JPS58183932A - Concentration of carbon 13 isotope - Google Patents

Concentration of carbon 13 isotope

Info

Publication number
JPS58183932A
JPS58183932A JP6681382A JP6681382A JPS58183932A JP S58183932 A JPS58183932 A JP S58183932A JP 6681382 A JP6681382 A JP 6681382A JP 6681382 A JP6681382 A JP 6681382A JP S58183932 A JPS58183932 A JP S58183932A
Authority
JP
Japan
Prior art keywords
gas
carbon
reactor
laser
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6681382A
Other languages
Japanese (ja)
Other versions
JPS595335B2 (en
Inventor
Hiroyuki Kojima
洋之 小嶋
Toshio Fukumi
福見 俊夫
Sadao Nakajima
中島 貞夫
Yoshio Maruyama
義雄 丸山
Kyoko Kosasa
小佐々 恭子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6681382A priority Critical patent/JPS595335B2/en
Publication of JPS58183932A publication Critical patent/JPS58183932A/en
Publication of JPS595335B2 publication Critical patent/JPS595335B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To stepwisely concentrate a carbon 13 molecule, by irradiating carbon dioxide laser beam to at least one among plural halogenated methane molecules in the coexistence of oxygen to decompose and remove a carbon 12 molecule. CONSTITUTION:A mixed gas consisting of CF3I and O2 (CF3I/O2=1/9) is introduced into a stock gas sump (1-A) and sent to a reaction tower 3 while the pressure in a reactor is controlled by evacuating the same by an oil rotary pump 7. As laser 4, CO2 pulse laser is used. The gas passing through the reactor is passed through an adsorbing column filled with soda lime particles to remove decomposition product such as difluorocarbonyl. In the next step, trifluoroiodomethane is collected by a cold trap (1-B) held at the temp. of liquified nitrogen. When the sending of the stock gas in the gas sump is completed, the cold trap is returned to a room temp. while the stock mixed gas is regenerated by the addition of oxygen to be again sent to the reactor. The stock gas sump (1-A) and the cold trap (1-B) are connected by a pipe so as to exchange the function with each other.

Description

【発明の詳細な説明】 本発明は炭素同位体の濃縮方法に関する。[Detailed description of the invention] The present invention relates to a method for enriching carbon isotopes.

近年化学物質による環境汚染が浸透し、種々の局面で不
測の災害をひき起している。これらの災害を未然に防ぐ
には化学物質の生態系における循環機構を明かにする必
要があり、食品、農薬、医薬品など限られた範囲ではそ
の安全試験が精力的に行われている。同位体を用いるト
し一す−技術は生体内の代謝、環境汚染物質の因果関係
を明かにする上で欠かせないものであるが従来は放射性
同位元素が専ら利用されてきた。しかし放射性をもつた
めにその利用範囲は限られ、利用にも特別の法的措置が
とられている。そこで非放射性の安宇同位体トし一す−
が注目されるわけであるが、極微量しか含1れない安定
同位体の濃縮は極めて困難で広範な利用を促進するには
余りにも高価なものになっている。トし一す−に利用す
る安定同位元素は炭素13(天然存在比1.1%)、窒
素15(同0.37%)、1酸素18(同0.20%)
、値数34(同4.2%)などであり、中でも有機化合
物・の中心元素である炭素13の需要は極めて大きい。
In recent years, environmental pollution caused by chemical substances has become pervasive, causing unexpected disasters in various situations. In order to prevent these disasters from occurring, it is necessary to clarify the circulation mechanism of chemical substances in the ecosystem, and safety tests are being conducted vigorously in limited areas such as foods, pesticides, and pharmaceuticals. Techniques using isotopes are essential for elucidating the causal relationship between metabolism in living organisms and environmental pollutants, but radioactive isotopes have traditionally been used exclusively. However, due to its radioactivity, its range of use is limited, and special legal measures are taken against its use. Therefore, the non-radioactive Yasu isotope is used.
However, enriching stable isotopes that contain only trace amounts is extremely difficult and too expensive to promote widespread use. The stable isotopes used for this purpose are carbon-13 (natural abundance 1.1%), nitrogen-15 (natural abundance 0.37%), and oxygen-18 (natural abundance 0.20%).
, value number 34 (4.2%), etc. Among them, demand for carbon-13, which is the central element of organic compounds, is extremely large.

従来の炭素13の濃縮方法は一酸化炭素の低7m精密蒸
留であるが、この方法は蒸留塔に多大な設備投資を要し
、−200℃という極低温の温度制御に精緻な技術を必
要とする上、分離効率が非常に悪い。本発明の目的はこ
のような従来法の欠・范を解消せんとするものであって
極めて単純な装置と技術を用いて高純度の C化合物を
効率よく分離せんとするにある。
The conventional method for concentrating carbon-13 is low-7m precision distillation of carbon monoxide, but this method requires a large investment in equipment for distillation columns and requires sophisticated technology to control the extremely low temperature of -200°C. Moreover, the separation efficiency is very poor. The purpose of the present invention is to overcome the deficiencies and inadequacies of the conventional methods, and to efficiently separate C compounds of high purity using extremely simple equipment and techniques.

本発明者は上記目的達成のなめに従来から研究を続けて
来たが、この研究に於いて分子がそれに含1れる同位体
によって僅かに異なる波長の光を吸収するという原理を
利用し、且つし−ザーの出現によって単色性の良い強い
光が得られることから特定の同位体分子を選択的に分解
できる可能性のあることに着想し、更に研究を続けた結
果、特定のレーザーのパルス光を用い、且つ特定の分子
を選択使用することにより所期の目的が達成されること
を見出し、舷に本発明を完成するに至った。
The present inventor has been conducting research to achieve the above objective, and in this research, he utilized the principle that molecules absorb light of slightly different wavelengths depending on the isotope contained in them, and With the appearance of lasers, we were able to obtain strong, monochromatic light, which led us to think that it might be possible to selectively decompose specific isotope molecules.As a result of further research, we discovered that the pulsed light of a specific laser The present inventors have discovered that the desired objective can be achieved by using the molecule and selectively using a specific molecule, and have thus completed the present invention.

即ち本発明はトリフルオ0ハ0プン化メタシ及び酸ガス
パルスレーザ−光を酸素の共存下で照射して炭素12分
子を分解除去し、炭素13分子を段階的に濃縮する事を
特徴とする炭素13同位体の濃縮方法に係るもの゛であ
る。
That is, the present invention is characterized in that 12 carbon molecules are decomposed and removed by irradiation with trifluorofluoride and acid gas pulsed laser light in the coexistence of oxygen, and 13 carbon molecules are concentrated stepwise. This relates to a method for concentrating 13 isotopes.

ン化メタンとしては例えばトリノルオ0ヨードメタン又
はトリフルオ0づOtメタンが例示出来、就づくトリフ
ルオDヨードメタシが好ましい。又本発明に於いて使用
されるジフルオ0ハ0プン化メタシとしては例えばりo
oジフルオ0メタン、ジフルオロヨードメタン、ジフル
オロショートメタυ、ジフルオOジクOoメタン、′ジ
フルオ0ジプロ七メタン等が例示出来る。
Examples of the ionized methane include trino-D-iodomethane and trifluoro-D-iodomethane, with trifluoro-D-iodomethane being preferred. In addition, examples of difluorocarbon compounds used in the present invention include
Examples include o-difluoro-methane, difluoroiodomethane, difluoro-short-methane, difluoro-diku-Oo-methane, and 'difluoro-dipro-7-methane.

ンに酸素の共存下に照射するときは、トリフルオ0ヨー
ドメタシの100分子のみを選択的に分解し目一つ分解
により生じた分解生成物は酸素と容易確実に反応して未
分解の C分子より成るトリフジオ0ヨードメタンから
極めて容易に分離出来ることが明らかとなった。
When irradiation is carried out in the presence of oxygen, only 100 molecules of trifluoro-iodomethane are selectively decomposed, and the decomposition products generated by the decomposition easily and reliably react with oxygen and are more easily absorbed than undecomposed C molecules. It has become clear that it can be separated very easily from trifudio-iodomethane, which consists of

以ヤに本発明を図面にもとづき説明する。第1図は本発
明法実際の一例を示すフローシートである。第1図に於
いて原料ガス溜め(1,J)にはトリノルオ0ヨードメ
タンと酸素の混合気体が入っている。流量制御装置(2
)を経て一定の流速で該混合気体を反応装置(3)に供
給する。一方レーザー(4)は炭酸ガスパルスレーザ−
を用いて発振波長を9.5μmバンドの発振線R(1)
、9.2714μmにセットし、反応装置(3)に照射
する。この時12C分子が光を吸収し、次式の反応によ
り、タイフルオロカルボニルが生成する。
The present invention will now be explained based on the drawings. FIG. 1 is a flow sheet showing an actual example of the method of the present invention. In FIG. 1, the raw material gas reservoir (1, J) contains a mixed gas of trino-iodomethane and oxygen. Flow rate control device (2
), the mixed gas is supplied to the reactor (3) at a constant flow rate. On the other hand, the laser (4) is a carbon dioxide gas pulse laser.
The oscillation wavelength is set to 9.5 μm band oscillation line R(1) using
, 9.2714 μm and irradiate the reactor (3). At this time, the 12C molecule absorbs light, and thaifluorocarbonyl is produced by the reaction of the following formula.

12CF −−1−0812CF O+ OF、  (
2)3     2          2タイフルオ
0カルボニル及びこの除虫ずる他の分解生成物は吸着カ
ラム(5)を通して分離除去する。
12CF --1-0812CF O+ OF, (
2) 3 2 2 taifluorocarbonyl and other decomposition products of this repellent are separated and removed through an adsorption column (5).

残存気体は13.分子から成るトリフジオ0ヨードメタ
ンと酸素との混合物となるが、コールドトラップ(1−
B)により、1′+:ゝゝのトリフジオ0ヨードメタン
を捕集する。次にコールドトラツーJ (1−B)を昇
温し、酸素を加えて原料ガスを再生する。これを再び反
応装置(3)に送り、分解を重ね、前回ガス溜めだった
1−,4を今度はコールドラップとして用いて捕集する
。この操作を繰り返すことによりトリフジオ03−トメ
タン中の C分子濃度は1%から次第に上昇し、8−1
0回のサイクルで90%以上に上昇する。
Residual gas is 13. It becomes a mixture of trifudio-ioodomethane and oxygen, which consists of molecules, but in a cold trap (1-
By B), 1'+:ゝゝ of trifudio-iodomethane is collected. Next, the temperature of Cold Tora Two J (1-B) is raised and oxygen is added to regenerate the raw material gas. This is sent to the reactor (3) again, where it is repeatedly decomposed, and gases 1- and 4, which were previously used as gas reservoirs, are now used as cold wraps to collect them. By repeating this operation, the C molecule concentration in Trifudio 03-tomethane gradually increases from 1%, and 8-1
It increases to more than 90% in 0 cycles.

本発明に於いて用いるレーザーとしては炭酸ガスパルス
レーザ−が使用され、パルス当りのエネル甲−が分解を
起すに充分な程度に大きく、また充分なる選択分解性を
発揮するに充分なるパルス巾を有することが要求される
。いまパルス当りのエネル千−を表わす代表的な値とし
てフルエンスを用いて説明すると、フルエンス0.05
(ジュール/c−j)以上、好ましくは0.5−2(ジ
]、−L/d)程度であり、またパルス巾は通常5O−
200nVtt、好ましくは100nslc程度である
。たとえばフルエシスと分解率との関係は第2図に示す
通りである。
The laser used in the present invention is a carbon dioxide gas pulsed laser, which has an energy per pulse large enough to cause decomposition, and a pulse width sufficient to exhibit sufficient selective decomposition. required to have one. Now, to explain using fluence as a representative value representing 1,000 energy per pulse, fluence is 0.05.
(Joule/c-j) or more, preferably about 0.5-2 (di], -L/d), and the pulse width is usually 5O-
It is about 200 nVtt, preferably about 100 nslc. For example, the relationship between fluesis and decomposition rate is as shown in FIG.

本発明法実施に際しては、トリフルオロハ0ゲシ化メタ
シ及びジフルオ0ハDゲシ化メタシの少くとも1種と酸
素との混合気体にレーザー光を照射するがこの際の混合
気体の圧力と選択率との関係は第3図に示す通りである
。ここでβは分離係数と呼ばれ、トリフル性0ヨードメ
タシの場合次式で定義されるようにどれ程12C分子が
選択的に分解されたかを表わすパラメータである。
When carrying out the method of the present invention, a laser beam is irradiated to a gas mixture of oxygen and at least one of trifluorohydride and difluoride, and the pressure and selectivity of the gas mixture at this time are The relationship is as shown in FIG. Here, β is called a separation coefficient, and is a parameter representing how much 12C molecules are selectively decomposed in the case of triflic 0-iodomethane as defined by the following equation.

第3図で明かなように4トールを越えると選択性が著し
くなくなり2ト一ル程度が適当である事が判る。加える
酸素の量は原料メタルの10倍前後が適当である。極端
に少くなると反応(2)と平行して次式の反応が起る。
As is clear from FIG. 3, when the pressure exceeds 4 torr, the selectivity decreases significantly, and it is found that about 2 torr is appropriate. The appropriate amount of oxygen to be added is about 10 times the amount of raw metal. When the amount becomes extremely small, the following reaction occurs in parallel with reaction (2).

多い場合にはこの寄与は次第に小さくなり、100倍で
は殆んど無視しつる程になるが、励起分子が酸素との衝
突で失活し、分解効率の低下が顕奸になる傾向がある。
When the amount is increased, this contribution gradually becomes smaller, and when the amount is increased by 100 times, it becomes almost negligible, but there is a tendency for the excited molecules to be deactivated by collision with oxygen, resulting in a significant decrease in decomposition efficiency.

たとえば1:9の場合でも生成物の10〜20%はへ+
リフジオ0エタ。
For example, even in the case of 1:9, 10-20% of the product is
Rifugio 0 eta.

であり、最終的には分離しなければならないが、沸慨は
トリフルオロヨードメタル−22,5°C1へ+サフル
オOエタシは一79°Cであるから分別蒸留できる。ジ
フルオ0ハ0ゲシ化メタシの場合はへ+サフルオDエタ
シの代わ、りにテトラフルオDエチレシが少量出来るが
、同様である。タイフル本発明の特徴は濃縮せんとする
1%の C分子2 を残し、99%の C分子を分解除去するところを(あ
る。この方式によりシステムを非常に簡単に出来、しか
も極めて高純度の同位体を容易に得る事ができる。通常
は分解量が少くてよいので C分子を分解採取する方法
が考えられる。しかし一度の濃縮作業で濃縮が十分進む
わけではないので多段の濃縮にせなくてはならない。こ
のためには分解生成物から原料分子を再生する操作が必
要になってシステムを著しく複雑にさせてしまう。分解
効率の面から比較すると C分解では選択性を上げる為
に吸収断面積の小さい波長を選ばなくてはならず、共存
する100分子による失活作用も大きいため効率は悪く
なり、また用いる炭酸ガスレーザーの発振線の利得も小
さいので分解量が少くて良いと言う利点は大きく崩れて
しまう。これにひきかえ、 C分解の方では再生する必
要がなく、単に分解生成物を系外に除去するだけで良い
のでシステムを著しく単純化できるほか濃縮を連続的に
進めているので超高純度の製品でもコストを飛躍させる
事は々い。要求するレーザーの性能面から考えても C
分解法は有利である。一般に同位体選択性を上げるため
には高出力で短パルスのもの程適しており、しかも生産
性を高めるためにこのようなパルスの繰り返し速度が早
いことが要求される。しかしこの条件をみたすレーザー
をつくる事は難゛シ<、レーザー装置の進歩を尚待だな
くてはならない。しかし本発明のような方法をとれば選
択性は余りよくなくても濃縮は十分進行し、高出力、短
パルスの条件は大巾に緩和されるので現しベルのレーザ
ーでも十分適用できる。
Although it must be separated in the end, the boiling point for trifluoroiodo metal is -22.5°C1 + safluoriodine metal is -79°C, so it can be fractionally distilled. In the case of difluoro 0 ha 0 geshi conversion metashi, a small amount of tetrafluoro D ethireshi can be made instead of he + safluoro D etashi, but the same is true. The feature of the TIFUL present invention is that it decomposes and removes 99% of the C molecules while leaving 1% of the C molecules that are to be concentrated. Normally, only a small amount of decomposition is required, so a method of decomposing and collecting C molecules can be considered.However, one concentration process does not result in sufficient concentration, so multi-stage concentration is required. This requires an operation to regenerate the raw material molecules from the decomposition products, making the system extremely complicated.Compared from the viewpoint of decomposition efficiency, in C decomposition, the absorption cross section is increased to increase selectivity. A small wavelength must be selected, and the deactivation effect due to the coexisting 100 molecules is large, resulting in poor efficiency.Also, the gain of the oscillation line of the carbon dioxide laser used is small, so the advantage is that the amount of decomposition is small. In contrast, with C decomposition, there is no need to regenerate, and the decomposition products can simply be removed from the system, which simplifies the system considerably.In addition, since the concentration proceeds continuously, it is extremely efficient. Even with high-purity products, the cost often increases dramatically.Even when considering the required laser performance, C
Decomposition methods are advantageous. In general, higher output and shorter pulses are more suitable for increasing isotope selectivity, and a faster repetition rate of such pulses is required to increase productivity. However, it is difficult to create a laser that satisfies this condition, and we must wait for advances in laser equipment. However, if the method of the present invention is used, the concentration will proceed sufficiently even if the selectivity is not so good, and the conditions for high output and short pulses will be relaxed to a large extent, so that it can be applied satisfactorily even to a laser of the present invention.

実施例 第1図の反応装置を用いて Cを濃縮した。はじめ原料
ガス溜め(1−A)にCF3Iと02との混合気体(C
F31102=1/9)を600CC,12,5トール
入れた。流量制御装置(2)により2−105.。
EXAMPLE C was concentrated using the reaction apparatus shown in FIG. Initially, a mixed gas of CF3I and 02 (C
F31102=1/9) was added at 600CC and 12.5 torr. 2-105. by the flow control device (2). .

/ setの流速で混合ガスを反応塔(3)に送り、油
回転ポンプ(7)でひいて反応器内の圧力を約2トール
に調節した。レーザー(4)はco2パルスレーザ−を
用い、動作条件は入射波長9.271μm、パルスエネ
ル甲−5.6ジユール/パルス、じ−ム断面積7.Oc
4、パルス巾7 Q nxtt 、繰り返し速度0.5
9パルス/ Kltであった。反応器は長さ1.67f
f 、容!3.1nのステンレス製円筒で両端にはし−
イー光を透過する塩化ナトリウム窓がついている。反応
器を通過したガスはソーダライム粒の充填した吸着カラ
ムを通し、禎イフルオDカルボニルやその他の分解生成
物を除去した。次に液体窒素温度に保たれた]−ルドト
ラッ’j (1−B)により、トリフルオロヨードメタ
ンを捕集した。ガス溜めの原料ガスを送り終えるとコー
ルドトラップを常温に戻し酸素を加えて原料の混合ガス
を再生し、再び反応器に送った。(1−,4)及び(1
”B)はガス溜めとコールドトラップの機能を交互に交
換するように配管されている。第4図はコールドトラッ
プに捕集されたトリフルオロヨードメタンに Cが濃縮
されて行く様子を追ったもので7回のサイクルで分離係
数は500近くになる。このサイクルを繰は向上する。
The mixed gas was sent to the reaction tower (3) at a flow rate of /set, and was pumped by an oil rotary pump (7) to adjust the pressure inside the reactor to about 2 Torr. The laser (4) uses a CO2 pulse laser, and the operating conditions are: incident wavelength: 9.271 μm, pulse energy: -5.6 joules/pulse, beam cross-section: 7. Oc
4. Pulse width 7 Q nxtt, repetition rate 0.5
It was 9 pulses/Klt. The length of the reactor is 1.67f
f, Yong! 3.1n stainless steel cylinder with holes on both ends.
It has a sodium chloride window that transmits e-light. The gas that passed through the reactor was passed through an adsorption column packed with soda lime granules to remove Ifluo D carbonyl and other decomposition products. The trifluoroiodomethane was then collected by a ]-rudotra'j (1-B) maintained at liquid nitrogen temperature. After sending the raw material gas from the gas reservoir, the cold trap was returned to room temperature and oxygen was added to regenerate the raw material gas mixture, which was then sent to the reactor again. (1-,4) and (1
"B) is piped so that the functions of gas reservoir and cold trap are alternately exchanged. Figure 4 shows how C is concentrated in trifluoroiodomethane collected in the cold trap. After 7 cycles, the separation factor becomes nearly 500. Repeating this cycle improves the separation factor.

第5図はトリフルオロヨードメタンのマススペクトルで
CF、ラジカルのピークにより濃縮の様子を知ることが
できる。(a)は照射前で13CFii1%である。<
b>は5サイクル後でほぼ55%となり、(C)は7t
Jイクル後で83%の純度になっている。1サイクルの
照射時間ははじめのサイクルでは20分、終りのサイク
ルでは5分程度であった。この例ではレーザー光のエネ
ルギーの一割程度しか利用していないが、反射鏡など公
知の方法で光路を延長し、レーザーも繰り返し速度の速
いものを採用すればそのまま生産規模を拡大できる。
FIG. 5 shows the mass spectrum of trifluoroiodomethane, and the state of concentration can be seen from the peaks of CF and radicals. (a) is 13CFii 1% before irradiation. <
b> is almost 55% after 5 cycles, and (C) is 7t
After J cycle, the purity is 83%. The irradiation time for one cycle was 20 minutes for the first cycle and about 5 minutes for the last cycle. In this example, only about 10% of the energy of the laser beam is used, but the production scale can be expanded by extending the optical path using a known method such as a reflector and by using a laser with a high repetition rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の一例を示す系統図である。(
・1−A / 1−B )が原料カス溜め/]−ルドト
ラッーj 、 (2)が流量制御装置、(3)が反応器
、(4)が炭酸ガスパルスレーザ−1(5)が吸着カラ
ム、(6)が気圧計、(7)は油回転ポジづである。 第2図はレーザー光のフルエンスと分解率との関係を示
す図でCF3I1021:9の混合ガス1.9トール3
.11に波長9.27μmの光を50パルス照射後の分
解率を示す。 第3図は操作圧と分離係数との関係を示す。 CF3I1021:9の混合ガス中にフルエンス0.6
ジコール/cjのパルスを照射した際の分解生成物の分
離係数である。 第4図は分離係数及びコールドトラツづで捕集するCF
 Jの収率を濃縮作業のサイクルに対してづ0ツトした
ものである。収率は出発量を基準にし一〇いる。 第5図は濃縮されたCF 31のマススペクトルを示す
。 (以 上) 第111 113図 フッしエシス(ジ=−+L/1m2) 第4図 J宵1R31¥=稟。サイフル 第5図
FIG. 1 is a system diagram showing an example of an embodiment of the present invention. (
・1-A/1-B) is the raw material waste reservoir/]-rudotraj, (2) is the flow rate controller, (3) is the reactor, (4) is the carbon dioxide pulse laser, and 1 (5) is the adsorption column. , (6) is a barometer, and (7) is an oil rotating position. Figure 2 shows the relationship between the fluence of laser light and the decomposition rate.
.. 11 shows the decomposition rate after irradiation with 50 pulses of light with a wavelength of 9.27 μm. FIG. 3 shows the relationship between operating pressure and separation factor. Fluence 0.6 in mixed gas of CF3I1021:9
This is the separation coefficient of decomposition products when irradiated with a pulse of dicol/cj. Figure 4 shows separation coefficient and CF collected by cold traps.
The yield of J is calculated based on the cycle of concentration operation. The yield is 10,000 based on the starting amount. Figure 5 shows the mass spectrum of concentrated CF31. (That's all) Fig. 111 113 Fushi Esis (J=-+L/1m2) Fig. 4 J-yoi 1R31 yen = 稟. Saiful Figure 5

Claims (1)

【特許請求の範囲】[Claims] 光を酸素の共存下で照射して炭素12分子を分解除去し
、炭素13分子を段階的に濃縮する事を特徴とする炭素
13同位体の濃縮方法。
A method for concentrating carbon-13 isotopes, which comprises decomposing and removing carbon-12 molecules by irradiating light in the coexistence of oxygen and concentrating carbon-13 molecules in stages.
JP6681382A 1982-04-20 1982-04-20 Method for enriching carbon-13 isotope Expired JPS595335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6681382A JPS595335B2 (en) 1982-04-20 1982-04-20 Method for enriching carbon-13 isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6681382A JPS595335B2 (en) 1982-04-20 1982-04-20 Method for enriching carbon-13 isotope

Publications (2)

Publication Number Publication Date
JPS58183932A true JPS58183932A (en) 1983-10-27
JPS595335B2 JPS595335B2 (en) 1984-02-03

Family

ID=13326666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6681382A Expired JPS595335B2 (en) 1982-04-20 1982-04-20 Method for enriching carbon-13 isotope

Country Status (1)

Country Link
JP (1) JPS595335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417327A1 (en) * 1989-03-30 1991-03-20 Nippon Steel Corporation Enrichment of carbon thirteen
US5085748A (en) * 1989-01-24 1992-02-04 Nippon Steel Chemical Co., Ltd. Process for enriching carbon 13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085748A (en) * 1989-01-24 1992-02-04 Nippon Steel Chemical Co., Ltd. Process for enriching carbon 13
EP0417327A1 (en) * 1989-03-30 1991-03-20 Nippon Steel Corporation Enrichment of carbon thirteen

Also Published As

Publication number Publication date
JPS595335B2 (en) 1984-02-03

Similar Documents

Publication Publication Date Title
Gallina et al. Conversion of allylic carbamates into olefins with lithium dimethylcuprate. A new formal SN2'reaction
US4049515A (en) Laser isotope separation by multiple photon absorption
JPS58183932A (en) Concentration of carbon 13 isotope
CA1072489A (en) Method and apparatus for the separation or enrichment of isotopes
EP0325273B1 (en) Method for the enrichment of carbon 13 by means of laser irradiation
US4220510A (en) Method for separating isotopes in the liquid phase at cryogenic temperature
US4213836A (en) Laser-induced separation of hydrogen isotopes in the liquid phase
US4120767A (en) Photochemical method for carbon isotopic enrichment
US4447303A (en) Method of separating boron isotopes
US4257860A (en) Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound
RU2144421C1 (en) Method of producing highly enriched isotope 13c
US4313807A (en) Method for enriching a gaseous isotopic mixture with at least one isotope
Ma et al. Production of highly concentrated 13 C by continuous two-stage IRMPD. CBr 2 F 2/HI, CCl 2 F 2/HI, and CBrClF 2/HI mixtures
JPH0314491B2 (en)
JPS6248528B2 (en)
JPS63248701A (en) Thermochemical production of hydrogen utilizing high yield decomposition of hydrogen iodide
Maienschein et al. Tritium removal from contaminated water via infrared laser multiple-photon dissociation
JP2804815B2 (en) Method for enriching carbon 13
CA1096812A (en) Laser-induced separation of hydrogen isotopes in the liquid phase
CA1203773A (en) Isotopic separation process
Benson Method of deuterium isotope separation using ethylene and ethylene dichloride
Benson Deuterium isotope separation
JP3805533B2 (en) Isotope separation method
JP2008114201A (en) Method for separation and enrichment of oxygen 18 with laser
JPH0331489B2 (en)