JP2011086715A - Electrode for organic solar cell - Google Patents

Electrode for organic solar cell Download PDF

Info

Publication number
JP2011086715A
JP2011086715A JP2009237293A JP2009237293A JP2011086715A JP 2011086715 A JP2011086715 A JP 2011086715A JP 2009237293 A JP2009237293 A JP 2009237293A JP 2009237293 A JP2009237293 A JP 2009237293A JP 2011086715 A JP2011086715 A JP 2011086715A
Authority
JP
Japan
Prior art keywords
layer
electrode
organic solar
transparent conductive
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009237293A
Other languages
Japanese (ja)
Inventor
Rei Nishio
玲 西尾
Tetsuo Yoshida
哲男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2009237293A priority Critical patent/JP2011086715A/en
Publication of JP2011086715A publication Critical patent/JP2011086715A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible type electrode for organic solar cell which uses a plastic film and has superior bending resistance, and ensures high photovoltaic power generation efficiency when used for an organic solar cell, and hardly cause cracking. <P>SOLUTION: The electrode for organic solar cell comprises a base film and a laminate transparent conductive layer provided thereupon. The laminate transparent conductive layer comprises a dielectric layer being in contact with the base film, a metal layer being in contact with the dielectric layer, and a dielectric layer being in contact with the metal layer, wherein surface resistivity of the laminate transparent conductor layer is equal to or less than 40 Ω/sq. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機太陽電池に用いられる電極、すなわち有機薄膜太陽電池および色素増感型太陽電池に用いられる電極に関し、詳しくは、光発電効率の高いフレキシブルタイプの有機太陽電池を製造することのできる有機太陽電池用電極に関する。   The present invention relates to an electrode used for an organic solar cell, that is, an electrode used for an organic thin film solar cell and a dye-sensitized solar cell, and more specifically, a flexible type organic solar cell having high photovoltaic efficiency can be manufactured. The present invention relates to an electrode for an organic solar cell.

有機太陽電池には、有機薄膜太陽電池および色素増感型太陽電池があり、これらは塗布法で製造することができ、材料コストが安いことから、安価に製造することのできる太陽電池として注目されている。   Organic solar cells include organic thin-film solar cells and dye-sensitized solar cells, which can be manufactured by a coating method, and are attracting attention as solar cells that can be manufactured at low cost because of low material costs. ing.

色素増感型太陽電池は、色素増感半導体微粒子を用いた光電変換素子が提案されて以来、シリコン系太陽電池に替る新たな太陽電池として注目され、なかでも支持体としてプラスチックフィルムを用いる色素増感型太陽電池は、柔軟化や軽量化が可能であり、数多くの検討がなされてきた。   Dye-sensitized solar cells have been attracting attention as a new solar cell replacing silicon-based solar cells since the proposal of photoelectric conversion elements using dye-sensitized semiconductor fine particles. Sensitive solar cells can be made flexible and light, and many studies have been made.

そして、プラスチックフィルムを有機太陽電池の基材として用いる場合には、発電層を塗布によって形成することができ、連続プロセスで太陽電池を製造することができるので、低コストで太陽電池を製造することができる。   And when using a plastic film as a base material of an organic solar cell, since a power generation layer can be formed by coating and a solar cell can be manufactured by a continuous process, a solar cell can be manufactured at low cost. Can do.

太陽電池用電極には、一般に、ITO、IZO、FTOといった金属酸化物の透明導電層が設けられる。しかし、基材としてプラスチックフィルムを用いる場合には高温のプロセスを通すことができず、透明導電層の膜質が低下し、キャリアの移動速度が低くなってしまう問題がある。   The solar cell electrode is generally provided with a transparent conductive layer of metal oxide such as ITO, IZO, or FTO. However, when a plastic film is used as a substrate, there is a problem that a high-temperature process cannot be performed, the film quality of the transparent conductive layer is lowered, and the carrier moving speed is lowered.

キャリアの移動速度の低下を抑えるには透明導電層の抵抗率を下げればよく、そのためには透明導電層を厚膜化すればよいが、プラスチックフィルムを基材として用いた場合には透明導電層を厚膜化すると透明導電層にクラックが入り易くなる。そして、透明導電層は一般的に高価であるので透明導電層を厚くするとコストが高くなる問題もある。   In order to suppress a decrease in the moving speed of the carrier, the resistivity of the transparent conductive layer may be lowered. For that purpose, the transparent conductive layer may be thickened. However, when a plastic film is used as the base material, the transparent conductive layer is used. When the film thickness is increased, cracks are likely to occur in the transparent conductive layer. Further, since the transparent conductive layer is generally expensive, there is a problem that the cost increases when the transparent conductive layer is thickened.

ところで、導電性が高い材料として金属がある。金属の薄膜は光の反射率が高いため、金属の薄膜は光が入射する側の窓層電極として用いることは難しい。さらに金属は一般的に腐食しやすく、そのままで使用することは難しい。   By the way, there is a metal as a highly conductive material. Since the metal thin film has high light reflectivity, it is difficult to use the metal thin film as a window layer electrode on the light incident side. Furthermore, metals generally corrode easily and are difficult to use as they are.

特開平11−288745号公報JP-A-11-288745 特開2001−160426号公報JP 2001-160426 A 特開2002−50413号公報JP 2002-50413 A

本発明は、かかる従来技術の問題を解決し、プラスチックフィルムを用いた曲げ耐性に優れるフレキシブルタイプの太陽電池用電極であり、有機太陽電池に用いたときに高い光発電効率を得ることができ、クラックの入りづらい有機太陽電池用電極を提供することを課題とする。   The present invention solves the problems of the prior art, is a flexible type solar cell electrode with excellent bending resistance using a plastic film, and can obtain high photovoltaic efficiency when used in an organic solar cell, It is an object of the present invention to provide an organic solar cell electrode that is difficult to crack.

すなわち本発明は、基材フィルムならびにそのうえに設けられた積層透明導電層からなる有機太陽電池用電極であり、積層透明導電層が、基材フィルムに接する誘電体層、該誘電体層に接する金属層および該金属層に接する誘電体層からなるとともに、積層透明導電体層の表面抵抗率が40Ω/□以下であることを特徴とする、有機太陽電池用電極である。   That is, the present invention is an organic solar cell electrode comprising a base film and a laminated transparent conductive layer provided thereon, wherein the laminated transparent conductive layer is a dielectric layer in contact with the base film, and a metal layer in contact with the dielectric layer. An organic solar cell electrode comprising: a dielectric layer in contact with the metal layer; and a surface resistivity of the laminated transparent conductor layer of 40Ω / □ or less.

本発明によれば、プラスチックフィルムを用いた曲げ耐性に優れるフレキシブルタイプの太陽電池用電極であり、有機太陽電池に用いたときに高い光発電効率を得ることができ、クラックの入りづらい有機太陽電池用電極を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is a flexible type solar cell electrode which is excellent in bending tolerance using a plastic film, can obtain high photovoltaic power generation efficiency when used for an organic solar cell, and is not easily cracked. An electrode can be provided.

[基材フィルム]
本発明における基材フィルムは、可撓性を有する透明な熱可塑性樹脂フィルムであり、結晶性ポリマーのフィルムであることが好ましく、スパッタ法や真空蒸着法により蒸着層を形成し得る耐熱性を備えた透明な熱可塑性樹脂フィルムであることが好ましい。
[Base film]
The base film in the present invention is a flexible transparent thermoplastic resin film, preferably a crystalline polymer film, and has heat resistance capable of forming a vapor deposition layer by sputtering or vacuum vapor deposition. It is preferably a transparent thermoplastic resin film.

熱可塑性樹脂フィルムとしては、例えば、ポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートに代表される芳香族ポリエステル、ナイロン6やナイロン66に代表される脂肪族ポリアミド、芳香族ポリアミド、ポリエチレンやポリプロピレンに代表されるポリオレフィン、ポリカーボネートのフィルムを用いることができる。なかでも、芳香族ポリエステルが好ましく、さらにポリエチレンテレフタレートおよびポリエチレン−2,6−ナフタレートが好ましく、特にポリエチレンテレフタレートフィルムが好ましい。   Examples of the thermoplastic resin film include aromatic polyester represented by polyethylene terephthalate and polyethylene-2,6-naphthalate, aliphatic polyamide represented by nylon 6 and nylon 66, aromatic polyamide, polyethylene and polypropylene. Polyolefin and polycarbonate films can be used. Of these, aromatic polyesters are preferable, polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable, and polyethylene terephthalate film is particularly preferable.

また、熱可塑性樹脂フィルムとして、機械的強度が高いことから二軸延伸フィルムが好ましい。好ましい二軸延伸フィルムは、耐熱性および機械的強度に優れることから、二軸延伸ポリエチレンテレフタレートフィルムまたは二軸延伸ポリエチレン−2,6−ナフタレートフィルムであり、特に二軸延伸ポリエチレンテレフタレートフィルムが好ましい。
熱可塑性樹脂フィルムは、市場で入手することができ、また、従来から知られている方法で製造することができる。
Moreover, since a mechanical strength is high as a thermoplastic resin film, a biaxially stretched film is preferable. A preferred biaxially stretched film is a biaxially stretched polyethylene terephthalate film or a biaxially stretched polyethylene-2,6-naphthalate film because of its excellent heat resistance and mechanical strength, and a biaxially stretched polyethylene terephthalate film is particularly preferred.
The thermoplastic resin film can be obtained on the market, and can be produced by a conventionally known method.

[積層透明導電層]
本発明の有機太陽電池用電極は、前記した基材フィルムの片面に積層透明導電層を設けた有機太陽電池用電極である。
この積層透明導電層は、金属層と基材フィルムに接する誘電体層、該誘電体層に接する金属層、および該金属層に接し最表面に位置する誘電体層からなる。
[Laminated transparent conductive layer]
The electrode for organic solar cells of the present invention is an electrode for organic solar cells in which a laminated transparent conductive layer is provided on one side of the base film described above.
The laminated transparent conductive layer is composed of a dielectric layer in contact with the metal layer and the base film, a metal layer in contact with the dielectric layer, and a dielectric layer in contact with the metal layer and positioned on the outermost surface.

金属層と透明導電層とは交互に多数の層が積層されていてもよい。その場合、積層透明導電層は、誘電体層および該誘電体層に接する金属層を交互に両者合計5〜17層積層した積層透明導電層であることが好ましい。例えば、誘電体層および該誘電体層に接する金属層を交互に両者合計5層積層した積層透明導電層とする場合、この積層透明導電層は、基材フィルムに接する側から、誘電体層、金属層、誘電体層、金属層、最表面の誘電体層の構成をとる。   Many layers may be laminated | stacked alternately with the metal layer and the transparent conductive layer. In that case, the laminated transparent conductive layer is preferably a laminated transparent conductive layer in which a dielectric layer and metal layers in contact with the dielectric layer are alternately laminated in a total of 5 to 17 layers. For example, in the case of a laminated transparent conductive layer in which a dielectric layer and a metal layer in contact with the dielectric layer are alternately laminated in total 5 layers, the laminated transparent conductive layer is formed from the side in contact with the base film from the dielectric layer, A metal layer, a dielectric layer, a metal layer, and an outermost dielectric layer are used.

[誘電体層]
本発明における誘電体層は、誘電体からなり、好ましくは透明で高屈折率な誘電体からなる。誘電体としては、例えばTiO、Ta、ZrO、SnO、SiO、SiO、In3、ITO、IZO、GZO、AZO、FTO、ZnOを例示することができる。誘電体として好ましいものは、アルキルチタネートまたはアルキルジルコニウムの加水分解により得られる有機化合物由来のTiOまたはZrOであり、これらを用いると加工性に優れるため好ましい。また、誘電体として、酸化インジウムや酸化錫、これらにドープし導電性をもたせた誘電体を用いることもできる。
[Dielectric layer]
The dielectric layer in the present invention is made of a dielectric, and preferably made of a transparent and high refractive index dielectric. As the dielectric, can be exemplified for example TiO 2, Ta 2 O 5, ZrO 2, SnO 2, SiO, SiO 2, In 2 O 3, ITO, IZO, GZO, AZO, FTO, the ZnO. A preferable dielectric is TiO 2 or ZrO 2 derived from an organic compound obtained by hydrolysis of alkyl titanate or alkyl zirconium. Use of these is preferable because of excellent workability. Further, as the dielectric, indium oxide, tin oxide, or a dielectric doped with these can be used.

誘電体層は、金属層をサンドイッチ状に挟む積層構造をとることにより、良好な透明性を得ることができる。誘電体層の厚みは、基材フィルムの光学特性を満足するように金属層と併せて設定するべきであるが、誘電体層の厚みは一層の厚みとして2〜1000nmであることが好ましい。   The dielectric layer can obtain good transparency by taking a laminated structure in which the metal layer is sandwiched. The thickness of the dielectric layer should be set together with the metal layer so as to satisfy the optical properties of the base film, but the thickness of the dielectric layer is preferably 2 to 1000 nm as a single layer.

[金属層]
金属層を構成する金属としては、Au、Ag、Cu、Al例示することができる。なかでも、可視光線の吸収がほとんど無いAgや、腐食性が比較的低いAlが好ましい。金属層は必要に応じて複数の金属からなる合金を用いてもよい。金属層の厚みは、一層の厚みとして5〜1000nmの範囲内にあることが好ましい。厚みがこの範囲にあることで、十分な導電性を得ながら、高い可視光線透過率を得ることができる。
[Metal layer]
Examples of the metal constituting the metal layer include Au, Ag, Cu, and Al. Among these, Ag that hardly absorbs visible light and Al that has relatively low corrosivity are preferable. For the metal layer, an alloy composed of a plurality of metals may be used as necessary. The thickness of the metal layer is preferably in the range of 5 to 1000 nm as a single layer thickness. When the thickness is in this range, high visible light transmittance can be obtained while obtaining sufficient conductivity.

[表面抵抗]
積層透明導電層の表面抵抗率は40Ω/□以下、好ましくは30Ω/□以下、さらに好ましくは20Ω/□以下である。40Ω/□を超えると本発明の有機太陽電池用電極を用いて太陽電池を作成して発電する際に、内部抵抗が高く、効率が十分に上がらない。
[Surface resistance]
The surface resistivity of the laminated transparent conductive layer is 40Ω / □ or less, preferably 30Ω / □ or less, more preferably 20Ω / □ or less. When it exceeds 40Ω / □, when the solar cell is produced using the organic solar cell electrode of the present invention to generate electric power, the internal resistance is high and the efficiency is not sufficiently increased.

[光線透過率]
本発明の有機太陽電池電極の光線透過率は、光吸収を行なう400〜800nmの光線透過率が、好ましくは60%以上、さらに好ましくは65%以上、特に好ましくは70%以上である。60%以上であることで、光発電層に届く光量を十分に確保することができ、太陽電池を作成し発電する際に良好な光発電効率を得ることができる。
[Light transmittance]
The light transmittance of the organic solar cell electrode of the present invention is such that the light transmittance at 400 to 800 nm for absorbing light is preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more. By being 60% or more, a sufficient amount of light reaching the photovoltaic layer can be secured, and good photovoltaic efficiency can be obtained when a solar cell is created and generated.

[易接着層]
基材フィルムと積層透明導電層との密着性を向上させるために、基材フィルムと積層透明導電層の間に易接着層を設けてもよい。易接着層の厚みは、好ましくは10〜8000nm、さらに好ましくは80〜6000nmである。易接着層の厚みが10nm未満であると密着性を向上させる効果が乏しく、8000nmを超えると易接着層の凝集破壊が発生しやすくなり密着性が低下することがあり好ましくない。
[Easily adhesive layer]
In order to improve the adhesion between the base film and the laminated transparent conductive layer, an easy adhesion layer may be provided between the base film and the laminated transparent conductive layer. The thickness of the easy adhesion layer is preferably 10 to 8000 nm, and more preferably 80 to 6000 nm. If the thickness of the easy-adhesion layer is less than 10 nm, the effect of improving the adhesiveness is poor, and if it exceeds 8000 nm, the easy-adhesion layer tends to cause cohesive failure, resulting in a decrease in adhesion.

易接着層の構成材には、基材フィルムと積層透明導電層の双方に優れた接着性を示す物質を用いる。例えば基材フィルムとしてポリエステルフィルムを用いる場合には、例えばポリエステル樹脂、アクリル樹脂、ウレタンアクリル樹脂、シリコンアクリル樹脂、メラミン樹脂、ポリシロキサン樹脂を用いることができる。これらの樹脂は単独または2種以上の混合物として用いることができる。   As the constituent material of the easy-adhesion layer, a substance that exhibits excellent adhesion to both the base film and the laminated transparent conductive layer is used. For example, when a polyester film is used as the base film, for example, a polyester resin, an acrylic resin, a urethane acrylic resin, a silicon acrylic resin, a melamine resin, or a polysiloxane resin can be used. These resins can be used alone or as a mixture of two or more.

[反射防止層]
本発明の有機太陽電池用電極には、光線透過率を向上して光発電効率を高めることを目的として、積層透明導電層とは反対側の面に反射防止層を設けてもよい。この反射防止層には、基材フィルムの屈折率とは異なる屈折率を有する素材を単層もしくは2層以上に積層形成する方法を用いることができる。単層構造の場合は、基材フィルムよりも小さな屈折率を有する素材を使用するのがよく、また2層以上の多層構造とする場合は、積層体と隣接する層は基材フィルムよりも大きな屈折率を有する素材とし、その上に積層される層には、これよりも小さな屈折率を有する素材を選択することが好ましい。
[Antireflection layer]
The organic solar cell electrode of the present invention may be provided with an antireflection layer on the surface opposite to the laminated transparent conductive layer for the purpose of improving the light transmittance and enhancing the photovoltaic power generation efficiency. For this antireflection layer, a method of laminating a material having a refractive index different from the refractive index of the base film into a single layer or two or more layers can be used. In the case of a single layer structure, it is better to use a material having a refractive index smaller than that of the base film, and in the case of a multilayer structure of two or more layers, the layer adjacent to the laminate is larger than the base film. It is preferable to select a material having a refractive index smaller than this as a material having a refractive index and a layer laminated thereon.

この反射防止層を構成する素材として、有機材料および無機材料のいずれであっても、上記屈折率の関係を満足するものであれば用いることができる。好ましい例としては、CaF,MgF,NaAlF,SiO,ThF,ZrO,Nd,SnO,TiO,CeO,ZnS,Inなどの誘電体が挙げられる。 As a material constituting the antireflection layer, any of an organic material and an inorganic material can be used as long as the above refractive index relationship is satisfied. Preferred examples include a dielectric such as CaF 2, MgF 2, NaAlF 4 , SiO 2, ThF 4, ZrO 2, Nd 2 O 3, SnO 2, TiO 2, CeO 2, ZnS, In 2 O 3 .

[製造方法]
基材フィルムは、市販のものを用いることができる。例えばポリエチレンテレフタレートの二軸延伸フィルムを用いる場合、帝人デュポンフィルム製の帝人テトロンO3を用いることができる。
[Production method]
A commercially available base film can be used. For example, when a biaxially stretched film of polyethylene terephthalate is used, Teijin Tetron O3 made by Teijin DuPont Film can be used.

透明導電層は、気相成長法より基材フィルム上に形成することができる。好ましくは、真空蒸着法、スパッタ法またはプラズマCVD法を用いる。金属層は、気相成長法により透明導電層上に形成することができる。好ましくは、真空蒸着法、スパッタ法またはプラズマCVD法を用いる。易接着層は、基材フィルムの製造過程もしくは製膜後に、常法により塗布して設けることができる。反射防止層は、例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーテイング法などのドライコーティング法、グラビア方式、リバース方式、ダイ方式などのウェットコーティング法で設けることができる。反射防止層の積層に先立ち、コロナ放電処理、プラズマ処理、スパッタエッチング処理、電子線照射処理、紫外線照射処理、プライマ処理、易接着処理などの公知の前処理を基材フィルムに施してもよい。   The transparent conductive layer can be formed on the base film by vapor deposition. Preferably, a vacuum evaporation method, a sputtering method, or a plasma CVD method is used. The metal layer can be formed on the transparent conductive layer by a vapor deposition method. Preferably, a vacuum evaporation method, a sputtering method, or a plasma CVD method is used. The easy-adhesion layer can be applied and provided by a conventional method after the base film is manufactured or formed. The antireflection layer can be provided by, for example, a dry coating method such as a vacuum deposition method, a sputtering method, a CVD method, or an ion plating method, or a wet coating method such as a gravure method, a reverse method, or a die method. Prior to the lamination of the antireflection layer, a known pretreatment such as corona discharge treatment, plasma treatment, sputter etching treatment, electron beam irradiation treatment, ultraviolet ray irradiation treatment, primer treatment, and easy adhesion treatment may be applied to the base film.

以下、本発明を実施例により詳述する。なお、フィルムの特性の測定は、以下の方法にしたがって実施した。
(1)表面抵抗率
三菱化学(株)製の表面抵抗測定器loresta−GP(MCD−T600)を用いて測定した。
(2)光線透過率
(株)島津製作所製分光光度計MPC3100を用いて測定した。
(3)曲げ耐性
電極フィルムを2.5cm×20cmの短冊状に切り出し、長尺の一方に250gの錘を固定し、残りの一方を、10mm〜50mmの径の異なる金属棒に固定した。金属棒を回転させて完全に巻き上げた後に、巻き戻した。この作業の前後で表面抵抗率の変化を評価した。表面抵抗率が1.5倍以下に維持される径を限界曲げ半径とした。
(4)I−V特性(光電流−電圧特性)
25mm大の色素増感型太陽電池を形成し、下記の方法で光発電効率を算出した。500Wのキセノンランプ(ウシオ電気社製)に太陽光シミュレーション用補正フィルター(オリエール社製AM1.5Global)を装着し、上記の光発電装置に対し、入射光強度が100mW/cmの模擬太陽光を、水平面に対する入射角度を様々変えて照射した。システムは屋内、気温18℃、湿度50%の雰囲気に静置した。電流電圧測定装置(ケースレー製ソースメジャーユニット238型)を用いて、システムに印加するDC電圧を10mV/秒の定速でスキャンし、素子の出力する光電流を計測することにより、光電流−電圧特性を測定し、光発電効率を算出した。
(5)フィルム厚み
マイクロメーター(アンリツ(株)製のK−402B型)を用いて、フィルムの連続製膜方向および幅方向に各々10cm間隔で測定を行い、全部で300ヶ所のフィルム厚みを測定した。得られた300ヶ所のフィルム厚みの平均値を算出してフィルム厚みとした。
Hereinafter, the present invention will be described in detail by way of examples. The film characteristics were measured according to the following method.
(1) Surface resistivity It measured using the surface resistance measuring device loresta-GP (MCD-T600) by Mitsubishi Chemical Corporation.
(2) Light transmittance Measured using a spectrophotometer MPC3100 manufactured by Shimadzu Corporation.
(3) Bending resistance The electrode film was cut into a 2.5 cm × 20 cm strip, a 250 g weight was fixed to one of the long pieces, and the remaining one was fixed to metal bars having different diameters of 10 mm to 50 mm. The metal rod was rotated and completely wound up, and then rewound. The change in surface resistivity was evaluated before and after this operation. The diameter at which the surface resistivity was maintained at 1.5 times or less was defined as the critical bending radius.
(4) IV characteristics (photocurrent-voltage characteristics)
A 25 mm 2 large dye-sensitized solar cell was formed, and the photovoltaic power generation efficiency was calculated by the following method. A 500 W xenon lamp (made by USHIO ELECTRIC CO., LTD.) Is equipped with a correction filter for sunlight simulation (AM1.5 Global made by Oriel), and simulated solar light with an incident light intensity of 100 mW / cm 2 is applied to the above photovoltaic power generation device. Irradiation was performed by changing the incident angle with respect to the horizontal plane. The system was left indoors at a temperature of 18 ° C. and a humidity of 50%. Using a current-voltage measuring device (Keutley source measure unit 238 type), the DC voltage applied to the system is scanned at a constant speed of 10 mV / second, and the photocurrent output from the device is measured, so that photocurrent-voltage The characteristics were measured, and the photovoltaic power generation efficiency was calculated.
(5) Film thickness Using a micrometer (K-402B type manufactured by Anritsu Co., Ltd.), measurements are made at 10 cm intervals in the continuous film forming direction and the width direction of the film, and a total of 300 film thicknesses are measured. did. The average value of the film thicknesses of the obtained 300 locations was calculated and used as the film thickness.

[実施例1]
<ポリエステルフィルムの作成>
ポリエチレンナフタレンジカルボキシレート(固有粘度:0.61)を60℃に維持した回転冷却ドラム上に溶融押出しして未延伸フィルムとした。次いで縦方向に140℃で3.3倍に延伸した後、横方向に145℃で3.5倍に延伸し、240℃で幅方向に2%収縮させ熱固定し、厚さ125μmのポリエステルフィルムを得た。
[Example 1]
<Creation of polyester film>
Polyethylene naphthalene dicarboxylate (intrinsic viscosity: 0.61) was melt extruded onto a rotating cooling drum maintained at 60 ° C. to obtain an unstretched film. Next, the film was stretched 3.3 times in the longitudinal direction at 140 ° C., then stretched 3.5 times in the transverse direction at 145 ° C., heat-fixed by shrinking 2% in the width direction at 240 ° C., and a polyester film having a thickness of 125 μm. Got.

<積層透明導電層の形成>
このフィルムの片面に厚さ31nmの酸化チタン層(誘電体層;第1層)を設け、その上に厚さ12nmの銀・銅合金層(金属層;第2層)を設け、さらにその上に厚さ22nmの酸化チタン層(誘電体層;第3層)を設けて積層透明導電層を形成した。なお、上記3層はいずれも真空下でのスパッタリング法で形成した。
こうして得られた有機太陽電池電極の積層透明導電層の表面抵抗率は11Ω/□であり、400−800nmの光線透過率は60%以上であった。また、透明導電層を巻き外にして曲げ試験を行った結果、10mm径に対しても目視でクラックは確認できず、抵抗率の増加はみられなかった。
<Formation of laminated transparent conductive layer>
A titanium oxide layer (dielectric layer; first layer) having a thickness of 31 nm is provided on one side of the film, a silver / copper alloy layer (metal layer; second layer) having a thickness of 12 nm is provided thereon, and further thereon A titanium oxide layer (dielectric layer; third layer) having a thickness of 22 nm was provided on the laminated transparent conductive layer. All the three layers were formed by sputtering under vacuum.
The surface resistivity of the laminated transparent conductive layer of the organic solar cell electrode thus obtained was 11Ω / □, and the light transmittance at 400 to 800 nm was 60% or more. Further, as a result of bending test with the transparent conductive layer unwound, no cracks could be visually confirmed even for a diameter of 10 mm, and no increase in resistivity was observed.

[実施例2]
<ポリエステルフィルムの作成>
溶融したポリエチレンテレフタレート(固有粘度(オルソクロロフェノール、35℃)=0.65)をダイより押出し、常法により冷却ドラムで冷却して未延伸フィルムとし、次いで縦方向に95℃で3.6倍延伸した後、このフィルムを引き続いて横方向に120℃で3.8倍延伸し、次いで220℃で熱固定して、厚さ50μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。
[Example 2]
<Creation of polyester film>
Molten polyethylene terephthalate (intrinsic viscosity (orthochlorophenol, 35 ° C.) = 0.65) is extruded from a die, cooled with a cooling drum by a conventional method to form an unstretched film, and then, in the longitudinal direction, 3.6 times at 95 ° C. After stretching, the film was subsequently stretched 3.8 times in the transverse direction at 120 ° C. and then heat-set at 220 ° C. to obtain a biaxially stretched polyethylene terephthalate film having a thickness of 50 μm.

<積層透明導電層の形成>
このフィルムの片面に厚さ38nmの酸化インジウム層(誘電体層;第1層)を設け、その上に厚さ10nmの銀・金合金層(金属層;第2層)を設け、さらにその上に厚さ279nmの酸化インジウム層(誘電体層;第3層)さらにその上に暑さ6nmの銀・金合金層(金属層;第4層)、さらにその上に厚さ38nmの酸化インジウム層(誘電体層;第5層) を設け積層透明導電層を形成した。なお、上記5層はいずれも真空下でのスパッタリング法で形成した。
こうして得られた有機太陽電池電極の積層透明導電層の表面抵抗は7Ω/□であり、400〜800nmの光線透過率は60%以上であった。また、透明導電層を巻き外にして曲げ試験を行った結果、10mm径に対しても目視でクラックは確認できず、抵抗率の増加はみられなかった。
<Formation of laminated transparent conductive layer>
An indium oxide layer (dielectric layer; first layer) having a thickness of 38 nm is provided on one surface of the film, and a silver / gold alloy layer (metal layer; second layer) having a thickness of 10 nm is provided thereon, and further thereon An indium oxide layer (dielectric layer; third layer) having a thickness of 279 nm, a silver / gold alloy layer (metal layer; fourth layer) having a thickness of 6 nm, and an indium oxide layer having a thickness of 38 nm thereon. (Dielectric layer; fifth layer) was provided to form a laminated transparent conductive layer. All the five layers were formed by sputtering under vacuum.
The surface resistance of the laminated transparent conductive layer of the organic solar cell electrode thus obtained was 7Ω / □, and the light transmittance at 400 to 800 nm was 60% or more. Further, as a result of bending test with the transparent conductive layer unwound, no cracks could be visually confirmed even for a diameter of 10 mm, and no increase in resistivity was observed.

<色素増感型太陽電池の作成>
積層透明導電層の上に、市販されている低温形成型多孔質二酸化チタン層形成用ペースト(昭和電工製SP−200)をバーコーターにて塗布し、大気中200℃で60分間の熱処理を行い、厚み3μmになるように多孔質二酸化チタン層を形成し、色素増感型太陽電池の電極を作成した。
この電極をルテニウム錯体(Ru535bisTBA、Solaronix製)の300μMエタノール溶液中に24時間浸漬し、光作用電極表面にルテニウム錯体を吸着させた。
<Creation of dye-sensitized solar cell>
A commercially available paste for forming a low temperature forming porous titanium dioxide layer (SP-200 made by Showa Denko) is applied on the laminated transparent conductive layer with a bar coater, and heat treatment is performed at 200 ° C. for 60 minutes in the atmosphere. A porous titanium dioxide layer was formed to a thickness of 3 μm, and an electrode of a dye-sensitized solar cell was created.
This electrode was immersed in a 300 μM ethanol solution of a ruthenium complex (Ru535bisTBA, Solaronix) for 24 hours to adsorb the ruthenium complex on the surface of the photoactive electrode.

また、前記の積層体の透明導電層上にスパッタリング法によりPt膜を堆積して対向電極を作成した。
電極と対向電極を、熱圧着性のポリエチレンフィルム製フレーム型スペーサー(厚さ20μm)を介して重ね合わせ、スペーサー部を120℃に加熱して両電極を圧着し、さらに、そのエッジ部を一部分を残してエポキシ樹脂接着剤でシールした。そして、シールしていない部分から電解質溶液(0.5Mのヨウ化リチウムと0.05Mのヨウ素と0.5Mのtert−ブチルピリジン、平均粒径20μmのナイロンビーズ3重量%を含む3−メトキシプロピオニトリル溶液)を注入した後、エポキシ系接着剤でシールした。
完成した色素増感型太陽電池について、温度23℃、湿度50%の環境で1000時間経過させた後にI−V測定(有効面積25mm)を行った。開放電圧、短絡電流密度、曲線因子はそれぞれ、0.75V、6.0mA/cm、0.69であり、光発電効率は3.1%であった。
Further, a counter electrode was formed by depositing a Pt film on the transparent conductive layer of the laminate by sputtering.
The electrode and the counter electrode are overlapped via a thermocompression-resistant polyethylene film frame spacer (thickness 20 μm), the spacer part is heated to 120 ° C., and both electrodes are pressure-bonded. It was left and sealed with an epoxy resin adhesive. Then, from the unsealed portion, an electrolyte solution (3-methoxypropyl containing 0.5% lithium iodide, 0.05M iodine, 0.5M tert-butylpyridine, 3% by weight of nylon beads having an average particle diameter of 20 μm is used. After injecting a (pionitrile solution), it was sealed with an epoxy adhesive.
The completed dye-sensitized solar cell was subjected to IV measurement (effective area 25 mm 2 ) after 1000 hours in an environment of a temperature of 23 ° C. and a humidity of 50%. The open circuit voltage, short circuit current density, and fill factor were 0.75 V, 6.0 mA / cm 2 , and 0.69, respectively, and the photovoltaic generation efficiency was 3.1%.

本発明の有機太陽電池用電極は、有機太陽電池の電極として好適に利用することができる。   The electrode for organic solar cells of the present invention can be suitably used as an electrode for organic solar cells.

Claims (6)

基材フィルムならびにそのうえに設けられた積層透明導電層からなる有機太陽電池用電極であり、積層透明導電層が、基材フィルムに接する誘電体層、該誘電体層に接する金属層および該金属層に接する誘電体層からなるとともに、積層透明導電体層の表面抵抗率が40Ω/□以下であることを特徴とする、有機太陽電池用電極。   An organic solar cell electrode comprising a substrate film and a laminated transparent conductive layer provided thereon, wherein the laminated transparent conductive layer is a dielectric layer in contact with the substrate film, a metal layer in contact with the dielectric layer, and the metal layer An electrode for an organic solar cell comprising a dielectric layer in contact with the laminated transparent conductor layer and having a surface resistivity of 40Ω / □ or less. 積層透明導電層が、基材フィルムに接する誘電体層、該誘電体層に接する金属層および該金属層に接し最表面に位置する誘電体層からなる、請求項1記載の有機太陽電池用電極。   The electrode for organic solar cells according to claim 1, wherein the laminated transparent conductive layer comprises a dielectric layer in contact with the base film, a metal layer in contact with the dielectric layer, and a dielectric layer in contact with the metal layer and located on the outermost surface. . 積層透明導電層が、誘電体層および該誘電体層に接する金属層を交互に両者合計5〜17層積層した積層透明導電層である、請求項1記載の有機太陽電池用電極。   The electrode for organic solar cells according to claim 1, wherein the laminated transparent conductive layer is a laminated transparent conductive layer in which a dielectric layer and metal layers in contact with the dielectric layer are alternately laminated in a total of 5 to 17 layers. 金属層が、Au、Ag、CuおよびAlからなる群から選ばれる1種以上の金属からなる層である、請求項1記載の有機太陽電池用電極。   The electrode for organic solar cells according to claim 1, wherein the metal layer is a layer made of one or more metals selected from the group consisting of Au, Ag, Cu and Al. 誘電体層が、TiO、Ta、ZrO、SnO、SiO、SiO、In3、ITO、IZO、GZO、AZO、FTOおよびZnOからなる群から選ばれる1種以上の誘電体からなる層である、請求項1記載の有機太陽電池用電極。 The dielectric layer is at least one selected from the group consisting of TiO 2 , Ta 2 O 5 , ZrO 2 , SnO 2 , SiO, SiO 2 , In 2 O 3, ITO, IZO, GZO, AZO, FTO and ZnO. The electrode for organic solar cells according to claim 1, which is a layer made of a dielectric. 基材フィルムが結晶性ポリマーのフィルムである、請求項1記載の有機太陽電池用電極。   The electrode for organic solar cells according to claim 1, wherein the base film is a crystalline polymer film.
JP2009237293A 2009-10-14 2009-10-14 Electrode for organic solar cell Pending JP2011086715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237293A JP2011086715A (en) 2009-10-14 2009-10-14 Electrode for organic solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237293A JP2011086715A (en) 2009-10-14 2009-10-14 Electrode for organic solar cell

Publications (1)

Publication Number Publication Date
JP2011086715A true JP2011086715A (en) 2011-04-28

Family

ID=44079461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237293A Pending JP2011086715A (en) 2009-10-14 2009-10-14 Electrode for organic solar cell

Country Status (1)

Country Link
JP (1) JP2011086715A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139859A (en) * 2014-01-30 2015-08-03 株式会社ニートレックス本社 Grinding fluid supply tool and grinding wheel
JP2016027634A (en) * 2014-06-27 2016-02-18 三菱化学株式会社 Organic photoelectric conversion element
JP2016035512A (en) * 2014-08-04 2016-03-17 国立研究開発法人物質・材料研究機構 Optical super-resolution medium, hyper lens, method for producing the same and hyper lens array
KR20190053374A (en) * 2017-11-10 2019-05-20 엘지전자 주식회사 Tandem solar cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291356A (en) * 1996-04-26 1997-11-11 Asahi Glass Co Ltd Transparent conductive film-provided substrate and its production
JP2004207401A (en) * 2002-12-24 2004-07-22 Matsushita Electric Works Ltd Organic solar cell and its manufacturing method
WO2004109840A1 (en) * 2003-03-26 2004-12-16 Sony Corporation Electrode, method of forming the same, photoelectric conversion device, process for producing the same, electronic apparatus and process for producing the same
WO2006030762A1 (en) * 2004-09-13 2006-03-23 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, process for producing the same, transparent conductive base material and luminescent device
JP2006156364A (en) * 2004-11-02 2006-06-15 Bridgestone Corp Semiconductor electrode for dye-sensitized solar battery and dye sensitized solar battery with same
JP2006302805A (en) * 2005-04-25 2006-11-02 Teijin Dupont Films Japan Ltd Electrode for dye-sensitized solar cell and its manufacturing method
JP2007027529A (en) * 2005-07-20 2007-02-01 Seiko Epson Corp Electronic device and electronic equipment
WO2008004553A1 (en) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
JP2008293877A (en) * 2007-05-28 2008-12-04 Konica Minolta Business Technologies Inc Photoelectric conversion element, solar cell, photosensor, and electrophotography photosensitive body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291356A (en) * 1996-04-26 1997-11-11 Asahi Glass Co Ltd Transparent conductive film-provided substrate and its production
JP2004207401A (en) * 2002-12-24 2004-07-22 Matsushita Electric Works Ltd Organic solar cell and its manufacturing method
WO2004109840A1 (en) * 2003-03-26 2004-12-16 Sony Corporation Electrode, method of forming the same, photoelectric conversion device, process for producing the same, electronic apparatus and process for producing the same
WO2006030762A1 (en) * 2004-09-13 2006-03-23 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, process for producing the same, transparent conductive base material and luminescent device
JP2006156364A (en) * 2004-11-02 2006-06-15 Bridgestone Corp Semiconductor electrode for dye-sensitized solar battery and dye sensitized solar battery with same
JP2006302805A (en) * 2005-04-25 2006-11-02 Teijin Dupont Films Japan Ltd Electrode for dye-sensitized solar cell and its manufacturing method
JP2007027529A (en) * 2005-07-20 2007-02-01 Seiko Epson Corp Electronic device and electronic equipment
WO2008004553A1 (en) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
JP2008293877A (en) * 2007-05-28 2008-12-04 Konica Minolta Business Technologies Inc Photoelectric conversion element, solar cell, photosensor, and electrophotography photosensitive body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139859A (en) * 2014-01-30 2015-08-03 株式会社ニートレックス本社 Grinding fluid supply tool and grinding wheel
JP2016027634A (en) * 2014-06-27 2016-02-18 三菱化学株式会社 Organic photoelectric conversion element
JP2016035512A (en) * 2014-08-04 2016-03-17 国立研究開発法人物質・材料研究機構 Optical super-resolution medium, hyper lens, method for producing the same and hyper lens array
KR20190053374A (en) * 2017-11-10 2019-05-20 엘지전자 주식회사 Tandem solar cell
KR102531881B1 (en) * 2017-11-10 2023-05-16 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Tandem solar cell

Similar Documents

Publication Publication Date Title
TWI390743B (en) Pigment for a dye-sensitized solar cell, an electrode for a dye-sensitized solar cell, and a method of manufacturing the same
JP4660252B2 (en) Dye-sensitized solar cell laminated film and dye-sensitized solar cell electrode using the same
JP4848666B2 (en) Oxide semiconductor electrode transfer material, dye-sensitized solar cell substrate, dye-sensitized solar cell, and methods for producing the same
US20110108104A1 (en) Photoelectric conversion device
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2012186310A (en) Photovoltaic power generation film
JP2011086715A (en) Electrode for organic solar cell
WO2005074068A1 (en) Laminated film for dye-sensitized solar cell, electrode for dye-sensitized solar cell and process for producing the same
JP5106876B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
JP4456894B2 (en) Dye-sensitized solar cell laminated film and dye-sensitized solar cell electrode using the same
WO2007138348A2 (en) Photovoltaic cell with mesh electrode
JP4456883B2 (en) Dye-sensitized solar cell laminate film and dye-sensitized solar cell electrode using the same
EP2345051B1 (en) A method of manufacturing a photovoltaic device, an intermediate manufacturing product and a photovoltaic device
JP5059289B2 (en) Dye-sensitized solar cell laminate, dye-sensitized solar cell electrode, and method for producing the same
US20110272018A1 (en) Dye sensitized solar cell
JP2007018951A (en) Electrode for dye-sensitized solar cell
JP5031997B2 (en) Electrode for dye-sensitized solar cell and method for producing the same
JP2005251605A (en) Dye-sensitized solar cell, module, and manufacturing method of dye-sensitized solar cell
Ghnimi et al. Performances enhancement of natural DSSC by Ga-doped ZnO layer used in the FTO/TiO2/ZnG photoanode
JP2008041258A (en) Substrate for action electrode, and photoelectric conversion element
JP4922568B2 (en) Dye-sensitized solar cell electrode
JP2007207709A (en) Counter electrode for dye-sensitized solar battery and dye-sensitized solar battery
JP4456933B2 (en) Method for producing dye-sensitized solar cell electrode
JP2006139961A (en) Conductive substrate, electrode substrate for dye sensitized solar battery, and dye sensitized solar battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015