JPS61274731A - Apparatus for separating isotope by laser - Google Patents

Apparatus for separating isotope by laser

Info

Publication number
JPS61274731A
JPS61274731A JP11416085A JP11416085A JPS61274731A JP S61274731 A JPS61274731 A JP S61274731A JP 11416085 A JP11416085 A JP 11416085A JP 11416085 A JP11416085 A JP 11416085A JP S61274731 A JPS61274731 A JP S61274731A
Authority
JP
Japan
Prior art keywords
dissociation
atoms
laser
molecules
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11416085A
Other languages
Japanese (ja)
Inventor
Takehiko Kitamori
武彦 北森
Hajime Iba
伊庭 甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11416085A priority Critical patent/JPS61274731A/en
Publication of JPS61274731A publication Critical patent/JPS61274731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To enhance the separation efficiency of an isotope and to reduce the consumption of energy required in separation, by optimizing the irradiation time of dissociation beam. CONSTITUTION:The irradiation time with dissociation beam is set to the life of the exciting state of an excited atom or molecule or less. That is, the output signal from the optical probe 4 inserted in the exciting beam 5 emitted from a laser system 1 is amplified by an amplifying system 7 to be inputted to a control system 1 which, in turn, controls the oscillation of the laser system 2 on the basis of the signal from the optical probe 4. The life time of an excit ing state is preliminarily inputted to the control system 1 as a control parameter according to the parameter such as the pressure or temp. in a sample chamber 1. As a result, the separation efficiency of an isotope is enhanced and the con sumption of energy required in separation can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーザ同位体分離装置にががり、特に分離効率
の向上、分離に要するエネルギーの節減に好適なレーザ
同位体分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a laser isotope separation device, and particularly to a laser isotope separation device suitable for improving separation efficiency and reducing energy required for separation.

〔発明の背景〕[Background of the invention]

従来のレーザ同位体分離装置では、特開1iV54−9
9899、昭54−99898、昭57−13330の
ように、原子化装置や励起光波長の選択法等に関する工
夫はあったものの、励起光と解離光との照射時間の最適
化や、それに伴う分離効率の向上、経済性の向上等に関
しては配慮されていなかった。
In conventional laser isotope separation equipment, JP-A-1iV54-9
9899, 1989-99898, and 1982-13330, there were improvements regarding the atomization device and the selection method of the excitation light wavelength, but the optimization of the irradiation time of the excitation light and dissociation light and the associated separation were difficult. No consideration was given to improving efficiency or economic efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、レーザ同位体分離装置の解離光の照射
時間を最適化し、分離効率を向上するとともに分離に要
するエネルギー消費を低減する方法及び装置を提供する
ことにある。
An object of the present invention is to provide a method and apparatus for optimizing the irradiation time of dissociation light of a laser isotope separation apparatus, improving separation efficiency and reducing energy consumption required for separation.

〔発明の概要〕[Summary of the invention]

レーザ同位体分離では、原子あるいは分子の吸光スペク
トルが同位体により微細に異なることを利用し、単波長
であるレーザ光により分離する同位置の原子あるいは分
子のみを選択的に光励起した後、さらに、解離光により
励起状態にある同位体の原子あるいは分子をイオン化す
る。イオン化された原子あるいは分子を静電的に分離す
ることにより、目標とする同位体を分離する。したがっ
てレーザ同位体分離の分離効率を向」ニするためには励
起状態の原子あるいは分子を解離する効率を向」ニする
必要がある。そのため、励起状態の原子あるいは分子が
基底状態に戻る前に、解離光を照射する必要がある。ま
た、励起状態の吸光断面積は一定であるから、解離する
原子や分子の数を増加させるためには、なるべくエネル
ギー密度の高い解離光を照射することが望ましい。
Laser isotope separation takes advantage of the fact that the absorption spectra of atoms or molecules differ minutely depending on the isotope, and after selectively optically exciting only the atoms or molecules at the same position to be separated using a single wavelength laser beam, Dissociation light ionizes atoms or molecules of the isotope in an excited state. Target isotopes are separated by electrostatically separating ionized atoms or molecules. Therefore, in order to improve the separation efficiency of laser isotope separation, it is necessary to improve the efficiency of dissociating atoms or molecules in the excited state. Therefore, it is necessary to irradiate the excited atoms or molecules with dissociation light before they return to the ground state. Further, since the absorption cross section of the excited state is constant, in order to increase the number of dissociated atoms and molecules, it is desirable to irradiate dissociation light with as high an energy density as possible.

一般に時刻t、 = Oで励起光を照射した後、励起状
態から基底状態へ遷移する原子あるいは分子の数は第1
図のように変化する。時刻1.=τ、に現われるピーク
の位置は、励起光のパルス幅に依存して変化する。また
、励起光の照射を止めると励起状態から基底状態に緩和
する原子あるいは分子の数は指数関数的に減少し、最大
値(1=τF)に対してe−1の割合になるまでの時間
τを励起状態の寿命という。図1から明らかなように、
時刻1、=で十て、以後では、はとんどの原子あるいは
分子が基底状態に緩和してしまい、解離光を照射しても
イオン化する原子あるいは分子の数は少ない。一方、時
刻16−τ以前では、励起状態の原子あるいは分子の大
多数は緩しでおらず、この期間に解離光を照射すれば、
効率良く励起原子あるいは分子をイオン化できる。そこ
で、解離光の照射時間を、励起光の照射時刻1=0から
し=τ+τいまでの間に制御することにより、励起状態
にある原子あるいは分子を効率良くイオン化することが
できる。
Generally, after irradiation with excitation light at time t, = O, the number of atoms or molecules that transition from the excited state to the ground state is the first
It changes as shown in the figure. Time 1. The position of the peak appearing at =τ changes depending on the pulse width of the excitation light. Furthermore, when the excitation light irradiation is stopped, the number of atoms or molecules that relax from the excited state to the ground state decreases exponentially, and it takes time to reach a ratio of e-1 to the maximum value (1 = τF). τ is called the lifetime of the excited state. As is clear from Figure 1,
After time 1, = 10, most of the atoms or molecules relax to the ground state, and even when irradiated with dissociation light, the number of atoms or molecules that are ionized is small. On the other hand, before time 16-τ, the majority of atoms or molecules in the excited state are not relaxed, and if dissociation light is irradiated during this period,
Excited atoms or molecules can be ionized efficiently. Therefore, by controlling the irradiation time of the dissociation light from the excitation light irradiation time 1 = 0 to = τ + τ, atoms or molecules in an excited state can be efficiently ionized.

さらに、τ十τ、は通常高々10°〜10”nsであり
、解離光の光源はパルスレーザとすることができる。パ
ルスレーザでは、連続光レーザに比較してQi位待時間
りのエネルギー密度、即ち光子数密度を高めることがで
きるので、励起状態からイオン化する原子あるいは分子
の数を増加させることが可能となる。
Furthermore, τ0τ is usually at most 10° to 10” ns, and the light source of the dissociation light can be a pulsed laser. In a pulsed laser, the energy density for a waiting time of Qi is lower than that of a continuous light laser. That is, since the photon number density can be increased, it is possible to increase the number of atoms or molecules that are ionized from an excited state.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

レーザシステム1は励起光5を供給し、レーザシステム
2は解離光6を供給する。励起光及び解離光はハーフミ
ラ−3を経てサンプルチェンバ1に入射する。分離対象
の同位体を含む金属原子(例えば90Z、rを含むZr
)は原子化装置により、原子化され、サンプルチェンバ
1へ導入される。
Laser system 1 provides excitation light 5 and laser system 2 provides dissociation light 6. The excitation light and dissociation light enter the sample chamber 1 through the half mirror 3. Metal atoms containing the isotope to be separated (e.g. 90Z, Zr containing r
) is atomized by an atomization device and introduced into the sample chamber 1.

励起光及び解離光によりイオン化された同位体は電磁場
発生装w2の作るサンプルチェンバ内の電磁場により、
分離器に導れる。本装置の真空系は真空ライン8により
、真空ポンプに接続され、制御系2により集中管理して
いる。制御系2では、同時に、電磁場発生装置や原子化
装置1分離器も制御している。
Isotopes ionized by the excitation light and dissociation light are ionized by the electromagnetic field in the sample chamber created by the electromagnetic field generator w2.
Directed to separator. The vacuum system of this apparatus is connected to a vacuum pump through a vacuum line 8, and is centrally managed by a control system 2. The control system 2 also controls the electromagnetic field generator and the atomization device 1 separator at the same time.

レーザシステム1から放射される励起光5にはフォトダ
イオードから成る光プローブ4が挿入されている。光プ
ローブ4からの出力信号は、増幅系7により増幅され、
制御系1に入力される。
An optical probe 4 made of a photodiode is inserted into excitation light 5 emitted from the laser system 1. The output signal from the optical probe 4 is amplified by an amplification system 7,
It is input to the control system 1.

制御系1では、光プローブからの信号により、レーザシ
ステム2の発振を制御する。あらかじめ、サンプルチェ
ンバ1内の圧力、温度等のパラメータに従い、励起状態
の寿命を制御パラメータとして制御系1に入力しておく
。また、励起光の出力波形が矩形波等の場合1図1ので
、が励起状態の寿命τに比較して無視し得なくなる。こ
の場合に、はτ及びτ、を制御パラメータとして入力す
る。
The control system 1 controls the oscillation of the laser system 2 using signals from the optical probe. In advance, the lifetime of the excited state is input to the control system 1 as a control parameter according to parameters such as pressure and temperature inside the sample chamber 1. Further, when the output waveform of the excitation light is a rectangular wave or the like, as shown in FIG. 1, it becomes impossible to ignore compared to the lifetime τ of the excited state. In this case, τ and τ are input as control parameters.

レーザシステム2は光プローブ4からの信号をトリガと
し、パルス幅τあるいはτ+τ、の解離光パルスを放射
する。
The laser system 2 is triggered by the signal from the optical probe 4 and emits a dissociation light pulse with a pulse width τ or τ+τ.

励起状態の寿命の測定には、時間分解ケイ光分光法や光
音響分光法を利用する。緩和過程が輻射過程である場合
には時間分解ケイ光分光法を無輻射過程の場合には光音
響分光法を利用する。
Time-resolved fluorescence spectroscopy and photoacoustic spectroscopy are used to measure the lifetime of the excited state. When the relaxation process is a radiative process, time-resolved fluorescence spectroscopy is used, and when it is a non-radiative process, photoacoustic spectroscopy is used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば以下の効果がある。 According to the present invention, there are the following effects.

(1)励起光源及び解離光源ともにパルス化できるので
、単位時間当りの光エネルギー密度、即ち光子数密度を
向上することができ、分離効率を−Lげることができる
。平均出力が同じでも連続光源に比較して、パルス光源
は光エネルギー密度を約6桁以−1〕高めることも可能
である。
(1) Since both the excitation light source and the dissociation light source can be pulsed, the light energy density per unit time, that is, the photon number density can be improved, and the separation efficiency can be increased by -L. Even if the average output is the same, a pulsed light source can increase the optical energy density by about 6 orders of magnitude or more compared to a continuous light source.

(2)励起光源及び解離光源をパルス化あるいは矩形波
等とすることができるため、光源のエネルギー消費を低
減できる。例えば、duty cycle30%の矩形
波出力であれば、連続光源に比較して約70%の消費エ
ネルギー節減になる。
(2) Since the excitation light source and the dissociation light source can be pulsed or have a rectangular wave, energy consumption of the light source can be reduced. For example, if the output is a rectangular wave with a duty cycle of 30%, the energy consumption will be reduced by about 70% compared to a continuous light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は励起状態からの緩和原子数の時間変化を示す図
、第2図は本発明に基づくレーザ同位体分離装置の構成
図を示す。 1・・・サンプルチェンバ、2・・・電磁場発生装置、
3・・・ハーフミラ−14・・・光プローブ、5・・・
励起光、6・・・解離光、7・・・増幅系、8・・・真
空ライン、9・・・光学窓。
FIG. 1 is a diagram showing the temporal change in the number of relaxed atoms from an excited state, and FIG. 2 is a diagram showing the configuration of a laser isotope separation apparatus based on the present invention. 1... Sample chamber, 2... Electromagnetic field generator,
3... Half mirror 14... Optical probe, 5...
Excitation light, 6... Dissociation light, 7... Amplification system, 8... Vacuum line, 9... Optical window.

Claims (1)

【特許請求の範囲】 1、原子あるいは分子を励起状態にするための励起光源
と励起状態の原子あるいは分子をイオン化するための解
離光源及びイオン化した原子あるいは分子を分離する分
離とから成るレーザ同位体分離装置において、解離光の
照射時間を励起した原子あるいは分子の励起状態の寿命
以下に設定したことを特徴とするレーザ同位体分離装置
。 2、特許請求の範囲第1項に記載のレーザ同位体分離装
置において、励起光と解離光を同時に照射することを特
徴とするレーザ同位体分離装置。 3、特許請求の範囲第1項に記載のレーザ同位体分離装
置において、励起光の照射から、励起状態より緩和する
原子あるいは分子の数が最大となるまでの時間、あるい
は、この時間に励起状態の寿命を加えた時間のみ解離光
を照射することを特徴とするレーザ同位体分離装置。
[Claims] 1. A laser isotope consisting of an excitation light source for bringing atoms or molecules into an excited state, a dissociation light source for ionizing the excited atoms or molecules, and a separation device for separating the ionized atoms or molecules. A laser isotope separation device characterized in that the irradiation time of dissociation light is set to be less than the lifetime of the excited state of an excited atom or molecule. 2. A laser isotope separation apparatus according to claim 1, characterized in that excitation light and dissociation light are irradiated simultaneously. 3. In the laser isotope separation apparatus according to claim 1, the time from irradiation with excitation light until the number of atoms or molecules that relax from the excited state reaches the maximum, or during this time, the excited state A laser isotope separation device characterized by irradiating dissociation light only for a time corresponding to the lifetime of the laser isotope.
JP11416085A 1985-05-29 1985-05-29 Apparatus for separating isotope by laser Pending JPS61274731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11416085A JPS61274731A (en) 1985-05-29 1985-05-29 Apparatus for separating isotope by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11416085A JPS61274731A (en) 1985-05-29 1985-05-29 Apparatus for separating isotope by laser

Publications (1)

Publication Number Publication Date
JPS61274731A true JPS61274731A (en) 1986-12-04

Family

ID=14630660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11416085A Pending JPS61274731A (en) 1985-05-29 1985-05-29 Apparatus for separating isotope by laser

Country Status (1)

Country Link
JP (1) JPS61274731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181763A (en) * 2006-01-06 2007-07-19 Japan Atomic Energy Agency Separation method for isotope using molecular rotation period difference

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181763A (en) * 2006-01-06 2007-07-19 Japan Atomic Energy Agency Separation method for isotope using molecular rotation period difference

Similar Documents

Publication Publication Date Title
Le Blanc et al. Temporal characterization of a self-modulated laser wakefield
Daido et al. Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions
Mikami et al. The fluorescence excitation spectrum of aniline in a supersonic free jet: Double minimum potential for the inversion vibration in the excited state
Amorim et al. Two‐photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges
Denton et al. TUNABLE ORGANIC DYE LASER AS AN EXCITATION SOURCE FOR ATOMIC‐FLAME FLUORESCENCE SPECTROSCOPY
Breford et al. Laser-induced fluorescence in supersonic nozzle beams predissociation in the Rb2 C1πu and D 1πu states
Scime et al. Laser induced fluorescence in a pulsed argon plasma
Wallenstein et al. ʌ-type doubling and spin-rotation splitting of NO, measured in simultaneous one-and two-photon laser spectroscopy
JPS61274731A (en) Apparatus for separating isotope by laser
Jackson et al. Competition between multiphoton fluorescence and multiphoton ionization in NO
Quack et al. Time‐resolved infrared‐spectroscopic observation of relaxation and reaction processes during and after infrared‐multiphoton excitation of 12CF3I and 13CF3I with shaped nanosecond pulses
US3645629A (en) Apparatus for spectroscopic analysis with modulated electrodeless discharge tube
US4336230A (en) Frequency chirp in isotopically selective photoexcitation
Adams et al. Time-resolved observation of sequential bond cleavage in a gas-phase azoalkane
US3667066A (en) Optically pumped alkali atomic beam frequency standard
US4274063A (en) Infrared spectroscopic lamps and gas detectors incorporating such lamps
Owrutsky et al. Lifetimes of the B state of CH3I and CD3I using femtosecond resonance enhanced multiphoton ionization
Konefal et al. Observation of collision-induced amplified emission in Na-noble gas system
Shaw et al. Diode laser initiated resonance ionization mass spectrometry of lanthanum
Ishiwata et al. An optical–optical double resonance spectroscopy of Br2: Observation of the 1 g (3 P 2) ion‐pair state
Apatin et al. Effective Excitation of High Vibrational States of SF 6 Molecules in a Beam by a Multiple-frequency IR Radiation
US4419582A (en) Use of autoionization transition absorption peaks in isotopically selective photoexcitation
US4350577A (en) Electronically induced multiphoton absorption
Schade et al. Lifetime measurements of V II levels using tunable subnanosecond UV-dye-laser pulses
Malinina et al. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon