JP4953274B2 - Isotope separation method using molecular rotation period difference - Google Patents

Isotope separation method using molecular rotation period difference Download PDF

Info

Publication number
JP4953274B2
JP4953274B2 JP2006001106A JP2006001106A JP4953274B2 JP 4953274 B2 JP4953274 B2 JP 4953274B2 JP 2006001106 A JP2006001106 A JP 2006001106A JP 2006001106 A JP2006001106 A JP 2006001106A JP 4953274 B2 JP4953274 B2 JP 4953274B2
Authority
JP
Japan
Prior art keywords
isotope
laser light
rotation period
molecular
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006001106A
Other languages
Japanese (ja)
Other versions
JP2007181763A (en
Inventor
浩 赤木
弘則 大場
啓一 横山
淳 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2006001106A priority Critical patent/JP4953274B2/en
Publication of JP2007181763A publication Critical patent/JP2007181763A/en
Application granted granted Critical
Publication of JP4953274B2 publication Critical patent/JP4953274B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、同位体を分離する方法に関するものであり、同位体的に低純度の原料ガス中の、目的同位体を含む分子と非目的同位体を含む分子の有する分子回転周期の差を利用することで、目的同位体を分離、回収することを特徴とするものである。   The present invention relates to a method for separating isotopes, and uses a difference in molecular rotation period between molecules containing a target isotope and molecules containing a non-target isotope in an isotopically low-purity source gas. Thus, the target isotope is separated and recovered.

天然に存在する大多数の元素には、複数の同位体が存在する。その同位体を分離・濃縮したものは、トレーサー、医療用検査試薬、核燃料などの原料として利用されている。最近、シリコンの同位体の1つである28Siを分離し、高濃縮(99.86%)した単結晶では、その熱伝導度が天然の同位体構成材料と比べて大きくなることが見出され、次世代の半導体基板材料の候補として注目された。このように、単一の同位体を高濃縮した物質の物性は、天然存在比のものと大きく異なる可能性があり、同位体を制御した材料への関心が高まっている。 There are multiple isotopes in the majority of naturally occurring elements. The separated and concentrated isotopes are used as raw materials for tracers, medical test reagents, nuclear fuels and the like. Recently, 28 Si, one of the isotopes of silicon, was isolated and highly concentrated (99.86%) single crystal was found to have higher thermal conductivity than natural isotope constituent materials, It attracted attention as a candidate for next-generation semiconductor substrate materials. As described above, the physical properties of a substance obtained by highly enriching a single isotope may be greatly different from those of a natural abundance ratio, and there is an increasing interest in materials with controlled isotopes.

同位体の分離・濃縮方法としては、遠心分離法、ガス拡散法、蒸留法などが実用化されている。しかしながら、1回の分離・濃縮操作で得られる濃縮度が極めて低いために、高濃縮同位体を得るためには多数回の分離・濃縮操作が必要であり、分離・濃縮施設は大規模になる。それにより、施設建設や運転コストが膨大になる。従って、これらの方法が適応できる同位体は、それらのコストを賄えるだけの需要があるものに限定される。   Centrifugation, gas diffusion, distillation, etc. have been put to practical use as isotope separation / concentration methods. However, since the enrichment obtained by one separation / concentration operation is extremely low, a large number of separation / concentration operations are required to obtain a highly enriched isotope, and the separation / concentration facility becomes large-scale. . As a result, facility construction and operation costs become enormous. Therefore, the isotopes to which these methods can be applied are limited to those that are in demand to meet their costs.

その他の同位体に対する分離・濃縮方法としては、電磁質量分離法が使われている。この方法は、原理的に全ての同位体に適応可能であり、しかも1回の分離・濃縮操作で高い濃縮度が得られる。しかし、高真空を保った条件下で分離・濃縮を行う必要があるため、極微量の高濃縮同位体しか製造できない。その製造量に対して装置建設および運転コストが大きいため、高濃縮同位体は非常に高価であり、高濃縮同位体を比較的安価に製造できる方法の開発が期待されている。   As a separation / concentration method for other isotopes, an electromagnetic mass separation method is used. In principle, this method can be applied to all isotopes, and a high concentration can be obtained by a single separation / concentration operation. However, since it is necessary to perform separation and concentration under the condition of maintaining a high vacuum, only a very small amount of highly concentrated isotopes can be produced. Since the equipment construction and operation costs are large relative to the production amount, highly enriched isotopes are very expensive, and development of a method capable of producing highly enriched isotopes relatively inexpensively is expected.

その候補として、分子レーザー同位体分離法の研究・開発が進められている。この方法は、原料中の目的同位体を含む分子と非目的同位体を含む分子の、分子振動数の差によって生じる分子振動スペクトルのずれ、いわゆる同位体シフトを利用することで、どちらか一方のみを赤外多光子分解し、目的同位体を分離、回収するものであり、1回の分離・濃縮操作で高濃縮同位体を得ることが可能である(例えば、特許文献1を参照)。さらに、連続的に原料を供給しながら分離・濃縮操作を行うことにより、高濃縮同位体を大量に製造することも可能である。
特開2003−53153号公報
As a candidate for this, research and development of molecular laser isotope separation methods are underway. This method uses a shift in molecular vibration spectrum caused by the difference in molecular frequency between the molecule containing the target isotope and the molecule containing the non-target isotope in the raw material, so-called isotope shift. Is subjected to infrared multiphoton decomposition, and the target isotope is separated and recovered. A highly enriched isotope can be obtained by a single separation / concentration operation (see, for example, Patent Document 1). Furthermore, a highly concentrated isotope can be produced in large quantities by performing separation and concentration operations while continuously supplying raw materials.
JP 2003-53153 A

分子レーザー同位体分離法には、対象とする元素の質量が大きくなると、同位体を分離・濃縮する効率が低下する、という問題点がある。これは、対象元素の質量が大きくなると分子振動数が小さくなることに原因がある。例えば等核2原子分子の場合、分子振動数νは次式に表されるように、原子の質量の1/2乗に反比例する。   The molecular laser isotope separation method has a problem that the efficiency of separating and concentrating isotopes decreases as the mass of the target element increases. This is because the molecular frequency decreases as the mass of the target element increases. For example, in the case of an equinuclear diatomic molecule, the molecular frequency ν is inversely proportional to the 1/2 power of the mass of the atom, as shown in the following equation.

式1Formula 1

Figure 0004953274
Figure 0004953274

ここで、πは円周率、kは分子バネ定数、mは原子の質量である。 Here, π is the circumference ratio, k is the molecular spring constant, and m is the mass of the atom.

この質量増加に伴う分子振動数の減少は、分子レーザー同位体分離法において、2つの悪効果を及ぼす。すなわち、異なる同位体による分子振動数の差の減少、および原料中の振動励起分子の存在割合増加である。分子振動数の差の減少は、分子振動スペクトルにおける同位体シフトの減少を生じ、振動励起分子の存在割合増加は、分子振動スペクトル幅の増加を生じる。これらの結果、一方の同位体を含む分子のみを光分解することが困難になる。従って、分子レーザー同位体分離法の対象を重元素とした場合、同位体分離・濃縮の効率が低下する。
[課題を解決するための手段]
This decrease in molecular frequency with increasing mass has two adverse effects in molecular laser isotope separation. That is, a decrease in the difference in molecular frequency due to different isotopes and an increase in the proportion of vibrationally excited molecules in the raw material. A decrease in molecular frequency difference results in a decrease in isotope shift in the molecular vibration spectrum, and an increase in the proportion of vibrationally excited molecules results in an increase in molecular vibration spectrum width. As a result, it becomes difficult to photolyze only the molecule containing one isotope. Therefore, when the target of the molecular laser isotope separation method is a heavy element, the efficiency of isotope separation / concentration decreases.
[Means for solving problems]

上記の問題点を解決するために、本発明においては、重元素を対象とした同位体の分離・濃縮に対し、その重元素の同位体を含む分子の持つ回転周期の差を利用する。具体的に、本発明は、パルスレーザーの複数パルス照射(パルスレーザーによる複数回の照射)に基づく、重元素同位体の分離・濃縮の高効率化法であって、原料ガスに直線偏光したパルスレーザー光を照射することで原料ガス中の同一方向に向いた分子のみを振動あるいは電子励起し;目的同位体または非目的同位体を含む分子回転周期に合わせてさらに直線偏光したパルスレーザー光を1パルスあるいは複数パルス照射することにより、目的同位体または非目的同位体を含む分子の光化学反応を優先的に誘起することを特徴とする。   In order to solve the above problems, the present invention utilizes the difference in rotation period of molecules containing isotopes of heavy elements for the separation and enrichment of isotopes for heavy elements. Specifically, the present invention relates to a highly efficient method for separating and concentrating heavy element isotopes based on multiple pulse irradiation of a pulse laser (multiple irradiation by a pulse laser), which is a pulse that is linearly polarized on a source gas. By irradiating a laser beam, only molecules oriented in the same direction in the source gas are vibrated or electronically excited; a pulsed laser beam that is further linearly polarized in accordance with the molecular rotation period including the target isotope or non-target isotope 1 It is characterized by preferentially inducing a photochemical reaction of a molecule containing a target isotope or a non-target isotope by irradiation with a pulse or a plurality of pulses.

また、パルスレーザー光の通過する距離の差を利用してレーザー光照射の時間間隔を制御することにより、光化学反応を安定にかつ効率良く進行させることを特徴とする。この光化学反応とは、例えば、原料ガスをパルスレーザー光照射により光分解し、その際に生成する同位体原子あるいはそれを含む分子などを他の原子あるいは分子などと反応させてその同位体原子を含む安定な化合物を生成させる化学反応等である。   Further, it is characterized in that the photochemical reaction proceeds stably and efficiently by controlling the time interval of the laser light irradiation using the difference in the distance through which the pulse laser light passes. This photochemical reaction is, for example, photolysis of a source gas by irradiation with a pulsed laser beam, and reacting an isotope atom generated at that time or a molecule containing the same with other atoms or molecules to convert the isotope atoms. A chemical reaction that produces a stable compound.

本発明で使用される直線偏光したパルスレーザーは、光電場の振動が特定の一方向に限られているレーザー光であり、例えば、上述のとおり、原料ガスに直線偏光したパルスレーザー光を照射すると、ガス中の特定方向に向いた分子のみを振動あるいは電子励起することができ、又目的同位体を含む分子または非目的同位体を含む分子の分子回転周期に合わせてさらに直線偏光したパルスレーザー光を照射すると、目的同位体または非目的同位体を含む分子を優先的に光分解してその同位体を分離することができる。本発明では、図1のパルスレーザー光照射系において、近赤外パルスレーザーからのレーザー光を偏光素子に通して直線偏光したパルスレーザーを形成している。   The linearly polarized pulse laser used in the present invention is a laser beam in which the vibration of the photoelectric field is limited to one specific direction. For example, as described above, when the source gas is irradiated with a linearly polarized pulsed laser beam. Pulsed laser light that can vibrate or electronically excite only molecules oriented in a specific direction in the gas, and that is further linearly polarized in accordance with the molecular rotation period of the molecule containing the target isotope or the molecule containing the non-target isotope , The molecule containing the target isotope or non-target isotope can be preferentially photolyzed to separate the isotope. In the present invention, in the pulse laser light irradiation system of FIG. 1, a laser beam from a near-infrared pulse laser is passed through a polarizing element to form a linearly polarized pulse laser.

分子回転周期は、対象とする元素の質量が大きくなると長くなる。例えば等核2原子分子の場合、分子回転周期Tは次式に表されるように、原子の質量に比例する。   The molecular rotation period increases as the mass of the target element increases. For example, in the case of a homonuclear diatomic molecule, the molecular rotation period T is proportional to the mass of the atom as represented by the following equation.

式2Formula 2

Figure 0004953274
Figure 0004953274

ここで、rは原子間の距離、ηはプランク定数である。従って、質量mの原子で形成される等核2原子分子と質量(m+Δm)の原子で形成される等核2原子分子における分子回転周期差ΔTは、次式に表されるように、原子質量差Δmのみに比例する。 Here, r is the distance between atoms, and η is the Planck constant. Therefore, the molecular rotation period difference ΔT between a homonuclear diatomic molecule formed of atoms of mass m and a homonuclear diatomic molecule formed of atoms of mass (m + Δm) is expressed as follows: It is proportional only to the difference Δm.

式3Formula 3

Figure 0004953274
Figure 0004953274

すなわち、質量mには依存しない。従って、対象元素が重くなった場合においても、分子回転周期差は変化しない。また振動励起分子においても、分子回転周期はあまり変化しないため、振動励起分子の割合増加の影響は小さい。従って、本発明においては、重元素を対象とした同位体分離・濃縮においても、その元素の質量自体の重さに影響されることの少ない分子回転周期差に依存するので、その分離・濃縮効率低下を抑制することが可能である。 That is, it does not depend on the mass m. Therefore, even when the target element becomes heavy, the molecular rotation period difference does not change. Also in the vibrationally excited molecules, the molecular rotation period does not change so much, so the influence of the increase in the proportion of vibrationally excited molecules is small. Therefore, in the present invention, even in the case of isotope separation / concentration for heavy elements, the separation / concentration efficiency is dependent on the difference in molecular rotation period that is less affected by the mass of the element itself. It is possible to suppress the decrease.

以下、本発明の実施の形態について、原料として臭化ヨウ素IBrを用い、直線偏光したパルスレーザー光を2パルス照射して分解することで臭素79と臭素81を分離する場合の実施例を用い、図を参照して説明する。   Hereinafter, for the embodiment of the present invention, using iodine bromide IBr as a raw material, using an example in which bromine 79 and bromine 81 are separated by irradiating and decomposing linearly polarized pulsed laser light by two pulses, This will be described with reference to the drawings.

図1は本発明による同位体分離・濃縮装置の概略構成図を、図2は臭素81を含む臭化ヨウ素分子の回転周期に合わせて直線偏光レーザー光を2パルス照射した際の、臭素79と臭素81を含む臭化ヨウ素分子の挙動を示した模式図を、図3は2つのパルスレーザー間の照射時間差に対する臭素79または臭素81を含む臭化ヨウ素の光分解確率変化の予測図である。   FIG. 1 is a schematic configuration diagram of an isotope separation / concentration apparatus according to the present invention, and FIG. FIG. 3 is a schematic diagram showing the behavior of iodine bromide molecules containing bromine 81, and FIG. 3 is a prediction diagram of the photolysis probability change of bromine 79 or iodine bromide containing bromine 81 with respect to the irradiation time difference between the two pulse lasers.

図1に示されるように、同位体分離・濃縮装置は、2つの装置系からなる。まず、原料供給および分離回収、同位体組成比測定系では、反応器への原料ガス供給と、パルスレーザー光を照射した後のガスの回収、分離および同位体組成比の測定を行う。一方、パルスレーザー光照射系では、直線偏光したパルスレーザー光の2パルス照射を行う。   As shown in FIG. 1, the isotope separation / concentration device consists of two device systems. First, in the raw material supply / separation / recovery and isotope composition ratio measurement system, the raw material gas is supplied to the reactor, and the gas after irradiation with pulse laser light is recovered, separated, and the isotope composition ratio is measured. On the other hand, in the pulse laser beam irradiation system, two-pulse irradiation of linearly polarized pulse laser beam is performed.

まず原料供給および分離回収、同位体組成比測定系において、真空排気装置を用いて反応器を十分に真空排気した後、原料ガスである臭化ヨウ素蒸気ならびにバッファーガスを反応容器に採取する。バッファーガスとしては、原料ガスが光分解して生成する原子と反応して安定な化合物を生じる、アセチレンなどのガスを使用する。   First, in the raw material supply and separation / recovery and isotope composition ratio measurement system, the reactor is sufficiently evacuated using an evacuation apparatus, and then iodine bromide vapor and buffer gas as raw material gases are collected in a reaction vessel. As the buffer gas, a gas such as acetylene that reacts with atoms generated by photolysis of the source gas to produce a stable compound is used.

次にパルスレーザー光照射系に反応器を移す。基底電子状態の臭化ヨウ素分子は、分子軸に対して垂直な方向を向いた光電場を持ち、かつそのエネルギーが波長として780nm付近の光子を1光子吸収することで第一電子励起状態へ励起され、さらに同じエネルギーの光子をもう1光子吸収することで解離性電子励起状態へ励起され、ヨウ素原子と臭素原子に分解する。出力波長を780nm付近に合わせた近赤外パルスレーザー光を、偏光素子を通すことで垂直偏光したレーザー光にした後、ハーフミラーを通すことで2つに分割し、2つのレーザー光が通過する距離の差、いわゆる光路差をつけた後、再びハーフミラーを通して同軸上に戻す。この光路差を調整することにより、2つの連続した直線偏光パルスレーザー光照射の時間間隔を、安定にかつ精度良く制御することが可能である。この2つの連続した直線偏光パルスレーザー光を反応器に導入すれば、図2に示されるように、最初のパルス照射により、水平方向に分子軸が整列した第一電子励起状態分子の集団が形成される。その励起分子の整列状態は、励起分子が回転するとともに崩れていくが、分子回転周期後に、再び励起分子が整列した状態が形成される。その時間に合わせて2つ目のパルス照射を行うことで、同じ分子回転周期を持つ臭化ヨウ素分子、すなわち同じ臭素同位体原子を含む分子を、優先的に光分解することが出来る。   Next, the reactor is transferred to the pulse laser beam irradiation system. The iodine bromide molecule in the ground electronic state has a photoelectric field oriented in a direction perpendicular to the molecular axis, and its energy is excited to the first electronic excited state by absorbing one photon near 780 nm in wavelength. Furthermore, by absorbing another photon of a photon of the same energy, it is excited to a dissociative electronically excited state and decomposes into an iodine atom and a bromine atom. Near-infrared pulsed laser light whose output wavelength is adjusted to around 780 nm is converted into vertically polarized laser light by passing through a polarizing element, and then split into two by passing through a half mirror, and the two laser lights pass through. After setting the difference in distance, the so-called optical path difference, it is returned to the same axis through the half mirror again. By adjusting this optical path difference, it is possible to stably and accurately control the time interval between two continuous linearly polarized pulsed laser light irradiations. If these two continuous linearly polarized pulsed laser beams are introduced into the reactor, as shown in FIG. 2, a group of first electronically excited molecules with molecular axes aligned in the horizontal direction is formed by the first pulse irradiation. Is done. The alignment state of the excited molecules collapses as the excited molecules rotate, but after the molecular rotation period, the excited molecules are aligned again. By performing second pulse irradiation in accordance with the time, iodine bromide molecules having the same molecular rotation period, that is, molecules containing the same bromine isotope atoms can be preferentially photolyzed.

上記光路差の調整は、一方において、ハーフミラーを透過したレーザー光を固定反射プリズムで反射させて再度ハーフミラーに照射して直角方向に反射させた後に反応器に導入し、他方において、ハーフミラーで直角方向に照射されたレーザー光を移動可能な反射プリズムで距離を調整して反射し、再度ハーフミラーを透過させて反応器に導入することにより、この2つの光路におけるレーザー光の
光路差を調整する。
The optical path difference is adjusted on the one hand by reflecting the laser beam transmitted through the half mirror with a fixed reflecting prism, irradiating the half mirror again and reflecting it in a right angle direction, and then introducing it into the reactor. The laser beam irradiated in the right angle direction is reflected by adjusting the distance with a movable reflecting prism, and is again transmitted through the half mirror and introduced into the reactor, thereby reducing the optical path difference of the laser light between these two optical paths. adjust.

図3に示すように、臭素79を含む分子は390ピコ秒程度で再び整列するのに対し、臭素81を含む分子は400ピコ秒程度で再整列すると予測される。従って、ハーフミラーで2つにレーザー光を分けた後の光路差を、11.7センチメートル程度に設定すれば臭素79を含む分子を優先的に光分解できる。また、12.0センチメートル程度に設定すれば、逆に臭素81を含む分子を優先的に光分解することが可能である。   As shown in FIG. 3, a molecule containing bromine 79 is expected to realign in about 390 picoseconds, whereas a molecule containing bromine 81 is expected to realign in about 400 picoseconds. Therefore, if the optical path difference after dividing the laser light into two by the half mirror is set to about 11.7 centimeters, molecules containing bromine 79 can be preferentially photolyzed. On the other hand, if it is set to about 12.0 centimeters, the molecule containing bromine 81 can be preferentially photodegraded.

パルスレーザー光照射をした反応器を、原料供給および分離回収、同位体組成比測定系に戻す。蒸留装置を用いて、臭素原子とバッファーガスによる化合物ならびに未反応の臭化ヨウ素を単離することで、同位体を分離・濃縮する。臭素81を含む臭化ヨウ素分子を優先的に光分解した場合には、臭素原子とバッファーガスによる化合物中に臭素81が、未反応の臭化ヨウ素中に臭素79が濃縮される。
[発明の効果]
The reactor irradiated with the pulse laser beam is returned to the raw material supply, separation and recovery, isotope composition ratio measurement system. Isotope is separated and concentrated by isolating compounds with bromine atoms and buffer gas and unreacted iodine bromide using a distillation apparatus. When the iodine bromide molecule containing bromine 81 is preferentially photodegraded, bromine 81 is concentrated in the bromine atom and buffer gas compound, and bromine 79 is concentrated in the unreacted iodine bromide.
[The invention's effect]

本発明の同位体分離方法によれば、対象元素の質量の影響を受けにくい回転周期差を利用するため、対象元素の質量が大きくなった場合においても同位体分離・濃縮の効率低下を抑制することが可能である。
According to the isotope separation method of the present invention, since the rotation period difference that is not easily affected by the mass of the target element is used, even when the mass of the target element increases, the decrease in the efficiency of isotope separation / concentration is suppressed. It is possible.

実施例に基づいて説明したように、本発明の同位体分離方法によれば、原料ガスにパルスレーザーの複数パルス照射を行うことにより、特定の同位体を含む分子に対する光化学反応を優先的に進行させることができるため、対象元素の質量の大小に係らず、効率的に同位体分離・濃縮を行うことが可能となる。
As explained based on the examples, according to the isotope separation method of the present invention, a photochemical reaction on a molecule containing a specific isotope is preferentially advanced by irradiating the source gas with a plurality of pulses of a pulse laser. Therefore, it is possible to efficiently perform isotope separation and concentration regardless of the mass of the target element.

本発明の同位体分離方法によれば、パルスレーザー光照射の時間間隔を調整することにより、特定の同位体を含む分子に対する光化学反応効率を上昇させる、あるいは他の同位体を含む分子の光化学反応効率を低下させることが可能となる。
According to the isotope separation method of the present invention, the photochemical reaction efficiency for molecules containing a specific isotope is increased by adjusting the time interval of pulsed laser light irradiation, or the photochemical reaction of molecules containing other isotopes. Efficiency can be reduced.

本発明の同位体分離方法によれば、レーザー光の光路差を利用することで、安定でかつ高精度な時間間隔を持つ連続したパルスレーザー光照射を実現することが可能となる。
According to the isotope separation method of the present invention, it is possible to realize continuous pulsed laser light irradiation having a stable and highly accurate time interval by utilizing the optical path difference of laser light.

本発明の同位体分離方法によれば、照射するレーザー光として直線偏光したパルスレーザー光を用いることにより、特定の同位体を含む分子に対する光化学反応効率を上昇させる、あるいは他の同位体を含む分子の光化学反応効率を低下させることが可能となる。   According to the isotope separation method of the present invention, a linearly polarized pulsed laser beam is used as the irradiation laser beam, thereby increasing the photochemical reaction efficiency for a molecule containing a specific isotope, or a molecule containing another isotope. It is possible to reduce the photochemical reaction efficiency.

本発明は、天然に存在する同位体元素を分離・濃縮し、トレーサー、医療用検査試薬、核燃料などの原料を作製するために利用される。又、シリコンの同位体の2つである28Siを分離し、高濃縮(99.86%)した単結晶が、その熱伝導度が天然の同位体構成材料と比べて大きいことから、次世代の半導体基板材料の候補として上げられているが、このように、単一の同位体を高濃縮した物質の物性
は、天然存在比のものと大きく異なる可能性があるので、同位体を制御した材料の作製に利用される。
The present invention is used for separating and concentrating naturally occurring isotope elements to produce raw materials such as tracers, medical test reagents, and nuclear fuels. In addition, 28 Si, which is one of the two isotopes of silicon, is separated and highly concentrated (99.86%) single crystal has a higher thermal conductivity than natural isotope constituent materials. Although it is raised as a candidate for a substrate material, the physical properties of a substance enriched with a single isotope may differ greatly from those of natural abundances. Used for production.

本発明の実施例に係る同位体分離・濃縮装置の概略図である。1 is a schematic view of an isotope separation / concentration apparatus according to an embodiment of the present invention. 本発明の実施例である、臭化ヨウ素分子の直線偏光レーザー光2パルス照射による多光子分解反応において、臭素81を含む臭化ヨウ素分子の回転周期に合わせて直線偏光レーザー光を2パルス照射した際の、臭素79と臭素81を含む臭化ヨウ素分子の挙動を示した模式図である。In the multiphoton decomposition reaction of iodine bromide molecules by irradiation with two pulses of linearly polarized laser light, which is an example of the present invention, two pulses of linearly polarized laser light were irradiated in accordance with the rotation period of iodine bromide molecules containing bromine 81 It is the schematic diagram which showed the behavior of the iodine bromide molecule | numerator containing the bromine 79 and the bromine 81 at the time. 本発明の実施例である、臭化ヨウ素分子の直線偏光レーザー光2パルス照射による多光子分解反応における、2つのパルスレーザー間の照射時間差に対する臭素79または臭素81を含む臭化ヨウ素の光分解確率変化の予測図である。Photodegradation probability of iodine bromide containing bromine 79 or bromine 81 with respect to the irradiation time difference between two pulse lasers in a multiphoton decomposition reaction of iodine bromide molecules by irradiation with two pulses of linearly polarized laser light, which is an example of the present invention It is a prediction figure of a change.

Claims (2)

原料ガスにパルスレーザー光を照射して、原料ガス中の同一方向に向いた分子のみを振動あるいは電子励起させ、By irradiating the source gas with pulsed laser light, only molecules oriented in the same direction in the source gas are vibrated or electronically excited.
目的同位体または非目的同位体を含む分子回転周期に合わせてさらにパルスレーザー光を1パルスあるいは複数パルス照射し、目的同位体または非目的同位体を含む分子を優先的に光分解させてその同位体を分離する方法であって、Further, one or more pulses of pulsed laser light are irradiated in accordance with the rotation period of the molecule containing the target isotope or non-target isotope, and the molecule containing the target isotope or non-target isotope is preferentially photolyzed and the isotope is obtained. A method of separating the body,
レーザー光の通過する距離の差を調整して、パルスレーザー光照射の時間間隔を制御することを特徴とする、同位体の分離方法。A method for separating isotopes, characterized in that a time interval of pulsed laser light irradiation is controlled by adjusting a difference in distance through which laser light passes.
照射するパルスレーザー光として、直線偏光したレーザー光を利用することを特徴とする、請求項1に記載の同位体の分離方法。   2. The isotope separation method according to claim 1, wherein linearly polarized laser light is used as the pulsed laser light to be irradiated.
JP2006001106A 2006-01-06 2006-01-06 Isotope separation method using molecular rotation period difference Expired - Fee Related JP4953274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001106A JP4953274B2 (en) 2006-01-06 2006-01-06 Isotope separation method using molecular rotation period difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001106A JP4953274B2 (en) 2006-01-06 2006-01-06 Isotope separation method using molecular rotation period difference

Publications (2)

Publication Number Publication Date
JP2007181763A JP2007181763A (en) 2007-07-19
JP4953274B2 true JP4953274B2 (en) 2012-06-13

Family

ID=38338273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001106A Expired - Fee Related JP4953274B2 (en) 2006-01-06 2006-01-06 Isotope separation method using molecular rotation period difference

Country Status (1)

Country Link
JP (1) JP4953274B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357307A (en) * 1979-12-21 1982-11-02 Exxon Research And Engineering Company Method of separating isotopes in which a compounding of selectivity is achieved by limiting the timing of the collection step
JPS60132629A (en) * 1983-12-21 1985-07-15 Rikagaku Kenkyusho Concentration of carbon 13 by laser
JPS61274731A (en) * 1985-05-29 1986-12-04 Hitachi Ltd Apparatus for separating isotope by laser
JPS62125829A (en) * 1985-11-27 1987-06-08 Hitachi Ltd Method for isotope separation by laser
JPH02251227A (en) * 1989-03-22 1990-10-09 Nippon Steel Corp Reaction tube for isotope separation by laser
JPH02251228A (en) * 1989-03-22 1990-10-09 Nippon Steel Corp Reaction tube for isotope separation by infrared-laser
JPH06233919A (en) * 1993-02-10 1994-08-23 Mitsubishi Heavy Ind Ltd Separation of isotope by laser irradiation
JP3264558B2 (en) * 1993-07-12 2002-03-11 株式会社東芝 Isotope separation device
JPH1119479A (en) * 1997-07-02 1999-01-26 Mitsubishi Heavy Ind Ltd Separation of isotope using laser

Also Published As

Publication number Publication date
JP2007181763A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
Bokhan et al. Laser isotope separation in atomic vapor
West et al. Shape-resonance-induced non-Franck-Condon vibrational intensities in 3 σg photoionisation of N2
Lahamer et al. Search for a parity-violating energy difference between enantiomers of a chiral iron complex
Senn et al. Low energy dissociative electron attachment to ozone
JP2003053153A (en) High efficient separation and concentration method of silicone isotope with laser
JP4953274B2 (en) Isotope separation method using molecular rotation period difference
Lau et al. Probing the barrier for CH2CHCO→ CH2CH+ CO by the velocity map imaging method
Carrasco et al. VUV photochemistry simulation of planetary upper atmosphere using synchrotron radiation
US4220510A (en) Method for separating isotopes in the liquid phase at cryogenic temperature
Zou et al. Ultraviolet photodissociation of vinyl iodide: Understanding the halogen dependence of photodissociation mechanisms in vinyl halides
Burns et al. State-selective one-electron capture by 4 keV ground state and metastable ions in collisions with and
JP2009209017A (en) Production method of 13c-enriched carbon dioxide
Blatz et al. Low-frequency Raman spectra of aqueous solutions of formates and acetates
JPS61181525A (en) Working substance for isolating isotope using laser and method therefor
JP3360165B2 (en) An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance
Vattuone et al. State resolved sticking probability in gas-surface interaction
JPH05317653A (en) Method for separating and condensing isotope by using laser
Martin et al. Time-resolved x-ray diffraction from small molecules in solution
Eremin et al. Kinetics of Mo atom formation and consumption in UV multiphoton dissociation of Mo (CO) 6 at room temperature
Ahluwalia Raman Spectroscopy
Makarov et al. Suppression of clustering of CF3Br molecules with argon atoms by CO2 laser radiation in gas-dynamic expansion of a CF3Br–Ar mixture: bromine isotope selectivity
Tarkanovskaja et al. Photoinduced intermolecular dynamics and subsequent fragmentation in VUV-ionized acetamide clusters
Bukhenskiĭ et al. Fourth International Conference on Lasers and Their Applications (Leipzig, East Germany, October 19–23, 1981)
Bohn et al. Vibrational energy transfer in laser-excited carbonic difluoride. Infrared fluorescence from the intermediate mode. nu. 4
JPH02258024A (en) Isotope separation and concentration using laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees