JP3360165B2 - An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance - Google Patents

An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance

Info

Publication number
JP3360165B2
JP3360165B2 JP26887598A JP26887598A JP3360165B2 JP 3360165 B2 JP3360165 B2 JP 3360165B2 JP 26887598 A JP26887598 A JP 26887598A JP 26887598 A JP26887598 A JP 26887598A JP 3360165 B2 JP3360165 B2 JP 3360165B2
Authority
JP
Japan
Prior art keywords
working material
isotope
laser
isotopes
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26887598A
Other languages
Japanese (ja)
Other versions
JP2000061269A (en
Inventor
重義 荒井
恭子 杉田
Original Assignee
重義 荒井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重義 荒井 filed Critical 重義 荒井
Priority to JP26887598A priority Critical patent/JP3360165B2/en
Publication of JP2000061269A publication Critical patent/JP2000061269A/en
Application granted granted Critical
Publication of JP3360165B2 publication Critical patent/JP3360165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の同位体を含
む作業物質の赤外多光子分解に基づくレーザー同位体分
離・濃縮において、逐次レーザー光の照射条件を変え、
生成物および作業物質中に、それぞれ特定の同位体を高
濃縮するレーザー同位体分離・濃縮法に関する。
The present invention relates to a laser isotope separation / concentration based on infrared multiphoton decomposition of a working material containing a plurality of isotopes, by sequentially changing the irradiation conditions of laser light.
The present invention relates to a laser isotope separation and concentration method for highly enriching a specific isotope in a product and a working material, respectively.

【0002】[0002]

【従来の技術】以前から原子力関係を中心に大量の同位
体が利用されているが、最近は放射能を持たない安定同
位体の利用が医学をはじめ様々な分野にも広がり、同位
体の重要性が益々高まっている。
2. Description of the Related Art A large amount of isotopes have been used mainly in nuclear power, but recently the use of stable isotopes without radioactivity has spread to various fields including medicine, and the importance of isotopes has been increasing. Sex is increasing more and more.

【0003】一方、同位体の分離・濃縮は、専ら同位体
のわずかな性質の違いに着目し、蒸留、化学交換、拡
散、遠心分離などを統計的に巨大な回数を繰り返し達成
されているが、必然的に装置は大規模なものとなり簡単
には実施できない。
[0003] On the other hand, isotope separation / concentration has been achieved by repeating statistically huge number of times such as distillation, chemical exchange, diffusion, centrifugation, etc., focusing on the slight difference in the properties of isotopes. Inevitably, the equipment is large and cannot be easily implemented.

【0004】最近レーザーの長足の進歩で、光学的な手
段で選別的に同位体を分離・濃縮することが可能となっ
ているが、その方法の一つに多原子分子の赤外多光子分
解に基づく方法があり、その方法により水素、炭素、酸
素、ケイ素、硫黄などの同位体の分離・濃縮が試みられ
ている。特に炭素およびケイ素の同位体の分離・濃縮は
実用的な点から注目を集めている。レーザー同位体分離
は従来法による同位体分離と較べて一段での選択性が非
常に高いので、小型の装置で、比較的容易に実施できる
と考えられている。
[0004] Recent advances in laser technology have made it possible to selectively separate and concentrate isotopes by optical means. One of the methods is infrared multiphoton decomposition of polyatomic molecules. Based on this method, separation and concentration of isotopes such as hydrogen, carbon, oxygen, silicon, and sulfur have been attempted. In particular, the separation and enrichment of carbon and silicon isotopes have attracted attention from a practical point of view. It is considered that laser isotope separation can be performed relatively easily with a small apparatus because the selectivity in one step is very high as compared with the isotope separation by the conventional method.

【0005】赤外多光子分解は、低圧の気体分子に高出
力の赤外レーザーのパルス光をレンズで集光して照射し
た場合に、焦点付近で観測される分子の分解のことであ
る。ここで気体分子は、レーザー光の波長付近に赤外吸
収を持つ必要がある。焦点付近ではレーザー光のフルエ
ンス、すなわち単位面積当りのレーザーパルスの持つエ
ネルギーが非常に高いので、分子はパルスの期間中に多
数の光子を吸収して内部エネルギーを高め分解を起こ
す。
[0005] Infrared multiphoton decomposition refers to the decomposition of molecules observed near the focal point when low-pressure gas molecules are irradiated with pulsed light of a high-output infrared laser through a lens. Here, the gas molecules need to have infrared absorption near the wavelength of the laser light. Near the focal point, the fluence of the laser light, that is, the energy of the laser pulse per unit area is very high, so that the molecules absorb a large number of photons during the pulse and increase the internal energy to cause decomposition.

【0006】大気圧横放電励起型の炭酸ガスレーザーは
広く利用されている高出力赤外パルスレーザーで、通常
パルスの時間幅は数マイクロ秒以内、エネルギーは数ジ
ュールに達する。その発振線は9〜11μmの波長領域
に数多くあり、それぞれの波長は固有であるが、各発振
線が単独で発振するように製作し、発振線を選択する
と、波長を変えてレーザーを照射することになる。
The atmospheric pressure lateral discharge excitation type carbon dioxide laser is a widely used high-output infrared pulse laser, and the pulse width is usually within several microseconds and the energy reaches several joules. The oscillation lines are numerous in the wavelength range of 9 to 11 μm, and each wavelength is unique, but it is manufactured so that each oscillation line oscillates independently. Will be.

【0007】赤外多光子分解では、赤外吸収における同
位体シフトを反映して、適切な波長では特定の同位体を
含む分子が選択的に光を吸収して分解することが見出だ
されている。その結果、分解生成物中に特定の同位体が
濃縮される。これが赤外多光子分解に基づく同位体の分
離・濃縮の根本的な原理である。
In infrared multiphoton decomposition, it has been found that, at an appropriate wavelength, a molecule containing a specific isotope selectively absorbs light and decomposes, reflecting an isotope shift in infrared absorption. ing. As a result, specific isotopes are enriched in the decomposition products. This is the fundamental principle of isotope separation / concentration based on infrared multiphoton decomposition.

【0008】赤外吸収に対する同位体の効果では、より
重い同位体の吸収がより長波長側に観測される。化学物
質の赤外吸収、分子振動、化学結合、同位体等の関係を
調べると、例えばC−F結合の伸縮振動による吸収は1
100cm−1付近に、Si−Fの伸縮振動による吸収
は1000cm−1付近にあり、12Cと13Cの間の
同位体シフトは約25cm−128Si、29Siお
よび30Siの間の同位体シフトは約9cm−1であ
る。通常の赤外吸収スペクトルは、分子が1光子を吸収
する場合に該当し、赤外多光子分解を起こすほど多数の
光子を吸収する場合とは異なる。しかし多光子吸収は1
光子の吸収から始まることから、分解における選択性と
通常の赤外吸収スペクトルにおける同位体シフトとの間
には深い関連性があると考えられている。
In the isotope effect on infrared absorption, heavier isotope absorption is observed at longer wavelengths. When investigating the relationship between infrared absorption, molecular vibration, chemical bond, isotope, etc. of a chemical substance, for example, absorption due to stretching vibration of CF bond is 1
At around 100 cm −1 , the absorption due to stretching vibration of Si—F is at around 1000 cm −1 , and the isotope shift between 12 C and 13 C is about 25 cm −1 , between 28 Si, 29 Si and 30 Si. The isotope shift is about 9 cm -1 . A normal infrared absorption spectrum corresponds to a case where a molecule absorbs one photon, and is different from a case where a molecule absorbs many photons so as to cause infrared multiphoton decomposition. However, multiphoton absorption is 1
Starting from photon absorption, it is believed that there is a strong relationship between selectivity in decomposition and isotope shifts in normal infrared absorption spectra.

【0009】実用的な観点から赤外多光子分解に基づく
レーザー同位体の分離・濃縮を試みる場合、選択性が高
く、収率も良い作業物質を見出だすことが最も重要であ
る。去の研究その他(S.Arai,K.Sugit
a,P.Ma,Y.Ishikawa,H.Kaets
u,andhem.Phys.Lett.,112,2
24(1988);S.Arai,K.Sugita,
P.Ma,Y.tsu,and S.Isomura,
Appl.Phys.,B48,427(1989);
M.Kamioka,Y.Ishikawa,H.Ka
etsu,S.Isomura,and S.Ara
i,J.Phys.Chem.,90,5727(19
86);特許公報H3−31489、特許公報H2−5
6133)などから、炭素の同位体12Cおよび13
の分離・濃縮にはCHClF、CHBrFなどが、
またケイ素の同位体28Si、29Siおよび30Si
の分離・濃縮には、Siが作業物質として非常に
有望かつ適切であることが判明した。
[0009] From the practical point of view, when trying to separate and concentrate laser isotopes based on infrared multiphoton decomposition, it is most important to find a working material with high selectivity and good yield. Previous research and others (S. Arai, K. Sugit
a, P. Ma, Y .; Ishikawa, H .; Kaets
u, andchem. Phys. Lett. , 112,2
24 (1988); Arai, K .; Sugita,
P. Ma, Y .; tsu, and S.M. Isomura,
Appl. Phys. , B48, 427 (1989);
M. Kamioka, Y .; Ishikawa, H .; Ka
etsu, S .; Isomura, and S.M. Ara
i. Phys. Chem. , 90, 5727 (19
86); Patent Publication H3-31489, Patent Publication H2-5
6133), carbon isotopes 12 C and 13 C
CHClF 2 , CHBrF 2 etc.
Silicon isotopes 28 Si, 29 Si and 30 Si
It has been found that Si 2 F 6 is very promising and suitable as a working substance for the separation and concentration of.

【0010】いわゆる天然の炭素における同位体の存在
比は、12C:13C=98.9:1.1である。気体
のCHClFおよびCHBrFに炭酸ガスレーザー
の1030〜1060cm−1の波数領域のパルス光
を、焦点でのフルエンスが2〜20Jcm−2の領域と
なる様に集光して照射すると、同位体選択的な赤外多光
子分解を起こし、
The isotope abundance ratio in so-called natural carbon is 12 C: 13 C = 98.9: 1.1. When gaseous CHClF 2 and CHBrF 2 are condensed and irradiated with pulsed light of a carbon dioxide gas laser having a wavenumber range of 1030 to 1060 cm −1 so that the fluence at the focal point is in a range of 2 to 20 Jcm −2 , isotopes are obtained. Causing selective infrared multiphoton decomposition,

【化1】に従ってCと、HClもしくはHBrを
生成する。 ここでXはClまたはBrを、またnは1分子に吸収さ
れる光子数を表す。
According to the formula, C 2 F 4 and HCl or HBr are produced. Here, X represents Cl or Br, and n represents the number of photons absorbed in one molecule.

【0011】例えば50TorrのCHClFに、波
数は1045.02cm−1、焦点でのフルエンスは
4.5Jcm−2の炭酸ガスレーザーのパルス光を照射
すると、生成するC中に13Cが50%近くにま
で濃縮される。
For example, when CHClF 2 of 50 Torr is irradiated with pulsed light of a carbon dioxide laser having a wave number of 1045.02 cm −1 and a fluence of 4.5 Jcm −2 at the focal point, 13 C is generated in C 2 F 4 generated. It is concentrated to close to 50%.

【0012】いわゆる天然のケイ素における同位体の存
在比は28Si:29Si:30Si=92.23:
4.67:3.10である。10Torr以下の気体の
Siに炭酸ガスレーザーの940〜960cm
−1の波数領域のパルス光を、焦点でのフルエンスが1
0Jcm−2以下となるように集光して照射すると、同
位体選択的な赤外多光子分解を起こし、
[0012] The presence ratio of the isotopes in the silicon of the so-called natural 28 Si: 29 Si: 30 Si = 92.23:
4.67: 3.10. A carbon dioxide gas laser of 940 to 960 cm is applied to a gas of Si 2 F 6 of 10 Torr or less.
The pulse light in the wave number region of -1 has a fluence of 1 at the focal point.
When condensed and irradiated so as to be 0 Jcm −2 or less, isotope-selective infrared multiphoton decomposition occurs,

【化2】に従ってSiFとSiFを生成する。 SiFは多数個が重合反応して白色の固体を生ずる。According to the formula, SiF 2 and SiF 4 are produced. Many SiF 2 undergo a polymerization reaction to produce a white solid.

【0013】例えば、2.0TorrのSiに、
波数は951.19cm−1、焦点でのフルエンスは
0.25Jcm−2の炭酸ガスレーザーのパルス光を照
射すると、生成するSiF中に29Siが約10%、
30Siが約50%にまで濃縮されることが見出だされ
ている。
For example, 2.0 Torr Si 2 F 6
When a pulse number of a carbon dioxide gas laser having a wave number of 951.19 cm -1 and a fluence of 0.25 Jcm -2 at the focal point is irradiated, about 10% of 29 Si is generated in generated SiF 4 ,
It has been found that 30 Si is enriched to about 50%.

【0014】[0014]

【発明が解決しようとする課題】上記の様に、赤外多光
子分解に基づく炭素同位体12Cおよび13Cの実用的
なレーザー分離・濃縮では、作業物質にはCHCl
、CHBrFなどのフロン化合物が、またケイ素
の同位体28Si、29Si、および30Siの実用的
なレーザー分離・濃縮では、作業物質にSiが提
案されている。これらの作業物質の赤外多光子分解に基
づく生成物C中への13Cの分離・濃縮後には、
またSiF中への29Siおよび30Si、特に30
Siの分離・濃縮後には、これら13Cおよび30Si
が欠損した大量の未分解の作業物質が残る。
As described above, in the practical laser separation / concentration of carbon isotopes 12 C and 13 C based on infrared multiphoton decomposition, the working material is CHCl.
For practical laser separation / concentration of fluorocarbon compounds such as F 2 and CHBrF 2 and silicon isotopes 28 Si, 29 Si and 30 Si, Si 2 F 6 has been proposed as a working material. After separation and concentration of 13 C in the product C 2 F 4 based on infrared multiphoton decomposition of these working materials,
29 Si and 30 Si, especially 30 Si, in SiF 4
After separation and concentration of Si, these 13 C and 30 Si
A large amount of undecomposed working material remains.

【0015】以前われわれはCHClFにBrを加
えた系の炭素に関する同位体選択的な赤外多光子分解
で、生成物CBr中に13Cを濃縮し、続くこの
CBrにOを加えた系の炭素に関する同位体選
択的な赤外多光子分解で、生成物CFO中に13Cが
90%以上に高濃縮し得ることを見出だしているが、こ
の場合も13Cが欠損した大量の未分解の作業物質CH
ClFが残る。
Previously, we enriched 13 C in the product CBr 2 F 2 with an isotope-selective infrared multiphoton decomposition of carbon in the CHClF 2 plus Br 2 system, followed by this CBr 2 F 2 It has been found that isotope-selective infrared multiphoton decomposition with respect to carbon in a system obtained by adding O 2 to a solution can enrich 13 C in the product CF 2 O to 90% or more. Also a large amount of undecomposed work material CH deficient in 13C
ClF 2 remains.

【0016】未分解の作業物質を単純に廃棄すれば、し
ばしば環境上の問題を招く。例えばフロン化合物の廃棄
はオゾン層を破壊する恐れがあり、フッ化シランの放出
は空気中の水分との反応で有害なHFを発生する。従っ
て可能な限り未分解作業物質を有効に利用することが望
まれる。
The simple disposal of undecomposed working substances often leads to environmental problems. For example, the disposal of CFC compounds may destroy the ozone layer, and the release of fluorinated silane generates harmful HF by reaction with moisture in the air. Therefore, it is desirable to effectively utilize undecomposed work materials as much as possible.

【0017】一方、純度の高い12CはNMRの測定に
おいて溶媒として利用され、付加価値が極めて高い物質
であり、また純度の高い28Siの結晶は物性の分野の
研究で切望されている物質である。本発明は、複数の同
位体を含む作業物質において、末分解の作業物質を有効
に利用する方法、すなわち、未分解の作業物質を回収
し、最初とは照射条件を変えてレーザーを照射し、分解
せずに残る作業物質中に別の同位体を高濃縮する方法で
ある。
On the other hand, high-purity 12 C is used as a solvent in NMR measurement and is a very high value-added substance. High-purity 28 Si crystal is a substance that has been eagerly desired in the field of research on physical properties. is there. The present invention provides a method of effectively utilizing a decomposed work material in a work material containing a plurality of isotopes, that is, recovering an undecomposed work material, and irradiating a laser by changing irradiation conditions from the beginning, This is a method of enriching another isotope in the working material remaining without being decomposed.

【0018】[0018]

【課題を解決するための手段】複数の同位体を含む作業
物質の同位体選択的な赤外多光子分解において、それぞ
れの同位体の分離・濃縮に最適な実験条件は異なってい
る。すなわち同位体の選択性および収量は、作業物質の
圧力、レーザー光の波長ならびにフルエンスなどの複雑
な関数であり、また各同位体を含む分子の赤外多光子吸
収のピーク波長は、同位体シフトを反映して異なると予
想される。そこでこの違いを利用して、まず最初に特定
の同位体を、選択性および収率を考慮しつつ最適な条件
下でレーザー照射し、生成物中に分離・濃縮する。次に
生成物と未分解の作業物質とを化学工学的な手段、例え
ば蒸留、クロマトグラフなどで分離する。その後、未分
解の作業物質を用い、最初とは異なる照射条件下、例え
ば異なる波長、フルエンス、圧力などでレーザー照射
し、最初とは異なる特定の同位体を、その残る作業物質
中に高濃縮する方法に思いいたった。
In the isotope-selective infrared multiphoton decomposition of a working material containing a plurality of isotopes, the optimum experimental conditions for the separation and concentration of each isotope are different. That is, isotope selectivity and yield are complex functions such as working material pressure, laser light wavelength and fluence, and the peak wavelength of infrared multiphoton absorption of molecules containing each isotope is determined by the isotope shift It is expected to be different to reflect this. Therefore, utilizing this difference, first, a specific isotope is irradiated with a laser under optimal conditions in consideration of selectivity and yield, and is separated and concentrated in a product. The product and undecomposed working material are then separated by chemical engineering means, for example, distillation, chromatography and the like. Thereafter, using undecomposed working material, laser irradiation is performed under different irradiation conditions from the first, for example, at a different wavelength, fluence, pressure, etc., and a specific isotope different from the first is highly concentrated in the remaining working material. I thought about the way.

【0019】なお本発明は複数の同位体を含む作業物質
の同位体選択的な赤外多光子分解に基づく同位体の分離
・濃縮に一般的に応用可能であり、例えばホウ素、炭
素、窒素、酸素、ケイ素、硫黄、塩素などの同位体の分
離・濃縮にも適用し得る。
The present invention is generally applicable to isotope separation / concentration based on isotope-selective infrared multiphoton decomposition of a working material containing a plurality of isotopes, such as boron, carbon, nitrogen, and the like. It can also be applied to the separation and concentration of isotopes such as oxygen, silicon, sulfur and chlorine.

【0020】[0020]

【発明の実施の形態】本発明は、同位体のレーザー分離
・濃縮に広く適用し得るが、炭素同位体12Cおよび
13C、ならびにケイ素同位体28Si,29Siおよ
30Siの分離・濃縮を用いて実証する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable widely applied to the laser separation and concentration of isotopes, carbon isotopes 12 C and
It is demonstrated using 13 C and separation and concentration of silicon isotopes 28 Si, 29 Si and 30 Si.

【0021】炭素の同位体の分離・濃縮にはCHBrF
を作業物質に、またケイ素の同位体の分離・濃縮には
Siを作業物質に用いた。本発明で使用された実
験装置の概略は図に示されている。まず作業物質を所定
の圧力だけ試料供給装置から反応容器に採取し、次に炭
酸ガスレーザーの所定の波長のパルス光をレンズで集光
して、照射容器中の作業物質に照射した。パルスのエネ
ルギーは必要に応じてフィルターなどを用いて調節し
た。その結果焦点でのフルエンスを所定の値にすること
ができる。所定のパルス数を照射したのち、その照射試
料全体を照射試料分離装置に移し、主に低温蒸留で生成
物と未分解作業物質とに分離した。ここで未分解作業物
質は試料供給装置に戻して貯え、その後の実験に利用し
た。また生成物および末分解作業物質の一定割合分をガ
スクロマトグラフ質量分析計で分析して、その中の同位
体の組成を測定した。
For the separation and concentration of carbon isotopes, CHBrF
2 was used as a working material, and Si 2 F 6 was used as a working material for separation and concentration of silicon isotopes. An outline of the experimental apparatus used in the present invention is shown in the figure. First, the working substance was collected from the sample supply device into the reaction vessel at a predetermined pressure, and then pulsed light of a predetermined wavelength of a carbon dioxide laser was condensed by a lens and irradiated to the working substance in the irradiation vessel. The pulse energy was adjusted using a filter or the like as needed. As a result, the fluence at the focal point can be set to a predetermined value. After irradiation with a predetermined number of pulses, the entire irradiation sample was transferred to an irradiation sample separation device, and separated into a product and an undecomposed work material mainly by low-temperature distillation. Here, the undecomposed work material was returned to the sample supply device and stored, and used for subsequent experiments. In addition, a certain percentage of the product and the end decomposition work material was analyzed by a gas chromatograph mass spectrometer, and the composition of the isotope therein was measured.

【0022】[0022]

【実施例1】天然同位体存在比に従って12Cおよび
13Cを含むCHBrF20.5Torrに、波数1
045.02cm−1の炭酸ガスレーザーのパルス光
を、焦点でのフルエンスが4Jcm−2になるように集
光し1000パルス照射した。生成物C中では、
13Cは照射前の1.1%から31%に高濃縮されてい
た。一方、多量の未分解のCHBrF中の13Cの濃
度は0.9%に減少した。Cの生成量は1.03
μmol、未分解のCHBrFの量は240μmol
であった。同様な実験を繰り返し、13Cの濃度が0.
9%に低下したCHBrFを多量に回収し、以後の実
施例において使用した。
Example 1 According to the natural isotope abundance ratio, 12 C and
CHBrF 2 containing 13 C, 20.5 Torr, wave number 1
A pulsed light of a carbon dioxide gas laser of 045.02 cm -1 was condensed such that the fluence at the focal point was 4 Jcm -2, and irradiation was carried out for 1000 pulses. In the product C 2 F 4
13 C was highly concentrated from 1.1% before irradiation to 31%. On the other hand, the concentration of 13 C in a large amount of undecomposed CHBrF 2 was reduced to 0.9%. The production amount of C 2 F 4 is 1.03
μmol, the amount of undegraded CHBrF 2 is 240 μmol
Met. The same experiment was repeated until the concentration of 13 C was 0.1.
A large amount of the 9% reduced CHBrF 2 was recovered and used in subsequent examples.

【0023】10Torrの上記未分解のCHBrF
に、波数1045.02cm−1の炭酸ガスレーザーの
パルス光を、焦点でのフルエンスが11Jcm−2にな
るように集光し500パルス照射した。ここでは照射前
と比較し、約73%のCHBrFが分解せずに残り、
12Cの濃度は99.8%に高濃縮されていた。一方、
13Cの濃度は0.2%にまで低下した。
10 Torr of the above undecomposed CHBrF 2
Then, a pulsed light of a carbon dioxide gas laser having a wave number of 1045.02 cm -1 was condensed so that the fluence at the focal point became 11 Jcm -2 , and 500 pulses were irradiated. Here, about 73% of CHBrF 2 remains without being decomposed as compared to before irradiation,
The concentration of 12 C was highly concentrated to 99.8%. on the other hand,
The concentration of 13 C dropped to 0.2%.

【0024】[0024]

【実施例2】10Torrの上記未分解のCHBrF
に、波数1052.50cm−1の炭酸ガスレーザーの
パルス光を、焦点でのフルエンスが5.7Jcm−2
なるように集光し1500パルス照射した。ここでは照
射前と比較し、約76%のCHBrFが分解せずに残
り、12Cの濃度は99.9%に高濃縮されていた。一
方、13Cの濃度は0.1%にまで低下した。
Example 2 10 Torr of the above undecomposed CHBrF 2
Then, pulse light of a carbon dioxide gas laser having a wave number of 1052.50 cm -1 was condensed so that the fluence at the focal point was 5.7 Jcm -2 , and 1500 pulses were irradiated. Here, compared to before irradiation, about 76% of CHBrF 2 remained without decomposition, and the concentration of 12 C was highly concentrated to 99.9%. On the other hand, the concentration of 13 C decreased to 0.1%.

【0025】[0025]

【実施例3】10Torrの上記未分解のCHBrF
に、波数1074.65cm−1の炭酸ガスレーザーの
パルス光を、焦点でのフルエンスが6.2Jcm−2
なるように集光し200パルス照射した。分解は激しく
進行したが、ここでは照射前と比較して約54%のCH
BrFが分解せずに残った。その中の12Cの濃度は
ほぼ100%であり、13Cは検出されなかった。
Example 3 10 Torr of the above undecomposed CHBrF 2
Then, a pulsed light of a carbon dioxide gas laser having a wave number of 1074.65 cm -1 was condensed so that the fluence at the focal point became 6.2 Jcm -2, and irradiated with 200 pulses. Although the decomposition proceeded vigorously, about 54% of CH was compared with that before irradiation.
BrF 2 remained without decomposition. The concentration of 12 C therein was almost 100%, and 13 C was not detected.

【0026】[0026]

【実施例4】天然同位体存在比に従って28Si、29
Siおよび30Siを含むSi2.5Torr
に、951.20cm−1の炭酸ガスレーザーのパルス
光を、焦点でのフルエンスが約2.0Jcm−2になる
ように集光し3000パルス照射した。生成物SiF
中の同位体比は28Si:29Si:30Si=58:
9:33で、30Siが高濃縮されていた。一方、未分
解のSi中の同位体比は28Si:29Si:
30Si=93:5:2であった。同様な実験を繰り返
し、多量の93%の28Siを含むSiを回収
し、以下の実施例において使用した。
Example 4 According to the natural isotope abundance ratio, 28 Si, 29
Si 2 F 6 2.5 Torr containing Si and 30 Si
Then, pulsed light of a carbon dioxide gas laser of 951.20 cm -1 was condensed so that the fluence at the focal point was about 2.0 Jcm -2 , and 3000 pulses were irradiated. Product SiF 4
Isotopic ratio in the 28 Si: 29 Si: 30 Si = 58:
At 9:33, 30 Si was highly concentrated. On the other hand, the isotope ratio in undecomposed Si 2 F 6 is 28 Si: 29 Si:
30 Si = 93: 5: 2. The same experiment was repeated, and a large amount of Si 2 F 6 containing 93% of 28 Si was recovered and used in the following examples.

【0027】2.0Torrの上記未分解のSi
に波数954.56cm−1の炭酸ガスレーザーのパル
ス光を、焦点でのフルエンスが2.5Jcm−2になる
ように集光し4000パルス照射した。ここでは照射前
と比較し、約64%のSiが分解せずに残り、
28Siの濃度は99.2%に濃縮されていた。
2.0 Torr of the undecomposed Si 2 F 6
Then, a pulsed light of a carbon dioxide gas laser having a wave number of 954.56 cm -1 was condensed so that the fluence at the focal point was 2.5 Jcm -2 , and 4,000 pulses were irradiated. Here, about 64% of Si 2 F 6 remains without being decomposed as compared with before irradiation,
The concentration of 28 Si was concentrated to 99.2%.

【0028】[0028]

【実施例5】2.0Torrの上記未分解のSi
に波数954.56cm−1の炭酸ガスレーザーのパル
ス光を、焦点でのフルエンスが2.6Jcm−2になる
ように集光し6000パルス照射した。ここでは照射前
と比較し、約40%のSiが分解せずに残り、
28Siの濃度はほぼ100%に濃縮されていた。
Example 5 2.0 Torr of the above undecomposed Si 2 F 6
A pulsed light of a carbon dioxide gas laser having a wave number of 954.56 cm -1 was condensed so that the fluence at the focal point became 2.6 Jcm -2 , and 6,000 pulses were irradiated. Here, about 40% of Si 2 F 6 remains without being decomposed as compared to before irradiation,
The concentration of 28 Si was concentrated to approximately 100%.

【0029】[0029]

【発明の効果】レーザー同位体分離は確かに1操作段階
の選択性は極めて大きいが、それでも同位体を経済的に
分離・濃縮することは容易ではない。本発明は同一の作
業物質から少なくとも2種類の同位体を高濃縮する方法
を提案し、実証したもので、それぞれの同位体が各方面
で有効に利用され、価値を生ずるだけに止まらず、効率
的な作業物質の利用状況なども通じて、同位体の価格の
低廉化に果たす役割は大きい。
Although the laser isotope separation has a very high selectivity in one operation step, it is still not easy to economically separate and concentrate the isotopes. The present invention proposes and demonstrates a method for highly enriching at least two types of isotopes from the same working material.Each isotope is effectively used in various fields, and not only generates value but also improves efficiency. It plays a major role in lowering the cost of isotopes through the utilization of working materials.

【0030】さらに環境に放出あるいは廃棄する場合
に、作業環境あるいは自然環境に問題を生ずる可能性の
ある作業物質においても、作業物質を完全に利用するの
でそもそも放出や廃棄の必要が生じない。
Further, even when working materials that may cause a problem in the working environment or the natural environment when they are released or discarded into the environment, the working materials are completely utilized, so that there is no need to release or discard them in the first place.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明を実施するために使用された実験装
置の概略図である。
FIG. 1 is a schematic diagram of an experimental apparatus used to carry out the present invention.

【符号の説明】[Explanation of symbols]

1 炭酸ガスレーザー 2 レンズ 3 照射容器 4 パワーメーター 5 試料供給装置 6 照射試料分離装置 7 ガスクロマトグラフ質量分析計 DESCRIPTION OF SYMBOLS 1 Carbon dioxide laser 2 Lens 3 Irradiation container 4 Power meter 5 Sample supply device 6 Irradiation sample separation device 7 Gas chromatograph mass spectrometer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−91828(JP,A) 特開 平6−296828(JP,A) 特開 平9−131515(JP,A) 特開 昭60−132629(JP,A) 特開 平4−300633(JP,A) 特開 昭63−97217(JP,A) 特開 昭62−45327(JP,A) 特開 昭63−289224(JP,A) 特開 昭63−242326(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 59/00 - 59/50 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-56-91828 (JP, A) JP-A-6-296828 (JP, A) JP-A-9-131515 (JP, A) JP-A 60-91828 132629 (JP, A) JP-A-4-300633 (JP, A) JP-A-63-97217 (JP, A) JP-A-62-45327 (JP, A) JP-A-63-289224 (JP, A) JP-A-63-242326 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 59/00-59/50

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】添加物が加えられた又は加えられていな
い、2つ以上の同位体を含む適切な作業物質における赤
外多光子分解に基づく同位体の分離・濃縮において、最
初に適切な条件のレーザー光を作業物質に照射して特定
の同位体が濃縮された生成物を形成するとともにこれを
作業物質から分離し、続いてこの作業物質に異なる適切
な条件のレーザー光を照射して特定の同位体が濃縮され
た生成物をさらに形成するとともにこれを作業物質から
分離することで残された作業物質中に別の同位体を濃縮
する、同一作業物質を用いた複数の同位体の効率的なレ
ーザー同位体分離・濃縮法。
Claims: 1. In the separation and enrichment of isotopes based on infrared multiphoton decomposition in a suitable working material containing two or more isotopes, with or without additives, first the appropriate conditions Irradiates the working material with a laser light to form a product enriched in a specific isotope and separates it from the working material, and then irradiates the working material with laser light of different appropriate conditions to identify Of multiple isotopes using the same working material, further forming a product enriched with the same isotope and enriching another isotope in the remaining working material by separating it from the working material Laser isotope separation and concentration method.
【請求項2】請求項1の作業物質が、12Cおよび13
Cを天然の同位体存在比で含むCHClFまたはCH
BrFであって、最初に適切な条件のレーザー光を作
業物質に照射して13Cが濃縮された生成物を形成する
とともにこれを作業物質から分離し、続いてこの作業物
質に異なる適切な条件のレーザー光を照射して13Cが
濃縮された生成物をさらに形成するとともにこれを作業
物質から分離することで残された作業物質中に12Cを
濃縮する、請求項1に記載のレーザー同位体分離・濃縮
法。
2. The method according to claim 1, wherein the working material is 12 C and 13
CHClF 2 or CH containing C in the natural isotopic abundance
BrF 2 , which is first irradiated with laser light of appropriate conditions to the working material to form a 13 C-enriched product and to separate it from the working material, which is then different to the working material 13 C is irradiated with laser light conditions are concentrated respectively 12 C working substance in which this was left by the separation from the working substance with further forming a product enriched, laser according to claim 1 Isotope separation and enrichment method.
【請求項3】請求項1の作業物質が、28Si、29
iおよび30Siを天然の同位体存在比で含むSi
であって、最初に適切な条件のレーザー光を作業物質
に照射して29Siおよび30Siが濃縮された生成物
を形成するとともにこれを作業物質から分離し、続いて
この作業物質に異なる適切な条件のレーザー光を照射し
29Siおよび30Siが濃縮された生成物をさらに
形成するとともにこれを作業物質から分離することで残
された作業物質中に28Siを濃縮する、請求項1に記
載のレーザー同位体分離・濃縮法。
3. The method according to claim 1, wherein the working material is 28 Si, 29 S
Si 2 F containing i and 30 Si in a natural isotope abundance ratio
6 , first irradiating the working material with a laser beam of appropriate conditions to form a product enriched in 29 Si and 30 Si and to separate it from the working material, Irradiation of laser light under appropriate conditions further forms a product enriched in 29 Si and 30 Si, and enriches 28 Si in the remaining working material by separating it from the working material. 2. The method for separating and concentrating a laser isotope according to item 1.
JP26887598A 1998-08-19 1998-08-19 An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance Expired - Fee Related JP3360165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26887598A JP3360165B2 (en) 1998-08-19 1998-08-19 An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26887598A JP3360165B2 (en) 1998-08-19 1998-08-19 An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance

Publications (2)

Publication Number Publication Date
JP2000061269A JP2000061269A (en) 2000-02-29
JP3360165B2 true JP3360165B2 (en) 2002-12-24

Family

ID=17464483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26887598A Expired - Fee Related JP3360165B2 (en) 1998-08-19 1998-08-19 An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance

Country Status (1)

Country Link
JP (1) JP3360165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590048B1 (en) 2003-09-30 2004-11-17 川崎重工業株式会社 Isotope separation method and working material for isotope separation

Also Published As

Publication number Publication date
JP2000061269A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
RU2388525C2 (en) Method and device for oxygen isotope concentration
US20110094873A1 (en) Oxygen isotope concentration method
WO2008038561A1 (en) Method and equipment for the enrichment of heavy oxygen isotopes
Lyman Laser-Induced Molecular Dissociation Applications in Isotope Separation and Related Processes
JP3360165B2 (en) An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance
JP4364529B2 (en) Oxygen isotope enrichment method and apparatus
EP0325273B1 (en) Method for the enrichment of carbon 13 by means of laser irradiation
Danen Pulsed infrared laser-induced organic chemical reactions
JP6828091B2 (en) Method of separating carbon isotopes and method of enriching carbon isotopes
US4171251A (en) Laser photochemical separation of hydrogen isotopes
US7307233B2 (en) Isotope separation method and working substance for isotope separation
Yokoyama et al. Silicon isotope separation utilizing infrared multiphoton dissociation of Si 2 F 6 irradiated with two-frequency CO 2 laser lights
JPH05317653A (en) Method for separating and condensing isotope by using laser
JPH06102134B2 (en) Concentration of oxygen 18 by laser
JP2001259373A (en) Method for gasifying treatment of solid product in laser isotope separation
JPH0256133B2 (en)
JPH0663361A (en) Concentration method of carbon 13 by using laser
JP2804815B2 (en) Method for enriching carbon 13
JP2008073673A (en) Effective substance used for separation and concentration of isotope of carbon and silicon based on infrared multiple-photon decomposition
JP2928763B2 (en) Isotope separation method using free electron laser
Fowler Separation of hydrogen isotopes
JPH0513685B2 (en)
JP2000202246A (en) Working substance for separation and concentration of carbon 13 based on infrared multiple photon decomposition
JP2006102727A (en) Method for highly concentrating nitrogen isotope 15n by laser
JPS58183932A (en) Concentration of carbon 13 isotope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees