, the characteristic of the DC cut filter 414p is completed when the time constant is changed to the characteristic of cutting a frequency of 1 Hz or less. When the shutter speed is slower and the focal length is longer, shooting is prohibited until the time constant is completely changed.

積分部415pは、DCカットフィルタ414pからの信号の積分を始め、角速度信号を角度信号に変換する。敏感度調整部416pは、積分された角度信号をその時のカメラの焦点距離、被写体距離情報により適宜増幅し、振れ角度に応じて適切な量、振れ補正装置53が動作するように変換する。ズーム、フォーカスにより撮影光学系が変化し、振れ補正装置53の駆動量に対し光軸偏心量が変わる為、この補正を行う必要がある。   The integration unit 415p starts integrating the signal from the DC cut filter 414p and converts the angular velocity signal into an angle signal. The sensitivity adjustment unit 416p appropriately amplifies the integrated angle signal based on the focal length and subject distance information of the camera at that time, and converts the integrated angle signal so that the shake correction device 53 operates by an appropriate amount according to the shake angle. Since the photographing optical system changes due to zoom and focus, and the optical axis decentering amount changes with respect to the drive amount of the shake correction device 53, it is necessary to perform this correction.

シャッタレリーズボタンの半押しにより振れ補正装置53が動作し始める。尚、この時点で、振れ補正装置53による像振れ補正動作が急激に始まらないように注意する必要がある。記憶部417p及び差動部418pはこの対策の為に設けられている。記憶部417pは上記シャッタレリーズボタンの半押し時点で積分部415pの振れ角度信号を記憶する。差動部418pは積分部415pの信号と記憶部417pの信号の差を求める。その為、シャッタレリーズボタンの半押し時点における差動部418pの2つの信号入力は等しく、差動部418pの振れ補正装置53の駆動目標値信号はゼロであるが、その後ゼロより連続的に出力が行われる。記憶部417pはシャッタレリーズボタンの半押し時点の積分信号を原点にする役割となる。これにより、振れ補正装置53は急激に駆動される事が無くなる。   The shake correction device 53 starts operating by half-pressing the shutter release button. At this point, care must be taken so that the image blur correction operation by the blur correction device 53 does not start abruptly. The storage unit 417p and the differential unit 418p are provided for this measure. The storage unit 417p stores the deflection angle signal of the integration unit 415p when the shutter release button is half-pressed. The differential unit 418p obtains the difference between the signal of the integration unit 415p and the signal of the storage unit 417p. Therefore, the two signal inputs of the differential unit 418p are equal when the shutter release button is half-pressed, and the drive target value signal of the shake correction device 53 of the differential unit 418p is zero. Is done. The storage unit 417p plays a role of using the integration signal when the shutter release button is half-pressed as the origin. As a result, the shake correction device 53 is not driven rapidly.

差動部418pからの目標値信号はPWMデューティ変更部419pに入力される。振れ補正装置53のコイルに振れ角度に対応した電圧或いは電流を印加すれば、補正レンズ52はその振れ角度に対応して駆動される。しかし、振れ補正装置53の駆動消費電力及びコイルの駆動トランジスタの省電力化の為にはPWM駆動が望ましい。そこで、PWMデューティ変更部419pは目標値に応じてコイル駆動デューティを変更している。例えば、周波数が20KHzのPWMにおいて差動部418pの目標値が2048の時にはデューティゼロ、4096の時にはデューティ100とし、その間を等分にしてデューティを目標値に応じて決定していく。尚、デューティの決定は目標値ばかりではなく、その時のカメラの撮影条件(温度やカメラの姿勢、バッテリーの状態)によって細かく制御して精度良い像振れ補正が行われるようにする。   The target value signal from the differential unit 418p is input to the PWM duty changing unit 419p. When a voltage or current corresponding to the shake angle is applied to the coil of the shake correction device 53, the correction lens 52 is driven according to the shake angle. However, PWM driving is desirable for power saving of the shake correction device 53 and power saving of the driving transistor of the coil. Therefore, the PWM duty changing unit 419p changes the coil driving duty according to the target value. For example, when the target value of the differential section 418p is 2048 in PWM with a frequency of 20 kHz, the duty is zero, and when it is 4096, the duty is 100, and the duty is determined according to the target value by equally dividing the duty. Note that the duty is determined not only by the target value, but also finely controlled according to the shooting conditions (temperature, camera posture, battery state) of the camera at that time, so that image blur correction is performed with high accuracy.

PWMデューティ変更部419pの出力は、PWMドライバ等の公知の駆動部420pに入力され、駆動部420pの出力を振れ補正装置53のコイルに印加して像振れ補正を行う。駆動部420pはシャッタレリーズボタンの半押しより0.2秒経過した時点に同期してオンする。   The output of the PWM duty changing unit 419p is input to a known drive unit 420p such as a PWM driver, and the output of the drive unit 420p is applied to the coil of the shake correction device 53 to perform image shake correction. The drive unit 420p is turned on in synchronism with the time when 0.2 seconds have elapsed since the shutter release button was pressed halfway.

図13では示していないが、撮影者がカメラのシャッタレリーズボタンの押し切り(sw2のオン)を行い、露光を開始したときも、このまま像振れ補正を継続しているので、像振れによる画質劣化を防ぐことが出来る。   Although not shown in FIG. 13, even when the photographer fully pushes the shutter release button of the camera (sw2 is turned on) and starts exposure, image blur correction is continued as it is. Can be prevented.

また、振れ補正装置53による像振れ補正は、シャッタレリーズボタンの半押しが継続される限り継続する。半押しが解除されると、記憶部417pが敏感度調整部416pの信号の記憶を止める(サンプリング状態になる)ので、差動部418pに入力される敏感度調整部416p及び記憶部417pの信号は等しくなり、差動部418pの出力はゼロになる。そのために振れ補正装置53にはゼロの駆動目標値が入力されることになり、像振れ補正が行われない。   Further, the image blur correction by the shake correction device 53 is continued as long as the shutter release button is half-pressed. When the half-press is released, the storage unit 417p stops storing the signal of the sensitivity adjustment unit 416p (becomes a sampling state), so the sensitivity adjustment unit 416p and the signal of the storage unit 417p input to the differential unit 418p Are equal, and the output of the differential section 418p is zero. Therefore, a zero drive target value is input to the shake correction device 53, and image shake correction is not performed.

カメラのメインスイッチをオフにしない限り、積分部415pは積分を継続しており、次のシャッタレリーズボタンの半押しで再び記憶部417pが新たな積分出力を記憶(信号ホールド)する。メインスイッチのオフで振動検出部45pが動作を停止し、防振シーケンスが終了する。   Unless the main switch of the camera is turned off, the integration unit 415p continues the integration, and the storage unit 417p stores the new integration output (signal hold) again by pressing the next shutter release button halfway. The vibration detector 45p stops operating when the main switch is turned off, and the image stabilization sequence ends.

尚、積分部415pの信号が所定値より大きくなった時にはカメラのパンニングが行われたと判定して、DCカットフィルタ414pの時定数を変更する。例えば、0.2Hz以下の周波数をカットする特性であったものを、1Hz以下をカットする特性に変更し、再び所定時間で時定数をもとに戻していく。この時定数変更量も積分部415pの出力の大きさにより制御される。即ち、出力が第1の閾値を超えた時には、DCカットフィルタ414pの特性を0.5Hz以下をカットする特性にし、第2の閾値を超えた時には、1Hz以下をカットする特性にし、第3の閾値を超えた時には、5Hz以下をカットする特性にする。   When the signal of the integration unit 415p becomes larger than a predetermined value, it is determined that the camera is panned, and the time constant of the DC cut filter 414p is changed. For example, a characteristic that cuts a frequency of 0.2 Hz or less is changed to a characteristic that cuts a frequency of 1 Hz or less, and the time constant is restored again in a predetermined time. This amount of time constant change is also controlled by the magnitude of the output of the integrator 415p. That is, when the output exceeds the first threshold, the characteristic of the DC cut filter 414p is set to a characteristic that cuts 0.5 Hz or less, and when the output exceeds the second threshold, the characteristic is set to cut 1 Hz or less. When the threshold value is exceeded, the characteristic is to cut 5 Hz or less.

又、積分部415pの出力が非常に大きくなった時(例えば、カメラのパンニングなどの極めて大きな角速度が生じた場合)には、積分部415pを一旦リセットして演算上の飽和(オーバーフロー)を防止している。   Also, when the output of the integration unit 415p becomes very large (for example, when an extremely large angular velocity such as camera panning occurs), the integration unit 415p is temporarily reset to prevent computation saturation (overflow). is doing.

図13では、演算部47p内にDCカットフィルタ兼増幅部48p及びローパスフィルタ兼増幅部49pを設けているが、これらは振動検出部45p内に設けても良いのは言うまでもない。   In FIG. 13, the DC cut filter / amplifier 48p and the low-pass filter / amplifier 49p are provided in the arithmetic unit 47p, but it goes without saying that these may be provided in the vibration detector 45p.

図14(a)〜図14(c)は振れ補正装置53の構成を示す図であり、図14(a)は正面図、図14(b)は図14(a)を矢印51方向より見た図、図14(c)は図14(a)のA―A断面図である。   14 (a) to 14 (c) are diagrams showing the configuration of the shake correction device 53. FIG. 14 (a) is a front view, and FIG. 14 (b) is a view of FIG. FIG. 14C is a cross-sectional view taken along line AA in FIG.

図14において、補正レンズ52は支持枠53cに固定される。なお、図14(c)に示すように、補正レンズ52は、支持枠53cに固定される2枚のレンズ52a,52bと地板54に固定されるレンズ52cにより撮影光学系の群を構成している。   In FIG. 14, the correction lens 52 is fixed to the support frame 53c. As shown in FIG. 14C, the correction lens 52 forms a group of photographing optical systems by two lenses 52a and 52b fixed to the support frame 53c and a lens 52c fixed to the base plate 54. Yes.

支持枠53cには強磁性材料のヨーク55が取り付けられ、ヨーク55の紙面裏面にはネオジウム等の永久磁石56p,56y(実際には見えない)が吸着固定されている。又、支持枠53cから放射状に延出する3本の支持軸53aは地板54の側壁54bに設けられた長孔54aに嵌合している。   A yoke 55 made of a ferromagnetic material is attached to the support frame 53c, and permanent magnets 56p, 56y (not actually visible) such as neodymium are attracted and fixed to the back surface of the yoke 55. Further, the three support shafts 53 a extending radially from the support frame 53 c are fitted into long holes 54 a provided in the side wall 54 b of the main plate 54.

図14(b)に示すように、支持軸53aと長孔54aの関係について述べると、補正レンズ52の光軸57方向には嵌合してガタは生じないが、光軸57と直交する方向には長孔54aが延びている。よって、支持枠53cは地板54に対し光軸57方向には移動規制されるが、光軸57と直交する平面内には自由に移動できる(矢印58p,58y,58r)。但し、支持枠53c上のピン53bと地板54上のピン54c間に引っ張りコイルバネ59が掛けられている為に各々の方向(58p,58y、58r)に弾性的に規制されている。   As shown in FIG. 14B, the relationship between the support shaft 53a and the long hole 54a will be described. The correction lens 52 is fitted in the direction of the optical axis 57 and does not play, but is perpendicular to the optical axis 57. A long hole 54a extends in the hole. Therefore, the support frame 53c is restricted in movement in the direction of the optical axis 57 with respect to the base plate 54, but can freely move in a plane orthogonal to the optical axis 57 (arrows 58p, 58y, 58r). However, since the tension coil spring 59 is hung between the pin 53b on the support frame 53c and the pin 54c on the ground plane 54, it is elastically restricted in each direction (58p, 58y, 58r).

地板54には永久磁石56p,56yに対向してコイル510p,510yが取り付けられている。ヨーク55、永久磁石56p、コイル510pの配置は図14(c)のようになっている(永久磁石56y、コイル510yも同じ配置)。そして、コイル510pに電流を流すと、支持枠53cは矢印58p方向に駆動され、コイル510yに電流を流すと、支持枠53cは矢印58y方向に駆動される。   Coils 510p and 510y are attached to the ground plate 54 so as to face the permanent magnets 56p and 56y. The arrangement of the yoke 55, the permanent magnet 56p, and the coil 510p is as shown in FIG. 14C (the permanent magnet 56y and the coil 510y are also arranged in the same manner). When a current is passed through the coil 510p, the support frame 53c is driven in the direction of the arrow 58p, and when a current is passed through the coil 510y, the support frame 53c is driven in the direction of the arrow 58y.

その駆動量は各々の方向における引っ張りコイルバネ59のバネ定数とコイル510p,510yと永久磁石56p,56yの関連で生ずる推力との釣り合いで求まる。即ちコイル510p,510yに流す電流量に基づいて補正レンズ52の偏心量を制御できる。   The amount of driving is determined by a balance between the spring constant of the tension coil spring 59 in each direction and the thrust generated in relation to the coils 510p and 510y and the permanent magnets 56p and 56y. That is, the amount of eccentricity of the correction lens 52 can be controlled based on the amount of current flowing through the coils 510p and 510y.

ところで、最近のデジタルカメラは年々小型化が進んできており、それに伴い、振れ補正装置53の駆動高精度化が要求されるようになってきている。図9は振れ補正装置53の駆動周波数特性を示しており、横軸は駆動周波数、縦軸は駆動目標値に対する実際の駆動の比(利得)である。図9からわかるように、80Hz近傍の共振点(振れ補正作用部である補正レンズ52、支持枠53c、ヨーク55、永久磁石56p,56yの合計の質量と引っ張りコイルバネ59のバネ定数との関連で求まる)で20db程度のピークを持っている。そのため、この周波数近傍の振れが生じた場合には、目標値に対して10倍程度過剰に像振れ補正してしまう。今まではこのような高周波の振れは少なく、問題にはならなかった。しかしカメラの小型化に伴い、振れの周波数帯域が広くなってきたこと、又カメラ内のアクチュエータ(フォーカス駆動やズーム駆動)の強力化による発生振動とカメラが軽くなったことにより、高周波のカメラ振れを誘発する。その為、上記ピークも無視できなくなってきた。   By the way, recent digital cameras have been miniaturized year by year, and accordingly, driving accuracy of the shake correction device 53 has been required to be increased. FIG. 9 shows the drive frequency characteristics of the shake correction device 53, where the horizontal axis represents the drive frequency and the vertical axis represents the ratio (gain) of the actual drive with respect to the drive target value. As can be seen from FIG. 9, the resonance point in the vicinity of 80 Hz (the relationship between the total mass of the correction lens 52, the support frame 53 c, the yoke 55, and the permanent magnets 56 p and 56 y, which is the shake correction operation unit) and the spring constant of the tension coil spring 59. It has a peak of about 20 db. For this reason, when a shake near the frequency occurs, the image shake is corrected by about 10 times the target value. Until now, such high-frequency fluctuations were few and did not become a problem. However, with the downsizing of the camera, the vibration frequency band has been widened, and the vibration generated by the strengthening of the actuator (focus drive and zoom drive) in the camera and the camera has become lighter. To trigger. For this reason, the above peak can no longer be ignored.

上記の点に鑑み、特許文献1(図4)においては、像振れを補正する為の補正レンズに駆動方向の制動を効かせる粘性手段を設けている。これにより、図10に示すように、共振点近傍におけるピークが無くなり、高精度な像振れ補正ができるようになっている。
特開平08−184870号公報
In view of the above points, in Patent Document 1 (FIG. 4), a viscous means for applying braking in the driving direction to the correction lens for correcting image blur is provided. As a result, as shown in FIG. 10, there is no peak in the vicinity of the resonance point, and image blur correction can be performed with high accuracy.
Japanese Patent Laid-Open No. 08-184870

しかしながら、上記従来例においては、機構的に制動を行う為に専用のスペースが必要である。その為に振れ補正装置の小型化が難しかった。   However, in the above-described conventional example, a dedicated space is required for mechanically braking. Therefore, it is difficult to reduce the size of the shake correction device.

(発明の目的)
本発明の目的は、小型を達成しつつ、高精度な像振れ補正を行うことのできる振れ補正装置および撮像装置を提供しようとするものである。
(Object of invention)
An object of the present invention is to provide a shake correction apparatus and an imaging apparatus capable of performing high-precision image shake correction while achieving a small size.

上記目的を達成するために、本発明は、光軸に直交する方向に移動可能な像振れ補正作用部と、前記像振れ補正作用部を支持する地板部と、前記像振れ補正作用部と前記地板部のいずれか一方に設けられたコイルと該像振れ補正作用部と該地板部の他方に設けられた永久磁石から成る、前記像振れ補正作用部を前記地板部に対して相対的に駆動させる駆動手段と、前記コイルの空芯部に配置される粘弾性部材と、一部が該粘弾性部材に挿入されると共に前記像振れ補正作用部と前記地板部のうち前記コイルが設けられた部材に対して固定されることなく前記コイルと前記永久磁石間に設けられる突起部とからなる、前記像振れ補正作用部と前記地板部を粘弾性結合させる振動吸収部材とを有する振れ補正装置とするものである。 In order to achieve the above object, the present invention provides an image shake correction operation unit that is movable in a direction orthogonal to the optical axis, a ground plane unit that supports the image shake correction operation unit, the image shake correction operation unit, Drives the image shake correcting operation portion relative to the ground plate portion, which comprises a coil provided on one of the ground plate portions, the image shake correcting action portion, and a permanent magnet provided on the other of the ground plate portions. driving means for, before and viscoelastic members that will be placed in the air-core portion of Kiko yl, partially provided with the coil of the ground plate portion and the image blur correcting action portion while being inserted into viscoelastic member A shake correction comprising the image shake correction action portion and a vibration absorbing member that viscoelastically couples the ground plane portion, which is composed of a protrusion provided between the coil and the permanent magnet without being fixed to a fixed member. It is a device.

同じく上記目的を達成するために、本発明は、本発明の上記振れ補正装置を有する撮像装置とするものである。   Similarly, in order to achieve the above object, the present invention provides an imaging apparatus having the shake correction apparatus of the present invention.

本発明を実施するための最良の形態は、以下の実施例1および2に示す通りである。   The best mode for carrying out the present invention is as shown in Examples 1 and 2 below.

図1は本発明の実施例1に係わる振れ補正装置を示す正面図、図2は図1のB−B断面図である。図1および図2において、11(11a,11b)は像振れ補正用の補正レンズ、12は補正レンズ11を保持する保持枠、13は振れ補正装置の地板である。保持枠12には、120度放射方向に腕12a,12b,12cが設けられており、腕12a〜12cには表面が平滑な、ステンレスなどの支持軸14a,14b,14cが圧入されている。   1 is a front view showing a shake correction apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along line BB of FIG. 1 and 2, 11 (11a, 11b) is a correction lens for image blur correction, 12 is a holding frame for holding the correction lens 11, and 13 is a base plate of the shake correction apparatus. The holding frame 12 is provided with arms 12a, 12b, and 12c in a 120-degree radial direction, and support shafts 14a, 14b, and 14c made of stainless steel having a smooth surface are press-fitted into the arms 12a to 12c.

地板13には3点の側壁13a,13b,13cが設けられている。そして、保持枠12の腕12a,〜12cから放射状に延出する3本の支持軸14a〜14cが地板13の側壁13a〜13cに設けられた長孔13d,13e,13fに嵌合している(図14(b)の長穴54aと同様の構成であり、図1の方向からは見えない)。   The base plate 13 is provided with three side walls 13a, 13b, and 13c. The three support shafts 14a to 14c extending radially from the arms 12a to 12c of the holding frame 12 are fitted in the long holes 13d, 13e, and 13f provided in the side walls 13a to 13c of the base plate 13. (It is the same structure as the long hole 54a of FIG.14 (b), and cannot be seen from the direction of FIG. 1).

図14(b)においても示したように、3本の支持軸14a〜14cと長孔13d〜13fの関係は、補正レンズ11の光軸方向(図1の紙面垂直方向)には嵌合してガタは生じない。しかし、光軸と直交する方向(図1の地板13における周方向13g)には長孔13d〜13fが延びている。よって、保持枠12は地板13に対し光軸方向には移動規制されるが、光軸と直交する平面内には自由に移動できる(ピッチ方向19p、ヨー方向19y、ロール方向19r)。   As shown in FIG. 14B, the relationship between the three support shafts 14a to 14c and the long holes 13d to 13f is fitted in the optical axis direction of the correction lens 11 (perpendicular to the plane of FIG. 1). There is no play. However, the long holes 13d to 13f extend in the direction orthogonal to the optical axis (the circumferential direction 13g in the ground plane 13 in FIG. 1). Therefore, although the holding frame 12 is restricted in movement in the optical axis direction with respect to the base plate 13, it can freely move in a plane perpendicular to the optical axis (pitch direction 19p, yaw direction 19y, roll direction 19r).

但し、保持枠12の腕先端部12d,12e,12fは圧縮コイルバネ15a,15b,15cの内径と締まりばめ嵌合している。そして、圧縮コイルバネ15a〜15cの外径も後述するバネ調整部材15g,15h,15i(15gは図2(a)の断面図に図示)と締まりばめ嵌合している。その為に、各々の方向(ピッチ方向19p、ヨー方向19y、ロール方向19r)に弾性的に規制されている。   However, the arm tip portions 12d, 12e, and 12f of the holding frame 12 are fit-fit with the inner diameters of the compression coil springs 15a, 15b, and 15c. Further, the outer diameters of the compression coil springs 15a to 15c are also fit-fit with spring adjusting members 15g, 15h, and 15i (15g is shown in the sectional view of FIG. 2A), which will be described later. Therefore, it is elastically regulated in each direction (pitch direction 19p, yaw direction 19y, roll direction 19r).

ここで、締まりばめ嵌合について説明する。   Here, the interference fit fitting will be described.

圧縮コイルバネ15a〜15cのばね直径はコイルバネを圧縮してゆくにつれて大きくなってゆく。今、保持枠12の腕先端部12d〜12fおよびバネ調整部材15g〜15iの外径を圧縮コイルバネ15a〜15cを最大圧縮した時のコイル内径と隙間嵌合するように設定する。そして、圧縮コイルバネ15a〜15cを最大圧縮して保持枠12の腕先端部12d〜12fおよびバネ調整部材15g〜15iに押し込むと、バネがその圧縮が解除されると締まりばめとなる。そのため、圧縮コイルバネ15a〜15cと保持枠12の腕先端部12d〜12fおよびバネ調整部材15g〜15iは互いに強固に固定されてずれることがなくなる。   The spring diameters of the compression coil springs 15a to 15c increase as the coil spring is compressed. Now, the outer diameters of the arm tip portions 12d to 12f and the spring adjustment members 15g to 15i of the holding frame 12 are set so as to be fitted in clearance with the coil inner diameter when the compression coil springs 15a to 15c are compressed to the maximum. When the compression coil springs 15a to 15c are maximally compressed and pushed into the arm tip portions 12d to 12f and the spring adjustment members 15g to 15i of the holding frame 12, when the compression of the springs is released, an interference fit is obtained. Therefore, the compression coil springs 15a to 15c, the arm tip portions 12d to 12f of the holding frame 12, and the spring adjustment members 15g to 15i are firmly fixed to each other and do not shift.

保持枠12の耳部12g,12hには強磁性材料の吸着板17a,17bが取り付けられ(図1では点線で示している)、吸着板17a,17bの裏面側にはネオジウム等の永久磁石110a,110bが吸着固定されている。永久磁石110a,110bに対向し、地板13側にはコイル16a,16bが設けられている。   Adsorption plates 17a and 17b made of a ferromagnetic material are attached to the ears 12g and 12h of the holding frame 12 (shown by dotted lines in FIG. 1), and a permanent magnet 110a such as neodymium is provided on the back side of the adsorption plates 17a and 17b. 110b are fixed by suction. Coils 16a and 16b are provided on the side of the base plate 13 facing the permanent magnets 110a and 110b.

ここで、補正レンズ11、保持枠12、吸着板17a,17b、永久磁石110a,110b、支持軸14a〜14c、圧縮コイルバネ15a〜15cにより、像振れ補正作用部が構成される。また、地板13、バネ調整ねじ15d〜15f、バネ調整部材15g〜15iにより、地板部が構成される。   Here, the correction lens 11, the holding frame 12, the suction plates 17a and 17b, the permanent magnets 110a and 110b, the support shafts 14a to 14c, and the compression coil springs 15a to 15c constitute an image blur correction operation unit. Further, the base plate portion is configured by the base plate 13, the spring adjustment screws 15d to 15f, and the spring adjustment members 15g to 15i.

図2では、支持軸14a、圧縮コイルバネ15a、ヨーク17a、永久磁石110a、および、コイル16aの配置を図示している。   FIG. 2 illustrates the arrangement of the support shaft 14a, the compression coil spring 15a, the yoke 17a, the permanent magnet 110a, and the coil 16a.

永久磁石110aの磁気回路はコイル16aに向かって垂直に貫いている為にコイル16aに電流を流すと、保持枠12は矢印18c方向(図1参照)に駆動され、同様にコイル16bに電流を流すと、保持枠12は矢印18d(図1参照)方向に駆動される。そして、その駆動量は各々の方向における圧縮コイルバネ15a〜15cのバネ定数と駆動コイル16a,16bと永久磁石110a,110bの関連で生ずる推力との釣り合いで求まる。即ち、コイル16a,16bに流す電流量に基づいて補正レンズ11の偏心量を制御できる。   Since the magnetic circuit of the permanent magnet 110a penetrates perpendicularly toward the coil 16a, when a current is passed through the coil 16a, the holding frame 12 is driven in the direction of the arrow 18c (see FIG. 1), and similarly the current is supplied to the coil 16b. When flowing, the holding frame 12 is driven in the direction of the arrow 18d (see FIG. 1). The driving amount is obtained by balancing the spring constants of the compression coil springs 15a to 15c in each direction with the thrust generated in relation to the driving coils 16a and 16b and the permanent magnets 110a and 110b. That is, the amount of eccentricity of the correction lens 11 can be controlled based on the amount of current flowing through the coils 16a and 16b.

本実施例1の特徴は、図2において、コイル16aと永久磁石110aの間に振動吸収部材(以下、ダンパ部材とも記す)が設けられている点である。このダンパ部材は、コイル16aのボビン16cの空芯部設けられたUV硬化式のゲルあるいはダンピング効果の大きなゴムなどの粘弾性部材111aと、永久磁石110a側に押さえ部材112bを介して設けられた抵抗板112aとで構成されている。なお、抵抗板112aの先端部は粘弾性部材111aに挿入されている。   The feature of the first embodiment is that a vibration absorbing member (hereinafter also referred to as a damper member) is provided between the coil 16a and the permanent magnet 110a in FIG. This damper member is provided through a viscoelastic member 111a such as a UV curable gel or rubber having a large damping effect provided on the air core of the bobbin 16c of the coil 16a, and a pressing member 112b on the permanent magnet 110a side. It consists of a resistance plate 112a. Note that the tip of the resistance plate 112a is inserted into the viscoelastic member 111a.

ここで、像振れ補正作用部のうちの永久磁石110aから地板13(コイル16a)へ延出する抵抗板112aは直接地板13には固着されておらず、地板13に対しては粘弾性部材111aを介して自由に動き回ることができるので、駆動の妨げにはならない。   Here, the resistor plate 112a extending from the permanent magnet 110a to the ground plane 13 (coil 16a) in the image blur correcting action portion is not directly fixed to the ground plane 13, and the viscoelastic member 111a is not attached to the ground plane 13. Because it can move around freely, it will not interfere with driving.

図3は、上記ダンパ部材である抵抗板112aと粘弾性部材111aの平面図である。コイル16aの空芯部にはボビン16cを介して粘弾性部材111aが設けられており、永久磁石110a(半透明で示す)から紙面垂直側に延出した抵抗板112aが粘弾性部材111aに挿入されている。ここで、抵抗板112aは紙面左右方向に延びている(紙面上下方向が厚み方向になる板)。そのため、矢印18cの方向に対して抵抗板112aと粘弾性部材111aの接触面積が広く、駆動時には粘弾性部材111aの抵抗を大きく受ける。即ち、ダンピング効果が大きい。それに対して矢印18cと直角な方向は抵抗板112aと粘弾性部材111aの接触面積(抵抗板112aの厚み方向の接触面積)が狭く、駆動時に粘弾性部材111aの抵抗を受けにくい。   FIG. 3 is a plan view of the resistance plate 112a and the viscoelastic member 111a, which are the damper members. A viscoelastic member 111a is provided on the air core portion of the coil 16a via a bobbin 16c, and a resistance plate 112a extending from the permanent magnet 110a (shown semi-transparent) to the vertical side of the drawing is inserted into the viscoelastic member 111a. Has been. Here, the resistance plate 112a extends in the horizontal direction on the paper surface (a plate in which the vertical direction on the paper surface is the thickness direction). Therefore, the contact area between the resistance plate 112a and the viscoelastic member 111a is large in the direction of the arrow 18c, and the resistance of the viscoelastic member 111a is greatly received during driving. That is, the damping effect is great. On the other hand, the contact area between the resistance plate 112a and the viscoelastic member 111a (contact area in the thickness direction of the resistance plate 112a) is narrow in the direction perpendicular to the arrow 18c, and is not easily subjected to the resistance of the viscoelastic member 111a during driving.

ここで、矢印18c方向の駆動力は駆動コイル16aと永久磁石110aの関連で発生する訳であるが、コイル16aの中心部(空芯部)にてその駆動方向のダンピングを行っているので、駆動力とダンピング力の作用点が一致しており、安定した駆動が可能である。   Here, the driving force in the direction of the arrow 18c is generated due to the relationship between the driving coil 16a and the permanent magnet 110a, but since the damping in the driving direction is performed at the center portion (air core portion) of the coil 16a, The points of action of the driving force and the damping force are the same, and stable driving is possible.

一方、コイル16b、永久磁石110bで発生する駆動力(図3の矢印18cと直交する方向、図1では矢印18d)に関しては上述したようにダンピング力が少ない。よって、コイル16b、永久磁石110bで発生する駆動力が抵抗板112aにより不安定になる事はない。   On the other hand, with respect to the driving force generated in the coil 16b and the permanent magnet 110b (in the direction orthogonal to the arrow 18c in FIG. 3, arrow 18d in FIG. 1), the damping force is small as described above. Therefore, the driving force generated by the coil 16b and the permanent magnet 110b does not become unstable due to the resistance plate 112a.

抵抗板112aはりん青銅などの非磁性のバネで構成されており、そのバネ定数は像振れ補正作用部の質量との関連の共振点が、図10における共振点より高く設定されている。   The resistance plate 112a is formed of a non-magnetic spring such as phosphor bronze, and the spring constant of the resistance plate 112a is set higher than the resonance point in FIG.

ここで、抵抗体112aを弾性材にしてある理由を説明する。粘弾性部材111aは衝撃などの高周波入力に対しては非常に硬くなる。そのため、そのような入力が発生した時は像振れ補正作用部の重さを全て抵抗板112aで支えることになる(上記条件ではダンパ部材が像振れ補正作用部と地板部の最も強固に結合する為)。これにより、以下の事故が予想される。
・抵抗板112aの破損
・粘弾性部材111aのボビン16cに対する剥離
これらを避けるために抵抗板112aを弾性部材で形成し、衝撃入力時には抵抗板112aがしなることで、衝撃を吸収する構造になっている(図4参照)。
Here, the reason why the resistor 112a is made of an elastic material will be described. The viscoelastic member 111a becomes very hard against high frequency input such as impact. For this reason, when such an input occurs, the weight of the image shake correcting action part is supported by the resistance plate 112a (under the above conditions, the damper member is most strongly coupled between the image shake correcting action part and the ground plane part). For). As a result, the following accidents are expected.
・ Damage of resistance plate 112a ・ Peeling of viscoelastic member 111a to bobbin 16c In order to avoid these, the resistance plate 112a is formed of an elastic member, and the resistance plate 112a is bent at the time of impact input, so that the structure absorbs the impact. (See FIG. 4).

上記のような粘弾性部材111aおよび抵抗板112aにより構成されるダンパ部材は、コイル16aだけではなく、コイル16bの空芯部においても同じ構造にて設けられている。尚、コイル16a側に抵抗板112aを設け、永久磁石110a側に粘弾性部材111aを設けても、同様な効果を期待できる。又、像振れ補正作用部側に永久磁石110aを設け、地板部側にコイル16aを設けているが、像振れ補正作用部側にコイル16aを、地板部側に永久磁石110aを、それぞれ設けた構成でも同様な効果を期待できる。   The damper member constituted by the viscoelastic member 111a and the resistance plate 112a as described above is provided not only in the coil 16a but also in the air core portion of the coil 16b with the same structure. The same effect can be expected even if the resistance plate 112a is provided on the coil 16a side and the viscoelastic member 111a is provided on the permanent magnet 110a side. In addition, the permanent magnet 110a is provided on the image shake correcting action side, and the coil 16a is provided on the ground plate side. However, the coil 16a is provided on the image shake correcting action side, and the permanent magnet 110a is provided on the ground plate side. The same effect can be expected with the configuration.

ここで、対のコイル16a,16bに電流を流して保持枠12をピッチ方向19p,ヨー方向19yに駆動する場合について説明する。   Here, a case where current is passed through the pair of coils 16a and 16b to drive the holding frame 12 in the pitch direction 19p and the yaw direction 19y will be described.

図5はこの為の駆動系の回路構成を示すブロック図である。ピッチ目標値31p及びヨー目標値31yは、各々ピッチ方向19p、ヨー方向19yに像振れ補正作用部を駆動する駆動目標値であり、図13における差動部418pの出力に相当する。この各々の目標値31p,31yは、各駆動方向の駆動力に応じてピッチ駆動力調整部32p、ヨー駆動力調整部32yでゲイン調整される。   FIG. 5 is a block diagram showing the circuit configuration of the drive system for this purpose. The pitch target value 31p and the yaw target value 31y are drive target values for driving the image blur correcting operation unit in the pitch direction 19p and the yaw direction 19y, respectively, and correspond to the output of the differential unit 418p in FIG. The target values 31p and 31y are gain-adjusted by the pitch driving force adjusting unit 32p and the yaw driving force adjusting unit 32y according to the driving force in each driving direction.

ピッチ駆動力調整部32pの出力はコイル駆動部34a(図13におけるPWMデューティ変換部419p、駆動部420pに相当)に入力されてコイル16aに電流として流れる。又、ピッチ駆動力調整部32pの出力は、加算部33bを介してコイル駆動部34b(図13におけるPWMデューティ変換部419p、駆動部420pに相当)に入力されてコイル16bに電流として流れる。即ち、ピッチ駆動目標値31aの信号によりコイル16a,16bに同相で同じ量の電流が流れる。   The output of the pitch driving force adjusting unit 32p is input to the coil driving unit 34a (corresponding to the PWM duty conversion unit 419p and the driving unit 420p in FIG. 13) and flows as current through the coil 16a. The output of the pitch driving force adjusting unit 32p is input to the coil driving unit 34b (corresponding to the PWM duty conversion unit 419p and the driving unit 420p in FIG. 13) via the adding unit 33b and flows as current through the coil 16b. That is, the same amount of current flows in the same phase in the coils 16a and 16b by the signal of the pitch drive target value 31a.

ヨー駆動力調整部32yの出力はコイル駆動部34b(図13におけるPWMデューティ変換部419p、駆動部420pに相当)に入力されてコイル16bに電流として流れる。又、ヨー駆動力調整部32yの出力は反転部33aを介してコイル駆動部34a(図13におけるPWMデューティ変換部419p、駆動部420pに相当)に入力されてコイル16aに電流として流される。即ち、ヨー駆動目標値31yの信号によりコイル16a,16bに互いに逆相で同じ量の電流が流れる。   The output of the yaw driving force adjusting unit 32y is input to the coil driving unit 34b (corresponding to the PWM duty conversion unit 419p and the driving unit 420p in FIG. 13) and flows as current through the coil 16b. Further, the output of the yaw driving force adjusting unit 32y is input to the coil driving unit 34a (corresponding to the PWM duty conversion unit 419p and the driving unit 420p in FIG. 13) via the reversing unit 33a and flows as current through the coil 16a. That is, the same amount of current flows in the coils 16a and 16b in opposite phases to each other by the signal of the yaw drive target value 31y.

コイル16a,16bに同相で同じ量の電流を流した場合、図6で示すように、コイル16aにより矢印18c方向に駆動力が発生し、コイル16bにより矢印18d方向に駆動力が発生する。よって、その合力は矢印18pのように、図1等のピッチ方向19pに沿った駆動力として発生する。又、このときの駆動力は二つのコイル16a,16bが120度配置になっていることから、互いのコイル16a,16bの駆動力の半分同士を合成してコイル16a或いはコイル16bの何れかのコイル一つ分と同じ駆動力として発生する。   When the same amount of current flows in the coils 16a and 16b in the same phase, a driving force is generated in the arrow 18c direction by the coil 16a and a driving force is generated in the arrow 18d direction by the coil 16b, as shown in FIG. Therefore, the resultant force is generated as a driving force along the pitch direction 19p in FIG. Also, since the driving force at this time is such that the two coils 16a and 16b are arranged at 120 degrees, one half of the driving force of each of the coils 16a and 16b is synthesized to either the coil 16a or the coil 16b. It is generated as the same driving force as one coil.

また、コイル16a,16bに逆位相で同じ量の電流を流した場合、図7で示すように、コイル16aにより矢印18c方向に駆動力が発生し、コイル16bにより18d方向と反対方向(18’方向)に駆動力が発生する。よって、その合力は矢印18yのように、図1等のヨー方向19yに沿った駆動力として発生する。又、このときの駆動力は二つのコイル16a,16bが120度配置になっていることから、互いのコイル16a,16bの駆動力の√(3)/2同士を合成してコイル16a或いはコイル16bの何れかのコイルの√(3)倍の駆動力として発生する。   Further, when the same amount of current flows in the coils 16a and 16b in opposite phases, as shown in FIG. 7, a driving force is generated in the direction of the arrow 18c by the coil 16a, and the direction opposite to the 18d direction (18 ' Direction). Therefore, the resultant force is generated as a driving force along the yaw direction 19y in FIG. Also, since the driving force at this time is such that the two coils 16a and 16b are arranged at 120 degrees, √ (3) / 2 of the driving forces of the coils 16a and 16b are combined to produce the coil 16a or coil. It is generated as a driving force that is √ (3) times that of any of the coils 16b.

このように駆動方向(19pと19y)で駆動力が異なってくるので、それらを揃えるために、図5に示すようにピッチ駆動力調整部32p、ヨー駆動力調整部32yを設けている。   As described above, since the driving force differs in the driving directions (19p and 19y), a pitch driving force adjusting unit 32p and a yaw driving force adjusting unit 32y are provided as shown in FIG.

尚、これら駆動力調整部32p,32yは、図5のように各目標値31p,31yの後段に設けるのではなく、図13で示した敏感度調整部416p(ヨー方向では不図示の416y)で調整を行っても良い。この様な構成にすると、ヨー方向19yへの駆動の場合にはコイル16a,16の√(3)倍の駆動力が発生し、この方向の駆動力が少なくて済む代わりに、ピッチ方向19pへの駆動の場合には駆動力の増加が無い。   The driving force adjusting units 32p and 32y are not provided at the subsequent stage of the target values 31p and 31y as shown in FIG. 5, but the sensitivity adjusting unit 416p shown in FIG. 13 (416y not shown in the yaw direction). You may make adjustments with. With such a configuration, in the case of driving in the yaw direction 19y, a driving force that is √ (3) times that of the coils 16a, 16 is generated, and instead of having a small driving force in this direction, in the pitch direction 19p. In the case of driving, there is no increase in driving force.

一般に、ヨー方向の手振れ量はピッチ方向に比べて2倍近く大きい。   In general, the shake amount in the yaw direction is nearly twice as large as that in the pitch direction.

上記のようにピッチに対してヨーの振れが大きくなる現象は、デジタルカメラを片手で構え、カメラ背面の液晶モニターを観察して撮影する場合に特に顕著になる。このように方向による振れ量に合わせて駆動量を調節しているので、効率よく像振れ補正を行うことができる。   The phenomenon that the yaw shake increases with respect to the pitch as described above becomes particularly noticeable when the digital camera is held with one hand and the liquid crystal monitor on the back of the camera is observed for shooting. Since the drive amount is adjusted in accordance with the amount of shake depending on the direction as described above, image blur correction can be performed efficiently.

図2に戻って、圧縮コイルバネ15aは、前述したように、両端部を保持枠12の腕先端部12dおよびバネ調整部材15gの先端外径部15jと締まりばめ嵌合している。そのため、圧縮コイルバネ15aと保持枠12の腕先端部12dおよび側壁13aは互いに強固に固定されている。   Returning to FIG. 2, as described above, the compression coil spring 15a has both ends fitted to the arm distal end portion 12d of the holding frame 12 and the distal outer diameter portion 15j of the spring adjusting member 15g by an interference fit. Therefore, the compression coil spring 15a, the arm tip 12d and the side wall 13a of the holding frame 12 are firmly fixed to each other.

バネ調整部材15g(図1における15g〜15i)は側壁13a内に嵌合されており、支持軸方向15lにのみ摺動可能になっている。バネ調整ねじ15d(図1における15d〜15f)は側壁13aにねじ込まれており、先端部がバネ調整部材15gの調整受け部15kと当接する。そのために、バネ調整ねじ15dをねじ込むことでバネ調整部材15dは矢印15l方向に支持軸14aに沿って移動して、その方向の圧縮コイルバネ15aのバネチャージ力を調節する。   The spring adjustment member 15g (15g to 15i in FIG. 1) is fitted in the side wall 13a, and can slide only in the support shaft direction 15l. The spring adjustment screw 15d (15d to 15f in FIG. 1) is screwed into the side wall 13a, and the tip part abuts on the adjustment receiving part 15k of the spring adjustment member 15g. Therefore, by screwing the spring adjusting screw 15d, the spring adjusting member 15d moves along the support shaft 14a in the direction of the arrow 151 and adjusts the spring charging force of the compression coil spring 15a in that direction.

以上の実施例1によれば、コイル16a,16bの空芯部にダンパ部材である粘弾性部材111aと抵抗板112aを設けている。また、ダンピング効果の効く方向を定められる機構にしている。また、ダンパ部材により衝撃を吸収するようにしている。これらにより、小型且つ駆動が安定し、信頼性の高い振れ補正装置を実現可能となった。   According to the first embodiment described above, the viscoelastic member 111a and the resistance plate 112a, which are damper members, are provided in the air core portions of the coils 16a and 16b. In addition, a mechanism that determines the direction in which the damping effect is effective is employed. Further, the shock is absorbed by the damper member. As a result, it is possible to realize a shake correction device that is small in size, stable in driving, and highly reliable.

本実施例1における振れ補正装置の構成を詳しく説明すると、この振れ補正装置は、光軸10に対して略直交する平面内で駆動されて像振れを補正する像振れ補正作用部、像振れ補正作用部を支持する地板部を有する。さらに、像振れ補正作用部を地板部に対して相対的に駆動させる駆動部であるコイル16a,16b、このコイル16a,16bの空芯部に配置され、像振れ補正作用部と地板部を粘弾性結合させるダンパ部材を有する。なお、像振れ補正作用部は、補正レンズ11、保持枠12、吸着板17a,17b、永久磁石110a,110b、支持軸14a〜14cおよび圧縮コイルバネ15a〜15cから構成される。また、地板部は、地板13、バネ調整ねじ15d〜15fおよびバネ調整部材15g〜15iから構成される。また、ダンパ部材は、粘弾性部材111aおよび抵抗板112aから構成される。   The configuration of the shake correction apparatus according to the first embodiment will be described in detail. The shake correction apparatus is driven in a plane substantially orthogonal to the optical axis 10 to correct an image shake, and an image shake correction unit. It has a base plate part that supports the action part. Further, coils 16a and 16b, which are drive units for driving the image blur correction operation portion relative to the ground plate portion, and air core portions of the coils 16a and 16b, are arranged so that the image shake correction operation portion and the ground plate portion are bonded to each other. It has a damper member to be elastically coupled. The image blur correcting operation unit includes a correction lens 11, a holding frame 12, suction plates 17a and 17b, permanent magnets 110a and 110b, support shafts 14a to 14c, and compression coil springs 15a to 15c. Further, the base plate portion is composed of the base plate 13, spring adjustment screws 15d to 15f, and spring adjustment members 15g to 15i. The damper member includes a viscoelastic member 111a and a resistance plate 112a.

また、像振れ補正作用部と地板部を第1の方向(矢印18c方向)に対して粘弾性結合し、第2の方向(矢印18cの直交する方向)に関しては、ダンパ部材を像振れ補正作用部と一体に駆動する。このことで、第2の方向には地板部と像振れ補正作用部間の粘弾性作用を生じない構成のダンパ部材とすることができる。   Further, the image blur correcting action part and the ground plane part are viscoelastically coupled with respect to the first direction (arrow 18c direction), and the damper member is subjected to image blur correction action in the second direction (direction orthogonal to the arrow 18c). Drives integrally with the unit. Thus, the damper member can be configured to have no viscoelasticity effect between the ground plane and the image blur correcting action portion in the second direction.

また、地板部に設けられた粘弾性部材111aと、像振れ補正作用部に設けられ、粘弾性部材111aに挿入されると共に地板部に対して固着されない突起部となる抵抗板112aとでダンパ部材を構成している。そして、突起部となる抵抗板112aは像振れ補正作用部が駆動される第1の方向(矢印18c方向)に対する粘弾性部対抗面積と、第1の方向とは異なる第2の方向(矢印18cと直交する方向)に対する粘弾性部対抗面積を異なるようにしている。   Further, the damper member includes a viscoelastic member 111a provided on the base plate portion and a resistance plate 112a provided on the image blur correcting operation portion and inserted into the viscoelastic member 111a and serving as a protruding portion that is not fixed to the base plate portion. Is configured. Then, the resistance plate 112a serving as a protrusion has a viscoelastic portion facing area in the first direction (arrow 18c direction) in which the image blur correction action unit is driven, and a second direction (arrow 18c) different from the first direction. The viscoelastic part opposing area with respect to the direction orthogonal to the direction is made different.

また、地板部に設けられた粘弾性部材111aと、像振れ補正作用部に設けられ、粘弾性部材111aに挿入されると共に地板部に対して固定されない弾性突起部となる抵抗板112aとでダンパ部材を構成している。或いは、像振れ補正作用部に設けられた粘弾性部材111aと、地板部に設けられ、粘弾性部材111aに挿入されると共に像振れ補正作用部に対して固定されない弾性突起部となる抵抗板112aとでダンパ部材を構成している。   The damper is composed of a viscoelastic member 111a provided on the base plate portion and a resistance plate 112a which is provided on the image blur correcting action portion and is inserted into the viscoelastic member 111a and serves as an elastic protrusion which is not fixed to the base plate portion. It constitutes a member. Alternatively, the viscoelastic member 111a provided in the image shake correcting action unit and the resistance plate 112a provided in the base plate part and inserted into the viscoelastic member 111a and serving as an elastic protrusion not fixed to the image shake correcting action part. And constitutes a damper member.

以上により、小型で、安定駆動が可能な、信頼性の高い振れ補正装置が実現できた。   As described above, a highly reliable shake correction apparatus that is compact and can be driven stably has been realized.

図8は本発明の実施例2に係わる振れ補正装置に具備されるダンパ部材近傍を示す平面図及び断面図である。詳しくは、図8(a)はコイル16a、永久磁石110aおよびダンパ部材(抵抗板112aと粘弾性部材111aより成る)の平面図、図8(b)はその断面図である。尚、図8において、コイル16aが像振れ補正作用部に取り付けられ、永久磁石110aが地板部に取り付けられても、或いはその逆でも構わない。   8A and 8B are a plan view and a cross-sectional view showing the vicinity of a damper member provided in the shake correction apparatus according to the second embodiment of the present invention. Specifically, FIG. 8A is a plan view of the coil 16a, the permanent magnet 110a and the damper member (comprising the resistance plate 112a and the viscoelastic member 111a), and FIG. 8B is a cross-sectional view thereof. In FIG. 8, the coil 16 a may be attached to the image shake correcting operation unit, and the permanent magnet 110 a may be attached to the base plate unit, or vice versa.

本発明の実施例2の振れ補正装置において、上記実施例1と異なるのは、以下の点である。   The shake correction apparatus according to the second embodiment of the present invention differs from the first embodiment in the following points.

粘弾性体111aを収納するケース111bが設けられ、ケース111bはコイル16aのボビン16c内で矢印18c方向には固定され(ボビン16cに挟まれている為)、それと直交する方向には自由に摺動可能な構成になっている。   A case 111b for housing the viscoelastic body 111a is provided, and the case 111b is fixed in the direction of the arrow 18c in the bobbin 16c of the coil 16a (because it is sandwiched between the bobbins 16c), and freely slid in the direction orthogonal thereto. It has a movable configuration.

また、永久磁石110aから延出する抵抗板112aは弾性体の棒状になっている。即ち、抵抗板112aはダンピングの方向性を決める形状になっていないが、粘弾性部材111a自身がダンピングを効かせたくない方向には像振れ補正作用部と一体になって動く構成になっている。   Further, the resistance plate 112a extending from the permanent magnet 110a has an elastic rod shape. That is, the resistance plate 112a does not have a shape that determines the directionality of damping, but is configured to move integrally with the image blur correcting action portion in a direction in which the viscoelastic member 111a does not want to effect damping. .

図8においては、111a’、112a’は矢印18cと直交方向に像振れ補正作用部が移動したときの、粘弾性部材111a及び抵抗板112aの摺動後の位置を示すものである。このように矢印18cと直交方向の駆動に関してはダンピング作用が全く効かない。   In FIG. 8, 111 a ′ and 112 a ′ indicate positions after sliding of the viscoelastic member 111 a and the resistance plate 112 a when the image blur correcting action portion moves in a direction orthogonal to the arrow 18 c. As described above, the damping action is not effective at all in the driving in the direction orthogonal to the arrow 18c.

この矢印18c方向の駆動力はコイル16bにより発生するのである。しかし、その駆動力のダンピングをコイル16a側のダンパが行ってしまうと、駆動推力方向とダンピング位置のずれによる駆動精度劣化(図1におけるローリング方向19rの回転発生)を起こすことになる。図8のようなダンピング構成であると、コイル16bの駆動力に対し、コイル16aに設けられたダンパ部材のダンピング抵抗は生じない。コイル16aの駆動力に対し、コイル16bに設けられたダンパ部材のダンピング抵抗も生じない。   The driving force in the direction of the arrow 18c is generated by the coil 16b. However, if the damper on the coil 16a side performs the damping of the driving force, the driving accuracy deteriorates due to the deviation of the driving thrust direction and the damping position (rotation in the rolling direction 19r in FIG. 1). In the damping configuration as shown in FIG. 8, the damping resistance of the damper member provided in the coil 16a does not occur with respect to the driving force of the coil 16b. The damping resistance of the damper member provided in the coil 16b does not occur with respect to the driving force of the coil 16a.

コイル16aの推力方向18cに対するダンピングは、コイル16aの空芯部に設けられたダンパ部材で行い、コイル16bの推力方向18dに対するダンピングは、コイル16bの空芯部に設けられたダンパ部材で行う。これにより、図10で示した素直な周波数特性の駆動を実現できる。   Damping of the coil 16a in the thrust direction 18c is performed by a damper member provided in the air core portion of the coil 16a, and damping in the thrust direction 18d of the coil 16b is performed by a damper member provided in the air core portion of the coil 16b. As a result, it is possible to realize driving with the straight frequency characteristics shown in FIG.

抵抗板112aは弾性棒のため、衝撃などの高周波の入力があった場合には抵抗板112aでその吸収を行う。そのため、衝撃による故障を防ぐことも出来る。   Since the resistance plate 112a is an elastic rod, when a high frequency input such as an impact is received, the resistance plate 112a absorbs the resistance plate 112a. Therefore, failure due to impact can be prevented.

以上の実施例2によれば、コイル16a,116bの空芯部にダンパ部材を設けたこと、ダンピング効果の効く方向を定められる機構にしたことで、小型且つ駆動が安定し、信頼性の高い振れ補正装置を実現可能となった。   According to the second embodiment described above, a damper member is provided in the air core portions of the coils 16a and 116b, and a mechanism that can determine the direction in which the damping effect is effective is achieved. A shake correction device can be realized.

本実施例2における振れ補正装置の構成を詳しく説明すると、この振れ補正装置は、光軸10に対して略直交する平面内で駆動されることで像振れを補正する像振れ補正作用部、像振れ補正作用部を支持する地板部を有する。さらに、地板部を第1の方向(矢印18c)に対して粘弾性結合させると共に第2の方向(矢印18cと直交方向)に関しては、像振れ補正作用部と一体に駆動されて地板部と像振れ補正作用部間の粘弾性作用を生じない構成のダンパ部材を有する。   The configuration of the shake correction apparatus according to the second embodiment will be described in detail. The shake correction apparatus is driven in a plane substantially orthogonal to the optical axis 10 to correct an image shake. It has a ground plane part that supports the shake correction action part. Further, the base plate portion is viscoelastically coupled with respect to the first direction (arrow 18c) and the second direction (direction orthogonal to the arrow 18c) is driven integrally with the image blur correcting operation portion to be connected to the base plate portion and the image. The damper member has a configuration that does not cause a viscoelastic effect between the shake correcting action portions.

よって、高精度の振れ補正駆動を行える振れ補正装置を実現できた。   Therefore, a shake correction apparatus that can perform highly accurate shake correction drive can be realized.

最後に、上記の実施例1および2による効果をあらためて述べる。デッドスペースであるコイル16a,16bの空芯部にダンパ部材を配置することで、装置の大きさを変えずに、効率的な制動を行えるようにしている。又、ダンパ部材の作用する方向を定めることで、制動により駆動方向が不安定にならないようにしている。更に、ダンパ部材は高周波の外乱に対しては極めて硬くなるので、そのような外乱が入力された時にでも、振れ補正装置の破損が生じないようにしている。   Finally, the effect of the first and second embodiments will be described again. By disposing a damper member in the air core portions of the coils 16a and 16b, which are dead spaces, efficient braking can be performed without changing the size of the device. Further, by determining the direction in which the damper member acts, the driving direction is prevented from becoming unstable due to braking. Furthermore, the damper member becomes extremely hard against high-frequency disturbances, so that even when such disturbances are input, the shake correction device is prevented from being damaged.

つまり、
1)ダンピング機構の小型化(振れ補正装置に専用のスペースを必要としない)
2)ダンピング方向の安定化(ダンピングの効く方向を定める)
3)駆動精度の向上(駆動力とダンピング力の発生位置を一致させる)
4)事故対策(衝撃や落下時の破損防止)
の4つの効果を実現できる振れ補正装置とすることができた。
In other words,
1) Downsizing of the damping mechanism (no special space is required for the shake correction device)
2) Stabilization of damping direction (determining the direction in which damping is effective)
3) Improvement of driving accuracy (matching the driving force and damping force generation position)
4) Measures against accidents (preventing damage during impact or dropping)
Thus, a shake correction apparatus capable of realizing the following four effects can be obtained.

(本発明と実施例の対応)
補正レンズ11、保持枠12、吸着板17a,17b、永久磁石110a,110b、支持軸14a〜14cおよび圧縮コイルバネ15a〜15cが本発明の像振れ補正作用部に相当する。また、地板13、バネ調整ねじ15d〜15fおよびバネ調整部材15g〜15iが地板部に相当する。また、ヨーク17a,17b、永久磁石110a,110bおよびコイル16a,16bが駆動手段に相当する。また、粘弾性部に相当する粘弾性部材111aおよび突起部に相当する抵抗板112aより成るダンパ部材が本発明の振動吸収部材に相当する。なお、粘弾性部は、地板部と像振れ補正作用部の一方に設けられている。また、突起部は、像振れ補正作用部と前記地板部の他方に設けられ、粘弾性部に挿入されると共に地板部或いは振れ補正作用部に対して固定されない構成となっている。
(Correspondence between the present invention and the embodiment)
The correction lens 11, the holding frame 12, the attracting plates 17a and 17b, the permanent magnets 110a and 110b, the support shafts 14a to 14c, and the compression coil springs 15a to 15c correspond to the image blur correction operation unit of the present invention. The base plate 13, the spring adjustment screws 15d to 15f, and the spring adjustment members 15g to 15i correspond to the base plate portion. The yokes 17a and 17b, the permanent magnets 110a and 110b, and the coils 16a and 16b correspond to driving means. Further, a damper member composed of a viscoelastic member 111a corresponding to the viscoelastic portion and a resistance plate 112a corresponding to the protrusion corresponds to the vibration absorbing member of the present invention. The viscoelastic part is provided on one of the ground plane part and the image blur correcting action part. Further, the protrusion is provided on the other of the image shake correcting action part and the ground plate part, and is inserted into the viscoelastic part and is not fixed to the ground plate part or the shake correcting action part.

以上、デジタルカメラの防振システムを例にして説明を続けてきた。しかし、本発明の装置は小型で高安定な機構にまとめることが出来るので、デジタルカメラに限らず、デジタルビデオカメラや、監視カメラ、Webカメラ、携帯電話などにも展開できる。   The description has been continued with the digital camera image stabilization system as an example. However, since the apparatus of the present invention can be integrated into a small and highly stable mechanism, it can be developed not only for digital cameras but also for digital video cameras, surveillance cameras, Web cameras, mobile phones, and the like.

本発明の実施例1に係る振れ補正装置を示す平面図である。It is a top view which shows the shake correction apparatus which concerns on Example 1 of this invention. 図1のB−B断面図である。It is BB sectional drawing of FIG. 本発明の実施例1に係る振れ補正装置に具備されるダンパ部材及びその近傍を示す平面図である。It is a top view which shows the damper member comprised in the shake correction apparatus which concerns on Example 1 of this invention, and its vicinity. 本発明の実施例1に係る振れ補正装置の衝撃入力時におけるダンパ部材の様子を示す断面図である。It is sectional drawing which shows the mode of a damper member at the time of the impact input of the shake correction apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る振れ補正装置の駆動系を示すブロック図である。1 is a block diagram illustrating a drive system of a shake correction apparatus according to Embodiment 1 of the present invention. 本発明の実施例1に係る振れ補正装置におけるピッチ方向駆動バランスを説明するための図である。It is a figure for demonstrating the pitch direction drive balance in the shake correction apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る振れ補正装置におけるヨー方向駆動バランスを説明するための図である。It is a figure for demonstrating the yaw direction drive balance in the shake correction apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る振れ補正装置に具備されるダンパ部材及びその近傍を示す平面図及び断面図である。It is the top view and sectional drawing which show the damper member with which the shake correction apparatus which concerns on Example 2 of this invention is equipped, and its vicinity. 従来の振れ補正装置の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the conventional shake correction apparatus. 改善された振れ補正装置の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the improved shake correction apparatus. 従来の防振カメラの外観を示す斜視図である。It is a perspective view which shows the external appearance of the conventional vibration-proof camera. 図11の防振カメラの防振システム構造の概略を示す斜視図である。It is a perspective view which shows the outline of the anti-vibration system structure of the anti-vibration camera of FIG. 図11の防振カメラに具備される防振システムの回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the image stabilization system with which the image stabilization camera of FIG. 11 is equipped. 図11の防振カメラに具備される振れ補正装置の平面図、側面図およびの断面図である。FIG. 12 is a plan view, a side view, and a cross-sectional view of a shake correction apparatus provided in the image stabilization camera of FIG. 11.

符号の説明Explanation of symbols

10 光軸
11 補正レンズ
12 保持枠
13 地板
14a,14b,14c 支持軸
15a,15b,15c 圧縮コイルバネ
15d,15e,15f バネ調整ねじ
15g,15h,15i バネ調整部材
16a,16b コイル
17a,17b 吸着板
110a,110b 永久磁石
111a 粘弾性部材
111b ケース
112a 抵抗板
DESCRIPTION OF SYMBOLS 10 Optical axis 11 Correction lens 12 Holding frame 13 Base plate 14a, 14b, 14c Support shaft 15a, 15b, 15c Compression coil spring 15d, 15e, 15f Spring adjustment screw 15g, 15h, 15i Spring adjustment member 16a, 16b Coil 17a, 17b Suction plate 110a, 110b Permanent magnet 111a Viscoelastic member 111b Case 112a Resistance plate

Claims (7)

光軸に直交する方向に移動可能な像振れ補正作用部と、
前記像振れ補正作用部を支持する地板部と、
前記像振れ補正作用部と前記地板部のいずれか一方に設けられたコイルと該像振れ補正作用部と該地板部の他方に設けられた永久磁石から成る、前記像振れ補正作用部を前記地板部に対して相対的に駆動させる駆動手段と、
記コイルの空芯部に配置される粘弾性部材と、一部が該粘弾性部材に挿入されると共に前記像振れ補正作用部と前記地板部のうち前記コイルが設けられた部材に対して固定されることなく前記コイルと前記永久磁石間に設けられる突起部とからなる、前記像振れ補正作用部と前記地板部を粘弾性結合させる振動吸収部材とを有することを特徴とする振れ補正装置。
An image stabilization unit that is movable in a direction perpendicular to the optical axis;
A base plate portion that supports the image shake correcting operation portion;
The image stabilization unit comprising the coil provided on one of the image stabilization unit and the ground plate, and the permanent magnet provided on the other of the image stabilization unit and the ground plate is disposed on the ground plate. Drive means for driving relative to the part;
Before and viscoelastic members that will be placed in the air-core portion of Kiko yl respect member to which the coil is provided of the ground plate portion and the image blur correcting action unit with a portion is inserted into the viscoelastic member And a vibration absorbing member that includes a projection provided between the coil and the permanent magnet without being fixed, and a vibration absorbing member that viscoelastically couples the ground plate portion. apparatus.
前記振動吸収部材は、前記コイルの駆動力発生方向に対して粘弾性結合させると共に、前記駆動力発生方向および前記光軸に直交する方向に関しては、前記像振れ補正作用部と一体に駆動されることで前記地板部と前記振れ補正作用部間の粘弾性作用を生じない構成であることを特徴とする請求項1に記載の振れ補正装置。 The vibration absorbing member, dissipate viscoelastic coupled to the drive force generating direction of the coil, the terms that better direction to perpendicular to the driving force generating direction and the optical axis is driven integrally with the image blur correction effect unit The shake correction apparatus according to claim 1, wherein the shake correction apparatus is configured to prevent a viscoelastic action between the ground plane and the shake correction action part. 前記突起部は、前記駆動力発生方向に対する粘弾性部対抗面積と、前記駆動力発生方向および前記光軸に直交する方向に対する粘弾性部対抗面積とが異なることを特徴とする請求項に記載の振れ補正装置。 The protrusions claim 2, characterized in that the viscoelastic unit counter area to the driving force generating direction, and the viscoelastic unit combat area for better direction you orthogonal to the driving force generating direction and the optical axis is different The shake correction device described in 1. 前記振動吸収部材はさらに前記粘弾性部材を収納する収納部材を備え、The vibration absorbing member further includes a storage member that stores the viscoelastic member,
前記収納部材は前記コイルの駆動力発生方向に対して固定されるように、該駆動力発生方向および前記光軸に直交する方向に対しては移動可能になるように前記コイルに配置されることを特徴とする請求項2に記載の振れ補正装置。The storage member is disposed on the coil so as to be movable in the driving force generation direction and the direction orthogonal to the optical axis so that the storage member is fixed with respect to the driving force generation direction of the coil. The shake correction apparatus according to claim 2.
前記突起部は、前記粘弾性部材によるダンピング抵抗が駆動方向によらない構成であることを特徴とする請求項4に記載の振れ補正装置。The shake correction device according to claim 4, wherein the protrusion has a configuration in which a damping resistance by the viscoelastic member does not depend on a driving direction. 記突起部は、弾性部材により構成されていることを特徴とする請求項1ないし5のいずれか1項に記載の振れ補正装置。 Before SL protrusions stabilizing device according to any one of claims 1 to 5, characterized in that it is constituted by an elastic member. 請求項1ないしのいずれか1項に記載の振れ補正装置を有することを特徴とする撮像装置。 Imaging apparatus characterized by having a stabilizing device according to any one of claims 1 to 6.
JP2007080756A 2007-03-27 2007-03-27 Vibration correction apparatus and imaging apparatus Expired - Fee Related JP4956254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080756A JP4956254B2 (en) 2007-03-27 2007-03-27 Vibration correction apparatus and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080756A JP4956254B2 (en) 2007-03-27 2007-03-27 Vibration correction apparatus and imaging apparatus

Publications (3)

Publication Number Publication Date
JP2008241967A JP2008241967A (en) 2008-10-09
JP2008241967A5 JP2008241967A5 (en) 2010-04-15
JP4956254B2 true JP4956254B2 (en) 2012-06-20

Family

ID=39913427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080756A Expired - Fee Related JP4956254B2 (en) 2007-03-27 2007-03-27 Vibration correction apparatus and imaging apparatus

Country Status (1)

Country Link
JP (1) JP4956254B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096859A (en) * 2008-10-14 2010-04-30 Nidec Sankyo Corp Optical unit with shake correcting function
KR102386927B1 (en) * 2014-01-28 2022-04-15 엘지이노텍 주식회사 Lens moving unit and camera module and smartphone having the same
JP6310328B2 (en) * 2014-05-29 2018-04-11 日本電産コパル株式会社 LENS DRIVE DEVICE, CAMERA MODULE HAVING LENS DRIVE DEVICE, AND ELECTRONIC DEVICE
JP6405135B2 (en) * 2014-06-30 2018-10-17 日本電産コパル株式会社 Lens drive device
JP7250458B2 (en) * 2018-08-24 2023-04-03 日本電産サンキョー株式会社 Optical unit with anti-shake function
KR102525237B1 (en) * 2020-09-18 2023-04-24 엘지이노텍 주식회사 Lens moving unit and camera module and smartphone having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281009A (en) * 1988-09-19 1990-03-22 Canon Inc Supporting structure for optical element holding frame
JP4669118B2 (en) * 2000-10-31 2011-04-13 キヤノン株式会社 Vibration correction apparatus and optical apparatus
JP2005338298A (en) * 2004-05-25 2005-12-08 Sumida Corporation Blur correcting optical device
US7710459B2 (en) * 2004-07-21 2010-05-04 Hewlett-Packard Development Company, L.P. Ferrofluid suspension for image stabilization

Also Published As

Publication number Publication date
JP2008241967A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4659465B2 (en) Vibration correction apparatus and optical apparatus
JP2009258389A (en) Image blur correction apparatus, imaging apparatus and optical apparatus
JP5094606B2 (en) Image shake correction apparatus, optical apparatus including the same, image pickup apparatus, and image shake correction apparatus control method
US7634181B2 (en) Image stabilizing system and optical apparatus
JP5031690B2 (en) Anti-vibration control device, imaging device, and control method for image stabilization control device
JP4956254B2 (en) Vibration correction apparatus and imaging apparatus
JP2010025961A (en) Image stabilization control apparatus and image capturing apparatus
JP2005217993A (en) Photographing apparatus
JP3530643B2 (en) Lens barrel and optical equipment using the same
JP5094523B2 (en) Image shake correction apparatus, imaging apparatus, and optical apparatus
JPH09211518A (en) Camera and vibration-proof device
US6757488B2 (en) Control apparatus for image blur correction
JP2003091028A (en) Controller for positioning correcting means
JP2006267752A (en) Image blur correction device and optical equipment
JP4669118B2 (en) Vibration correction apparatus and optical apparatus
JP4329151B2 (en) Shake detection device and camera shake correction camera
JP4174240B2 (en) Vibration correction apparatus and optical apparatus provided with the same
JP3526278B2 (en) Image stabilization optical device
JP2754872B2 (en) Image blur prevention device
JP4817544B2 (en) Anti-vibration control device, camera and correction means position control device
JP2003075880A (en) Optical device
JP2003107552A (en) Photographic device
JP4974952B2 (en) Image shake correction apparatus, imaging apparatus, and optical apparatus
JP2003057708A (en) Shake correcting optical device
JP2002303908A (en) Optical device, lens barrel and camera

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R151 Written notification of patent or utility model registration

Ref document number: 4956254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees