JP4954499B2 - Silicone resin lens for LED and manufacturing method thereof - Google Patents

Silicone resin lens for LED and manufacturing method thereof Download PDF

Info

Publication number
JP4954499B2
JP4954499B2 JP2005148387A JP2005148387A JP4954499B2 JP 4954499 B2 JP4954499 B2 JP 4954499B2 JP 2005148387 A JP2005148387 A JP 2005148387A JP 2005148387 A JP2005148387 A JP 2005148387A JP 4954499 B2 JP4954499 B2 JP 4954499B2
Authority
JP
Japan
Prior art keywords
silicone resin
molding
group
lens
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005148387A
Other languages
Japanese (ja)
Other versions
JP2006324596A (en
Inventor
利夫 塩原
努 柏木
克之 今澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005148387A priority Critical patent/JP4954499B2/en
Publication of JP2006324596A publication Critical patent/JP2006324596A/en
Application granted granted Critical
Publication of JP4954499B2 publication Critical patent/JP4954499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、LED(発光ダイオード)用のシリコーン樹脂レンズ及びその製造方法に関する。   The present invention relates to a silicone resin lens for an LED (light emitting diode) and a manufacturing method thereof.

従来、LEDの光を集光したり、散乱させるため種々の形状をしたレンズが多用されている。この場合、LED用レンズは、一般に透明性の良好な熱可塑性樹脂が幅広く使用されている。この種のレンズは射出成型で容易に製造することができる。熱可塑性樹脂は射出成型で製造され、この際高温で溶融した樹脂を低温に設定された金型内に流し込み、冷却固化させる。このため、金型温度を設定することで、一定の収縮率で目的とした成型物を得ることができる。   2. Description of the Related Art Conventionally, lenses having various shapes are frequently used to collect or scatter LED light. In this case, a thermoplastic resin having good transparency is widely used for the LED lens. This type of lens can be easily manufactured by injection molding. The thermoplastic resin is manufactured by injection molding, and at this time, the resin melted at a high temperature is poured into a mold set at a low temperature to be cooled and solidified. For this reason, the target molding can be obtained with a constant shrinkage rate by setting the mold temperature.

しかし、近年ではこの種のレンズを備えたLEDパッケージを基板に実装する際、鉛フリーはんだを使用することが多くなってきた。その結果、実装温度が260℃と高温に設定されることから、従来の熱可塑性樹脂からなるレンズではリフロー時レンズが変形したり、黄変する問題が発生している。   In recent years, however, lead-free solder has often been used when mounting an LED package having this type of lens on a substrate. As a result, since the mounting temperature is set to a high temperature of 260 ° C., the conventional lens made of thermoplastic resin has a problem that the lens is deformed or yellowed during reflow.

また、LED素子として青色LEDを使用した場合は、熱可塑性樹脂でできたレンズでは黄変や劣化が起こることも知られている。   It is also known that when a blue LED is used as the LED element, yellowing or deterioration occurs in a lens made of a thermoplastic resin.

このため、耐紫外線性、耐熱性に優れたシリコーン樹脂を用いてレンズを製造することが提案されている。しかし、シリコーン樹脂の場合は熱硬化性樹脂であるため、熱可塑性樹脂と異なり、高温に加熱されている金型内に樹脂を注入して反応固化させる。また、シリコーン樹脂を得るための熱硬化性シリコーン樹脂組成物は、通常成型後更に硬化反応をすすめるため、成型温度やそれより高い温度で数時間ポストキュアを行う。その結果、通常成型条件やポストキュア条件で収縮率が異なることから成型物の寸法が異なってしまうため、設計通りの寸法を有する精密なレンズを得ることが非常に困難となる。   For this reason, it has been proposed to manufacture a lens using a silicone resin excellent in ultraviolet resistance and heat resistance. However, since a silicone resin is a thermosetting resin, unlike a thermoplastic resin, the resin is injected into a mold heated to a high temperature to be solidified. In addition, the thermosetting silicone resin composition for obtaining the silicone resin is usually post-cured for several hours at the molding temperature or higher temperature in order to further promote the curing reaction after molding. As a result, since the shrinkage varies depending on the normal molding conditions and post-cure conditions, the dimensions of the molded product differ, making it very difficult to obtain a precise lens having the designed dimensions.

なお、本発明に関連する従来技術として、下記文献が挙げられる。
特開2000−231002号公報 特開2000−17176号公報 特開2004−221308号公報
In addition, the following literature is mentioned as a prior art relevant to this invention.
JP 2000-23002 A JP 2000-17176 A JP 2004-221308 A

本発明は、上記事情に鑑みなされたもので、光の取り出し効率に優れ、また寸法の正確性に優れたLED用シリコーン樹脂レンズ及びその製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the silicone resin lens for LED which was excellent in the extraction efficiency of light, and was excellent in the precision of a dimension, and its manufacturing method.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、シリコーン樹脂組成物の成型条件と成型収縮率の関係を詳細に検討して、特定の条件を設定すれば成型後とポストキュア後の成型収縮率の比率を10%以内に制御できることを見出した。また、素子の発光する光を効率的にパッケージ外部に取り出すためには硬化物の屈折率が非常に重要となっており、特に硬化したシリコーン樹脂の596nm近辺での屈折率に対し青色LEDや紫外LEDなどが発光する波長に近い400nmでの屈折率が596nmの屈折率の1.01倍以上となるようなシリコーン樹脂レンズが効率的に光を取り出し得ること見出し、本発明を完成させたものである。   As a result of intensive studies to achieve the above object, the present inventors have studied in detail the relationship between the molding conditions of the silicone resin composition and the molding shrinkage rate, and if specific conditions are set, post molding and post It has been found that the ratio of mold shrinkage after curing can be controlled within 10%. In addition, the refractive index of the cured product is very important in order to efficiently extract the light emitted from the device to the outside of the package. In particular, blue LEDs and ultraviolet rays are used for the refractive index of a cured silicone resin near 596 nm. It was found that a silicone resin lens having a refractive index at 400 nm, which is close to the wavelength of light emitted by an LED, is 1.01 or more times higher than the refractive index of 596 nm can efficiently extract light, and completed the present invention. is there.

従って、本発明は、(A)下記式
(上記式において、k、mは正の整数で、10≦k+m≦2,000、0<k/(k+m)≦0.5を満足する整数である。)
から選ばれる直鎖状オルガノポリシロキサン、
又は下記式
(R1SiO3/2d(R1 2SiO)e(R1 3SiO1/2f
(上記式において、R1はそれぞれ同一又は異種のビニル基、フェニル基、メチル基、エチル基、プロピル基から選ばれ、R1の2.0〜45.0モル%がビニル基、25〜60モル%がフェニル基であり、d/(d+e+f)=0.65〜0.95、e/(d+e+f)=0.05〜0.35、f/(d+e+f)=0〜0.05である。)
で示される三次元構造を有するビニル基含有オルガノポリシロキサン、
(B)下記式
から選ばれるオルガノハイドロジェンポリシロキサン:上記(A)成分中のビニル基1個あたり、ケイ素原子結合水素原子を0.75〜2.0個与える量、
(C)白金系触媒:(A)成分に対し1〜1,000ppm
を含有するシリコーン樹脂組成物を成形、硬化することにより形成され、400nmと596nmで測定した屈折率の比が1.012〜1.026であり、400nmの屈折率が1.51〜1.60であるシリコーン樹脂からなることを特徴とする青色又は紫外LED用シリコーン樹脂レンズを提供する。
また、本発明は、上記シリコーン樹脂組成物を射出成形した後、ポストキュアして、成型後の成型収縮率とポストキュア後の成型収縮率の比を0.9〜1.1とし、かつ400nmと596nmで測定した屈折率の比が1.012〜1.026であり、400nmの屈折率が1.51〜1.60であるシリコーン樹脂からなる青色又は紫外LED用シリコーン樹脂レンズを得ることを特徴とするLED用シリコーン樹脂レンズの製造方法を提供する。
Accordingly, the present invention provides (A) the following formula:
(In the above formula, k and m are positive integers and are integers satisfying 10 ≦ k + m ≦ 2,000 and 0 <k / (k + m) ≦ 0.5.)
A linear organopolysiloxane selected from
Or the following formula: (R 1 SiO 3/2 ) d (R 1 2 SiO) e (R 1 3 SiO 1/2 ) f
(In the above formula, each R 1 is selected from the same or different vinyl group, phenyl group, methyl group, ethyl group, and propyl group, and 2.0 to 45.0 mol% of R 1 is vinyl group, 25 to 60 The mol% is a phenyl group, and d / (d + e + f) = 0.65 to 0.95, e / (d + e + f) = 0.05 to 0.35, and f / (d + e + f) = 0 to 0.05. )
Vinyl group-containing organopolysiloxane having a three-dimensional structure represented by
(B) The following formula
An organohydrogenpolysiloxane selected from: an amount of 0.75 to 2.0 silicon-bonded hydrogen atoms per vinyl group in the component (A),
(C) Platinum-based catalyst: 1 to 1,000 ppm relative to component (A)
Formed and cured, the ratio of the refractive index measured at 400 nm and 596 nm is 1.012 to 1.026 , and the refractive index at 400 nm is 1.51 to 1.60. A silicone resin lens for a blue or ultraviolet LED is provided.
Further, the present invention is that the silicone resin composition is injection-molded and then post-cured so that the ratio of the molding shrinkage ratio after molding to the molding shrinkage ratio after post-cure is 0.9 to 1.1 and 400 nm. And obtaining a silicone resin lens for blue or ultraviolet LED comprising a silicone resin having a refractive index ratio of 1.012 to 1.026 and a refractive index of 400 nm of 1.51 to 1.60. The manufacturing method of the silicone resin lens for LED characterized by the above-mentioned is provided.

本発明のLED用シリコーン樹脂レンズは、光の取り出し効率に優れ、また寸法の正確性に優れたものである。また、本発明のLED用シリコーン樹脂レンズの製造方法によれば、かかるLED用シリコーン樹脂レンズを得ることができるものである。   The silicone resin lens for LED of the present invention has excellent light extraction efficiency and excellent dimensional accuracy. Moreover, according to the manufacturing method of the silicone resin lens for LED of this invention, this silicone resin lens for LED can be obtained.

本発明のLED用シリコーン樹脂レンズは、波長400nmで測定した屈折率R400と波長596nmで測定した屈折率R596の比(R400/R596)が1.01以上、好ましくは1.012以上、更に好ましくは1.012〜1.20であり、かつ400nmの屈折率R400が1.50以上、好ましくは1.51以上、更に好ましくは1.51〜1.60であるシリコーン樹脂から形成されたものである。ここで、屈折率の値は、25℃においてプリズムカプラー法(メトリコン)の方法によって測定した場合の値である。 In the silicone resin lens for LED of the present invention, the ratio of the refractive index R 400 measured at a wavelength of 400 nm to the refractive index R 596 measured at a wavelength of 596 nm (R 400 / R 596 ) is 1.01 or more, preferably 1.012 or more. More preferably, it is 1.012 to 1.20, and a refractive index R 400 of 400 nm is 1.50 or more, preferably 1.51 or more, more preferably 1.51 to 1.60. It has been done. Here, the value of the refractive index is a value when measured by the prism coupler method (Metricon) method at 25 ° C.

この場合、上記シリコーン樹脂としては、脂肪族不飽和基含有直鎖状オルガノポリシロキサンあるいは三次元網状構造を有するシリコーン樹脂を主成分とするもの、即ち、T単位(オルガノシルセスキオキサン単位)を主要構成単位として含むオルガノポリシロキサン(好ましくはT単位を65〜95モル%含有するオルガノポリシロキサン)を硬化することによって得られたものが好ましい。   In this case, the silicone resin is composed mainly of an aliphatic unsaturated group-containing linear organopolysiloxane or a silicone resin having a three-dimensional network structure, that is, a T unit (organosilsesquioxane unit). What was obtained by hardening | curing the organopolysiloxane (preferably the organopolysiloxane containing 65-95 mol% of T units) contained as a main structural unit is preferable.

また、これらのシリコーン樹脂の硬化タイプとしては、ヒドロシリル化反応(付加反応)によって硬化するシリコーン樹脂組成物を用いて成形、硬化してなるものが好ましい。   Moreover, as a hardening type of these silicone resins, what is shape | molded and hardened | cured using the silicone resin composition hardened | cured by hydrosilylation reaction (addition reaction) is preferable.

このシリコーン樹脂組成物としては、
(A)アルケニル基等の脂肪族不飽和基を有する直鎖状オルガノポリシロキサン、
(B)オルガノハイドロジェンポリシロキサン、
(C)白金系触媒
を必須成分として配合されたものが好適である。
As this silicone resin composition,
(A) a linear organopolysiloxane having an aliphatic unsaturated group such as an alkenyl group,
(B) organohydrogenpolysiloxane,
(C) What mix | blended the platinum-type catalyst as an essential component is suitable.

更に、詳述すると、(A)成分の上記オルガノポリシロキサンは、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された基本的に直鎖状のオルガノポリシロキサンであり、一分子中に2個以上のビニル基、アリル基等の炭素数2〜8、特に2〜6のアルケニル基で代表される脂肪族不飽和結合を有し、粘度が25℃で10〜1,000,000mPa・s、特に100〜100,000mPa・sであれば、いずれのものでも使用することができるが、なかでも下記一般式(1)で表される分子鎖両末端のケイ素原子上にそれぞれ少なくとも1個、通常それぞれ1〜3個のアルケニル基を有する直鎖状オルガノポリシロキサンで、25℃における粘度が10〜1,000,000mPa・sのものが作業性、硬化性などから望ましいものである。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。   More specifically, the organopolysiloxane of component (A) is basically a straight-chain organoorganism in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups. A polysiloxane having an aliphatic unsaturated bond represented by an alkenyl group having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms such as two or more vinyl groups and allyl groups in one molecule, and a viscosity of 25 ° C. 10 to 1,000,000 mPa · s, particularly 100 to 100,000 mPa · s, any of which can be used, and in particular, both ends of the molecular chain represented by the following general formula (1) A linear organopolysiloxane having at least one alkenyl group on each silicon atom, usually 1 to 3 alkenyl groups, and a viscosity at 25 ° C. of 10 to 1,000,000 mPa Those workability s, is desirable from the curability. The linear organopolysiloxane may contain a small amount of a branched structure (trifunctional siloxane unit) in the molecular chain.


(式中、R11は互いに同一又は異種の非置換又は置換の1価炭化水素基、R12は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換の1価炭化水素基であり、k,mは0又は正の整数であり、k+mがこのオルガノポリシロキサンの25℃の粘度を10〜1,000,000mPa・sとする数である。)

Wherein R 11 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and R 12 is the same or different unsubstituted or unsaturated monovalent hydrocarbon group. And k and m are 0 or a positive integer, and k + m is a number that makes the viscosity of this organopolysiloxane at 25 ° C. 10 to 1,000,000 mPa · s.)

ここで、R11の1価炭化水素基としては、炭素数1〜10、特に1〜6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリール基、プロペニル基、イソプロペニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。 Here, the monovalent hydrocarbon group for R 11 is preferably a group having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and specifically includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. Group, tert-butyl group, phenyl group, tolyl group, xylyl group, naphthyl group and other aryl groups, benzyl group, phenylethyl group, phenylpropyl group and other aralkyl groups, vinyl group, aryl group, propenyl group, isopropenyl group Alkenyl groups such as those described above, or those in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as fluorine, bromine, chlorine, cyano groups, etc., such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoro Examples include halogen-substituted alkyl groups such as propyl group and cyanoethyl groups.

また、R12の1価炭化水素基としても、炭素数1〜10、特に1〜6のものが好ましく、上記R11の具体例と同様のものが例示できるが、但しアルケニル基は含まない。 Also, the monovalent hydrocarbon group for R 12 is preferably one having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and the same examples as the specific examples for R 11 can be exemplified, but an alkenyl group is not included.

k,mは、一般的には5≦k+m≦10,000を満足する0又は正の整数であり、好ましくは10≦k+m≦2,000で、0<k/(k+m)≦0.5を満足する整数である。   k and m are generally 0 or a positive integer satisfying 5 ≦ k + m ≦ 10,000, preferably 10 ≦ k + m ≦ 2,000, and 0 <k / (k + m) ≦ 0.5. A satisfying integer.

上記式(1)のオルガノポリシロキサンとして具体的には、下記のものを例示することができる。

(上記式において、k,mは上述した通りである。)
Specific examples of the organopolysiloxane of the above formula (1) include the following.

(In the above formula, k and m are as described above.)

また、(A)成分としてのビニル基含有シリコーン樹脂としては、前述したような構造以外の三次元構造を有するシリコーン樹脂を主成分とするものでも使用可能であり、なかでも代表例としては、(A)少なくとも(R1SiO3/2d(R1 2SiO)e(R1 3SiO1/2fからなり、R1はそれぞれ同一又は異種の非置換又は置換の1価炭化水素基を示し、その全1価炭化水素基数の2.0〜45.0モル%、特に5〜40モル%はビニル基であるものである。ビニル基が2.0モル%未満では架橋点が少なく強度不足となり、45.0モル%を超えると硬化物が脆くなってしまう。かつ25〜60モル%、特に30〜50モル%はフェニル基であることが好ましく、d、e及びfは各シロキサン単位のモル比を示し、d/(d+e+f)=0.65〜0.95、e/(d+e+f)=0.05〜0.35、f/(d+e+f)=0〜0.05であるビニル基含有オルガノポリシロキサンが挙げられる。 Further, as the vinyl group-containing silicone resin as the component (A), it is possible to use a silicone resin having a three-dimensional structure other than the structure as described above as a main component. A) at least (R 1 SiO 3/2 ) d (R 1 2 SiO) e (R 1 3 SiO 1/2 ) f , each R 1 being the same or different unsubstituted or substituted monovalent hydrocarbon group The total number of monovalent hydrocarbon groups is 2.0 to 45.0 mol%, particularly 5 to 40 mol% is a vinyl group. If the vinyl group is less than 2.0 mol%, there are few crosslinking points and the strength is insufficient, and if it exceeds 45.0 mol%, the cured product becomes brittle. And it is preferable that 25-60 mol%, especially 30-50 mol% is a phenyl group, d, e, and f show the molar ratio of each siloxane unit, d / (d + e + f) = 0.65-0.95. , E / (d + e + f) = 0.05 to 0.35, and f / (d + e + f) = 0 to 0.05.

なお、R1として、ビニル基、フェニル基以外の基としては、メチル基、エチル基、プロピル基等、R11と同様のものが挙げられる。 As R 1 , examples of groups other than vinyl group and phenyl group include those similar to R 11 such as methyl group, ethyl group, propyl group and the like.

また、このオルガノポリシロキサンのGPCによるポリスチレン換算重量平均分子量が1,000〜200,000、特に2,000〜100,000であることが好ましい。   Moreover, it is preferable that the polystyrene conversion weight average molecular weight by GPC of this organopolysiloxane is 1,000-200,000, especially 2,000-100,000.

(B)成分のオルガノハイドロジェンポリシロキサンは架橋剤として作用するものであり、該成分中のSiH基と(A)成分のビニル基とが付加反応することにより硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、一分子中にケイ素原子に結合した水素原子(即ち、SiH基)を2個以上有するものであればいずれのものでもよいが、特に下記平均組成式(2)
a(R2bSiO(4-a-b)/2 (2)
(式中、R2は脂肪族不飽和結合を含有しない同一又は異種の非置換又は置換の1価炭化水素基であり、a及びbは、0.001≦a<2、0.7≦b≦2、かつ0.8≦a+b≦3を満たす数である。)
で表され、一分子中にケイ素原子に結合した水素原子(SiH基)を少なくとも2個(通常2〜500個)、好ましくは3個以上(例えば3〜300個程度)有するものが挙げられる。
The (B) component organohydrogenpolysiloxane acts as a cross-linking agent, and forms a cured product by the addition reaction between the SiH group in the component and the vinyl group of the (A) component. The organohydrogenpolysiloxane may be any one as long as it has two or more hydrogen atoms (that is, SiH groups) bonded to a silicon atom in one molecule. In particular, the following average composition formula (2)
H a (R 2 ) b SiO (4-ab) / 2 (2)
Wherein R 2 is the same or different unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond, and a and b are 0.001 ≦ a <2, 0.7 ≦ b ≦ 2 and 0.8 ≦ a + b ≦ 3.)
And having at least 2 (usually 2 to 500), preferably 3 or more (for example, about 3 to 300) hydrogen atoms bonded to silicon atoms in one molecule.

ここで、上記式(2)中のR2は、脂肪族不飽和結合を含有しない同一又は異種の非置換又は置換の炭素数1〜10、特に炭素数1〜7の1価炭化水素基であることが好ましく、例えばメチル基等の低級アルキル基、フェニル基等のアリール基、前述の一般式(1)の置換基R11で例示したものが挙げられるが、但しアルケニル基は含まない。また、a及びbは、0.001≦a<2、0.7≦b≦2、かつ0.8≦a+b≦3を満たす数であり、好ましくは0.05≦a≦1、0.8≦b≦2、かつ1≦a+b≦2.7となる数である。ケイ素原子に結合した水素原子の位置は特に制約はなく、分子の末端でも途中でもよい。 Here, R 2 in the above formula (2) is the same or different unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 7 carbon atoms, which does not contain an aliphatic unsaturated bond. Preferably, examples include lower alkyl groups such as a methyl group, aryl groups such as a phenyl group, and those exemplified for the substituent R 11 of the general formula (1) described above, except that an alkenyl group is not included. A and b are numbers satisfying 0.001 ≦ a <2, 0.7 ≦ b ≦ 2, and 0.8 ≦ a + b ≦ 3, preferably 0.05 ≦ a ≦ 1, 0.8 ≦ b ≦ 2 and 1 ≦ a + b ≦ 2.7. The position of the hydrogen atom bonded to the silicon atom is not particularly limited, and may be at the end of the molecule or in the middle.

上記オルガノハイドロジェンポリシロキサンとしては、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体などが挙げられる。 Examples of the organohydrogenpolysiloxane include tris (dimethylhydrogensiloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetra. Methylcyclotetrasiloxane, both ends trimethylsiloxy-blocked methylhydrogenpolysiloxane, both ends trimethylsiloxy-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends dimethylhydrogensiloxy-blocked dimethylpolysiloxane, both ends dimethylhydrosiloxane Gensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane copolymer , Both terminals blocked with trimethylsiloxy groups methylhydrogensiloxane-diphenylsiloxane-dimethylsiloxane copolymers, copolymers consisting of (CH 3) 2 HSiO 1/2 units and SiO 4/2 units, (CH 3) 2 HSiO Examples thereof include copolymers comprising 1/2 units, SiO 4/2 units, and (C 6 H 5 ) SiO 3/2 units.

また、下記構造で示されるような化合物も使用することができる。
Moreover, a compound as shown by the following structure can also be used.

このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、一分子中のケイ素原子の数(又は重合度)は3〜1,000、特に3〜300程度のものを使用することができる。   The molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms in one molecule (or the degree of polymerization) is 3 to 1. , Especially about 3 to 300 can be used.

このオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合している有機基がメチル基、エチル基、プロピル基などのアルキル基、フェニル基などの芳香族炭化水素基、及びそれらのハロゲン置換アルキル基、もしくはハロゲン置換芳香族炭化水素基であるが、本発明においては全有機基の5〜40モル%が芳香族炭化水素基であるようなオルガノハイドロジェンポリシロキサンが前記(A)成分との相溶性に優れているので好ましい。   In this organohydrogenpolysiloxane, an organic group bonded to a silicon atom is an alkyl group such as a methyl group, an ethyl group or a propyl group, an aromatic hydrocarbon group such as a phenyl group, and a halogen-substituted alkyl group thereof, or In the present invention, an organohydrogenpolysiloxane which is a halogen-substituted aromatic hydrocarbon group, but in which 5 to 40 mol% of all organic groups are aromatic hydrocarbon groups, is compatible with the component (A). Since it is excellent, it is preferable.

上記(B)成分の配合量は、上記(A)成分の中のビニル基1個あたり、ケイ素原子結合水素原子(SiH基)を0.75〜2.0個与えるに十分な量とすればよい。   The blending amount of the component (B) should be sufficient to give 0.75 to 2.0 silicon-bonded hydrogen atoms (SiH groups) per vinyl group in the component (A). Good.

(C)成分としての硬化触媒としては白金系触媒であって、例えば塩化白金酸、アルコール変性塩化白金酸などが代表的なものである。その配合量は触媒量であり、白金原子として通常(A)成分に対し1〜1,000ppm、好ましくは5〜500ppmの範囲で用いられる。   The curing catalyst as the component (C) is a platinum-based catalyst, and typical examples thereof include chloroplatinic acid and alcohol-modified chloroplatinic acid. The blending amount is a catalyst amount, and is usually used as a platinum atom in the range of 1 to 1,000 ppm, preferably 5 to 500 ppm relative to the component (A).

(A)、(B)及び(C)成分を十分に混合することで硬化性シリコーン樹脂組成物を得ることができる。この場合、これを硬化して得られるシリコーン樹脂は、400nmにおける屈折率が1.50以上、特に1.50〜1.60である必要がある。そのため、フェニル基のような芳香族基の含有量は、(A)成分と(B)成分の全有機基の30モル%以上、特に30〜80モル%であることが好ましい。   A curable silicone resin composition can be obtained by sufficiently mixing the components (A), (B), and (C). In this case, the silicone resin obtained by curing this needs to have a refractive index at 400 nm of 1.50 or more, particularly 1.50 to 1.60. Therefore, the content of an aromatic group such as a phenyl group is preferably 30 mol% or more, particularly 30 to 80 mol% of the total organic groups of the components (A) and (B).

本発明のシリコーン樹脂組成物は、上述した(A)〜(C)成分を必須成分とするが、これに必要に応じて各種の架橋剤や顔料、蛍光体、及び離型剤等を添加してもよい。   The silicone resin composition of the present invention comprises the above-described components (A) to (C) as essential components, and various crosslinking agents, pigments, phosphors, release agents, and the like are added thereto as necessary. May be.

シリコーン樹脂レンズは、上述したビニル基含有オルガノポリシロキサンを主成分とし、ヒドロシリル化反応で硬化するシリコーン樹脂組成物を用いて射出成型やトランスファー成型で製造することができる。この種の成型方法で成型物を製造した場合、成型物の硬化収縮率は、成型条件、即ち成型温度、成型圧力、成型時間によって影響される。また、成型後の成型物の特性を確実に発揮させるために通常ポストキュアを行う。この工程後においても成型物の寸法は変化し、所定の寸法の成型物を得ることは非常に困難である。特にシリコーン樹脂の場合は、膨張係数が他の樹脂に比べて大きいことから、成型収縮率を制御して一定の寸法の成型物、即ちレンズを成形することが困難である。   The silicone resin lens can be produced by injection molding or transfer molding using a silicone resin composition containing the above-described vinyl group-containing organopolysiloxane as a main component and cured by a hydrosilylation reaction. When a molded product is manufactured by this type of molding method, the curing shrinkage rate of the molded product is affected by molding conditions, that is, molding temperature, molding pressure, and molding time. In addition, post-curing is usually performed in order to reliably exhibit the characteristics of the molded product after molding. Even after this step, the dimensions of the molded product change, and it is very difficult to obtain a molded product having a predetermined size. In particular, in the case of a silicone resin, since the expansion coefficient is larger than that of other resins, it is difficult to control a molding shrinkage rate to mold a molded product having a certain size, that is, a lens.

本発明者らは、前述したシリコーン樹脂組成物を、射出成型装置を用いて各種条件でレンズを成形し、成型収縮率を測定した。   The inventors of the present invention measured the molding shrinkage of the above-described silicone resin composition by molding a lens under various conditions using an injection molding apparatus.

成型収縮率は下記の式で計算した。なお、下記式で室温とは25℃である。
成型後の成型収縮率=[(室温での金型内のレンズ寸法−成型後のレンズ寸法)/室温での金型内のレンズ寸法]×100
ポストキュア後の成型収縮率=[(室温での金型内のレンズ寸法−ポストキュア後のレンズ寸法)/室温での金型内のレンズ寸法]×100
Mold shrinkage was calculated by the following formula. In the following formula, room temperature is 25 ° C.
Mold shrinkage after molding = [(lens dimension in mold at room temperature−lens dimension after molding) / lens dimension in mold at room temperature] × 100
Mold shrinkage after post-curing = [(lens dimension in the mold at room temperature−lens dimension after post-curing) / lens dimension in the mold at room temperature] × 100

その結果、図1で示されるように成型温度によって成型後の成型収縮率とポストキュア後の成型収縮率が大きく異なること、また、特定の成型温度においては成型後の成型収縮率とポストキュア後の成型収縮率がほぼ同じ値となる点が存在することが判明した。この関係はシリコーン樹脂組成物の反応性に関係し、硬化速度が速い組成物では成型後の成型収縮率の直線とポストキュア後の成型収縮率の直線が交差する点が低温側に移動する。   As a result, as shown in FIG. 1, the molding shrinkage ratio after molding and the molding shrinkage ratio after post-curing differ greatly depending on the molding temperature, and the molding shrinkage ratio after molding and the post-curing temperature at a specific molding temperature. It has been found that there are points at which the molding shrinkage of the resin is almost the same. This relationship is related to the reactivity of the silicone resin composition, and in a composition having a high curing rate, the point at which the straight line of the molding shrinkage after molding and the straight line of the molding shrinkage after post-curing move to the low temperature side.

成型収縮率は金型内での成型物の硬化度合いによって決まることから、成型時間を長くすることでも収縮率を小さくすることができる。しかし、収縮率は小さくなったとしても成型後とポストキュア後の成型収縮率の関係は同様な関係が成立する。よって、成型時間を長くすることは、収縮率を小さくすることはできるが、生産性低下の原因となることからあまり望ましい方法ではない。   Since the molding shrinkage rate is determined by the degree of cure of the molded product in the mold, the shrinkage rate can be reduced by increasing the molding time. However, even if the shrinkage rate decreases, the relationship between the molding shrinkage rate after molding and post-curing is similar. Therefore, increasing the molding time can reduce the shrinkage rate, but is not a desirable method because it causes a reduction in productivity.

本発明では、寸法精度のよいシリコーン樹脂レンズを製造するため、成型後及びポストキュア後の成型収縮率の比が0.9〜1.1となる成型条件で成形することにある。予めこの収縮率を加味して製作した金型を使用し、上述した成型条件で成形することにより、寸法精度のよいシリコーン樹脂レンズを製造することができる。   In the present invention, in order to produce a silicone resin lens with good dimensional accuracy, molding is performed under molding conditions in which the ratio of molding shrinkage after molding and post-curing is 0.9 to 1.1. A silicone resin lens with good dimensional accuracy can be manufactured by using a mold manufactured in consideration of the shrinkage ratio in advance and molding under the above-described molding conditions.

即ち、所用のシリコーン樹脂組成物における、種々成型温度及び成型時間での成型後の成型収縮率と種々ポストキュア温度及びポストキュア時間でのポストキュア後の成型収縮率との関係から、成型後及びポストキュア後の成型収縮率の比が0.9〜1.1にある条件を求め、この条件にて成形を行うことが有効である。   That is, in the desired silicone resin composition, from the relationship between the molding shrinkage after molding at various molding temperatures and molding times and the molding shrinkage after post-curing at various post-curing temperatures and post-curing times, It is effective to obtain the condition that the ratio of the molding shrinkage after post-cure is 0.9 to 1.1 and perform molding under this condition.

射出成型装置としては既存の射出成型装置を使用することができる。一般にシリコーン樹脂組成物は2液タイプのものが広く使用される。2液タイプの液状樹脂を供給できるシステムが搭載されている射出成型装置であれば何ら問題はない。   An existing injection molding apparatus can be used as the injection molding apparatus. Generally, a two-component type silicone resin composition is widely used. There is no problem as long as it is an injection molding apparatus equipped with a system capable of supplying a two-component liquid resin.

射出成型の場合は成型温度が120〜170℃で、射出圧力1〜100MPa、成型時間0.5〜20分の条件で成形することができる。中でも成型温度が140〜170℃の範囲で収縮率の比が0.9〜1.1の範囲となる温度で成形するほうが目的とした寸法のレンズを製造することができることから望ましい。   In the case of injection molding, the molding temperature is 120 to 170 ° C., the injection pressure is 1 to 100 MPa, and the molding time is 0.5 to 20 minutes. Among them, it is desirable to mold at a temperature where the molding temperature is in the range of 140 to 170 ° C. and the shrinkage ratio is in the range of 0.9 to 1.1, because a lens having the desired dimensions can be manufactured.

また、ポストキュアの条件としては、100℃以上で1〜4時間程度とすることができる。   Moreover, as a post-cure condition, it can be about 1 to 4 hours at 100 degreeC or more.

このようにして所定の形状に成形、硬化して得られるLED用シリコーン樹脂レンズは、上述したように、400nmと596nmで測定した屈折率の比が1.01以上であることが必要であるが、この場合、このような屈折率比とするためには、シリコーン樹脂を構成する(A)、(B)成分中のフェニル基の含有量をコントロールすることが有効である。   As described above, the LED silicone resin lens obtained by molding and curing into a predetermined shape in this way needs to have a refractive index ratio measured at 400 nm and 596 nm of 1.01 or more. In this case, in order to obtain such a refractive index ratio, it is effective to control the content of phenyl groups in the components (A) and (B) constituting the silicone resin.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例で、屈折率は、プリズムカプラー法(メトリコン)による25℃での値である。また、成型収縮率は下記方法により測定した。
成型収縮率
成型後、レンズを金型から取り出し、室温(25℃)までレンズの温度が低下した後、レンズの寸法を測定し、更に硬化をすすめるため150℃以上の温度で2〜5時間ポストキュアを行い、ポストキュア完了後、再度レンズの寸法を測定することでそれぞれの収縮率を計算した。これら収縮率を用いて計算することで成型後とポストキュア後の成型収縮率とした。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, the refractive index is a value at 25 ° C. by the prism coupler method (Metricon). The mold shrinkage was measured by the following method.
After molding shrinkage rate , the lens is removed from the mold, and after the temperature of the lens drops to room temperature (25 ° C), the dimensions of the lens are measured and post-cured at a temperature of 150 ° C or higher for 2-5 hours to further cure. Curing was performed, and after completion of post-curing, the respective shrinkage ratios were calculated by measuring the lens dimensions again. By calculating using these shrinkage rates, the molding shrinkage rates after molding and post-curing were obtained.

[調製例1]
フェニルトリクロルシラン1,057.7質量部、メチルトリクロルシラン854.3質量部、ジフェニルジクロルシラン180.7質量部、メチルビニルジクロルシラン402.9質量部、及びイソプロピルアルコール216質量部、トルエン1,567質量部からなる混合物を水6,535質量部中で激しく撹拌を行い、60分間で滴下した。更に60分間撹拌を行った後、中性となるまで水洗した。水洗後、シロキサン濃度を25質量%のトルエン溶液とし、水酸化カリウム0.42質量部を添加し、5時間加熱還流して重合した。次いでトリメチルクロルシラン13.8質量部を添加し、室温で60分間撹拌を行い、中和した。中和後、濾過してトルエンを留去することで、無色透明な三次元網状構造のビニル基含有オルガノポリシロキサン1,110質量部を得た。
[Preparation Example 1]
1,057.7 parts by weight of phenyltrichlorosilane, 854.3 parts by weight of methyltrichlorosilane, 180.7 parts by weight of diphenyldichlorosilane, 402.9 parts by weight of methylvinyldichlorosilane, 216 parts by weight of isopropyl alcohol, toluene 1 The mixture consisting of 567 parts by mass was vigorously stirred in 6,535 parts by mass of water and added dropwise over 60 minutes. The mixture was further stirred for 60 minutes and then washed with water until neutrality. After washing with water, a toluene solution having a siloxane concentration of 25% by mass was added, 0.42 parts by mass of potassium hydroxide was added, and the mixture was heated to reflux for 5 hours for polymerization. Next, 13.8 parts by mass of trimethylchlorosilane was added and neutralized by stirring at room temperature for 60 minutes. After neutralization, the toluene was distilled off by filtration to obtain 1,110 parts by weight of a vinyl group-containing organopolysiloxane having a colorless and transparent three-dimensional network structure.

[実施例1]
調製例1で合成したオルガノポリシロキサン100質量部、下記式

で示されるケイ素原子結合水素原子を有するオルガノポリシロキサン30質量部、触媒として白金含有量が2質量%の塩化白金酸アルコール溶液0.1質量部を均一に混合し、液状シリコーンゴム用の射出成型装置を用いて表1に記載した成型温度で165℃,射出圧力10MPaで3分間成形することで、所定の形状のシリコーン樹脂レンズを成形した。得られたレンズの屈折率は596nmで測定して1.52、また400nmでの屈折率は1.54であった。屈折率比400nm/596nm=1.013であった。
[Example 1]
100 parts by mass of organopolysiloxane synthesized in Preparation Example 1, the following formula

30 parts by mass of an organopolysiloxane having silicon-bonded hydrogen atoms and 0.1 part by mass of a chloroplatinic alcohol solution having a platinum content of 2% by mass as a catalyst are uniformly mixed, and injection molding for liquid silicone rubber A silicone resin lens having a predetermined shape was molded by molding for 3 minutes at 165 ° C. and an injection pressure of 10 MPa at the molding temperature described in Table 1 using an apparatus. The refractive index of the obtained lens was 1.52 measured at 596 nm, and the refractive index at 400 nm was 1.54. The refractive index ratio was 400 nm / 596 nm = 1.014.

成型後、成型品(n=5個)の寸法を測定し、成型後の成型収縮率(平均値)を計算した。レンズ成形用の金型寸法は図2で示される室温(25℃)で直径が4.3mmであった。   After molding, the dimensions of the molded product (n = 5) were measured, and the molding shrinkage rate (average value) after molding was calculated. The mold size for lens molding was 4.3 mm in diameter at room temperature (25 ° C.) shown in FIG.

更に、ここで異なる条件で成形したレンズ(それぞれの条件でn=5個)をポストキュア条件(150℃で4時間)で後硬化させた後、再び室温(25℃)で寸法を測定し、ポストキュア後の成型収縮率を計算した。   Further, after post-curing the lenses molded under different conditions (n = 5 in each condition) under post-cure conditions (150 ° C. for 4 hours), the dimensions were measured again at room temperature (25 ° C.), The mold shrinkage after post-cure was calculated.

射出圧力10MPa,成型温度165℃で成形することで、成型後とポストキュア後において寸法変化がほとんどない精度の良好なレンズを製造することが可能となる。   By molding at an injection pressure of 10 MPa and a molding temperature of 165 ° C., it is possible to manufacture a lens with good accuracy with little dimensional change after molding and post-cure.

[実施例2]
下記式

(k=69、m=30)
で示される粘度が4,000mPa・sのビニル基含有シロキサン100質量部、架橋剤として下記式

で示されるケイ素原子結合水素原子を有するオルガノポリシロキサン7質量部、触媒として白金含有量が2質量%の塩化白金酸アルコール溶液0.1質量部を均一に混合し、液状シリコーンゴム用の射出成型装置を用いて成型温度165℃,射出圧力10MPaで3分間成形することで、所定の形状のシリコーン樹脂レンズを成形した。
[Example 2]
Following formula

(K = 69, m = 30)
100 parts by mass of a vinyl group-containing siloxane having a viscosity of 4,000 mPa · s, represented by the following formula

7 parts by mass of an organopolysiloxane having a silicon atom-bonded hydrogen atom and 0.1 parts by mass of a chloroplatinic alcohol solution having a platinum content of 2% by mass as a catalyst are uniformly mixed, and injection molding for liquid silicone rubber A silicone resin lens having a predetermined shape was molded by molding for 3 minutes at a molding temperature of 165 ° C. and an injection pressure of 10 MPa using an apparatus.

得られたレンズの屈折率は596nmで測定して1.55、また400nmでの屈折率は1.59であった。屈折率比400nm/596nm=1.02であった。
The refractive index of the obtained lens was 1.55 when measured at 596 nm, and the refractive index at 400 nm was 1.59. Refractive index ratio 400 nm / 596 nm = 1.02 was 6.

[比較例1]
下記式

で示される粘度が5,000mPa・sのビニル基含有オルガノポリシロキサン100質量部、下記式

で示されるケイ素原子結合水素原子を有するオルガノポリシロキサンを3質量部、触媒として白金含有量が2質量%の塩化白金酸アルコール溶液0.1質量部を均一に混合し、液状シリコーンゴム用の射出成型装置を用いて成型温度165℃,射出圧力10MPaで3分間成形することで、所定の形状のシリコーン樹脂レンズを成形した。
[Comparative Example 1]
Following formula

100 parts by mass of a vinyl group-containing organopolysiloxane having a viscosity of 5,000 mPa · s, represented by the following formula:

3 parts by mass of an organopolysiloxane having silicon-bonded hydrogen atoms represented by the formula (1) and 0.1 part by mass of a chloroplatinic acid alcohol solution having a platinum content of 2% by mass as a catalyst are uniformly mixed and injected for liquid silicone rubber. A silicone resin lens having a predetermined shape was molded by molding for 3 minutes at a molding temperature of 165 ° C. and an injection pressure of 10 MPa using a molding apparatus.

得られたレンズの屈折率は596nmで測定して1.41、また400nmでの屈折率は1.42であった。屈折率比400nm/596nm=1.007であった。   The refractive index of the obtained lens was 1.41 measured at 596 nm, and the refractive index at 400 nm was 1.42. The refractive index ratio was 400 nm / 596 nm = 1.007.

[実施例3]
図3に示すように、青色LEDを搭載したパッケージ上にシリコーンゴムで実施例1,2及び比較例1で製造したシリコーン樹脂レンズを接着した。その後、LEDを発光させて光の取り出し効率を比較した。結果は比較例1のレンズを装着したLEDに対して実施例1,2のレンズを装着したLEDの取り出し効率がいずれも15%向上した。
[Example 3]
As shown in FIG. 3, the silicone resin lenses manufactured in Examples 1 and 2 and Comparative Example 1 were bonded with silicone rubber on a package on which a blue LED was mounted. Then, LED was made to light-emit and the light extraction efficiency was compared. As a result, the extraction efficiency of the LEDs with the lenses of Examples 1 and 2 improved by 15% compared to the LED with the lens of Comparative Example 1.

なお、図3において、1はシリコーン樹脂レンズ、2はシリコーンゴム、3はリフレクター、4は金線、5はLED素子である。   In FIG. 3, 1 is a silicone resin lens, 2 is silicone rubber, 3 is a reflector, 4 is a gold wire, and 5 is an LED element.

成型温度と成型後の収縮率及びポストキュア後の収縮率の関係を示すグラフである。It is a graph which shows the relationship between molding temperature, the shrinkage rate after shaping | molding, and the shrinkage rate after post-cure. シリコーン樹脂レンズの形状の一例を示す概略図である。It is the schematic which shows an example of the shape of a silicone resin lens. 実施例で用いたLEDデバイスの概略図である。It is the schematic of the LED device used in the Example.

符号の説明Explanation of symbols

1 シリコーン樹脂レンズ
2 シリコーンゴム
3 リフレクター
4 金線
5 LED素子
1 Silicone resin lens 2 Silicone rubber 3 Reflector 4 Gold wire 5 LED element

Claims (2)

(A)下記式
(上記式において、k、mは正の整数で、10≦k+m≦2,000、0<k/(k+m)≦0.5を満足する整数である。)
から選ばれる直鎖状オルガノポリシロキサン、
又は下記式
(R1SiO3/2d(R1 2SiO)e(R1 3SiO1/2f
(上記式において、R1はそれぞれ同一又は異種のビニル基、フェニル基、メチル基、エチル基、プロピル基から選ばれ、R1の2.0〜45.0モル%がビニル基、25〜60モル%がフェニル基であり、d/(d+e+f)=0.65〜0.95、e/(d+e+f)=0.05〜0.35、f/(d+e+f)=0〜0.05である。)
で示される三次元構造を有するビニル基含有オルガノポリシロキサン、
(B)下記式
から選ばれるオルガノハイドロジェンポリシロキサン:上記(A)成分中のビニル基1個あたり、ケイ素原子結合水素原子を0.75〜2.0個与える量、
(C)白金系触媒:(A)成分に対し1〜1,000ppm
を含有するシリコーン樹脂組成物を成形、硬化することにより形成され、400nmと596nmで測定した屈折率の比が1.012〜1.026であり、400nmの屈折率が1.51〜1.60であるシリコーン樹脂からなることを特徴とする青色又は紫外LED用シリコーン樹脂レンズ。
(A) The following formula
(In the above formula, k and m are positive integers and are integers satisfying 10 ≦ k + m ≦ 2,000 and 0 <k / (k + m) ≦ 0.5.)
A linear organopolysiloxane selected from
Or the following formula: (R 1 SiO 3/2 ) d (R 1 2 SiO) e (R 1 3 SiO 1/2 ) f
(In the above formula, each R 1 is selected from the same or different vinyl group, phenyl group, methyl group, ethyl group, and propyl group, and 2.0 to 45.0 mol% of R 1 is vinyl group, 25 to 60 The mol% is a phenyl group, and d / (d + e + f) = 0.65 to 0.95, e / (d + e + f) = 0.05 to 0.35, and f / (d + e + f) = 0 to 0.05. )
Vinyl group-containing organopolysiloxane having a three-dimensional structure represented by
(B) The following formula
An organohydrogenpolysiloxane selected from: an amount of 0.75 to 2.0 silicon-bonded hydrogen atoms per vinyl group in the component (A),
(C) Platinum-based catalyst: 1 to 1,000 ppm relative to component (A)
Formed and cured, the ratio of the refractive index measured at 400 nm and 596 nm is 1.012 to 1.026 , and the refractive index at 400 nm is 1.51 to 1.60. A silicone resin lens for blue or ultraviolet LEDs, characterized by comprising a silicone resin.
請求項1記載のシリコーン樹脂組成物を射出成形した後、ポストキュアして、成型後の成型収縮率とポストキュア後の成型収縮率の比を0.9〜1.1とし、かつ400nmと596nmで測定した屈折率の比が1.012〜1.026であり、400nmの屈折率が1.51〜1.60であるシリコーン樹脂からなる青色又は紫外LED用シリコーン樹脂レンズを得ることを特徴とするLED用シリコーン樹脂レンズの製造方法。 The silicone resin composition according to claim 1 is injection-molded and then post-cured so that the ratio of the molding shrinkage after molding to the molding shrinkage after post-cure is 0.9 to 1.1, and 400 nm and 596 nm. A silicone resin lens for a blue or ultraviolet LED comprising a silicone resin having a refractive index ratio of 1.012 to 1.026 and a refractive index of 400 nm of 1.51 to 1.60 is obtained. The manufacturing method of the silicone resin lens for LED.
JP2005148387A 2005-05-20 2005-05-20 Silicone resin lens for LED and manufacturing method thereof Active JP4954499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148387A JP4954499B2 (en) 2005-05-20 2005-05-20 Silicone resin lens for LED and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148387A JP4954499B2 (en) 2005-05-20 2005-05-20 Silicone resin lens for LED and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006324596A JP2006324596A (en) 2006-11-30
JP4954499B2 true JP4954499B2 (en) 2012-06-13

Family

ID=37544020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148387A Active JP4954499B2 (en) 2005-05-20 2005-05-20 Silicone resin lens for LED and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4954499B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138158B2 (en) 2005-05-23 2013-02-06 信越化学工業株式会社 Silicone lens molding material for LED light-emitting devices
JP5154440B2 (en) * 2006-12-04 2013-02-27 パナソニック株式会社 Optical head, optical information recording / reproducing apparatus, and optical information system apparatus
WO2008120534A1 (en) * 2007-03-29 2008-10-09 Konica Minolta Opto, Inc. Optical element, imaging optical system, imaging module, optical system for optical pickup device, optical pickup device, electronic module and method for manufacturing the electronic module
US20100110269A1 (en) * 2007-03-29 2010-05-06 Mika Honda Image pick-up device and method for manufacturing the device
TWI434890B (en) 2007-04-06 2014-04-21 Shinetsu Chemical Co Addition curable silicone resin composition and silicone lens using same
WO2008146612A1 (en) * 2007-05-28 2008-12-04 Konica Minolta Opto, Inc. Method for manufacture of imaging device, imaging device, and optical element
EP2075277A3 (en) 2007-12-25 2012-11-07 Nitto Denko Corporation Silicone resin composition
WO2009087836A1 (en) * 2008-01-11 2009-07-16 Konica Minolta Opto, Inc. Optical element manufacturing method, optical element, electronic apparatus manufacturing method, and electronic apparatus
KR101592836B1 (en) 2008-02-07 2016-02-05 미쓰비시 가가꾸 가부시키가이샤 Semiconductor light emitting device, backlighting device, color image display device and phosphor used for those devices
JP5744386B2 (en) * 2009-10-07 2015-07-08 日東電工株式会社 Optical semiconductor encapsulant
JP5413979B2 (en) * 2010-06-22 2014-02-12 信越化学工業株式会社 Silicone resin lens for image and manufacturing method thereof
JP2012015254A (en) 2010-06-30 2012-01-19 Nitto Denko Corp Phosphor ceramic and light emitting device
WO2013172921A1 (en) 2012-05-14 2013-11-21 Momentive Performance Materials Inc High refractive index material
CN112300576B (en) 2019-07-30 2024-05-14 杜邦东丽特殊材料株式会社 Hot melt curable silicone composition, sealant, film, and optical semiconductor element
JP2021021038A (en) 2019-07-30 2021-02-18 デュポン・東レ・スペシャルティ・マテリアル株式会社 Curable silicone composition, optical semiconductor device and method of manufacturing the optical semiconductor device
JP2022039440A (en) 2020-08-28 2022-03-10 デュポン・東レ・スペシャルティ・マテリアル株式会社 Curable silicone composition, sealant, and optical semiconductor device
JP2022084179A (en) 2020-11-26 2022-06-07 デュポン・東レ・スペシャルティ・マテリアル株式会社 Hotmelt silicone composition, encapsulant, hotmelt adhesive and optical semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146554A (en) * 2002-10-24 2004-05-20 Asahi Rubber:Kk Semiconductor optical element component and soldering method thereof
JP2004186168A (en) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd Silicone resin composition for light emitting diode element
JP4071639B2 (en) * 2003-01-15 2008-04-02 信越化学工業株式会社 Silicone resin composition for light emitting diode element
JP4058627B2 (en) * 2003-03-14 2008-03-12 株式会社朝日ラバー Manufacturing method of resin lens for semiconductor optical element
JP2004359756A (en) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Sealant composition for led
JP3897115B2 (en) * 2003-07-09 2007-03-22 信越化学工業株式会社 Semiconductor element sealing method
JP4586967B2 (en) * 2003-07-09 2010-11-24 信越化学工業株式会社 Light emitting semiconductor coating protective material and light emitting semiconductor device

Also Published As

Publication number Publication date
JP2006324596A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4954499B2 (en) Silicone resin lens for LED and manufacturing method thereof
JP5138158B2 (en) Silicone lens molding material for LED light-emitting devices
TWI447176B (en) Curable polyorganosiloxane composition
EP1424363B1 (en) Silicone resin composition for led devices
JP5105305B2 (en) Addition-curing silicone resin composition and silicone lens using the same
JP4697405B2 (en) Silicone resin composition for lens molding and silicone lens
KR101236126B1 (en) Silicone resin composition for die-bonding
JP5247979B2 (en) Polyorganosiloxane composition giving a transparent cured product
KR101565762B1 (en) Curable organopolysiloxane composition and cured product thereof
JP4071639B2 (en) Silicone resin composition for light emitting diode element
TWI544665B (en) Silicon oxide compositions for semiconductor encapsulation
JP5413979B2 (en) Silicone resin lens for image and manufacturing method thereof
JP2008227119A (en) Integral structure of light-emitting diode chip and lens, and its manufacturing method
KR20120024474A (en) Addition curable silicone composition, optical element sealing material comprising said composition, and semiconductor device comprising optical element sealed with cured product of said optical element sealing material
JP2009185226A (en) Heat curable silicone composition and molded product using the same for optical member
JP2005327777A (en) Silicone resin constituent for light emitting diode
JP4626759B2 (en) Injection molding method of two-part silicone resin composition
JP2010109034A (en) Silicone resin composition for light-emitting diode element, and light-emitting diode element
JPH08134358A (en) Curable silicone composition for optical use
JP2018172447A (en) Crosslinkable organopolysiloxane composition and cured product thereof
JP5913537B2 (en) Method for producing curable organopolysiloxane composition
TW201713708A (en) Crosslinkable organopolysiloxane composition and cured object obtained therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3