JP4954543B2 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP4954543B2
JP4954543B2 JP2005360395A JP2005360395A JP4954543B2 JP 4954543 B2 JP4954543 B2 JP 4954543B2 JP 2005360395 A JP2005360395 A JP 2005360395A JP 2005360395 A JP2005360395 A JP 2005360395A JP 4954543 B2 JP4954543 B2 JP 4954543B2
Authority
JP
Japan
Prior art keywords
water
treatment
concentration
electrolysis
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005360395A
Other languages
Japanese (ja)
Other versions
JP2007160230A (en
Inventor
雄大 加藤
洋 水谷
卓 池
昌道 浅野
展行 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2005360395A priority Critical patent/JP4954543B2/en
Publication of JP2007160230A publication Critical patent/JP2007160230A/en
Application granted granted Critical
Publication of JP4954543B2 publication Critical patent/JP4954543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Description

本発明は、電解処理を用いて被酸化物を高効率除去する水処理技術に関し、特に、処理水を洗浄用水、親水用水等として再利用に適した水質とすることができる水処理システムに関する。   The present invention relates to a water treatment technique that efficiently removes oxides using electrolytic treatment, and more particularly to a water treatment system that can make treated water suitable for reuse as cleaning water, hydrophilic water, or the like.

一般家庭、各種工場等から排出される各種廃水は、夫々の水質に応じた水処理が行われている。例えば、図10に示すように、し尿や台所排水、風呂排水等の生活廃水中にはN、P、COD、BOD、SSが含有されるため、浄化槽50にて生物処理を行った後に放流し、排出された浄化槽汚泥は汚泥処理設備等にて処理されていた。また、図11に示すように、上水を用いた洗車により発生した洗車廃水の場合は、砂、泥、DS、SSを含むため、加圧浮上装置51により砂、泥を分離され、凝集沈殿装置52にてPAC(ポリ塩化アルミニウム)や硫酸バンド等の凝集剤を添加されて凝集沈殿され、凝集分離液は放流され、砂、泥或いは凝集沈殿汚泥は汚泥処理設備等にて処理されていた。
このように、水処理技術においては、被処理水に含有される除去対象物に応じて処理が選択的に行われている。
Various types of wastewater discharged from ordinary households and various factories are subjected to water treatment according to their water quality. For example, as shown in FIG. 10, N, P, COD, BOD, and SS are contained in daily wastewater such as human waste, kitchen wastewater, and bath wastewater, so that they are discharged after biological treatment in the septic tank 50. The discharged septic tank sludge was treated with sludge treatment equipment. In addition, as shown in FIG. 11, in the case of car wash wastewater generated by car wash using clean water, since it contains sand, mud, DS, and SS, the sand and mud are separated by the pressure levitation device 51, and coagulation sedimentation is performed. A flocculant such as PAC (polyaluminum chloride) or sulfuric acid band was added to the apparatus 52 to cause coagulation sedimentation, the coagulation separation liquid was discharged, and sand, mud or coagulation sedimentation sludge was treated in a sludge treatment facility or the like. .
Thus, in the water treatment technology, treatment is selectively performed according to the removal target contained in the water to be treated.

近年、河川や湖沼、海水の水質汚染が問題となっており、可能な限り廃水を再利用し放流する水を少なくするため、また水資源の有効利用としては、新たに大規模な水資源開発施設の整備を必要とせず、水需給ギャップを緩和することができるとともに、渇水時の影響をある程度緩和することができる方策として、水から汚濁物質を除去した後に再利用することが要望されている。   In recent years, water pollution of rivers, lakes, and seawater has become a problem, and in order to reuse wastewater as much as possible to reduce the amount of water released, and for effective use of water resources, new large-scale water resource development There is a need to reuse water after removing pollutants from water as a measure that can reduce the water supply-demand gap and reduce the effects of drought to some extent, without the need for facility development. .

水処理技術の一つとして電解法を用いた処理が提案、実用化されている。電解法による汚濁物質の処理は、電解反応により廃水中の塩素若しくは外部添加した塩素から次亜塩素酸を生成し、該次亜塩素酸の酸化力を利用して汚濁物質を分解するものである。このような電解法を用いた処理は、処理速度が速く、電気を通じるだけで容易に被酸化物を分解できるという利点から、近年注目されている技術である。   As one of water treatment technologies, treatment using an electrolytic method has been proposed and put into practical use. The treatment of pollutants by the electrolytic method is to generate hypochlorous acid from chlorine in waste water or externally added chlorine by electrolytic reaction, and decompose the pollutants using the oxidizing power of the hypochlorous acid. . The treatment using such an electrolytic method is a technology that has been attracting attention in recent years because it has a high processing speed and can easily decompose oxides by simply passing electricity.

特許文献1(特開2004−330182号公報)には、窒素化合物を含む廃水に対し電解処理を行い、その後段にて生物処理を行い窒素成分を除去する方法が開示されているが、本手法では効率的な電解を行うため、流量に応じた塩化物イオン源の添加が必要となり、処理コストが嵩むといった欠点がある。
特許文献2(特開2005−218983号公報)には、電解設備と濃縮装置を備えた、窒素化合物及び有機物の除去方法が示されているが、処理完了後に陽極側から陰極側へ移送する必要があり、機器点数が増えるといった欠点がある。また、電解槽内で窒素成分を除去可能なのは陽極域のみのため、装置規模に対し投入可能な量は少なく移送の回数が増えるため稼働時間が減少し、設備を大型化して対応しなければならないといった課題がある。
Patent Document 1 (Japanese Patent Laid-Open No. 2004-330182) discloses a method of performing an electrolytic treatment on waste water containing a nitrogen compound and then performing a biological treatment at a subsequent stage to remove a nitrogen component. However, in order to perform efficient electrolysis, it is necessary to add a chloride ion source according to the flow rate, and there is a disadvantage that the processing cost increases.
Patent Document 2 (Japanese Patent Application Laid-Open No. 2005-218983) discloses a method for removing nitrogen compounds and organic substances provided with an electrolysis facility and a concentrating device. However, it is necessary to transfer from the anode side to the cathode side after the treatment is completed. There is a disadvantage that the number of devices increases. In addition, the nitrogen component can be removed in the electrolytic cell only in the anode region, so the amount that can be charged is small relative to the scale of the device, and the number of transfers increases, so the operating time must be reduced, and the equipment must be increased in size. There is a problem.

特開2004−330182号公報JP 2004-330182 A 特開2005−218983号公報Japanese Patent Application Laid-Open No. 2005-218983

従って、本発明は上記従来技術の問題点に鑑み、高い電解効率で以って処理を行うことができ、且つ電解処理後の処理水を再利用に適した水質とすることができる水処理システムを提供することを目的とする。   Therefore, in view of the above-mentioned problems of the prior art, the present invention is a water treatment system that can perform treatment with high electrolysis efficiency and can make the treated water after electrolytic treatment suitable for reuse. The purpose is to provide.

そこで、本発明はかかる課題を解決するために、
被酸化物含有水に還元剤を添加して塩素を還元する還元装置と、前記還元装置から排出される被処理水が導入され、生物学的脱窒素若しくは嫌気処理による生物処理を行う生物処理装置と、前記生物処理装置から排出される被処理水に、凝集ろ過設備、砂ろ過設備、加圧浮上分離槽、MF膜又はUF膜、pH調整設備から選択される少なくとも一の処理を行う前処理装置と、該前処理後の被処理水が導入され、該還元後の被処理水中の塩化物イオンを濃縮する濃縮装置であって、逆浸透膜装置及び電気透析装置のうち少なくとも一つから構成される濃縮装置と、該濃縮により得られた濃縮水を電解して次亜塩素酸を生成し、該次亜塩素酸により被酸化物を酸化分解する電解装置と、該電解後の電解処理液を前記還元装置に循環させる循環ラインと、を備え、前記還元装置から排出される被処理水の塩化物イオン濃度が8000mg/L以下となるように、前記前処理装置から汚泥を引き抜くことを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
A reduction device for reducing chlorine by adding a reducing agent to the water containing oxide, and a biological treatment device for introducing biological treatment by biological denitrification or anaerobic treatment, into which treated water discharged from the reduction device is introduced And pretreatment for performing at least one treatment selected from a coagulation filtration facility, a sand filtration facility, a pressurized flotation separation tank, an MF membrane or UF membrane, and a pH adjustment facility on the water to be treated discharged from the biological treatment apparatus An apparatus and a concentrating device for introducing the pretreated water after the pretreatment and concentrating chloride ions in the treated water after the reduction , comprising at least one of a reverse osmosis membrane device and an electrodialysis device Concentration apparatus , electrolyzed concentrated water obtained by the concentration to produce hypochlorous acid, and oxidative decomposition of the oxide by the hypochlorous acid, and electrolytic treatment solution after the electrolysis A circulation line that circulates through the reduction device. When, with a chloride ion concentration of the treated water discharged from the reducing device is to be equal to or less than 8000 mg / L, and wherein the withdrawing sludge from the pre-processing unit.

本発明では、濃縮装置の後段に電解装置を設置することで、塩化物イオン濃度の高い濃縮液を電解処理することとなり、電解効率を高く維持することが可能で且つ電解の制御が容易となるため過剰な電圧をかける必要がない。また、電解装置の後流側に還元装置を設けることで、濃縮装置に悪影響を及ぼす残留塩素を処理することができ、濃縮装置の寿命を向上させることができる。また、電解装置と還元装置の間に被酸化物含有水を流入させることで、電解装置より排出される残留塩素を消費でき、還元剤の注入量を低減できるとともに、被酸化物含有水の窒素成分を分解することができる。さらには、貯留装置を設置し、一定の滞留時間を設けることで電解装置における残留塩素濃度の制御を簡素化することができる。
尚、本発明では除去対象物とされる被酸化物は、アルコール類、フェノール類、炭化水素類、アルデヒド類、ケトン類、脂肪酸類、エステル類、アミン類、窒素酸化物、アンモニア、色度成分、臭気成分に代表される物質である。
In the present invention, by installing an electrolytic device in the latter stage of the concentration device, the concentrated solution having a high chloride ion concentration is subjected to electrolytic treatment, so that the electrolytic efficiency can be kept high and the control of the electrolysis becomes easy. Therefore, it is not necessary to apply an excessive voltage. Further, by providing a reduction device on the downstream side of the electrolysis device, residual chlorine that adversely affects the concentration device can be treated, and the life of the concentration device can be improved. Moreover, by allowing the oxide-containing water to flow between the electrolyzer and the reducing device, residual chlorine discharged from the electrolyzer can be consumed, the amount of reducing agent injected can be reduced, and nitrogen in the oxide-containing water can be reduced. The components can be decomposed. Furthermore, control of the residual chlorine concentration in an electrolysis apparatus can be simplified by installing a storage device and providing a certain residence time.
In the present invention, the oxides to be removed include alcohols, phenols, hydrocarbons, aldehydes, ketones, fatty acids, esters, amines, nitrogen oxides, ammonia, and chromaticity components. It is a substance represented by odor components.

また、このように、処理装置を備えることにより、濃縮装置における分離効率を向上させることが可能である。
また、生物処理装置を設けることにより、被酸化物含有水中の硝酸態窒素を除去でき、水質の向上が期待できる。
また、このように、電解処理サイクル内の塩化物イオンを8000mg/L以下とすることにより生物処理装置における生物処理に阻害を与えず処理が可能となるとともに、電解装置内で高濃度の塩化物イオンを外添することなく維持できるため、高効率処理が可能となる。
Moreover, it is possible to improve the separation efficiency in a concentration apparatus by providing a pre- processing apparatus in this way.
Further, by providing a biological treatment apparatus, nitrate nitrogen in the oxide-containing water can be removed, and improvement in water quality can be expected.
In addition, by setting the chloride ion in the electrolytic treatment cycle to 8000 mg / L or less as described above, the biological treatment in the biological treatment apparatus can be processed without impeding, and a high concentration of chloride in the electrolytic apparatus is possible. Since ions can be maintained without external addition, high-efficiency processing is possible.

また、前記濃縮装置が、逆浸透膜装置が多段に配置され複数段階の濃度の濃縮水を得る装置であり、該濃縮装置で得られた高濃度の濃縮水の少なくとも一部を前記還元装置に返送することを特徴とする。尚、前記多段の配置構成は、クロスフリー方式を採用することが好ましい。
これにより、電解設備への流入水量を少なくできる。即ち、より高い濃度の濃縮水を得ることが可能となる。また、廃水性状に変動がある場合は、返送濃縮水の循環量を調整することで、常に一定水質の濃縮水を電解設備に供給でき、電解設備の安定運転が可能となる。
Further, the concentrating device is a device for obtaining concentrated water having a plurality of concentrations with a plurality of stages of reverse osmosis membrane devices, and at least a part of the concentrated water having a high concentration obtained by the concentrating device is supplied to the reducing device. It is characterized by returning. The multi-stage arrangement configuration preferably employs a cross-free system.
Thereby, the amount of inflow water to the electrolysis equipment can be reduced. That is, it becomes possible to obtain concentrated water having a higher concentration. In addition, when there is a change in the waste water state, by adjusting the circulation amount of the return concentrated water, it is possible to always supply the concentrated water having a constant water quality to the electrolysis equipment, and the electrolysis equipment can be stably operated.

また、前記濃縮装置は逆浸透膜装置であり、前記逆浸透膜装置にて得られた透過水を洗浄水として再利用する場合に、洗浄後の洗浄廃水とともに前記処理装置から引き抜いた汚泥を凝集沈殿する凝集沈殿装置を備えたことを特徴とする。これにより、電解処理サイクルと、洗浄廃水処理系における凝集沈殿装置を一元化することができ、システム全体の小型化が図れる
らにまた、前記電解装置から発生する熱を前記逆浸透膜装置の前段にて被処理水に供給する熱交換手段を備えたことを特徴とする。このように、熱交換手段により濃縮装置に流入させる水温を制御して一定の温度とすることで圧力を変化させることなく一定の透過水量を確保することができる。
Moreover, the concentrator is a reverse osmosis unit, in the case of reusing the permeate obtained in the reverse osmosis membrane apparatus as washing water, sludge is withdrawn from the pre-processing unit with washing waste liquid after washing It is provided with a coagulation sedimentation apparatus for coagulation sedimentation. Thereby, the electrolytic treatment cycle and the coagulation sedimentation apparatus in the washing wastewater treatment system can be unified, and the entire system can be miniaturized .
Also of et, characterized in that the heat generated from the electrolysis device equipped with heat exchange means for supplying water to be treated at the previous stage of the reverse osmosis unit. In this way, by controlling the temperature of the water flowing into the concentrating device by the heat exchange means so as to be a constant temperature, it is possible to ensure a constant amount of permeated water without changing the pressure.

また、前記電解装置内に析出した硬度成分を重力沈降、酸添加による溶解、水洗のうち少なくとも一の手段により回収する手段を設け、該回収した硬度成分を前記濃縮装置にて得られる透過水に添加することを特徴とする。
このように、電解設備内で硬度成分を析出させ塩酸にて溶解させることで回収する。回収した硬度成分を濃縮装置の透過水に添加し、親水用水として利用することにより、電解性能低下・電極寿命に悪影響を及ぼす硬度成分を回収し、透過水に添加することで、親水用水生成時に必要な硬度成分を内製化できる。
In addition, a means for collecting the hardness component deposited in the electrolytic device by at least one of gravity sedimentation, dissolution by acid addition, and water washing is provided, and the collected hardness component is added to the permeated water obtained by the concentrator. It is characterized by adding.
In this way, the hardness component is deposited in the electrolytic equipment and recovered by dissolving with hydrochloric acid. By adding the recovered hardness component to the permeated water of the concentrator and using it as hydrophilic water, the hardness component that adversely affects electrolytic performance degradation and electrode life is recovered and added to the permeated water. Necessary hardness components can be produced in-house.

さらに、前記電解装置が、塩素含有水を供給されて2000〜2500mg/Lの遊離塩素濃度まで電解を行う構成であり、前記還元装置の前段に反応槽を設け、該反応槽に前記電解装置からの電解処理液を導入し、前記濃縮装置にて得られる濃縮水の少なくとも一部を前記電解装置に返送することを特徴とする。
このように、遊離塩素濃度を2500mg/L以下とすることで、効率的な電解ができる。また、高濃度塩水を選択的に返送することで、塩素含有水の使用量を低減できる。さらに、電解装置の電極に悪影響を及ぼす有機物等が流入し難いため電解設備の長寿命化が図れる。
Furthermore, the electrolyzer is configured to perform electrolysis up to a free chlorine concentration of 2000 to 2500 mg / L by being supplied with chlorine-containing water, and a reaction vessel is provided in the previous stage of the reduction device, and the reaction vessel is provided with the electrolyzer from the electrolyzer. The electrolytic treatment solution is introduced, and at least a part of the concentrated water obtained by the concentrator is returned to the electrolyzer.
Thus, efficient electrolysis can be performed by setting the free chlorine concentration to 2500 mg / L or less. Moreover, the usage-amount of chlorine containing water can be reduced by selectively returning high concentration salt water. Furthermore, since it is difficult for organic substances or the like that adversely affect the electrodes of the electrolysis apparatus to flow in, the life of the electrolysis equipment can be extended.

さらにまた、前記被酸化物含有水を膜前処理装置にて膜前処理し、膜前処理水を濃縮装置にて濃縮した後に電解装置に流入させて電解処理することが好適である。
これにより、前段側で濃縮装置により分離処理を行うため、後段側の設備をコンパクト化できる。流量が減ることによって塩化物イオン源等の薬注量も低減できる。また、透過水を放流前段の希釈に用いることができる。さらに、処理対象物の濃度を増加させることができ、電解設備内での制御が容易になる。
Furthermore, it is preferable that the oxide-containing water is subjected to membrane pretreatment with a membrane pretreatment device, and the membrane pretreatment water is concentrated with a concentrating device and then flowed into the electrolysis device for electrolytic treatment.
Thereby, since the separation process is performed by the concentrator on the front side, the equipment on the rear side can be made compact. By reducing the flow rate, the amount of chemical injection such as a chloride ion source can be reduced. Further, the permeated water can be used for dilution before the discharge. Furthermore, the density | concentration of a process target object can be increased and control in an electrolysis installation becomes easy.

以上記載のごとく本発明によれば、電解装置の上流側に濃縮装置を設けることにより、電解効率を高く維持することができるため被酸化物の除去効率を向上させることができ、また電解反応の制御を容易化することが可能である。また、濃縮装置の前段に還元装置を設けることにより、濃縮装置に悪影響を及ぼす残留塩素を処理することができ、濃縮装置の寿命を向上させることができる。また、前処理装置を備えることにより、濃縮装置における分離効率を向上させることが可能である。さらに、逆浸透膜装置が多段に配置された濃縮装置とすることにより、電解設備への流入水量を少なくできる。   As described above, according to the present invention, by providing a concentrating device on the upstream side of the electrolyzer, the electrolysis efficiency can be maintained high, so that the removal efficiency of the oxide can be improved, and the electrolysis reaction can be improved. Control can be facilitated. In addition, by providing a reducing device in front of the concentrating device, residual chlorine that adversely affects the concentrating device can be treated, and the life of the concentrating device can be improved. Moreover, it is possible to improve the separation efficiency in a concentration apparatus by providing a pre-processing apparatus. Furthermore, the amount of water flowing into the electrolysis equipment can be reduced by using a concentration device in which reverse osmosis membrane devices are arranged in multiple stages.

また、電解処理サイクル内の塩化物イオンを8000mg/L以下とすることにより電解装置内で高濃度の塩化物イオンを外添することなく維持できるため、高効率処理が可能となる。また、電解処理サイクルと、洗浄廃水処理系における凝集沈殿装置を一元化することができ、システム全体の小型化が図れる。さらに、生物処理装置若しくはイオン交換膜処理装置を設けることにより、被酸化物含有水中の硝酸態窒素を除去でき、水質の向上が期待できる。さらにまた、熱交換手段により濃縮装置に流入させる水温を制御することにより、一定の温度とすることで圧力を変化させることなく一定の透過水量を確保することができる。   In addition, by setting the chloride ion in the electrolytic treatment cycle to 8000 mg / L or less, high-concentration treatment can be performed because high-concentration chloride ions can be maintained in the electrolytic apparatus without external addition. Further, the electrolytic treatment cycle and the coagulation sedimentation apparatus in the washing wastewater treatment system can be unified, and the entire system can be reduced in size. Furthermore, by providing a biological treatment apparatus or an ion exchange membrane treatment apparatus, nitrate nitrogen in the oxide-containing water can be removed, and improvement in water quality can be expected. Furthermore, by controlling the temperature of the water flowing into the concentrating device by the heat exchange means, it is possible to ensure a constant amount of permeated water without changing the pressure by making the temperature constant.

また、電解設備内でミネラル成分を析出させ塩酸にて溶解させることで回収する。回収したミネラル成分を濃縮装置の透過水に添加し、親水用水等の硬度成分含有用水として再利用することにより、電解性能低下・電極寿命に悪影響を及ぼす硬度成分を回収し、透過水に添加することで、親水用水生成時に必要な硬度成分を内製化できる。また、還元装置後の遊離塩素濃度を2500mg/L以下とすることで、効率的な電解ができる。さらにまた、電解装置の前段側で濃縮装置により分離処理を行うことにより、後段側の設備をコンパクト化できる。   Moreover, it collect | recovers by depositing a mineral component in an electrolysis installation and dissolving with hydrochloric acid. The collected mineral components are added to the permeated water of the concentrator and reused as water for containing hardness components such as water for hydrophilicity, thereby recovering hardness components that adversely affect electrolytic performance and electrode life and add them to the permeated water. In this way, the hardness component necessary for producing water for hydrophilicity can be produced in-house. Moreover, efficient electrolysis can be performed by making the free chlorine density | concentration after a reducing device into 2500 mg / L or less. Furthermore, the equipment on the rear stage can be made compact by performing the separation treatment with the concentrator on the front stage of the electrolyzer.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例1に係る水処理フローを示す図、図2は実施例1の応用例を示す図、図3は本発明の実施例2に係る水処理フローを示す図、図6は本発明の実施例3に係る水処理フローを示す図、図7は本発明の実施例4に係る水処理フローを示す図、図8は本発明の実施例5に係る水処理フローを示す図、図9は本発明の実施例6に係る水処理フローを示す図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
1 is a view showing a water treatment flow according to Embodiment 1 of the present invention, FIG. 2 is a view showing an application example of Embodiment 1, and FIG. 3 is a view showing a water treatment flow according to Embodiment 2 of the present invention. 6 is a diagram showing a water treatment flow according to Example 3 of the present invention, FIG. 7 is a diagram showing a water treatment flow according to Example 4 of the present invention, and FIG. 8 is a water treatment flow according to Example 5 of the present invention. FIG. 9 shows a water treatment flow according to Embodiment 6 of the present invention.

尚、本実施例は、塩素含有水を電解することにより生成した次亜塩素酸の酸化力により、被酸化物含有水中の被酸化物を酸化分解する構成となっている。除去対象物とされる物質は、アルコール類、フェノール類、炭化水素類、アルデヒド類、ケトン類、脂肪酸類、エステル類、アミン類、窒素酸化物、アンモニア、色度成分、臭気成分に代表される被酸化物である。   In this embodiment, the oxide in the oxide-containing water is oxidized and decomposed by the oxidizing power of hypochlorous acid generated by electrolyzing the chlorine-containing water. Substances to be removed are represented by alcohols, phenols, hydrocarbons, aldehydes, ketones, fatty acids, esters, amines, nitrogen oxides, ammonia, chromaticity components, and odor components. It is an oxide.

図1及び図2に本実施例1に係る水処理フローを示す。本実施例1は、上記したような被酸化物を処理可能であるが、特に窒素化合物の除去に適している。被酸化物含有水は、含有される被酸化物の濃度が比較的高いものであり、数十ppm程度まで処理可能である。また、被酸化物含有水の処理量は数十m/日程度まで処理可能である。
本実施例1は図1に示すように、被酸化物含有水10が流入する還元装置1と、還元後の還元処理水が流入する膜前処理装置2と、膜前処理した膜前処理水を膜分離により濃縮する濃縮装置3と、濃縮装置3により得られる濃縮水15を電解する電解装置4と、電解処理液17を還元装置1に循環させる循環ラインとから構成され、これらにより電解処理サイクルが形成されている。
1 and 2 show a water treatment flow according to the first embodiment. The present Example 1 can treat the oxide as described above, but is particularly suitable for removing nitrogen compounds. The oxide-containing water has a relatively high concentration of the oxide to be contained, and can be treated up to several tens of ppm. Moreover, the treatment amount of the oxide-containing water can be treated up to about several tens m 3 / day.
In Example 1, as shown in FIG. 1, the reducing device 1 into which the oxide-containing water 10 flows, the membrane pretreatment device 2 into which the reduced treated water flows, and the membrane pretreated membrane pretreated water. Is constituted by a concentrating device 3 for concentrating the water by membrane separation, an electrolyzing device 4 for electrolyzing the concentrated water 15 obtained by the concentrating device 3, and a circulation line for circulating the electrolytic treatment liquid 17 to the reducing device 1. A cycle is formed.

還元装置1は、チオ硫酸ナトリウム等の還元剤11の供給手段を有し、後述する電解装置4から流入する電解処理液17中の残留塩素を還元剤により還元する装置である。還元反応式は以下の通りである。
4HClO+2Na+S 2−+6OH→2Na+2SO 2−+4Cl+5H
Na+4Cl+5HO→2NaCl+2HSO+6HCl
The reducing device 1 is a device that has a supply means for the reducing agent 11 such as sodium thiosulfate and reduces residual chlorine in the electrolytic treatment liquid 17 flowing from the electrolytic device 4 described later with a reducing agent. The reduction reaction formula is as follows.
4HClO + 2Na + + S 2 O 3 2− + 6OH → 2Na + + 2SO 4 2− + 4Cl + 5H 2 O
Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O → 2NaCl + 2H 2 SO 4 + 6HCl

膜前処理装置2は、濃縮装置3流入前の水質調整を行う装置であり、凝集ろ過設備、砂ろ過設備、加圧浮上分離槽、MF膜又はUF膜、pH調整設備から選択される少なくとも一の処理を行う。例として、(1)凝集ろ過設備+砂ろ過設備、(2)加圧浮上分離槽+砂ろ過設備、(3)凝集沈殿槽+砂ろ過設備、(4)MF膜またはUF膜、(5)pH調整設備等が挙げられる。
濃縮装置3は、逆浸透膜装置及び電気透析装置のうち少なくとも一つから構成され、膜前処理した膜前処理水12を、塩化物イオンが濃縮された濃縮水15と、透過水14とに分離する。該濃縮装置3では、塩化物イオンとともに被酸化物も濃縮される。
The membrane pretreatment device 2 is a device that adjusts the water quality before flowing into the concentration device 3, and is at least one selected from a coagulation filtration facility, a sand filtration facility, a pressurized flotation separation tank, an MF membrane or UF membrane, and a pH adjustment facility. Perform the process. Examples include (1) coagulation filtration equipment + sand filtration equipment, (2) pressurized flotation separation tank + sand filtration equipment, (3) coagulation sedimentation tank + sand filtration equipment, (4) MF membrane or UF membrane, (5) Examples include pH adjusting equipment.
The concentrating device 3 is composed of at least one of a reverse osmosis membrane device and an electrodialysis device. The membrane pretreated water 12 is subjected to membrane pretreatment into concentrated water 15 enriched with chloride ions and permeated water 14. To separate. In the concentrating device 3, the oxide is concentrated together with chloride ions.

電解装置4は、少なくとも一対の電極を有して電解により次亜塩素酸を生成し、該次亜塩素酸の酸化力により被酸化物を酸化分解する装置である。
被酸化物を電解する方法としては、図1に示すように塩化物イオンを高濃度で含有する濃縮水15を電解槽4内に直接流入させて電解により次亜塩素酸を生成し、電解装置4内で該次亜塩素酸と被酸化物を接触させて酸化分解する方式と、図2に示すように電解装置4と還元設備1の間に反応槽5を設け、電解装置4で電解生成した次亜塩素酸を含む電解処理液17を反応槽5に流入させ、被酸化物含有水10及び電解処理液17に含まれる被酸化物を酸化分解させる方式が存在する。反応槽5を設けた場合は電解装置4内で過剰に電解を行い、遊離塩素濃度が高い電解処理液として流入させても良い。
The electrolyzer 4 is an apparatus that has at least a pair of electrodes, generates hypochlorous acid by electrolysis, and oxidizes and decomposes the oxide by the oxidizing power of the hypochlorous acid.
As a method for electrolyzing the oxide, as shown in FIG. 1, concentrated water 15 containing chloride ions at a high concentration is directly flowed into the electrolytic cell 4 to generate hypochlorous acid by electrolysis, 4 in which the hypochlorous acid and the oxide are brought into contact with each other to oxidize and decompose, and as shown in FIG. There is a method in which the electrolytic treatment liquid 17 containing hypochlorous acid is introduced into the reaction tank 5 to oxidatively decompose the oxide contained in the oxide-containing water 10 and the electrolytic treatment liquid 17. When the reaction tank 5 is provided, electrolysis may be performed excessively in the electrolysis apparatus 4 and may be introduced as an electrolytic treatment solution having a high free chlorine concentration.

図1を参照して水処理の流れにつき説明する。まず、被酸化物含有水10は還元設備1に流入し、該還元設備1では後流側の電解装置4から流入する電解処理液17に含有される残留塩素を還元する。このとき、還元装置1には被酸化物含有水10が流入しているため、電解処理液17に含まれる残留塩素を消費でき、還元剤11の注入量を低減できるとともに、被酸化物含有水10中の被酸化物を分解することができる。
還元装置1から排出される還元処理水は膜前処理装置2に流入し、ここで主として水質調整が行われる。膜前処理装置2から排出される膜前処理水12は濃縮装置3に流入し、逆浸透膜及び/又は電気透析により処理水中の塩化物イオンが濃縮される。このとき、同時に除去対象である被酸化物も濃縮される。濃縮装置3にて透過した透過水14は再利用に適した水質のものが得られる。
The flow of water treatment will be described with reference to FIG. First, the oxide-containing water 10 flows into the reduction facility 1, and the reduction facility 1 reduces residual chlorine contained in the electrolytic treatment liquid 17 flowing from the downstream electrolyzer 4. At this time, since the oxide-containing water 10 flows into the reducing device 1, residual chlorine contained in the electrolytic treatment liquid 17 can be consumed, the amount of the reducing agent 11 injected can be reduced, and the oxide-containing water can be reduced. The oxide in 10 can be decomposed.
The reduced treated water discharged from the reducing device 1 flows into the membrane pretreatment device 2, where water quality adjustment is mainly performed. The membrane pretreatment water 12 discharged from the membrane pretreatment device 2 flows into the concentration device 3, and chloride ions in the treatment water are concentrated by reverse osmosis membrane and / or electrodialysis. At this time, the oxide to be removed is also concentrated. The permeated water 14 permeated through the concentrating device 3 is obtained with water quality suitable for reuse.

一方、塩化物イオンが濃縮された濃縮水15の全量若しくは一部は電解装置4に流入し、該電解装置4にて電解により強酸化力を有する次亜塩素酸が生成される。次亜塩素酸を生成する電解反応では塩化物イオン濃度が高い方が高効率で反応が進行するが、本実施例では濃縮装置3にて塩化物イオンを濃縮した濃縮水15を電解するため、高効率で次亜塩素酸が生成することができる。また、次亜塩素酸により酸化分解される被酸化物も同様に濃縮されているため、分解効率も向上する。
また、膜前処理装置2から次亜塩素酸を含む電解液13を引き抜き、これを消毒用水等の目的で再利用するようにしてもよい。
On the other hand, the whole or part of the concentrated water 15 enriched with chloride ions flows into the electrolysis apparatus 4, and hypochlorous acid having strong oxidizing power is generated by electrolysis in the electrolysis apparatus 4. In the electrolytic reaction for producing hypochlorous acid, the reaction proceeds with higher efficiency when the chloride ion concentration is higher, but in this embodiment, the concentrated water 15 in which the chloride ions are concentrated in the concentrating device 3 is electrolyzed. Hypochlorous acid can be generated with high efficiency. Further, since the oxide that is oxidatively decomposed by hypochlorous acid is also concentrated, the decomposition efficiency is improved.
Alternatively, the electrolyte solution 13 containing hypochlorous acid may be extracted from the membrane pretreatment device 2 and reused for the purpose of disinfecting water or the like.

このように本実施例によれば、濃縮装置3の後段に電解装置4を設置することで、塩化物イオン濃度の高い濃縮水15を電解処理することとなり、電解効率を高く維持することが可能で且つ電解の制御が容易となるため過剰な電圧をかける必要がない。
また、電解装置4の後流側に還元装置1を設けることで、濃縮装置3に悪影響を及ぼす残留塩素を処理することができ、濃縮装置3の寿命を向上させることができる。
また、電解装置4と還元装置1の間に被酸化物含有水10を流入させることで、電解装置4より排出される残留塩素を消費でき、還元剤11の注入量を低減できるとともに、被酸化物含有水10の窒素成分を分解することができる。
さらには、貯留装置5を設置し、一定の滞留時間を設けることで電解装置4における残留塩素濃度の制御を簡素化することができる。
As described above, according to the present embodiment, by installing the electrolysis device 4 at the subsequent stage of the concentration device 3, the concentrated water 15 having a high chloride ion concentration is subjected to electrolysis treatment, and the electrolysis efficiency can be maintained high. In addition, since it is easy to control the electrolysis, it is not necessary to apply an excessive voltage.
In addition, by providing the reduction device 1 on the downstream side of the electrolysis device 4, residual chlorine that adversely affects the concentration device 3 can be treated, and the life of the concentration device 3 can be improved.
Moreover, by allowing the oxide-containing water 10 to flow between the electrolysis apparatus 4 and the reduction apparatus 1, residual chlorine discharged from the electrolysis apparatus 4 can be consumed, the amount of the reducing agent 11 injected can be reduced, and the oxidation target can be reduced. The nitrogen component of the product-containing water 10 can be decomposed.
Furthermore, control of the residual chlorine concentration in the electrolyzer 4 can be simplified by installing the storage device 5 and providing a certain residence time.

図3に本実施例2に係る水処理フローを示す。本実施例2において、被酸化物含有水は、含有される被酸化物の濃度が比較的高いものであり、数十ppm〜数百ppm程度まで処理可能である。また、被酸化物含有水の処理量は100m/日程度まで処理可能であり、さらに温度変動のある被酸化物含有水にも適している。
尚、以下の実施例2乃至実施例6において、上記した実施例1と同様に構成についてはその詳細な説明を省略する。
本実施例2は図3に示すように、被酸化物含有水10が流入する還元装置1と、還元後の還元処理水を生物処理する生物処理装置5と、生物処理液が流入する膜前処理装置2と、膜前処理した膜前処理水を膜分離により濃縮する濃縮装置3と、濃縮装置3により得られた濃縮水15を電解する電解装置4と、電解処理液17を還元装置1に循環させる循環ラインとから構成され、これらにより電解処理サイクルが形成されている。
また、本実施例では濃縮装置3から得られる透過水14を洗浄水として再利用する構成となっており、洗浄20に用いた洗浄廃水21から泥、砂24等を分離する加圧浮上装置22と、分離液23を凝集沈殿する凝集沈殿装置25を備えており、該凝集沈殿装置25では、膜前処理装置2等の電解処理サイクルからの液を併せて凝集分離する構成となっている。
FIG. 3 shows a water treatment flow according to the second embodiment. In Example 2, the oxide-containing water has a relatively high concentration of the oxide to be contained, and can be processed to several tens ppm to several hundred ppm. Moreover, the treatment amount of the oxide-containing water can be treated up to about 100 m 3 / day, and is also suitable for the oxide-containing water having temperature fluctuation.
In the following second to sixth embodiments, the detailed description of the configuration is omitted as in the first embodiment.
As shown in FIG. 3, the second embodiment includes a reducing device 1 into which the oxide-containing water 10 flows, a biological treatment device 5 that biologically treats the reduced treated water after reduction, and a membrane before the biological treatment solution flows. The treatment device 2, the concentration device 3 for concentrating the membrane pretreated water subjected to membrane pretreatment by membrane separation, the electrolysis device 4 for electrolyzing the concentrated water 15 obtained by the concentration device 3, and the electrolytic treatment solution 17 for the reduction device 1 And an electrolytic treatment cycle is formed by these.
Further, in this embodiment, the permeated water 14 obtained from the concentrating device 3 is reused as washing water, and the pressurized flotation device 22 for separating mud, sand 24 and the like from the washing waste water 21 used for the washing 20. And a coagulating sedimentation device 25 that coagulates and precipitates the separation liquid 23. The coagulation sedimentation device 25 is configured to coagulate and separate the liquid from the electrolytic treatment cycle of the membrane pretreatment device 2 and the like.

生物処理装置5は、生物学的脱窒素若しくは嫌気処理による生物処理を行う装置である。また、生物処理装置5の代わりに、硝酸性窒素を除去するイオン交換装置を設置するようにしてもよい。
本実施例2では、膜前処理装置2に汚泥引抜き手段を設け、生物処理装置5に流入する還元処理液の塩化物イオン濃度が8000mg/L以下となるように、還元装置1への被酸化物含有水10の流入量及び膜前処理装置2からの汚泥引き抜き量を調整する。
このように、電解処理サイクル内の塩化物イオンを8000mg/L以下とすることにより生物処理装置5における生物処理に阻害を与えず処理が可能となるとともに、電解装置4内で塩化物イオンを外添することなく維持できるため、高効率処理が可能となる。一般に電解処理において必要となる塩化物イオン濃度は少なくとも2000mg/L以上であり、望ましくは5000mg/L以上と高濃度であればあるほど処理の効率化を図ることが可能となるが、本構成では塩化物イオンを8000mg/L以下に低減させているものの、電解処理には十分な濃度の塩化物イオン濃度が循環系内(特に濃縮後の電解装置4内)に残留することとなり、塩化物イオンの外添を不要若しくは低減することが可能となるものである。
The biological treatment apparatus 5 is an apparatus that performs biological treatment by biological denitrification or anaerobic treatment. Further, instead of the biological treatment device 5, an ion exchange device for removing nitrate nitrogen may be installed.
In Example 2, the membrane pretreatment device 2 is provided with sludge extraction means, and the reduction device 1 is oxidized so that the chloride ion concentration of the reduction treatment liquid flowing into the biological treatment device 5 is 8000 mg / L or less. The inflow amount of the material-containing water 10 and the sludge extraction amount from the membrane pretreatment device 2 are adjusted.
As described above, by setting the chloride ion in the electrolytic treatment cycle to 8000 mg / L or less, the biological treatment in the biological treatment device 5 can be performed without impeding the biological treatment, and the chloride ion is removed in the electrolytic device 4. Since it can maintain without attaching, a highly efficient process is attained. In general, the chloride ion concentration required for electrolytic treatment is at least 2000 mg / L or more, and the higher the concentration, preferably 5000 mg / L or more, the more efficient the treatment can be achieved. Although chloride ion is reduced to 8000 mg / L or less, chloride ion concentration sufficient for electrolytic treatment remains in the circulation system (especially in the electrolyzer 4 after concentration). This makes it possible to eliminate or reduce the external addition.

また、本実施例2の特徴的な構成として、濃縮装置3で得られる透過水14を洗浄に用い、洗浄廃水21の処理系における凝集沈殿装置25にて、電解処理サイクルから排出される汚泥を併せて凝集処理する構成となっている。
洗浄廃水21の処理系は、透過水14に必要に応じて補給水を加えて、これを機器や車両等の洗浄用水として洗浄20に使用し、洗浄後の洗浄廃水21を処理するものであり、加圧浮上装置22と、凝集沈殿装置25から構成される。洗浄廃水21は加圧浮上装置22にて加圧浮上により砂、泥24等の固体が除去され、固体を分離除去された分離液23は、凝集沈殿装置25に導入される。さらに該凝集沈殿装置25には、電解処理サイクルの膜前処理装置2から引き抜いた汚泥が投入され、これらに凝集剤を添加して凝集沈殿処理する。凝集沈殿装置25で分離された汚泥27は排出され、分離液26は必要に応じて他の水処理を施された後に放流される。
このように、洗浄廃水21の処理系内に、電解処理サイクルから排出される汚泥を流入させることで設備を一元化でき、システム全体の小型化、ランニングコストの低減が可能となる。
Further, as a characteristic configuration of the second embodiment, the permeated water 14 obtained by the concentrating device 3 is used for washing, and the sludge discharged from the electrolytic treatment cycle in the coagulating sedimentation device 25 in the treatment system of the washing waste water 21 is used. In addition, it is configured to agglomerate.
The treatment system for the washing waste water 21 is to add makeup water to the permeated water 14 as necessary, and use this for washing 20 as washing water for equipment, vehicles, etc., and treat the washing waste water 21 after washing. , A pressure levitation device 22 and a coagulation sedimentation device 25. The washing waste water 21 is subjected to pressure levitation device 22 to remove solids such as sand and mud 24 by pressure levitation, and the separated liquid 23 from which the solid has been separated and removed is introduced into a coagulation sedimentation device 25. Further, the sludge extracted from the membrane pretreatment device 2 in the electrolytic treatment cycle is put into the coagulation sedimentation device 25, and a coagulant is added to these to perform the coagulation sedimentation treatment. The sludge 27 separated by the coagulation sedimentation device 25 is discharged, and the separation liquid 26 is discharged after other water treatment is performed as necessary.
In this way, by making the sludge discharged from the electrolytic treatment cycle flow into the treatment system of the cleaning wastewater 21, the facilities can be unified, and the entire system can be downsized and the running cost can be reduced.

さらに本実施例2の特徴的な構成として、濃縮装置3が逆浸透膜装置である場合、逆浸透膜装置前段と電解装置4で熱交換を行う構成を備えている。
具体的には、電解装置4に冷却水を供給する冷却装置1と、濃縮装置3の前段で膜前処理水12を加温する熱交換器6とを備え、電解装置4から発生する熱を熱交換により濃縮装置3前段の膜前処理水12に与えるようになっている(※2)。一方、膜前処理水12と熱交換して冷却された水は冷却装置7に循環させ(※1)、電解装置4の冷却に用いられる。このとき、前記電解装置4を冷却する補給水が濃縮装置3からの透過水14であることが好ましい(※3)。
Further, as a characteristic configuration of the second embodiment, when the concentrating device 3 is a reverse osmosis membrane device, a heat exchange is performed between the upstream stage of the reverse osmosis membrane device and the electrolysis device 4.
Specifically, the apparatus includes a cooling device 1 that supplies cooling water to the electrolysis device 4 and a heat exchanger 6 that heats the membrane pretreatment water 12 in the previous stage of the concentration device 3, and generates heat generated from the electrolysis device 4. It is supplied to the membrane pretreatment water 12 in the preceding stage of the concentrator 3 by heat exchange (* 2). On the other hand, the water cooled by exchanging heat with the membrane pretreatment water 12 is circulated to the cooling device 7 (* 1) and used for cooling the electrolysis device 4. At this time, it is preferable that the makeup water for cooling the electrolytic device 4 is the permeated water 14 from the concentrating device 3 (* 3).

濃縮装置3が備える逆浸透膜の適用温度は、例えばセルロース・アセテート膜(CA/CTA膜)の場合は0〜35℃、合成薄層フィルム膜(TFC膜)の場合は0〜45℃である。従って、熱交換器6ではこれらの適用温度を超えない値に設定することが望ましい。このように、熱交換器6により濃縮装置3に流入させる水温を制御して一定の温度とすることで、圧力を変化させることなく一定の透過水量を確保することができる。   The application temperature of the reverse osmosis membrane provided in the concentration device 3 is, for example, 0 to 35 ° C. in the case of a cellulose acetate membrane (CA / CTA membrane), and 0 to 45 ° C. in the case of a synthetic thin film film (TFC membrane). . Accordingly, it is desirable to set the heat exchanger 6 to a value that does not exceed these application temperatures. Thus, by controlling the temperature of the water flowing into the concentrating device 3 by the heat exchanger 6 so as to be a constant temperature, it is possible to ensure a constant amount of permeated water without changing the pressure.

また逆浸透膜は、図4のRO膜における水温と透過水量の関係を示すグラフに示されるように、水温による透過水量変化が2〜3%/℃(同一運転圧力下)であり、被処理水の温度を上げるほど透過水量も大きくなる。一方、図5のRO膜における水温と阻止率の関係を示すグラフに示されるように、温度を上げると阻止率が下がる。本実施例の好適な条件としては、RO膜の適用温度内で、得られる透過水が目的とする水質となるような阻止率を確保し、且つ透過水量をできるだけ大きくして濃縮装置3の小型化を図ることが好ましい。再利用先が洗浄等のように高水質を求められない場合には、特に阻止率は問題となることがないため、適用温度内でできるだけ高温とするとよい。
尚、本構成は、冬季など濃縮装置3流入する液温の低下が起こる場合に流量の補正的な用途として用いることもできる。
The reverse osmosis membrane, as shown in the graph showing the relationship between the water temperature and the amount of permeated water in the RO membrane in FIG. 4, has a permeated water amount change of 2-3% / ° C. (under the same operating pressure) due to the water temperature. The amount of permeate increases as the temperature of the water increases. On the other hand, as shown in the graph showing the relationship between the water temperature and the blocking rate in the RO membrane of FIG. 5, the blocking rate decreases as the temperature is raised. As a preferable condition of the present embodiment, the concentration rate of the concentrating device 3 can be reduced by securing a blocking rate so that the obtained permeated water has the target water quality within the application temperature of the RO membrane, and increasing the permeated water amount as much as possible. It is preferable to make it easier. When the reuse destination is not required to have high water quality such as washing, the blocking rate is not particularly problematic. Therefore, it is preferable to keep the temperature as high as possible within the application temperature.
In addition, this structure can also be used as a flow-correcting use when the temperature of the liquid flowing into the concentrating device 3 occurs, such as in winter.

図6に本実施例3に係る水処理フローを示す。本実施例3において、被酸化物含有水は、含有される被酸化物の濃度が数ppm〜数十ppm程度まで処理可能である。また、被酸化物含有水の処理量は数十m/日程度まで処理可能である。
本実施例3は図6に示すように、実施例1の構成において、濃縮装置3を逆浸透膜装置が多段に配置された構成としている。図6には一例としてクロスフロー式でクリスマスツリー状に構成される逆浸透膜膜装置30a〜30c、31a〜31b、32aを示してある。
膜前処理装置2から排出される膜前処理水12は、一段目の逆浸透膜装置30a〜30cに流入し、夫々の装置から透過水14と濃縮水15が得られる。濃縮水15の少なくとも一部は二段目の逆浸透膜装置31a〜31bに流入し、同様に透過水14と濃縮水15が得られる。さらに二段目の逆浸透膜装置31a〜31bから排出した濃縮水15の少なくとも一部は三段目の逆浸透膜装置32aに流入する。
本実施例3では、膜前処理水12のイオン濃度が低い場合に、逆浸透膜装置内における中間濃縮水の一部を引き抜き、返送濃縮水15’として還元装置1に返送するようになっている。
これにより、電解設備4への流入水量を少なくできる。即ち、より高い濃度の濃縮水を得ることが可能となる。また、被酸化物含有水の性状に変動がある場合は、返送濃縮水15’の循環量を調整することで、常に一定水質の濃縮水15を電解設備4に供給でき、電解設備4の安定運転が可能となる。
FIG. 6 shows a water treatment flow according to the third embodiment. In the present Example 3, the oxide-containing water can be treated up to a concentration of the contained oxide of several ppm to several tens of ppm. Moreover, the treatment amount of the oxide-containing water can be treated up to about several tens m 3 / day.
As shown in FIG. 6, the third embodiment has a configuration in which reverse osmosis membrane devices are arranged in multiple stages in the configuration of the first embodiment. FIG. 6 shows, by way of example, reverse osmosis membrane devices 30a to 30c, 31a to 31b, and 32a that are configured in a cross-flow Christmas tree shape.
The membrane pretreatment water 12 discharged from the membrane pretreatment device 2 flows into the first-stage reverse osmosis membrane devices 30a to 30c, and the permeated water 14 and the concentrated water 15 are obtained from the respective devices. At least a part of the concentrated water 15 flows into the second-stage reverse osmosis membrane devices 31a to 31b, and similarly, the permeated water 14 and the concentrated water 15 are obtained. Furthermore, at least a part of the concentrated water 15 discharged from the second-stage reverse osmosis membrane devices 31a to 31b flows into the third-stage reverse osmosis membrane device 32a.
In the third embodiment, when the ion concentration of the membrane pretreatment water 12 is low, a part of the intermediate concentrated water in the reverse osmosis membrane device is extracted and returned to the reducing device 1 as the return concentrated water 15 ′. Yes.
Thereby, the amount of inflow water to the electrolysis equipment 4 can be reduced. That is, it becomes possible to obtain concentrated water having a higher concentration. Further, when there is a change in the properties of the oxide-containing water, by adjusting the circulation amount of the return concentrated water 15 ′, it is possible to always supply the concentrated water 15 having a constant water quality to the electrolysis equipment 4, and to stabilize the electrolysis equipment 4. Driving is possible.

図7に本実施例4に係る水処理フローを示す。本実施例4において、被酸化物含有水は、含有される被酸化物の濃度が数十ppm程度まで処理可能である。また、被酸化物含有水の処理量は数十m/日程度まで処理可能である。
本実施例5は、透過水17を親水用水として再利用する場合に適しており、電解装置4内に析出した硬度成分を重力沈降、酸添加による溶解、水洗のうち少なくとも一つの手段により回収し、濃縮装置3からの透過水に添加する構成となっている。
具体的には、濃縮装置3で得られる透過水14のランゲリア係数を測定するランゲリア係数測定手段30を設け、透過水14のランゲリア係数に基づき、電解処理液17から分離した硬度成分含有水31を透過水14に供給する。
電解処理液17からの硬度成分の分離には、電解装置4内で硬度成分を析出させ塩酸を添加することにより硬度成分を回収する方法が挙げられる。電解装置4の後段には、電解処理液17を導入して硬度成分と分離するミネラル沈殿槽8を設け、ここで沈降分離した硬度成分を含む硬度成分含有水31を透過水14に供給する。
このように、電解処理液17の硬度成分を回収することにより、電解処理サイクル内に硬度成分が析出することがなく、電極等に悪影響を与えることを防止できる。また、硬度成分を回収して透過水14に供給することにより、親水用水をはじめとして、ビオトープ形成、機器洗浄等に適した再利用を行うことが可能となる。
FIG. 7 shows a water treatment flow according to the fourth embodiment. In Example 4, the oxide-containing water can be treated until the concentration of the contained oxide is about several tens of ppm. Moreover, the treatment amount of the oxide-containing water can be treated up to about several tens m 3 / day.
The present Example 5 is suitable when the permeated water 17 is reused as hydrophilic water, and the hardness component precipitated in the electrolysis apparatus 4 is recovered by at least one of gravitational precipitation, dissolution by acid addition, and water washing. In addition, it is configured to be added to the permeated water from the concentration device 3.
Specifically, a Langeria coefficient measuring means 30 for measuring the Langeria coefficient of the permeated water 14 obtained by the concentrating device 3 is provided, and the hardness component-containing water 31 separated from the electrolytic treatment liquid 17 based on the Langeria coefficient of the permeated water 14 is obtained. The permeated water 14 is supplied.
Separation of the hardness component from the electrolytic treatment liquid 17 includes a method of recovering the hardness component by depositing the hardness component in the electrolysis apparatus 4 and adding hydrochloric acid. A mineral precipitation tank 8 for introducing the electrolytic treatment liquid 17 and separating it from the hardness component is provided at the subsequent stage of the electrolysis apparatus 4, and the hardness component-containing water 31 including the hardness component settled and separated here is supplied to the permeated water 14.
Thus, by collecting the hardness component of the electrolytic treatment liquid 17, the hardness component is not deposited in the electrolytic treatment cycle, and it is possible to prevent the electrodes and the like from being adversely affected. Further, by collecting the hardness component and supplying it to the permeated water 14, it is possible to perform reuse suitable for biotope formation, equipment cleaning, etc., including hydrophilic water.

また、他の硬度成分を安定化する方法として、電解装置4に十分な量の炭酸ガスを供給して再炭酸処理を施すことにより、炭酸カルシウムの析出を防止する方法がある。これは、炭酸ガスを供給して再炭酸化することにより水のpHは下がり炭酸カルシウムは炭酸水素カルシウムとなるが、さらに水中に十分な従属性遊離炭酸を残すようにすれば炭酸水素カルシウムは安定化し、炭酸カルシウムを析出することはなくなるため、電解処理サイクル内に硬度成分が析出することを防止できるものである。この構成において、電解処理液17の一部を硬度成分含有水として透過水14に供給することにより、親水用水等の硬度成分含有水が得られる。   As another method for stabilizing other hardness components, there is a method for preventing the precipitation of calcium carbonate by supplying a sufficient amount of carbon dioxide gas to the electrolysis apparatus 4 and performing a re-carbonization treatment. This is because by supplying carbon dioxide and re-carbonizing, the pH of the water decreases and calcium carbonate becomes calcium hydrogen carbonate. However, if sufficient free carbonic acid remains in the water, the calcium hydrogen carbonate becomes stable. Therefore, it is possible to prevent the hardness component from being precipitated in the electrolytic treatment cycle. In this configuration, by supplying a part of the electrolytic treatment liquid 17 as the hardness component-containing water to the permeated water 14, hardness component-containing water such as hydrophilic water can be obtained.

ここで、ランゲリア係数とは、水のpH、カルシウムイオン濃度、総アルカリ度及び溶解性物質(補正値計算に使う)から、次の式によって求められる。
ランゲリア係数(LI)=pH−pHs
=pH−8.313+log[Ca++]+log[A]−S
ここで、pH:水の実際のpH値、pHs:衡状態にあるときのpH値、log[Ca++]:カルシウムイオン濃度の対数、log[A]:総アルカリ度の対数、S:補正値であうる。
ランゲリア係数がプラスの値で 数値が大きい程、炭酸カルシウムの析出が起こり易く非腐食性であり、ゼロであれば炭酸カルシウムは析出も溶解もしない平衡状態にあり、マイナスの値では炭酸カルシウム皮膜は形成されにくく、その絶対値が大きくなるほど水の腐食傾向は強くなる。
従って、水のpH、カルシウムイオン濃度、総アルカリ度及び溶解性物質からランゲリア係数を求め、該ランゲリア係数に基づき透過水14に硬度成分含有水31を供給することにより、高品質の再利用水を提供することが可能となる。
Here, the Langeria coefficient is obtained from the pH of water, the calcium ion concentration, the total alkalinity, and the soluble substance (used for correction value calculation) by the following equation.
Langeria coefficient (LI) = pH-pHs
= PH-8.313 + log [Ca ++ ] + log [A] -S
Here, pH: actual pH value of water, pHs: pH value when in equilibrium, log [Ca ++ ]: logarithm of calcium ion concentration, log [A]: logarithm of total alkalinity, S: correction value It can be.
The larger the value of the Langelia coefficient, the greater the value. The tendency to corrode water increases as the absolute value increases.
Therefore, by obtaining the Langeria coefficient from the pH, calcium ion concentration, total alkalinity and soluble substance of the water and supplying the hardness component-containing water 31 to the permeated water 14 based on the Langeria coefficient, high-quality recycled water can be obtained. It becomes possible to provide.

このように本実施例によれば、電解装置4内で硬度成分を析出させ塩酸にて溶解させることで回収する。回収した硬度成分を濃縮装置の透過水14に添加し、親水用水等として利用することにより、電解性能低下・電極寿命に悪影響を及ぼす硬度成分を回収し、透過水14に添加することで、親水用水等の再利用水生成時に必要な硬度成分を内製化できる。   As described above, according to the present embodiment, the hardness component is precipitated in the electrolysis apparatus 4 and recovered by dissolving with hydrochloric acid. The collected hardness component is added to the permeated water 14 of the concentrator and used as hydrophilic water, etc., and the hardness component that adversely affects electrolytic performance degradation and electrode life is collected and added to the permeated water 14 to make the hydrophilic Hardness components required when reusing water such as irrigation water can be produced in-house.

図8に本実施例5に係る水処理フローを示す。本実施例5において、被酸化物含有水の処理量は数十m/日〜数千m/日程度まで処理可能である。
本実施例5は、図2に示した実施例1の応用例の構成に加えて、塩化物イオン含有水を2000〜2500mg/Lの遊離塩素濃度まで電解し、被酸化物含有水10に添加し、処理液の少なくとも一部を返送する構成となっている。
電解装置4では、塩素含有水18を電解により2000〜2500mg/Lの遊離塩素を生成し、電解液を反応槽5に供給して被酸化物含有水10と混合する。尚、塩素含有水18は有機物や窒素分が殆ど含まれない海水等の塩化物イオンを含有する水である。
さらに、塩素含有水18の濃度に応じ、濃縮装置3からの濃縮水を選択的に電解設備4に返送する。これは、実施例3に示した多段型の逆浸透膜装置を用い、前段側の逆浸透膜装置から得られる低濃度濃縮水15”は電解装置4に循環させず、後段側の逆浸透膜装置から得られる高濃度濃縮水15のみを電解装置4に循環させることより実施可能である。
FIG. 8 shows a water treatment flow according to the fifth embodiment. In Example 5, the amount of the oxide-containing water can be treated from several tens m 3 / day to several thousand m 3 / day.
In Example 5, in addition to the configuration of the application example of Example 1 shown in FIG. 2, chloride ion-containing water is electrolyzed to a free chlorine concentration of 2000 to 2500 mg / L and added to the oxide-containing water 10. In addition, at least a part of the processing liquid is returned.
In the electrolyzer 4, 2000 to 2500 mg / L of free chlorine is generated by electrolysis of the chlorine-containing water 18, and the electrolytic solution is supplied to the reaction vessel 5 and mixed with the oxide-containing water 10. The chlorine-containing water 18 is water containing chloride ions such as seawater that hardly contains organic matter and nitrogen.
Further, the concentrated water from the concentrating device 3 is selectively returned to the electrolysis equipment 4 according to the concentration of the chlorine-containing water 18. This uses the multi-stage reverse osmosis membrane device shown in Example 3, and does not circulate the low-concentration concentrated water 15 ″ obtained from the previous-stage reverse osmosis membrane device to the electrolysis device 4 but the latter-stage reverse osmosis membrane. This can be implemented by circulating only the high-concentration concentrated water 15 obtained from the apparatus to the electrolysis apparatus 4.

本実施例5によれば、遊離塩素濃度を2500mg/L以下とすることで、効率的な電解が可能となる。また、高濃度塩水を選択的に返送することで、塩素含有水18の使用量を低減できる。さらに、電解装置4の電極に悪影響を及ぼす有機物等が流入し難いため電解装置4の長寿命化が図れる。   According to the fifth embodiment, efficient electrolysis can be achieved by setting the free chlorine concentration to 2500 mg / L or less. Moreover, the usage-amount of the chlorine containing water 18 can be reduced by selectively returning high concentration salt water. Furthermore, since it is difficult for an organic substance or the like that adversely affects the electrodes of the electrolysis apparatus 4 to flow in, the life of the electrolysis apparatus 4 can be extended.

図9に本実施例6に係る水処理フローを示す。本実施例6において被酸化物含有水は、含有される被酸化物の濃度が比較的高いものであり、数十ppm程度まで処理可能である。また、被酸化物含有水の処理量は数十m/日程度まで処理可能である。
本実施例6は、被酸化物含有水10を膜前処理装置2にて膜前処理し、膜前処理水12を濃縮装置3にて濃縮した後に電解装置4に流入させて電解処理する構成となっている。このとき、濃縮装置3内での差圧確保のため、塩化物イオン源を濃縮装置3の前段に添加しても良い。
本実施例6によれば、前段側で濃縮装置3により分離処理を行うため、後段側の設備をコンパクト化できる。流量が減ることによって塩化物イオン源等の薬注量も低減できる。また、透過水14を放流前段の希釈に用いることができる。さらに、処理対象物の濃度を増加させることができ、電解設備4内での制御が容易になる。
FIG. 9 shows a water treatment flow according to the sixth embodiment. In Example 6, the oxide-containing water has a relatively high concentration of the oxide to be contained, and can be processed up to about several tens of ppm. Moreover, the treatment amount of the oxide-containing water can be treated up to about several tens m 3 / day.
In the sixth embodiment, the oxide-containing water 10 is subjected to membrane pretreatment by the membrane pretreatment device 2, and the membrane pretreatment water 12 is concentrated by the concentration device 3 and then flowed into the electrolysis device 4 for electrolytic treatment. It has become. At this time, a chloride ion source may be added to the upstream side of the concentration device 3 in order to ensure the differential pressure in the concentration device 3.
According to the sixth embodiment, since the separation process is performed by the concentrating device 3 on the front stage side, the equipment on the rear stage side can be made compact. By reducing the flow rate, the amount of chemical injection such as a chloride ion source can be reduced. Further, the permeated water 14 can be used for dilution before the discharge. Furthermore, the density | concentration of a process target object can be increased and control in the electrolysis installation 4 becomes easy.

本発明の実施例1に係る水処理フローを示す図である。It is a figure which shows the water treatment flow which concerns on Example 1 of this invention. 図1に示した実施例1の応用例を示す図である。It is a figure which shows the application example of Example 1 shown in FIG. 本発明の実施例2に係る水処理フローを示す図である。It is a figure which shows the water treatment flow which concerns on Example 2 of this invention. RO膜における水温と透過水量の関係を示すグラフである。It is a graph which shows the relationship between the water temperature in RO membrane, and the amount of permeate. RO膜における水温と阻止率の関係を示すグラフである。It is a graph which shows the relationship between the water temperature in a RO membrane, and the rejection. 本発明の実施例3に係る水処理フローを示す図である。It is a figure which shows the water treatment flow which concerns on Example 3 of this invention. 本発明の実施例4に係る水処理フローを示す図である。It is a figure which shows the water treatment flow which concerns on Example 4 of this invention. 本発明の実施例5に係る水処理フローを示す図である。It is a figure which shows the water treatment flow which concerns on Example 5 of this invention. 本発明の実施例6に係る水処理フローを示す図である。It is a figure which shows the water treatment flow which concerns on Example 6 of this invention. 従来の生活廃水の処理フローを示す図である。It is a figure which shows the processing flow of the conventional domestic wastewater. 従来の洗車廃水を処理フローを示す図である。It is a figure which shows the processing flow of the conventional car wash wastewater.

符号の説明Explanation of symbols

1 還元装置
2 膜前処理装置(前処理装置)
3 濃縮装置
4 電解装置
5 生物処理装置
6 熱交換器
7 冷却装置
8 ミネラル沈殿槽
13 電解液
14 透過水
15 濃縮水
17 電解処理液
18 塩素含有水
21 洗浄廃液
22 加圧浮上装置
30 ランゲリア係数測定手段
1 Reduction device 2 Membrane pretreatment device (Pretreatment device)
DESCRIPTION OF SYMBOLS 3 Concentrator 4 Electrolyzer 5 Biological treatment device 6 Heat exchanger 7 Cooling device 8 Mineral precipitation tank 13 Electrolyte 14 Permeated water 15 Concentrated water 17 Electrolyzed solution 18 Chlorine-containing water 21 Washing waste liquid 22 Pressure floating device 30 Langeria coefficient measurement means

Claims (6)

被酸化物含有水に還元剤を添加して塩素を還元する還元装置と、
前記還元装置から排出される被処理水が導入され、生物学的脱窒素若しくは嫌気処理による生物処理を行う生物処理装置と、
前記生物処理装置から排出される被処理水に、凝集ろ過設備、砂ろ過設備、加圧浮上分離槽、MF膜又はUF膜、pH調整設備から選択される少なくとも一の処理を行う前処理装置と、
該前処理後の被処理水が導入され、該還元後の被処理水中の塩化物イオンを濃縮する濃縮装置であって、逆浸透膜装置及び電気透析装置のうち少なくとも一つから構成される濃縮装置と、
該濃縮により得られた濃縮水を電解して次亜塩素酸を生成し、該次亜塩素酸により被酸化物を酸化分解する電解装置と、
該電解後の電解処理液を前記還元装置に循環させる循環ラインと、
を備え
前記還元装置から排出される被処理水の塩化物イオン濃度が8000mg/L以下となるように、前記前処理装置から汚泥を引き抜くことを特徴とする水処理システム。
A reducing device for reducing chlorine by adding a reducing agent to the water containing oxide;
A biological treatment device into which treated water discharged from the reduction device is introduced, and performs biological treatment by biological denitrification or anaerobic treatment;
A pretreatment device that performs at least one treatment selected from a coagulation filtration facility, a sand filtration facility, a pressurized flotation separation tank, an MF membrane or a UF membrane, and a pH adjustment facility on the water to be treated discharged from the biological treatment device; ,
A concentrating device which introduces the pretreated water after the pretreatment and concentrates chloride ions in the treated water after the reduction, and is a concentrating device comprising at least one of a reverse osmosis membrane device and an electrodialysis device Equipment ,
An electrolyzer that electrolyzes the concentrated water obtained by the concentration to produce hypochlorous acid, and oxidatively decomposes the oxide with the hypochlorous acid;
A circulation line for circulating the electrolytic treatment solution after the electrolysis to the reduction device;
Equipped with a,
A water treatment system , wherein sludge is extracted from the pretreatment device so that a chloride ion concentration of water to be treated discharged from the reduction device is 8000 mg / L or less .
前記濃縮装置が、逆浸透膜装置が多段に配置され複数段階の濃度の濃縮水を得る装置であり、該濃縮装置で得られた高濃度の濃縮水の少なくとも一部を前記還元装置に返送することを特徴とする請求項1記載の水処理システム。   The concentrating device is a device for obtaining concentrated water having a plurality of concentrations with a reverse osmosis membrane device arranged in multiple stages, and at least a part of the concentrated water obtained with the concentrating device is returned to the reducing device. The water treatment system according to claim 1. 前記濃縮装置は逆浸透膜装置であり、
前記逆浸透膜装置にて得られた透過水を洗浄水として再利用する場合に、洗浄後の洗浄廃水とともに前記処理装置から引き抜いた汚泥を凝集沈殿する凝集沈殿装置を備えたことを特徴とする請求項1記載の水処理システム。
The concentration device is a reverse osmosis membrane device;
And wherein when the permeate obtained in the reverse osmosis unit for reuse as washing water, along with cleaning waste water after washing was withdrawn from the pretreatment device sludge with a coagulating sedimentation apparatus for coagulating sedimentation The water treatment system according to claim 1 .
前記濃縮装置は逆浸透膜装置であり、
前記電解装置から発生する熱を前記逆浸透膜装置の前段にて被処理水に供給する熱交換手段を備えたことを特徴とする請求項1記載の水処理システム。
The concentration device is a reverse osmosis membrane device;
The water treatment system according to claim 1, further comprising heat exchange means for supplying heat generated from the electrolyzer to the water to be treated before the reverse osmosis membrane device .
前記濃縮装置は逆浸透膜装置であり、
前記電解装置内に析出した硬度成分を重力沈降、酸添加による溶解、水洗のうち少なくとも一の手段により回収する手段を設け、該回収した硬度成分を前記逆浸透膜装置にて得られる透過水に添加することを特徴とする請求項1記載の水処理システム。
The concentration device is a reverse osmosis membrane device;
A means for recovering the hardness component precipitated in the electrolysis apparatus by at least one of gravity sedimentation, dissolution by acid addition, and water washing is provided, and the recovered hardness component is converted into permeated water obtained by the reverse osmosis membrane apparatus . The water treatment system according to claim 1, wherein the water treatment system is added.
前記電解装置が、塩素含有水を供給されて2000〜2500mg/Lの遊離塩素濃度まで電解を行う構成であり、前記還元装置の前段に反応槽を設け、該反応槽に前記電解装置からの電解処理液を導入し、前記濃縮装置にて得られる濃縮水の少なくとも一部を前記電解装置に返送することを特徴とする請求項1記載の水処理システム。   The electrolysis apparatus is configured to perform electrolysis up to a free chlorine concentration of 2000 to 2500 mg / L by being supplied with chlorine-containing water, and a reaction tank is provided in front of the reduction apparatus, and electrolysis from the electrolysis apparatus is provided in the reaction tank. The water treatment system according to claim 1, wherein a treatment liquid is introduced and at least a part of the concentrated water obtained by the concentrator is returned to the electrolyzer.
JP2005360395A 2005-12-14 2005-12-14 Water treatment system Active JP4954543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360395A JP4954543B2 (en) 2005-12-14 2005-12-14 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360395A JP4954543B2 (en) 2005-12-14 2005-12-14 Water treatment system

Publications (2)

Publication Number Publication Date
JP2007160230A JP2007160230A (en) 2007-06-28
JP4954543B2 true JP4954543B2 (en) 2012-06-20

Family

ID=38243736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360395A Active JP4954543B2 (en) 2005-12-14 2005-12-14 Water treatment system

Country Status (1)

Country Link
JP (1) JP4954543B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202208B2 (en) * 2008-09-19 2013-06-05 特殊電極株式会社 Deodorizing system, deodorizing apparatus and deodorizing method
JP5567468B2 (en) * 2010-12-24 2014-08-06 水ing株式会社 Method and apparatus for treating organic wastewater
JP6191070B2 (en) * 2012-05-25 2017-09-06 三菱重工環境・化学エンジニアリング株式会社 Ammonia treatment system
JP2014180628A (en) * 2013-03-19 2014-09-29 Kubota Corp Water treatment method and system
EP4263439A4 (en) * 2020-12-17 2024-05-01 Axine Water Tech Inc Method and system for wastewater treatment by membrane filtration and electrochemical oxidation
WO2023069350A1 (en) * 2021-10-21 2023-04-27 Siemens Energy, Inc. Enhanced electro-oxidation system
CN114485004B (en) * 2022-02-22 2023-06-23 中冶长天国际工程有限责任公司 Circulating cooling water system for equipment in sintering plant
CN115448522B (en) * 2022-10-17 2024-01-30 北京国润伟业科技中心(有限合伙) System and method for purifying water quality of high-salt wastewater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660691A (en) * 1979-10-23 1981-05-25 Ebara Infilco Co Ltd Treatment of waste water containing organic substance
JP2005144366A (en) * 2003-11-17 2005-06-09 Sanyo Electric Co Ltd Waste water treatment system
JP2005246158A (en) * 2004-03-02 2005-09-15 Kobelco Eco-Solutions Co Ltd Method and system for desalinating seawater

Also Published As

Publication number Publication date
JP2007160230A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4954543B2 (en) Water treatment system
JP4663012B2 (en) Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
US8062527B2 (en) Method and apparatus for desalinating sea water
JP4947640B2 (en) Waste acid solution treatment method
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
US20130048558A1 (en) Water treatment method and ultrapure water producing method
JP2007069199A (en) Apparatus for treating water
US20190177189A1 (en) Installation for obtaining phosphate salts and method for operating this installation
KR101834438B1 (en) Apparatus and method for treating desulfurization waste water
CN105060562A (en) Deep treatment method of tannery wastewater
Xu et al. A novel electrocoagulation-membrane stripping hybrid system for simultaneous ammonia recovery and contaminant removal
JP3917956B2 (en) Organic waste treatment system and treatment method
JP5929987B2 (en) Biological treatment method and biological treatment apparatus
JP6657720B2 (en) Steam power plant wastewater recovery method and device
JP2010036173A (en) Water treatment system and water treatment method
KR101064933B1 (en) Method and apparatus for water treatment
CN108311160B (en) Iron reduction catalyst, water treatment apparatus, and water treatment method
JPWO2016136957A1 (en) Organic substance-containing water treatment method and organic substance-containing water treatment apparatus
JP4049711B2 (en) Wastewater treatment method including ethylene carbonate
JP2005218904A (en) Water treatment apparatus
CN110330166B (en) High-efficient environmental protection industrial waste water treatment system
JP2008229434A (en) Method for purifying ammonia nitrogen-containing wastewater
JP2007075818A (en) System and method for treating organic waste
JP2007105613A (en) Water treatment method coping with emergency, system therefor and on-vehicle type electrolyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20081212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3