JP4953615B2 - Method for producing dye-sensitized solar cell semiconductor electrode and method for producing dye-sensitized solar cell - Google Patents

Method for producing dye-sensitized solar cell semiconductor electrode and method for producing dye-sensitized solar cell Download PDF

Info

Publication number
JP4953615B2
JP4953615B2 JP2005314581A JP2005314581A JP4953615B2 JP 4953615 B2 JP4953615 B2 JP 4953615B2 JP 2005314581 A JP2005314581 A JP 2005314581A JP 2005314581 A JP2005314581 A JP 2005314581A JP 4953615 B2 JP4953615 B2 JP 4953615B2
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005314581A
Other languages
Japanese (ja)
Other versions
JP2006156364A (en
Inventor
雅人 吉川
信一郎 杉
信吾 大野
研二 佐藤
芳典 岩淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005314581A priority Critical patent/JP4953615B2/en
Publication of JP2006156364A publication Critical patent/JP2006156364A/en
Application granted granted Critical
Publication of JP4953615B2 publication Critical patent/JP4953615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、色素増感型太陽電池用半導体電極の製造方法及び色素増感型太陽電池の製造方法に関し、特に光電変換光率が高く、生産性に優れた色素増感型太陽電池用半導体電極の製造方法に関するものである。 The present invention relates to a manufacturing method and a manufacturing method of the dye-sensitized solar cell of the dye-sensitized solar cell semiconductor electrodes, particularly high photoelectric conversion light ratio, semiconductor electrodes for excellent dye-sensitized solar cell productivity It is related with the manufacturing method .

近年、省エネルギー、資源の有効利用、環境汚染の防止等の面から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、開発が進められている。現在、一般的に用いられている太陽電池は、光電変換材料として、結晶性シリコン、アモルファスシリコンを用いたpn接合型太陽電池である。しかしながら、pn接合型太陽電池においては、結晶性シリコン等の光電変換材料の製造に多大なエネルギーを要するため、省エネルギー化等の上記目的を達成することができない。また、光電変換材料の製造に多大なエネルギーが必要なため、結果として、pn接合型太陽電池は、高価なものと成らざるを得ない。   In recent years, solar cells that directly convert sunlight into electrical energy have attracted attention and are being developed from the viewpoints of energy saving, effective use of resources, prevention of environmental pollution, and the like. Currently, solar cells that are generally used are pn junction solar cells that use crystalline silicon or amorphous silicon as a photoelectric conversion material. However, in a pn junction solar cell, a large amount of energy is required for producing a photoelectric conversion material such as crystalline silicon, and thus the above-mentioned purpose such as energy saving cannot be achieved. Moreover, since enormous energy is required for manufacture of a photoelectric conversion material, as a result, a pn junction type solar cell must be expensive.

これに対して、光電変換材料として、シリコン等を用いずに、有機色素で増感された酸化物半導体を用いた色素増感型太陽電池が知られている。該色素増感型太陽電池には、大量生産され且つ比較的安価な酸化物半導体及び有機色素を用いることができるため、原材料の面で、上記シリコン等を用いたpn接合型太陽電池に比べて有利な点が多い。   On the other hand, as a photoelectric conversion material, a dye-sensitized solar cell using an oxide semiconductor sensitized with an organic dye without using silicon or the like is known. Since the dye-sensitized solar cell can use a mass-produced and relatively inexpensive oxide semiconductor and organic dye, in terms of raw materials, compared to a pn junction solar cell using silicon or the like. There are many advantages.

上記色素増感型太陽電池としては、例えば、酸化亜鉛粉末を圧縮成形し、1300℃で1時間焼結して形成したディスク状焼結体の表面に、有機色素としてローズベンガルを吸着させてなる酸化物半導体電極を用いた色素増感型太陽電池が提案されている(非特許文献1参照)。しかしながら、該太陽電池は、電流/電圧曲線における0.2Vの起電圧時の電流値が約25μA程度と非常に低く、実用化には程遠いものであった。   As the dye-sensitized solar cell, for example, rose bengal is adsorbed as an organic dye on the surface of a disk-shaped sintered body formed by compression molding zinc oxide powder and sintering at 1300 ° C. for 1 hour. A dye-sensitized solar cell using an oxide semiconductor electrode has been proposed (see Non-Patent Document 1). However, the solar cell has a very low current value of about 25 μA at an electromotive voltage of 0.2 V in the current / voltage curve, and is far from practical use.

これに対し、酸化物半導体表面に遷移金属錯体等の分光増感色素層を有するもの(特許文献1参照)、金属イオンでドープした酸化チタン半導体層の表面に遷移金属錯体等の分光増感色素層を有するもの(特許文献2参照)、酸化物半導体微粒子集合体の焼結物からなる酸化物半導体膜を用いた色素増感型太陽電池(特許文献3参照)等が知られており、光電変換効率が徐々に改善されてきている。しかしながら、これらの色素増感型太陽電池は、半導体層の作製に長時間を要する上、光電変換効率においても依然として改善の余地がある。   On the other hand, those having a spectral sensitizing dye layer such as a transition metal complex on the oxide semiconductor surface (see Patent Document 1), and a spectral sensitizing dye such as a transition metal complex on the surface of the titanium oxide semiconductor layer doped with metal ions. A layer having a layer (see Patent Document 2), a dye-sensitized solar cell using an oxide semiconductor film made of a sintered product of oxide semiconductor fine particle aggregates (see Patent Document 3), and the like are known. Conversion efficiency is gradually improved. However, these dye-sensitized solar cells require a long time for the production of the semiconductor layer, and there is still room for improvement in photoelectric conversion efficiency.

ネイチャー,268(1976),p.402Nature, 268 (1976), p. 402 特開平1−220380号公報Japanese Patent Laid-Open No. 1-220380 特表平5−504023号公報Japanese National Patent Publication No. 5-504023 特開平10−92477号公報Japanese Patent Laid-Open No. 10-92477

そこで、本発明の目的は、上記従来技術の問題を解決し、従来試みられることのなかった新規な方法で透明電極に半導体層を配設する、光電変換効率が高い色素増感型太陽電池用半導体電極の製造方法及び該色素増感型太陽電池用半導体電極を備えた色素増感型太陽電池の製造方法を提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to dispose a semiconductor layer on a transparent electrode by a novel method that has not been tried before, and for a dye-sensitized solar cell with high photoelectric conversion efficiency. It is to provide a method for manufacturing a dye-sensitized solar cell having a manufacturing method and a semiconductor electrode for said color Motozo sensitized solar cell of the semiconductor electrode.

本発明者は、上記目的を達成するために鋭意検討した結果、ガスフロースパッタリング法で半導体層を透明電極にコーティングすることにより、迅速に半導体層を形成できる上、光電変換効率が高い色素増感型太陽電池用半導体電極が得られることを見出し、本発明を完成させるに至った。   As a result of diligent study to achieve the above object, the present inventor can rapidly form a semiconductor layer by coating the semiconductor layer on the transparent electrode by gas flow sputtering, and dye sensitization with high photoelectric conversion efficiency. The inventors have found that a semiconductor electrode for a solar cell can be obtained, and have completed the present invention.

即ち、本発明の色素増感型太陽電池用半導体電極の製造方法は、ガスフロースパッタリング法により透明電極上に半導体層を配設し、該半導体層に有機色素を吸着させことを特徴とする。 That is, the manufacturing method of the dye-sensitized solar cell semiconductor electrode of the present invention, arranged a semiconductor layer on the transparent electrode by a gas flow sputtering, characterized in that Ru is adsorbed an organic dye to the semiconductor layer .

本発明の色素増感型太陽電池用半導体電極の製造方法においては、一種又は複数の金属又は金属化合物を同時にスパッタリングして、前記透明電極上に前記半導体層を配設することが好ましい。ここで、本発明の色素増感型太陽電池用半導体電極の製造方法においては、前記複数の金属又は金属化合物をスパッタリングするに際し、複数のカソードを用い同時に放電させて、前記透明電極上に前記半導体層を配設すること、並びに、前記複数の金属又は金属化合物をスパッタリングするに際し、複数のターゲットを一つのカソードに取り付け、放電時に該カソードにおいて同時に複数の金属をスパッタリングして前記透明電極上に前記半導体層を配設することが更に好ましい。なお、前記複数の金属又は金属化合物をスパッタリングするに際し、複数のターゲットを一つのカソードに取り付け、放電時に該カソードにおいて同時に複数の金属をスパッタリングして前記透明電極上に前記半導体層を配設した後に、該半導体層中の金属又は金属化合物の少なくとも1種を酸及び/又はアルカリで除去することも好ましい。また、前記複数のターゲットを一つのカソードに取り付けるに際し、該ターゲットが二つの場合は、該ターゲットを対面させて配置し、前記ターゲットが三つ以上の場合は、該ターゲットを多面体状に配置することが好ましい。 In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, it is preferable that one or more metals or metal compounds are simultaneously sputtered to dispose the semiconductor layer on the transparent electrode. Here, in the method for producing a semiconductor electrode for a dye-sensitized solar cell according to the present invention, when sputtering the plurality of metals or metal compounds, a plurality of cathodes are simultaneously discharged, and the semiconductor is formed on the transparent electrode. disposing the layer, and, upon sputtering the plurality of metal or metal compound, attaching a plurality of targets to the cathode of one, the on the transparent electrode by sputtering a plurality of metal simultaneously in the cathode during discharge More preferably, a semiconductor layer is provided. When sputtering the plurality of metals or metal compounds, a plurality of targets are attached to one cathode, and after discharge, a plurality of metals are simultaneously sputtered on the cathode during discharge to dispose the semiconductor layer on the transparent electrode. It is also preferable to remove at least one metal or metal compound in the semiconductor layer with an acid and / or an alkali. Further, when attaching the plurality of targets to one cathode, when there are two targets, the targets are arranged to face each other, and when there are three or more targets, the targets are arranged in a polyhedral shape. Is preferred.

本発明の色素増感型太陽電池用半導体電極の製造方法において、前記金属としては、Na,Mg,Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Ge,Rb,Sr,Y,Zr,Nb,Mo,Ru,Rh,Ag,Cd,In,Sn,Sb,Cs,Ba,La,Hf,Ta,W,Re,Os,Ir,Tl,Pb,Bi,Ce,Pr,Nd,Sm及びEuが好ましい。 In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, the metal may be Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Tl, Pb, Bi, Ce, Pr, Nd, Sm and Eu are preferred.

本発明の色素増感型太陽電池用半導体電極の製造方法において、前記金属としては、貴金属を用いてもよい。ここで、該貴金属が、Ag,Pt及びAuからなる群から選択される少なくとも1種であることが好ましい。 In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, a noble metal may be used as the metal. Here, it is preferable that the noble metal is at least one selected from the group consisting of Ag, Pt and Au.

本発明の色素増感型太陽電池用半導体電極の製造方法において、前記金属化合物としては、金属酸化物が好ましい。ここで、該金属酸化物が、TiOx,CoOx,NiOx,CuOx,ZnOx,TaOx及びWOxからなる群から選択される少なくとも1種であり、前記xの値をスパッタリング時の酸素流量で制御することが好ましい。 In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, the metal compound is preferably a metal oxide. Here, the metal oxide is at least one selected from the group consisting of TiO x , CoO x , NiO x , CuO x , ZnO x , TaO x and WO x , and the value of x is determined during sputtering. It is preferable to control by the oxygen flow rate.

本発明の色素増感型太陽電池用半導体電極の製造方法において、前記金属化合物としては、金属窒化物も好ましい。ここで、該金属窒化物が、TiNx,CoNx,NiNx,CuNx,ZnNx,TaNx及びWNxからなる群から選択される少なくとも1種であり、前記xの値をスパッタリング時の窒素流量で制御することが好ましい。 In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, the metal compound is also preferably a metal nitride. Here, the metal nitride is at least one selected from the group consisting of TiN x , CoN x , NiN x , CuN x , ZnN x , TaN x and WN x , and the value of x is determined during sputtering. It is preferable to control by the nitrogen flow rate.

本発明の色素増感型太陽電池用半導体電極の製造方法において、前記金属化合物としては、金属酸化窒化物も好ましい。ここで、該金属酸化窒化物が、TiOxy,CoOxy,NiOxy,CuOxy,ZnOxy,TaOxy及びWOxyからなる群から選択される少なくとも1種であり、前記x及びyの値をスパッタリング時の酸素流量及び窒素流量で制御することが好ましい。 In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, the metal compound is preferably a metal oxynitride. Here, the metal oxynitride is selected from the group consisting of TiO x N y , CoO x N y , NiO x N y , CuO x N y , ZnO x N y , TaO x N y, and WO x N y. It is preferable to control the values of x and y by the oxygen flow rate and the nitrogen flow rate during sputtering.

本発明の色素増感型太陽電池用半導体電極の製造方法においては、前記ガスフロースパッタリングで用いたターゲット材の使用効率が80%以上であることが好ましい。 In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, it is preferable that the use efficiency of the target material used in the gas flow sputtering is 80% or more.

本発明の色素増感型太陽電池用半導体電極の製造方法の他の好適例においては、前記透明電極が、透明基材と、該透明基材上に配設された透明導電性薄膜とからなる。ここで、前記透明基材が、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)又はポリメチルメタクリレート(PMMA)であることが好ましい。また、前記透明導電性薄膜が、ITO,FTO,ATO及びAZOからなる群から選択される少なくとも一種の金属酸化物からなることが好ましい。更に、前記透明電極が、前記透明導電性薄膜上に更にメッシュ状の金属補助電極を備えることも好ましい。 In another preferred embodiment of the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, the transparent electrode comprises a transparent substrate and a transparent conductive thin film disposed on the transparent substrate. . Here, the transparent substrate is preferably glass, polyethylene terephthalate (PET), polycarbonate (PC), or polymethyl methacrylate (PMMA). Moreover, it is preferable that the said transparent conductive thin film consists of at least 1 type of metal oxide selected from the group which consists of ITO, FTO, ATO, and AZO. Furthermore, it is preferable that the transparent electrode further includes a mesh-like metal auxiliary electrode on the transparent conductive thin film.

本発明の色素増感型太陽電池用半導体電極の製造方法の他の好適例においては、前記透明電極が、透明基材と、透明導電性薄膜と、前記透明基材と前記透明導電性薄膜との間に配設されたメッシュ状の金属補助電極とを備える。 In another preferred embodiment of the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, the transparent electrode comprises a transparent base material, a transparent conductive thin film, the transparent base material, and the transparent conductive thin film. And a mesh-like metal auxiliary electrode disposed between the two.

本発明の色素増感型太陽電池用半導体電極の製造方法の他の好適例においては、前記透明電極が、透明基材と、金属酸化物薄膜及び金属薄膜の多層膜とからなる。 In another preferred embodiment of the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, the transparent electrode comprises a transparent substrate, a metal oxide thin film, and a multilayer film of a metal thin film.

また、本発明の色素増感型太陽電池の製造方法色素増感型太陽電池用半導体電極と、対向電極と、電解質とを備えた色素増感型太陽電池の製造方法において、前記色素増感型太陽電池用半導体電極を、上記の方法により製造することを特徴とする。 Further, the method of manufacturing a dye-sensitized solar cell of the present invention includes a semiconductor electrode for dye-sensitized solar cell, and the counter electrode, the manufacturing method of the dye-sensitized solar cell comprising an electrolyte, the dye A semiconductor electrode for a sensitive solar cell is produced by the method described above .

本発明によれば、ガスフロースパッタリング法により透明電極上に半導体層を配設し、該半導体層に有機色素を吸着させる、光電変換効率及び生産性が高い色素増感型太陽電池用半導体電極の製造方法、並びに該色素増感型太陽電池用半導体電極を備えた色素増感型太陽電池の製造方法を提供することができる。 According to the present invention, a semiconductor layer for a dye-sensitized solar cell having a high photoelectric conversion efficiency and high productivity, in which a semiconductor layer is disposed on a transparent electrode by a gas flow sputtering method and an organic dye is adsorbed to the semiconductor layer . it is possible to provide a manufacturing method, and manufacturing method of the dye-sensitized solar cell having a semiconductor electrode for said color Motozo sensitized solar cell.

以下に、本発明を詳細に説明する。本発明の色素増感型太陽電池用半導体電極の製造方法は、ガスフロースパッタリング法により透明電極上に半導体層を配設し、該半導体層に有機色素を吸着させ。ガスフロースパッタリング法を用いることで、透明電極上に半導体層を迅速に形成することができるため、高い生産性で色素増感型太陽電池用半導体電極を作製することができる。また、得られた半導体電極を組み込んだ色素増感型太陽電池は、通常のスパッタリング方式(プレーナー型マグネトロンスパッタリング)対比、金属化合物、特に酸化チタン薄膜の場合、10〜1000倍の成膜速度で膜を形成することができる。高速成膜法としては、真空蒸着法がポピュラーであるが、基材との密着性が悪く、これに対し、ガスフロースパッタ法で形成した膜は、スパッタリング法の特徴である密着性に富んでいる。また、高速成膜が故に成膜後の膜が乳白色状になっていることから、空隙層を含んだ膜となっているため、表面積が大きく、通常のマグネトロンスパッタ法に比べ変換効率が高くなっている。 The present invention is described in detail below. Method for manufacturing a dye-sensitized solar cell semiconductor electrode of the present invention, arranged a semiconductor layer on the transparent electrode by a gas flow sputtering, Ru adsorbed an organic dye to the semiconductor layer. By using the gas flow sputtering method, a semiconductor layer can be rapidly formed on the transparent electrode, so that a dye-sensitized solar cell semiconductor electrode can be manufactured with high productivity. In addition, the dye-sensitized solar cell incorporating the obtained semiconductor electrode has a film formation rate of 10 to 1000 times in the case of a metal compound, particularly a titanium oxide thin film, compared with a normal sputtering method (planar type magnetron sputtering). Can be formed. As a high-speed film formation method, the vacuum deposition method is popular, but the adhesion to the substrate is poor. On the other hand, the film formed by the gas flow sputtering method is rich in the adhesion characteristic of the sputtering method. Yes. In addition, since the film after film formation is milky white because of high-speed film formation, it is a film including a void layer, so the surface area is large and the conversion efficiency is higher than that of the normal magnetron sputtering method. ing.

本発明で透明電極上に半導体層を形成するのに用いるガスフロースパッタリング法は、比較的高い圧力下でスパッタリングを行い、スパッタ粒子をガスの強制流により担体まで輸送し堆積させる方法である。図1に、本発明の実施に好適なガスフロースパッタ装置の概略図を示す。図示例のガスフロースパッタ装置では、スパッタガス導入口1からアルゴン等の希ガス等を導入し、DC電源2に接続されたアノード3及びカソード4間での放電で発生したプラズマPをカソード4のターゲット5に衝突させ、はじき飛ばされたスパッタ粒子をアルゴン等の希ガス等の強制流により透明電極6まで輸送し堆積させる。なお、図示例において、透明電極6は、ホルダー7に支持されており、透明電極6の近傍には、反応性ガスの導入口8が配置されており、反応性スパッタリングを行うことが可能である。また、スパッタガス導入口1は、図2の側面図に示すように上部及び下部から導入されたスパッタガスが側面の開口から流れる構造を有する。   The gas flow sputtering method used for forming a semiconductor layer on a transparent electrode in the present invention is a method in which sputtering is performed under a relatively high pressure, and sputtered particles are transported to a carrier by a forced gas flow and deposited. FIG. 1 shows a schematic diagram of a gas flow sputtering apparatus suitable for carrying out the present invention. In the gas flow sputtering apparatus of the illustrated example, a rare gas such as argon is introduced from the sputtering gas inlet 1, and plasma P generated by discharge between the anode 3 and the cathode 4 connected to the DC power source 2 is supplied to the cathode 4. The sputtered particles that collide with the target 5 and are blown off are transported to the transparent electrode 6 and deposited by forced flow of a rare gas such as argon. In the illustrated example, the transparent electrode 6 is supported by a holder 7, and a reactive gas inlet 8 is disposed in the vicinity of the transparent electrode 6 so that reactive sputtering can be performed. . Further, the sputter gas introduction port 1 has a structure in which the sputter gas introduced from the upper part and the lower part flows from the side opening as shown in the side view of FIG.

上記半導体層は、通常金属及び/又は金属化合物からなり、本発明においては、金属及び金属化合物の少なくとも一種をスパッタリングして上記半導体層を形成する。ここで、スパッタリングされる金属及び金属化合物は、一種単独であっても、二種以上の混合物であってもよい。また、複数の金属又は金属化合物をスパッタリングして透明電極上に半導体層を形成する場合、複数の金属又は金属化合物を同時にスパッタリングすることが好ましい。   The semiconductor layer is usually made of a metal and / or a metal compound. In the present invention, the semiconductor layer is formed by sputtering at least one of a metal and a metal compound. Here, the metal and metal compound to be sputtered may be a single kind or a mixture of two or more kinds. Moreover, when a semiconductor layer is formed on a transparent electrode by sputtering a plurality of metals or metal compounds, it is preferable to simultaneously sputter a plurality of metals or metal compounds.

上記複数の金属又は金属化合物をスパッタリングする場合は、複数のカソード4を用い同時に放電させて、前記透明電極上に前記半導体層を配設することが好ましい。ここで、各カソード4に、異種の金属からなるターゲット5を配設することで、複数の金属又は金属化合物を同時にスパッタリングして半導体層を形成することが可能となる。   When sputtering the plurality of metals or metal compounds, it is preferable that the plurality of cathodes 4 are simultaneously discharged to dispose the semiconductor layer on the transparent electrode. Here, by disposing a target 5 made of a different metal on each cathode 4, it is possible to form a semiconductor layer by simultaneously sputtering a plurality of metals or metal compounds.

また、上記複数の金属又は金属化合物をスパッタリングする場合は、複数のターゲット5を一つのカソード4に取り付け、放電時に該カソード4において同時に複数の金属をスパッタリングして透明電極上に半導体層を配設することも好ましい。ここで、上記カソード4において同時に複数の金属をスパッタリングして透明電極上に半導体層を配設した後、該半導体層中の金属又は金属化合物の少なくとも1種を酸及び/又はアルカリで除去してもよい。ここで、金属又は金属化合物を除去するために用いる酸及びアルカリは、除去対象の金属又は金属化合物と、残留させる金属又は金属化合物との種類に応じて適宜選択され、例えば、酸としては、塩酸、硫酸、硝酸、リン酸、酢酸、フッ酸、クロム酸、過酸化水素、過塩素酸、塩素酸、亜塩素酸、次亜塩素酸、クエン酸、シュウ酸、臭化水素等が挙げられ、これらを単体で又はこれらを混合した混酸で水溶液として用いることができる。また、溶解する金属によっては、混酸と塩化第二鉄のような金属塩化物、金属硫化物との混合水溶液を用いることもできる。一方、アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム等の水溶液やアンモニア水等を用いることができる。なお、酸水溶液、アルカリ水溶液の濃度、組成は、溶解する金属の種類に応じて適宜選定することができる。   When sputtering the plurality of metals or metal compounds, a plurality of targets 5 are attached to one cathode 4, and a plurality of metals are simultaneously sputtered at the cathode 4 during discharge to dispose a semiconductor layer on the transparent electrode. It is also preferable to do. Here, after a plurality of metals are simultaneously sputtered at the cathode 4 to dispose a semiconductor layer on the transparent electrode, at least one of the metal or metal compound in the semiconductor layer is removed with an acid and / or alkali. Also good. Here, the acid and alkali used for removing the metal or metal compound are appropriately selected according to the type of the metal or metal compound to be removed and the metal or metal compound to be left. For example, the acid is hydrochloric acid. , Sulfuric acid, nitric acid, phosphoric acid, acetic acid, hydrofluoric acid, chromic acid, hydrogen peroxide, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, citric acid, oxalic acid, hydrogen bromide, etc. These can be used as an aqueous solution alone or with a mixed acid obtained by mixing them. Further, depending on the metal to be dissolved, a mixed aqueous solution of a mixed acid, a metal chloride such as ferric chloride, and a metal sulfide can be used. On the other hand, as the alkaline aqueous solution, an aqueous solution such as sodium hydroxide or potassium hydroxide, aqueous ammonia, or the like can be used. In addition, the density | concentration and composition of acid aqueous solution and alkali aqueous solution can be suitably selected according to the kind of metal to melt | dissolve.

また、上記複数のターゲット5を一つのカソード4に取り付けるに際しては、該ターゲット5が二つの場合は、ターゲット5を対面させて配置し、ターゲット5が三つ以上の場合は、ターゲット5を多面体状に配置することが好ましく、例えば、ターゲット5が三つの場合は、ターゲット5を三角形状に配置し、ターゲット5が四つの場合は、ターゲット5を四角形状に配置することが好ましい。   Further, when attaching the plurality of targets 5 to one cathode 4, when there are two targets 5, the targets 5 are arranged facing each other, and when there are three or more targets 5, the targets 5 are in a polyhedral shape. For example, when there are three targets 5, it is preferable to arrange the targets 5 in a triangular shape, and when there are four targets 5, the targets 5 are preferably arranged in a quadrangular shape.

上記スパッタリングされる金属は、Na,Mg,Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Ge,Rb,Sr,Y,Zr,Nb,Mo,Ru,Rh,Ag,Cd,In,Sn,Sb,Cs,Ba,La,Hf,Ta,W,Re,Os,Ir,Tl,Pb,Bi,Ce,Pr,Nd,Sm及びEuからなる群から選択されることが好ましく、本発明の色素増感型太陽電池用半導体電極の製造方法には、これら金属を一種単独で用いてもよいし、これら金属の二種以上を用いてもよい。 The metals to be sputtered are Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr. , Nb, Mo, Ru, Rh, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Tl, Pb, Bi, Ce, Pr, Nd, Sm And Eu are preferably selected from the group consisting of Eu, and the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention may use these metals alone or in combination of two or more of these metals. It may be used.

また、スパッタリングされる金属としては、貴金属を用いてもよく、該貴金属としては、Ag,Pt及びAu等が挙げられる。本発明の色素増感型太陽電池用半導体電極の製造方法においては、これら貴金属の一種若しくは複数を使用することができる。 Moreover, a noble metal may be used as the metal to be sputtered, and examples of the noble metal include Ag, Pt, and Au. In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention, one or more of these noble metals can be used.

本発明においてスパッタリングされる金属化合物としては、金属酸化物、金属窒化物及び金属酸化窒化物等が挙げられる。なお、これら金属化合物を透明電極上に配設する場合は、ターゲット5に上記金属を用い、反応性ガスを導入口8から導入して反応性スパッタリングを行うことが好ましい。   Examples of the metal compound sputtered in the present invention include metal oxides, metal nitrides, and metal oxynitrides. In addition, when arrange | positioning these metal compounds on a transparent electrode, it is preferable to use the said metal for the target 5, and introduce | transduce reactive gas from the inlet 8, and perform reactive sputtering.

上記金属酸化物としては、TiOx,CoOx,NiOx,CuOx,ZnOx,TaOx及びWOx等が挙げられ、本発明の色素増感型太陽電池用半導体電極の製造方法には、これら金属酸化物を一種単独で用いてもよいし、これら金属酸化物の二種以上を用いてもよい。ここで、上記反応性スパッタリングによれば、上記各化学式中のxの値をスパッタリング時において導入口8から導入される酸素の流量を調整することで所望の値に制御することが可能となる。 Examples of the metal oxide include TiO x , CoO x , NiO x , CuO x , ZnO x , TaO x and WO x. The method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention includes: These metal oxides may be used alone, or two or more of these metal oxides may be used. Here, according to the reactive sputtering, the value of x in each chemical formula can be controlled to a desired value by adjusting the flow rate of oxygen introduced from the introduction port 8 at the time of sputtering.

また、上記金属窒化物としては、TiNx,CoNx,NiNx,CuNx,ZnNx,TaNx及びWNx等が挙げられ、本発明の色素増感型太陽電池用半導体電極の製造方法には、これら金属窒化物を一種単独で用いてもよいし、これら金属窒化物の二種以上を用いてもよい。ここで、上記反応性スパッタリングによれば、上記各化学式中のxの値をスパッタリング時において導入口8から導入される窒素の流量を調整することで所望の値に制御することが可能となる。 Examples of the metal nitride include TiN x , CoN x , NiN x , CuN x , ZnN x , TaN x, WN x, and the like, and the method for producing a dye-sensitized solar cell semiconductor electrode according to the present invention. May use these metal nitrides individually by 1 type, and may use 2 or more types of these metal nitrides. Here, according to the reactive sputtering, the value of x in each chemical formula can be controlled to a desired value by adjusting the flow rate of nitrogen introduced from the introduction port 8 at the time of sputtering.

更に、上記金属酸化窒化物としては、TiOxy,CoOxy,NiOxy,CuOxy,ZnOxy,TaOxy及びWOxy等が挙げられ、本発明の色素増感型太陽電池用半導体電極の製造方法には、これら金属酸化窒化物を一種単独で用いてもよいし、これら金属酸化窒化物の二種以上を用いてもよい。ここで、上記反応性スパッタリングによれば、上記各化学式中のx及びyの値をスパッタリング時において導入口8から導入される酸素及び窒素の流量を調整することで所望の値に制御することが可能となる。 Furthermore, as the metal oxide nitride, TiO x N y, CoO x N y, NiO x N y, CuO x N y, ZnO x N y, etc. TaO x N y and WO x N y can be cited, the In the method for producing a semiconductor electrode for a dye-sensitized solar cell of the invention, these metal oxynitrides may be used alone or in combination of two or more of these metal oxynitrides. Here, according to the reactive sputtering, the values of x and y in each chemical formula can be controlled to desired values by adjusting the flow rates of oxygen and nitrogen introduced from the inlet 8 during sputtering. It becomes possible.

本発明の好適態様においては、上記ガスフロースパッタリングで用いたターゲット材の使用効率が80%以上であり、本発明では、透明電極上への半導体層の配設にガスフロースパッタリング法を採用するため、ターゲット材の使用効率が高い。   In a preferred embodiment of the present invention, the use efficiency of the target material used in the gas flow sputtering is 80% or more, and in the present invention, the gas flow sputtering method is used for disposing the semiconductor layer on the transparent electrode. The use efficiency of the target material is high.

本発明の色素増感型太陽電池用半導体電極の製造方法における上記半導体層の厚さは、0.01μm〜100μmの範囲が好ましい。半導体層の厚さが0.01μm未満では、色素の吸着量が少なく、太陽光を効果的に吸収することができないため、発電効率が上がらない。一方、100μmを超えると、可視光を効果的に取り込むことができなくなるため、また、膜も脆くなることからその形状を維持できなくなるため、電池性能が向上しない。 The thickness of the semiconductor layer in the method for producing a semiconductor electrode for a dye-sensitized solar cell of the present invention is preferably in the range of 0.01 μm to 100 μm. If the thickness of the semiconductor layer is less than 0.01 μm, the amount of dye adsorbed is small, and sunlight cannot be absorbed effectively, so the power generation efficiency does not increase. On the other hand, when the thickness exceeds 100 μm, visible light cannot be taken in effectively, and since the film becomes brittle, its shape cannot be maintained, so that the battery performance is not improved.

上記半導体層に吸着させる有機色素としては、従来公知のものを用いることができ、太陽光を広い波長範囲に渡って吸収できるものが好ましい。該有機色素としては、ビピリジルRu錯体、ターピリジルRu錯体、フェナントロリンRu錯体、ビシンコニン酸Ru錯体等のRu錯体、クロロフィル、ローダミン、エオシン、フロキシン、フルオレセイン、エリスロシン、ウラニン、ローズベンガル等が挙げられる。これら有機色素は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。上記有機色素を半導体層に吸着させるには、有機色素を含む溶液に半導体層が形成された透明電極を浸漬すればよい。ここで、有機色素を溶解させる溶媒としては、特に限定されるものではないが、エタノール等のアルコールを用いることができる。   As the organic dye adsorbed on the semiconductor layer, conventionally known ones can be used, and those capable of absorbing sunlight over a wide wavelength range are preferable. Examples of the organic dye include Ru complexes such as bipyridyl Ru complex, terpyridyl Ru complex, phenanthroline Ru complex, and bicinchoninic acid Ru complex, chlorophyll, rhodamine, eosin, phloxine, fluorescein, erythrosine, uranin, rose bengal and the like. These organic dyes may be used alone or in combination of two or more. In order to adsorb the organic dye to the semiconductor layer, the transparent electrode on which the semiconductor layer is formed may be immersed in a solution containing the organic dye. Here, the solvent for dissolving the organic dye is not particularly limited, and alcohol such as ethanol can be used.

本発明において、色素増感型太陽電池用半導体電極を構成する透明電極は、透明基材と、該透明基材上に配設された透明導電性薄膜とからなることが好ましい。ここで、上記透明基材の材質としては、ガラス等の無機物の他、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)及びポリメチルメタクリレート(PMMA)等の有機物が挙げられる。一方、上記透明導電性薄膜の材質としては、ITO(インジウム-スズ酸化物),FTO(フッ素ドープ酸化スズ),ATO(アンチモン含有酸化スズ)及びAZO(アルミニウムドープ酸化亜鉛)等の金属酸化物が挙げられる。また、上記透明電極は、低抵抗化の観点から、上記透明導電性薄膜上に更にメッシュ状の金属補助電極を備えることが好ましい。ここで、金属補助電極の材質としては、銀、銅、アルミニウム、チタン、クロム、亜鉛、金、白金等の単独材料、及びそれらを主成分とする合金材料等が挙げられる。 In this invention , it is preferable that the transparent electrode which comprises the semiconductor electrode for dye-sensitized solar cells consists of a transparent base material and the transparent conductive thin film arrange | positioned on this transparent base material. Here, examples of the material of the transparent substrate include organic substances such as polyethylene terephthalate (PET), polycarbonate (PC), and polymethyl methacrylate (PMMA) in addition to inorganic substances such as glass. On the other hand, as the material of the transparent conductive thin film, metal oxides such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), ATO (antimony-containing tin oxide), and AZO (aluminum-doped zinc oxide) are available. Can be mentioned. Moreover, it is preferable that the said transparent electrode is further equipped with a mesh-shaped metal auxiliary electrode on the said transparent conductive thin film from a viewpoint of resistance reduction. Here, examples of the material for the metal auxiliary electrode include single materials such as silver, copper, aluminum, titanium, chromium, zinc, gold, and platinum, and alloy materials containing them as main components.

また、低抵抗化の観点から、上記透明電極は、透明基材と、導電性薄膜と、該透明基材及び透明導電性薄膜の間に配設されたメッシュ状の金属補助電極とを備える構造であってもよいし、透明基材と、金属酸化物薄膜及び金属薄膜の多層膜とからなる構造であってもよい。ここで、透明基材、導電性薄膜及び金属補助電極は、上記の通りであり、また、金属酸化物薄膜及び金属薄膜の多層膜における金属酸化物薄膜の材質としては、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化インジウム、ITO、酸化スズ、酸化ジルコニア、酸化ニオブ等が挙げられ、金属薄膜の材質としては、金、銀、白金及びそれらを含む合金、銅、アルミニウム、チタン、クロム、亜鉛及びそれらを含む合金等が挙げられる。   From the viewpoint of reducing resistance, the transparent electrode includes a transparent base material, a conductive thin film, and a mesh-like metal auxiliary electrode disposed between the transparent base material and the transparent conductive thin film. It may be a structure composed of a transparent substrate, a metal oxide thin film, and a multilayer film of metal thin films. Here, the transparent substrate, the conductive thin film, and the metal auxiliary electrode are as described above, and the material of the metal oxide thin film in the metal oxide thin film and the multilayer film of the metal thin film includes silicon oxide, titanium oxide, Examples include zinc oxide, aluminum oxide, indium oxide, ITO, tin oxide, zirconia oxide, niobium oxide, etc. The material of the metal thin film is gold, silver, platinum and alloys containing them, copper, aluminum, titanium, chromium, Examples include zinc and alloys containing them.

本発明の色素増感型太陽電池の製造方法色素増感型太陽電池用半導体電極と、対向電極と、電解質とを備えた色素増感型太陽電池の製造方法において、前記色素増感型太陽電池用半導体電極を、上述の方法により製造することを特徴とする。本発明において、色素増感型太陽電池に用いる対向電極としては、透明基材の上に導電性薄膜が配置され、該導電性薄膜の上に、レドックス電解質中のイオンの還元反応を促進する触媒を配置したものが好ましい。ここで、導電性薄膜としては、ITO、SnO2等が好ましい。また、透明基材の材料としては、ガラスや透明プラスチック等が挙げられる。更に、レドックス電解質中のイオンの還元反応を促進する触媒としては、Pt、Ru、Rh、Pd等が挙げられ、これらの中でもPtが好ましい。これら触媒は、スパッタリング等により、導電性薄膜上に形成することができる。また、スパッタリングで触媒を付着させた後、更に、塩化白金酸水溶液等を塗布し、焼成還元してもよい。 The method of manufacturing a dye-sensitized solar cell of the present invention includes a semiconductor electrode for dye-sensitized solar cell, and the counter electrode, the manufacturing method of the dye-sensitized solar cell comprising an electrolyte, the dye-sensitized A semiconductor electrode for a solar cell is manufactured by the method described above . In the present invention , the counter electrode used in the dye-sensitized solar cell is a catalyst in which a conductive thin film is disposed on a transparent substrate, and the reduction reaction of ions in the redox electrolyte is promoted on the conductive thin film. Those in which are arranged are preferable. Here, as the conductive thin film, ITO, SnO 2 or the like is preferable. Examples of the material for the transparent substrate include glass and transparent plastic. Furthermore, examples of the catalyst that promotes the reduction reaction of ions in the redox electrolyte include Pt, Ru, Rh, Pd, etc. Among these, Pt is preferable. These catalysts can be formed on the conductive thin film by sputtering or the like. Further, after depositing the catalyst by sputtering, a chloroplatinic acid aqueous solution or the like may be further applied, followed by firing reduction.

本発明において、色素増感型太陽電池に用いる電解質は、特に限定されるものではなく、通常レドックス電解質を含み、更に有機溶媒を含んでもよい。上記レドックス電解質としては、I-/I3 -系や、Br-/Br3 -系、キノン/ハイドロキノン系等が挙げられる。これらレドックス電解質は、公知の方法によって得ることができ、例えば、I-/I3 -系のレドックス電解質は、ヨウ素のアンモニウム塩若しくはイミダゾリウム塩或いはLiI、NaI、KI、CaI2等の金属ヨウ化物を単独或いはヨウ素と混合することによって調製でき、Br-/Br3 -系レドックス電解質は、臭素のアンモニウム塩若しくはイミダゾリウム塩或いはLiBr、NaBr、KBr、CaBr2等の金属臭化物を単独或いは臭素と混合することによって調製できる。なお、本発明において、色素増感型太陽電池用電解質中のレドックス電解質の濃度は、0.1〜2mol/L(M)の範囲が好ましい。 In the present invention , the electrolyte used for the dye-sensitized solar cell is not particularly limited, and usually contains a redox electrolyte and may further contain an organic solvent. Examples of the redox electrolyte include I / I 3 system, Br / Br 3 system, and quinone / hydroquinone system. These redox electrolyte can be obtained by known methods, for example, I - / I 3 - system redox electrolyte, an ammonium salt or imidazolium salt or LiI iodine, NaI, KI, metal iodide such as CaI 2 the can be prepared by mixing alone or iodine, Br - / Br 3 - system redox electrolyte, a mixed bromine ammonium or imidazolium salt or LiBr, NaBr, KBr, metal bromides, such as CaBr 2 alone or bromine Can be prepared. In the present invention , the concentration of the redox electrolyte in the dye-sensitized solar cell electrolyte is preferably in the range of 0.1 to 2 mol / L (M).

また、上記電解質に用いることができる有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のカーボネート類、酢酸メチル、プロピオン酸メチル等のエステル類、テトラヒドロフラン、1,3-ジオキソラン、1,2-ジメトキシエタン等のエーテル類、メタノール、エタノール、エチレングリコール、プロピレングリコール、グリセリン等のアルコール類、γ-ブチロラクトン等のラクトン類、ジメチルホルムアミド等のアミド類、3-メチル-2-オキサゾリジノン等のオキサゾリジノン類、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル等のリン酸エステル類、アセトニトリル、メトキシアセトニトリル等のニトリル類が挙げられる。これら有機溶媒は、1種単独で用いても、2種以上を混合して用いてもよい。   Examples of the organic solvent that can be used for the electrolyte include carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, esters such as methyl acetate and methyl propionate, tetrahydrofuran, and 1,3. -Ethers such as 1-dioxolane, 1,2-dimethoxyethane, alcohols such as methanol, ethanol, ethylene glycol, propylene glycol and glycerin, lactones such as γ-butyrolactone, amides such as dimethylformamide, 3-methyl-2 -Oxazolidinones such as oxazolidinone, phosphate esters such as trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, aceto Nitriles such as nitrile and methoxyacetonitrile can be mentioned. These organic solvents may be used alone or in combination of two or more.

次に、本発明の方法で製造される色素増感型太陽電池を、図3を参照しながら詳細に説明する。図3は、本発明の方法で製造される色素増感型太陽電池の一実施態様の部分断面図である。図示例の色素増感型太陽電池は、透明基材11A,11B上に透明導電性薄膜12A,12Bがそれぞれ配置されている。更に、透明導電性薄膜12A上には、レドックス電解質中のイオンの還元反応を促進する触媒13が配置されている。一方、透明導電性薄膜12B上には、半導体層14が配置されており、該半導体層14には、有機色素が吸着されている。また、透明基材11A、透明導電性薄膜12A及び触媒13からなる対向電極15と、透明基材11B、透明導電性薄膜12B及び半導体層14からなる半導体電極16とが、電解質17を介して対向配置されており、対向電極15の触媒13と、半導体電極16の半導体層14とが電解質17に接触している。ここで、本発明の方法で製造される色素増感型太陽電池においては、半導体層14を上述のガスフロースパッタリングで形成することで、光電変換効率を大幅に改善することができる。 Next, the dye-sensitized solar cell produced by the method of the present invention will be described in detail with reference to FIG. FIG. 3 is a partial cross-sectional view of one embodiment of a dye-sensitized solar cell produced by the method of the present invention. In the illustrated dye-sensitized solar cell, transparent conductive thin films 12A and 12B are disposed on transparent substrates 11A and 11B, respectively. Further, a catalyst 13 that promotes a reduction reaction of ions in the redox electrolyte is disposed on the transparent conductive thin film 12A. On the other hand, a semiconductor layer 14 is disposed on the transparent conductive thin film 12B, and an organic dye is adsorbed on the semiconductor layer 14. Further, the counter electrode 15 composed of the transparent base material 11A, the transparent conductive thin film 12A and the catalyst 13 and the semiconductor electrode 16 composed of the transparent base material 11B, the transparent conductive thin film 12B and the semiconductor layer 14 are opposed to each other through the electrolyte 17. The catalyst 13 of the counter electrode 15 and the semiconductor layer 14 of the semiconductor electrode 16 are in contact with the electrolyte 17. Here, in the dye-sensitized solar cell manufactured by the method of the present invention, the photoelectric conversion efficiency can be greatly improved by forming the semiconductor layer 14 by the gas flow sputtering described above.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

[半導体層の形成]
(実施例1〜6)
図1に示すガスフロースパッタ装置を用い、ターゲットとしてTiターゲットをセットし、真空チャンバーに基板としてフッ素ドープ酸化スズ(FTO)を被覆したガラスをセットして、荒引きポンプ(ロータリーポンプ+メカニカルブースターポンプ)で1×10-1Paまで排気した後、TiO2膜を成膜した。このときのスパッタ条件は、以下の通りである。また、各実施例の成膜条件を表1及び表2に示す。
<DCガスフロースパッタ条件>
・ターゲット寸法: 80mm×160mm×5mmt
・カソード形状: 平行平板(上記ターゲットを2枚平行に配置、距離30mm)
・スパッタ圧力: 0.01Torr〜1Torr
・スパッタ電力: 0〜5kW
・Arガス流量: 1〜10SLM
・O2ガス流量: 0〜250sccm
・基板温度: 基板加熱、冷却は行わず
・基板位置: 固定(カソード端部と基板間距離:50mm)
[Semiconductor layer formation]
(Examples 1-6)
Using the gas flow sputtering apparatus shown in FIG. 1, a Ti target is set as a target, glass coated with fluorine-doped tin oxide (FTO) is set as a substrate in a vacuum chamber, and a roughing pump (rotary pump + mechanical booster pump) ) To 1 × 10 −1 Pa, and a TiO 2 film was formed. The sputtering conditions at this time are as follows. In addition, Table 1 and Table 2 show the film forming conditions of each example.
<DC gas flow sputtering conditions>
・ Target dimensions: 80mm × 160mm × 5mmt
・ Cathode shape: Parallel plate (two above targets are arranged in parallel, distance 30mm)
・ Sputtering pressure: 0.01 Torr to 1 Torr
・ Sputtering power: 0 to 5kW
Ar gas flow rate: 1-10SLM
・ O 2 gas flow rate: 0 ~ 250sccm
-Substrate temperature: No substrate heating or cooling-Substrate position: Fixed (distance between cathode end and substrate: 50 mm)

(比較例1〜2)
マグネトロンスパッタリング装置に4インチ円形金属チタンターゲットを取り付け、装置内の圧力を5mTorrに設定し、上記のFTO被覆ガラス(透明電極)上に酸化チタン膜を形成した。成膜条件を表1及び表2に示す。
(Comparative Examples 1-2)
A 4-inch circular metal titanium target was attached to a magnetron sputtering apparatus, the pressure inside the apparatus was set to 5 mTorr, and a titanium oxide film was formed on the FTO-coated glass (transparent electrode). Deposition conditions are shown in Tables 1 and 2.

Figure 0004953615
Figure 0004953615

Figure 0004953615
Figure 0004953615

上記のようにして、TiO2膜を成膜した後、高温焼成炉中、450℃で60分間焼成を行った。次に、未焼成のTiO2薄膜付き基板及び焼成済のTiO2薄膜付き基板の双方を用いて、下記のようにして、金属酸化物半導体電極及び太陽電池を作製した。 After forming a TiO 2 film as described above, firing was performed at 450 ° C. for 60 minutes in a high-temperature firing furnace. Next, a metal oxide semiconductor electrode and a solar cell were produced as follows using both the unfired substrate with the TiO 2 thin film and the fired substrate with the TiO 2 thin film.

[色素吸着]
有機色素溶液として、3×10-4mol/Lのシス-ジ(チオシアナト)-ビス(2,2'-ビピリジル-4-ジカルボキシレート-4'-テトラブチルアンモニウムカルボキシレート)ルテニルム(II)−エタノール溶液を調製し、この溶液に上記TiO2薄膜を形成した基板を室温で18時間浸漬して色素を吸着させて、金属酸化物半導体電極を得た。
[Dye adsorption]
As an organic dye solution, 3 × 10 −4 mol / L of cis-di (thiocyanato) -bis (2,2′-bipyridyl-4-dicarboxylate-4′-tetrabutylammonium carboxylate) ruthenium (II) — An ethanol solution was prepared, and the substrate on which the TiO 2 thin film was formed was immersed in this solution at room temperature for 18 hours to adsorb the dye, thereby obtaining a metal oxide semiconductor electrode.

[太陽電池の作製]
上記金属酸化物半導体電極を一方の電極とし、対向電極としてフッ素でドープした酸化スズをコートし、更にその上に白金を担持した透明導電性ガラス板を用いた。二つの電極の間に電解質を入れ、側面を樹脂で封止した後、リード線を取り付けて、色素増感型太陽電池を作製した。なお、電解質としては、アセトニトリル溶媒に、ヨウ化リチウム 0.1mol/L、1,2-ジメチル-3-プロピルイミダゾリウムアイオダイド 0.3mol/L、ヨウ素 0.05mol/L及びt-ブチルピリジン 0.5mol/Lとなうように溶解させた溶液を用いた。次に、得られた太陽電池に、ソーラーシミュレーターで100W/cm2の強度の光を照射し、電池性能を評価した。結果を表3に示す。
[Production of solar cells]
The metal oxide semiconductor electrode was used as one electrode, and a transparent conductive glass plate coated with platinum doped with fluorine as a counter electrode and further carrying platinum thereon was used. An electrolyte was placed between the two electrodes, the side surfaces were sealed with resin, and then lead wires were attached to produce a dye-sensitized solar cell. As an electrolyte, acetonitrile solvent, lithium iodide 0.1 mol / L, 1,2-dimethyl-3-propylimidazolium iodide 0.3 mol / L, iodine 0.05 mol / L and t-butylpyridine 0.5 mol / L A solution dissolved so as to be used was used. Next, the obtained solar cell was irradiated with light having an intensity of 100 W / cm 2 with a solar simulator to evaluate the battery performance. The results are shown in Table 3.

Figure 0004953615
Figure 0004953615

表3から明らかなように、実施例の成膜速度は、比較例の成膜速度に比べ2〜3桁程速く、しかも、実施例の色素増感型太陽電池は、同じ膜厚での変換効率が、成膜後の焼成の有無にかかわらず、比較例に比べて大幅に上昇していることが分った。なお、実施例においても、同じ膜厚でも成膜速度が速い方が変換効率が高くなることが分った。   As is clear from Table 3, the film formation rate of the example is about two to three orders of magnitude faster than the film formation rate of the comparative example, and the dye-sensitized solar cell of the example is converted with the same film thickness. It was found that the efficiency was significantly increased as compared with the comparative example regardless of whether or not baking was performed after film formation. Also in the examples, it was found that the conversion efficiency is higher when the film forming speed is faster even with the same film thickness.

(実施例7〜12)
実施例1〜6で使用した基材をFTOガラスからITOフィルム(抵抗値:10Ω/□, 基材:PET、導電性薄膜:ITO)に代え、同様の成膜を試み、変換効率を測定した。成膜条件を表4に、変換効率の結果を表5に示す。なお、フィルム上への成膜であるため、成膜後の焼成処理は行わなかった。
(Examples 7 to 12)
The base material used in Examples 1 to 6 was changed from FTO glass to an ITO film (resistance value: 10Ω / □, base material: PET, conductive thin film: ITO), and the same film formation was attempted, and the conversion efficiency was measured. . The film formation conditions are shown in Table 4, and the conversion efficiency results are shown in Table 5. In addition, since it was film-forming on a film, the baking process after film-forming was not performed.

(比較例3〜4)
比較例1〜2で使用した基材をFTOガラスから上記ITOフィルムに代え、同様の成膜を試み、変換効率を測定した。成膜条件を表4に、変換効率の結果を表5に示す。なお、フィルム上への成膜であるため、成膜後の焼成処理は行わなかった。
(Comparative Examples 3-4)
The base material used in Comparative Examples 1 and 2 was changed from FTO glass to the ITO film, and the same film formation was attempted, and the conversion efficiency was measured. The film formation conditions are shown in Table 4, and the conversion efficiency results are shown in Table 5. In addition, since it was film-forming on a film, the baking process after film-forming was not performed.

Figure 0004953615
Figure 0004953615

Figure 0004953615
Figure 0004953615

表5のようにITOフィルム上に成膜した場合も、実施例の色素増感型太陽電池は、比較例に比べ変換効率が大幅に上昇することが確認できた。   Also when it formed into a film on an ITO film like Table 5, it has confirmed that the conversion efficiency of the dye-sensitized solar cell of an Example raised significantly compared with a comparative example.

本発明の色素増感型太陽電池用半導体電極の製造方法に好適なガスフロースパッタ装置の一例の概略図を示す。The schematic of an example of the gas flow sputtering apparatus suitable for the manufacturing method of the semiconductor electrode for dye-sensitized solar cells of this invention is shown. 図1のガスフロースパッタ装置のスパッタガス導入口の側面図である。FIG. 2 is a side view of a sputtering gas introduction port of the gas flow sputtering apparatus of FIG. 1. 本発明の方法で製造される色素増感型太陽電池の一実施態様の部分断面図である。 It is a fragmentary sectional view of one embodiment of a dye-sensitized solar cell manufactured by the method of the present invention.

符号の説明Explanation of symbols

1 スパッタガス導入口
2 DC電源
3 アノード
4 カソード
5 ターゲット
6 透明電極
7 ホルダー
8 反応性ガスの導入口
P プラズマ
11A,11B 透明基材
12A,12B 透明導電性薄膜
13 触媒
14 半導体層
15 対向電極
16 半導体電極
17 電解質
DESCRIPTION OF SYMBOLS 1 Sputter gas introduction port 2 DC power source 3 Anode 4 Cathode 5 Target 6 Transparent electrode 7 Holder 8 Reactive gas introduction port P Plasma 11A, 11B Transparent base material 12A, 12B Transparent conductive thin film 13 Catalyst 14 Semiconductor layer 15 Counter electrode 16 Semiconductor electrode 17 Electrolyte

Claims (23)

ガスフロースパッタリング法により透明電極上に半導体層を配設し、該半導体層に有機色素を吸着させることを特徴とする色素増感型太陽電池用半導体電極の製造方法It disposed a semiconductor layer on the transparent electrode by a gas flow sputtering method for manufacturing a dye-sensitized solar cell for a semiconductor electrode, characterized in Rukoto to adsorb the organic dye to the semiconductor layer. 一種又は複数の金属又は金属化合物を同時にスパッタリングして、前記透明電極上に前記半導体層を配設したことを特徴とする請求項1に記載の色素増感型太陽電池用半導体電極の製造方法The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 1, wherein one or more metals or metal compounds are simultaneously sputtered to dispose the semiconductor layer on the transparent electrode. 前記複数の金属又は金属化合物をスパッタリングするに際し、複数のカソードを用い同時に放電させて、前記透明電極上に前記半導体層を配設したことを特徴とする請求項2に記載の色素増感型太陽電池用半導体電極の製造方法3. The dye-sensitized solar according to claim 2, wherein when the plurality of metals or metal compounds are sputtered, the semiconductor layer is disposed on the transparent electrode by simultaneously discharging using a plurality of cathodes. A method for producing a semiconductor electrode for a battery. 前記複数の金属又は金属化合物をスパッタリングするに際し、複数のターゲットを一つのカソードに取り付け、放電時に該カソードにおいて同時に複数の金属をスパッタリングして前記透明電極上に前記半導体層を配設したことを特徴とする請求項2に記載の色素増感型太陽電池用半導体電極の製造方法When sputtering the plurality of metals or metal compounds, a plurality of targets are attached to one cathode, and a plurality of metals are simultaneously sputtered on the cathode during discharge to dispose the semiconductor layer on the transparent electrode. The manufacturing method of the semiconductor electrode for dye-sensitized solar cells of Claim 2. 前記複数の金属又は金属化合物をスパッタリングするに際し、複数のターゲットを一つのカソードに取り付け、放電時に該カソードにおいて同時に複数の金属をスパッタリングして前記透明電極上に前記半導体層を配設した後、該半導体層中の金属又は金属化合物の少なくとも1種を酸及び/又はアルカリで除去したことを特徴とする請求項4に記載の色素増感型太陽電池用半導体電極の製造方法When sputtering the plurality of metals or metal compounds, a plurality of targets are attached to one cathode, and a plurality of metals are simultaneously sputtered on the cathode during discharge to dispose the semiconductor layer on the transparent electrode. The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 4, wherein at least one of a metal or a metal compound in the semiconductor layer is removed with an acid and / or an alkali. 前記金属が、Na,Mg,Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Ge,Rb,Sr,Y,Zr,Nb,Mo,Ru,Rh,Ag,Cd,In,Sn,Sb,Cs,Ba,La,Hf,Ta,W,Re,Os,Ir,Tl,Pb,Bi,Ce,Pr,Nd,Sm及びEuからなる群から選択される少なくとも1種であることを特徴とする請求項2に記載の色素増感型太陽電池用半導体電極の製造方法The metal is Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, From Mo, Ru, Rh, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Tl, Pb, Bi, Ce, Pr, Nd, Sm and Eu The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 2, wherein the method is at least one selected from the group consisting of : 前記金属が貴金属であることを特徴とする請求項2に記載の色素増感型太陽電池用半導体電極の製造方法The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 2, wherein the metal is a noble metal. 前記貴金属が、Ag,Pt及びAuからなる群から選択される少なくとも1種であることを特徴とする請求項7に記載の色素増感型太陽電池用半導体電極の製造方法The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 7, wherein the noble metal is at least one selected from the group consisting of Ag, Pt, and Au. 前記金属化合物が金属酸化物であることを特徴とする請求項2に記載の色素増感型太陽電池用半導体電極の製造方法The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 2, wherein the metal compound is a metal oxide. 前記金属酸化物が、TiOx,CoOx,NiOx,CuOx,ZnOx,TaOx及びWOxからなる群から選択される少なくとも1種であり、前記xの値をスパッタリング時の酸素流量で制御したことを特徴とする請求項9に記載の色素増感型太陽電池用半導体電極の製造方法The metal oxide is at least one selected from the group consisting of TiO x , CoO x , NiO x , CuO x , ZnO x , TaO x and WO x , and the value of x is determined by the oxygen flow rate during sputtering. The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 9, wherein the method is controlled . 前記金属化合物が金属窒化物であることを特徴とする請求項2に記載の色素増感型太陽電池用半導体電極の製造方法The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 2, wherein the metal compound is a metal nitride. 前記金属窒化物が、TiNx,CoNx,NiNx,CuNx,ZnNx,TaNx及びWNxからなる群から選択される少なくとも1種であり、前記xの値をスパッタリング時の窒素流量で制御したことを特徴とする請求項11に記載の色素増感型太陽電池用半導体電極の製造方法The metal nitride is at least one selected from the group consisting of TiN x , CoN x , NiN x , CuN x , ZnN x , TaN x and WN x , and the value of x is determined by the nitrogen flow rate during sputtering. It controlled , The manufacturing method of the semiconductor electrode for dye-sensitized solar cells of Claim 11 characterized by the above-mentioned. 前記金属化合物が金属酸化窒化物であることを特徴とする請求項2に記載の色素増感型太陽電池用半導体電極の製造方法The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 2, wherein the metal compound is a metal oxynitride. 前記金属酸化窒化物が、TiOxy,CoOxy,NiOxy,CuOxy,ZnOxy,TaOxy及びWOxyからなる群から選択される少なくとも1種であり、前記x及びyの値をスパッタリング時の酸素流量及び窒素流量で制御したことを特徴とする請求項13に記載の色素増感型太陽電池用半導体電極の製造方法The metal oxide nitride, TiO x N y, CoO x N y, NiO x N y, CuO x N y, ZnO x N y, at least one selected from the group consisting of TaO x N y and WO x N y The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 13, wherein the method is a seed, and the values of x and y are controlled by an oxygen flow rate and a nitrogen flow rate during sputtering. 前記ガスフロースパッタリングで用いたターゲット材の使用効率が80%以上であることを特徴とする請求項1に記載の色素増感型太陽電池用半導体電極の製造方法The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 1, wherein the use efficiency of the target material used in the gas flow sputtering is 80% or more. 前記複数のターゲットを一つのカソードに取り付けるに際し、該ターゲットが二つの場合は、該ターゲットを対面させて配置し、前記ターゲットが三つ以上の場合は、該ターゲットを多面体状に配置したことを特徴とする請求項4又は5に記載の色素増感型太陽電池用半導体電極の製造方法When attaching the plurality of targets to one cathode, when there are two targets, the targets are arranged facing each other, and when there are three or more targets, the targets are arranged in a polyhedral shape. The manufacturing method of the semiconductor electrode for dye-sensitized solar cells of Claim 4 or 5. 前記透明電極が、透明基材と、該透明基材上に配設された透明導電性薄膜とからなることを特徴とする請求項1〜16のいずれかに記載の色素増感型太陽電池用半導体電極の製造方法The said transparent electrode consists of a transparent base material and the transparent conductive thin film arrange | positioned on this transparent base material, For dye-sensitized solar cells in any one of Claims 1-16 characterized by the above-mentioned. A method for manufacturing a semiconductor electrode. 前記透明基材が、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)又はポリメチルメタクリレート(PMMA)であることを特徴とする請求項17に記載の色素増感型太陽電池用半導体電極の製造方法The said transparent base material is glass, a polyethylene terephthalate (PET), a polycarbonate (PC), or a polymethylmethacrylate (PMMA), The manufacturing method of the semiconductor electrode for dye-sensitized solar cells of Claim 17 characterized by the above-mentioned. . 前記透明導電性薄膜が、ITO,FTO,ATO及びAZOからなる群から選択される少なくとも一種の金属酸化物からなることを特徴とする請求項17に記載の色素増感型太陽電池用半導体電極の製造方法18. The dye-sensitized solar cell semiconductor electrode according to claim 17, wherein the transparent conductive thin film is made of at least one metal oxide selected from the group consisting of ITO, FTO, ATO, and AZO . Manufacturing method . 前記透明電極が、前記透明導電性薄膜上に更にメッシュ状の金属補助電極を備えることを特徴とする請求項17に記載の色素増感型太陽電池用半導体電極の製造方法The method for producing a semiconductor electrode for a dye-sensitized solar cell according to claim 17, wherein the transparent electrode further comprises a mesh-like metal auxiliary electrode on the transparent conductive thin film. 前記透明電極が、透明基材と、透明導電性薄膜と、前記透明基材と前記透明導電性薄膜との間に配設されたメッシュ状の金属補助電極とを備えることを特徴とする請求項1〜16のいずれかに記載の色素増感型太陽電池用半導体電極の製造方法The transparent electrode comprises a transparent base material, a transparent conductive thin film, and a mesh-like metal auxiliary electrode disposed between the transparent base material and the transparent conductive thin film. The manufacturing method of the semiconductor electrode for dye-sensitized solar cells in any one of 1-16. 前記透明電極が、透明基材と、金属酸化物薄膜及び金属薄膜の多層膜とからなることを特徴とする請求項1〜16のいずれかに記載の色素増感型太陽電池用半導体電極の製造方法The said transparent electrode consists of a transparent base material, and the multilayer film of a metal oxide thin film and a metal thin film, The manufacture of the semiconductor electrode for dye-sensitized solar cells in any one of Claims 1-16 characterized by the above-mentioned. Way . 色素増感型太陽電池用半導体電極と、対向電極と、電解質とを備えた色素増感型太陽電池の製造方法において、
前記色素増感型太陽電池用半導体電極を、請求項1〜22のいずれかに記載の方法により製造することを特徴とする色素増感型太陽電池の製造方法
In a method for producing a dye-sensitized solar cell comprising a semiconductor electrode for a dye-sensitized solar cell, a counter electrode, and an electrolyte ,
A method for producing a dye-sensitized solar cell, wherein the semiconductor electrode for a dye-sensitized solar cell is produced by the method according to any one of claims 1 to 22 .
JP2005314581A 2004-11-02 2005-10-28 Method for producing dye-sensitized solar cell semiconductor electrode and method for producing dye-sensitized solar cell Expired - Fee Related JP4953615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314581A JP4953615B2 (en) 2004-11-02 2005-10-28 Method for producing dye-sensitized solar cell semiconductor electrode and method for producing dye-sensitized solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004319598 2004-11-02
JP2004319598 2004-11-02
JP2005314581A JP4953615B2 (en) 2004-11-02 2005-10-28 Method for producing dye-sensitized solar cell semiconductor electrode and method for producing dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2006156364A JP2006156364A (en) 2006-06-15
JP4953615B2 true JP4953615B2 (en) 2012-06-13

Family

ID=36634334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314581A Expired - Fee Related JP4953615B2 (en) 2004-11-02 2005-10-28 Method for producing dye-sensitized solar cell semiconductor electrode and method for producing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4953615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003390A (en) * 2006-06-23 2008-01-10 Bridgestone Corp Antireflection film and optical filter
AT10578U1 (en) * 2007-12-18 2009-06-15 Plansee Metall Gmbh DUNGOUS SOLAR CELL WITH MOLYBDAN-CONTAINING ELECTRODE LAYER
JP2011086715A (en) * 2009-10-14 2011-04-28 Teijin Dupont Films Japan Ltd Electrode for organic solar cell
WO2022071302A1 (en) * 2020-09-30 2022-04-07 株式会社カネカ Perovskite thin film solar cell production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059545A (en) * 2001-08-15 2003-02-28 Toppan Printing Co Ltd Manufacturing method of dye sensitizing solar cell and solar cell
JP2003142169A (en) * 2001-10-31 2003-05-16 Bridgestone Corp Semiconductor electrode of organic dye sensitized metal oxide and solar cell having the semiconductor electrode
JP4314764B2 (en) * 2001-12-27 2009-08-19 凸版印刷株式会社 Method for producing dye-sensitized solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure

Also Published As

Publication number Publication date
JP2006156364A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
Liu et al. Nano-structured electron transporting materials for perovskite solar cells
KR101430139B1 (en) Manufacturing technology perovskite-based mesoporous thin film solar cell
Gong et al. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering
JP4953615B2 (en) Method for producing dye-sensitized solar cell semiconductor electrode and method for producing dye-sensitized solar cell
EP2395597B1 (en) Dye-sensitized solar cell
JP5275346B2 (en) Dye-sensitized solar cell
TWI401811B (en) Dye-sensitized solar cells and manufacturing method for thereof
JP5540930B2 (en) Transparent conductive film, method for producing transparent conductive film, dye-sensitized solar cell, and solid electrolyte battery
JP2004220920A (en) Photoelectric conversion element
JP2006313668A (en) Transfer material for oxide semiconductor electrode, substrate for dye-sensitized solar cell, dye-sensitized solar cell, and method of manufacturing them
JP5609800B2 (en) Dye-sensitized solar cell
JP4843899B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4777592B2 (en) Counter electrode and dye-sensitized solar cell having the same
JP4071428B2 (en) Dye-sensitized solar cell and method for producing the same
JP5699828B2 (en) Method for producing anode for dye-sensitized solar cell
CN111540834A (en) Perovskite solar cell anode modification method
Nahm et al. A simple template-free ‘sputtering deposition and selective etching’process for nanoporous thin films and its application to dye-sensitized solar cells
JP4637543B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4061811B2 (en) Semiconductor electrode, method for manufacturing semiconductor electrode, and solar cell
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building
Onwona-Agyeman et al. Photoelectrochemical solar cells made from SnO2/ZnO films sensitized with an indoline dye
JP2004172110A (en) Multilayered oxide semiconductor thin film, photoelectric conversion element, and solar battery
JP2004158243A (en) Porous oxide semiconductor film, photoelectric conversion element, and solar cell
JP6837325B2 (en) Photoelectric conversion element and its manufacturing method
JP4841574B2 (en) Dye-sensitized solar cell module and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees