JP4952049B2 - Shear reinforcement structure and method for reinforced concrete members - Google Patents

Shear reinforcement structure and method for reinforced concrete members Download PDF

Info

Publication number
JP4952049B2
JP4952049B2 JP2006130616A JP2006130616A JP4952049B2 JP 4952049 B2 JP4952049 B2 JP 4952049B2 JP 2006130616 A JP2006130616 A JP 2006130616A JP 2006130616 A JP2006130616 A JP 2006130616A JP 4952049 B2 JP4952049 B2 JP 4952049B2
Authority
JP
Japan
Prior art keywords
reinforced concrete
concrete member
shear
reinforcing
shear reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006130616A
Other languages
Japanese (ja)
Other versions
JP2007303100A (en
Inventor
浩一 田中
光男 東野
誠一 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2006130616A priority Critical patent/JP4952049B2/en
Publication of JP2007303100A publication Critical patent/JP2007303100A/en
Application granted granted Critical
Publication of JP4952049B2 publication Critical patent/JP4952049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、既存鉄筋コンクリート部材のせん断補強構造及び方法に関する。   The present invention relates to a shear reinforcement structure and method for existing reinforced concrete members.

構造物の壁や梁等のせん断荷重の作用する鉄筋コンクリート部材のせん断補強を行う場合には、コンクリート部材が負担していた引張応力を負担するようにコンクリート部材内にせん断補強筋を新たに埋設する方法が広く用いられている。この際、充分なせん断補強効果を得るためには、せん断補強筋とコンクリート部材との間で応力の伝達が確実に行われるようにし、せん断補強筋は引張応力に抵抗できるように、確実にコンクリート部材内に定着する必要がある。   When reinforcing a reinforced concrete member subjected to a shear load such as a wall of a structure or a beam, embed a new shear reinforcement bar in the concrete member so as to bear the tensile stress imposed by the concrete member. The method is widely used. At this time, in order to obtain a sufficient shear reinforcement effect, it is ensured that stress is transmitted between the shear reinforcement bar and the concrete member, and the shear reinforcement bar is surely applied to the concrete so that it can resist the tensile stress. It is necessary to fix in the member.

このような確実に応力の伝達を行う定着構造を備えたせん断補強構造として、例えば、図11及び図12に示すように、鉄筋コンクリート部材10の表面より掘削孔21を設け、両端に定着材31を備えるせん断補強筋32を配置し、掘削孔21内に充填材33を注入することにより形成されたせん断構造30が用いられることがある。かかる構成によれば、せん断補強筋32の両端に設けられた定着材31が定着強度を向上し、せん断補強筋32は引張応力に抵抗できるので、コンクリート部材12のせん断強度が向上する。   As such a shear reinforcement structure having a fixing structure for reliably transmitting stress, for example, as shown in FIGS. 11 and 12, a drilling hole 21 is provided from the surface of the reinforced concrete member 10, and fixing materials 31 are provided at both ends. The shear structure 30 formed by arranging the shear reinforcing bar 32 provided and injecting the filler 33 into the excavation hole 21 may be used. According to such a configuration, the fixing material 31 provided at both ends of the shear reinforcing bar 32 improves the fixing strength, and the shear reinforcing bar 32 can resist the tensile stress, so that the shear strength of the concrete member 12 is improved.

また、これと同様の工法として、特許文献1には、せん断補強筋の両端に円筒体の定着材を備えたせん断補強部材を鉄筋コンクリート部材内に設置する方法が開示されている。
特開2005―105808号公報
Moreover, as a construction method similar to this, Patent Document 1 discloses a method in which a shear reinforcing member having cylindrical fixing members at both ends of a shear reinforcing bar is installed in a reinforced concrete member.
JP-A-2005-105808

しかしながら、上記説明したせん断補強構造では、充分な効果を得るためには、多くのせん断補強筋を配置する必要があり、施工の手間及び時間がかかるという問題点があった。   However, in the above-described shear reinforcement structure, in order to obtain a sufficient effect, it is necessary to arrange many shear reinforcement bars, and there is a problem that it takes time and effort for construction.

そこで、本発明は、上記の問題点に鑑みなされたものであり、その目的は、補強部材の設置数を従来よりも減らすことができ、かつ、せん断耐力を向上させることが可能な鉄筋コンクリート部材のせん断補強構造及びせん断補強方法を提供することである。   Then, this invention is made | formed in view of said problem, The objective is that the number of installation of a reinforcement member can be reduced compared with the past, and the reinforced concrete member which can improve a shear strength is obtained. A shear reinforcement structure and a shear reinforcement method are provided.

前記目的を達成するため、本発明の鉄筋コンクリート部材のせん断補強構造は、せん断荷重の作用する既存の鉄筋コンクリート部材のせん断補強構造であって、前記せん断荷重により生じる斜めひび割れ面と交差するように、鉄筋コンクリート部材に設けられた掘削孔と、断面が十字状となるように複数の帯状の板材を互いに直角に組み合わせてなる棒状の補強材と該補強材の少なくとも2箇所に取り付けられた支圧機構とから構成され、前記掘削孔に、前記板材の向きが前記鉄筋コンクリート部材に作用する前記せん断荷重の主応力方向に対して45°程度となるように挿入される補強部材と、前記掘削孔に充填されたグラウトとを備えることを特徴とする(第1の発明)。 In order to achieve the above-mentioned object, the shear reinforcement structure of a reinforced concrete member of the present invention is a shear reinforcement structure of an existing reinforced concrete member on which a shear load acts, and is reinforced concrete so as to intersect with an oblique crack surface caused by the shear load. An excavation hole provided in the member, a bar-shaped reinforcing material obtained by combining a plurality of strip-shaped plate members at right angles so that the cross section has a cross shape, and a support mechanism attached to at least two locations of the reinforcing material And a reinforcing member inserted into the excavation hole so that the orientation of the plate material is about 45 ° with respect to the main stress direction of the shear load acting on the reinforced concrete member, and the excavation hole is filled And a grout (first invention).

本発明による鉄筋コンクリート部材の補強構造によれば、斜めひび割れ面において補強部材がほぞのように作用するため、せん断耐力を向上することができる。したがって、従来のせん断補強構造に用いられていたせん断補強筋の本数よりも少ない補強部材の本数でせん断補強が可能であるため、掘削孔の数を減らすことができ、施工性を向上することが可能となる。
また、本発明による鉄筋コンクリート部材の補強構造によれば、支圧機構を補強部材の両端に設けることにより、補強材を確実に鉄筋コンクリート部材内に支圧定着することが可能となる。
さらに、断面が放射状となるように複数の板材を組み合わせることにより補強材の断面2次モーメントが大きくなる。したがって、ほぞとしての役割を十分に期待できるようになるので、鉄筋コンクリート部材に作用するせん断荷重に対する耐力が向上する。
また、帯状の板材を直交するように接続することにより少ない板材で効果的にほぞ効果を得ることが可能である。
さらに、板材の向きがせん断荷重の主応力方向に対して45°程度となるように配置し、主応力方向と板材の向きとを異なる方向にすることにより、せん断荷重作用時に板材がくさびの働きをして、主応力方向の割裂を誘発することを防止できる。したがって、板材は鉄筋コンクリート部材の弱点となることがない。
According to the reinforcing structure for a reinforced concrete member according to the present invention, since the reinforcing member acts like a tenon on the oblique crack surface, the shear strength can be improved. Therefore, since it is possible to reinforce with fewer reinforcing members than the number of shear reinforcing bars used in the conventional shear reinforcing structure, the number of excavation holes can be reduced and workability can be improved. It becomes possible.
In addition, according to the reinforcing structure for a reinforced concrete member according to the present invention, it is possible to securely fix and fix the reinforcing material in the reinforced concrete member by providing the supporting pressure mechanism at both ends of the reinforcing member.
Furthermore, the cross-sectional secondary moment of the reinforcing material is increased by combining a plurality of plate members so that the cross-section is radial. Therefore, since the role as a tenon can be sufficiently expected, the proof stress against the shear load acting on the reinforced concrete member is improved.
Further, it is possible to effectively obtain a tenon effect with a small number of plate materials by connecting the belt-like plate materials so as to be orthogonal to each other.
Furthermore, the plate is arranged so that the direction of the plate is about 45 ° with respect to the main stress direction of the shear load, and the direction of the main stress and the direction of the plate are made different, so that the plate works as a wedge when the shear load is applied. It is possible to prevent the splitting in the principal stress direction from being induced. Therefore, a board | plate material does not become a weak point of a reinforced concrete member.

第2の発明は、第1の発明において、前記補強材は、前記斜めひび割れ面に作用するせん断荷重よりも大きなせん断耐力を有することを特徴とする。
本発明による鉄筋コンクリート部材の補強構造によれば、斜めひび割れ面において補強材がほぞのように作用するため、せん断耐力を向上することが可能となる。
According to a second invention, in the first invention, the reinforcing material has a shear strength larger than a shear load acting on the oblique crack surface.
According to the reinforcing structure for a reinforced concrete member according to the present invention, since the reinforcing material acts like a tenon on the oblique crack surface, the shear strength can be improved.

の発明は、第1又は第2の発明において、前記支圧機構は、前記補強材の両端に取り付けられた板状部材であることを特徴とする。
本発明による鉄筋コンクリート部材の補強構造によれば、補強材は断面放射状の形状を有し、板状部材全面を覆うように取り付けられるのではなく、隣接する板材との間に多くの隙間を有するように取り付けられるために、板状部材と鉄筋コンクリート部材との接触面積が広くなり、補強部材を確実に鉄筋コンクリート部材内に支圧定着することが可能となる。
A third invention is characterized in that, in the first or second invention, the supporting pressure mechanism is a plate-like member attached to both ends of the reinforcing material.
According to the reinforcing structure of a reinforced concrete member according to the present invention, the reinforcing member has a radial cross section and is not attached so as to cover the entire plate member, but has a large gap between adjacent plate members. Therefore, the contact area between the plate-like member and the reinforced concrete member is widened, and the reinforcing member can be reliably supported and fixed in the reinforced concrete member.

の発明は、第1〜第のいずれかの発明において、前記鉄筋コンクリート部材はカルバートであることを特徴とする。
本発明による鉄筋コンクリート部材の補強構造によれば、既設のカルバートを補強することが可能となる。
According to a fourth invention, in any one of the first to third inventions, the reinforced concrete member is a culvert.
According to the reinforcing structure for a reinforced concrete member according to the present invention, an existing culvert can be reinforced.

の発明は、第1〜第のいずれかの発明において、前記掘削孔は、前記鉄筋コンクリート部材の一方の面のみに設けられていることを特徴とする。
本発明による鉄筋コンクリート部材の補強構造によれば、地中の既設の鉄筋コンクリート部材を鉄筋コンクリート部材の内部から補強作業を行うことが可能となる。
According to a fifth invention, in any one of the first to fourth inventions, the excavation hole is provided only on one surface of the reinforced concrete member.
According to the reinforcing structure for a reinforced concrete member according to the present invention, an existing reinforced concrete member in the ground can be reinforced from the inside of the reinforced concrete member.

の発明は、第1〜第のいずれかの発明において、前記補強材は、鋼材又はFRP等の強化プラスチックからなることを特徴とする。
本発明による鉄筋コンクリート部材の補強構造によれば、鋼材又は強化プラスチックからなる補強材を用いることにより、鉄筋コンクリート部材に作用する引張り荷重に対向することが可能となる。
According to a sixth invention, in any one of the first to fifth inventions, the reinforcing material is made of a reinforced plastic such as a steel material or FRP.
According to the reinforcing structure of a reinforced concrete member according to the present invention, it is possible to face a tensile load acting on the reinforced concrete member by using a reinforcing material made of steel or reinforced plastic.

の発明は、第1〜第のいずれかの発明において、前記支圧機構は、鋼材又はFRP等の強化プラスチックからなることを特徴とする。
本発明による鉄筋コンクリート部材の補強構造によれば、鋼材又は強化プラスチックからなる支圧機構を用いることにより、鉄筋コンクリート部材に作用する引張り荷重に対向することが可能となる。
According to a seventh invention, in any one of the first to sixth inventions, the pressure supporting mechanism is made of a reinforced plastic such as a steel material or FRP.
According to the reinforcing structure of a reinforced concrete member according to the present invention, it is possible to face a tensile load acting on the reinforced concrete member by using a bearing mechanism made of steel or reinforced plastic.

の発明の鉄筋コンクリート部材のせん断補強方法は、せん断荷重の作用する既存の鉄筋コンクリート部材のせん断補強方法において、前記せん断荷重により生じる斜めひび割れ面と交差するように、鉄筋コンクリート部材に設けられた掘削孔を設け、断面が放射状となるように複数の帯状の板材を組み合わせてなる棒状の補強材と該補強材の両端に取り付けられた支圧機構とから構成された補強部材を前記掘削孔に挿入し、前記掘削孔にグラウトを充填し、前記補強部材のダウウェル効果によりせん断補強を行うことを特徴とする。 According to an eighth aspect of the present invention, there is provided a method for shear reinforcement of a reinforced concrete member in an existing reinforced concrete member subjected to a shear load, wherein the excavation hole provided in the reinforced concrete member so as to intersect with an oblique crack surface caused by the shear load And inserting a reinforcing member composed of a rod-shaped reinforcing material formed by combining a plurality of strip-shaped plate members so that the cross section is radial and a pressure bearing mechanism attached to both ends of the reinforcing material into the excavation hole. The grooving hole is filled with grout, and shear reinforcement is performed by the Dowwell effect of the reinforcing member .

本発明によれば、補強部材の支圧定着力を確保しつつ、鉄筋コンクリート部材のせん断耐力が向上する。   ADVANTAGE OF THE INVENTION According to this invention, the shear strength of a reinforced concrete member improves, ensuring the bearing pressure fixing force of a reinforcement member.

以下、本発明のせん断補強構造の一実施形態について、図面を参照しながら説明する。なお、本実施形態においては、既設のBOXカルバートの壁面への適用例について説明するが、本発明はBOXカルバートへの適用に限定されるものではなく、既設の鉄筋コンクリート部材にも適用できることはいうまでもなく、また、壁面への適用に限定されるものではなく、梁や柱等にも適用できることはいうまでもない。   Hereinafter, an embodiment of the shear reinforcement structure of the present invention will be described with reference to the drawings. In addition, in this embodiment, although the application example to the wall surface of the existing BOX culvert is demonstrated, it cannot be overemphasized that this invention is not limited to the application to a BOX culvert, and can be applied also to an existing reinforced concrete member. Needless to say, the present invention is not limited to application to a wall surface, and can be applied to beams, columns, and the like.

図1は、本実施形態のせん断補強構造の設置の対象となる地中BOXカルバート41を示す断面図である。図1に示すように、BOXカルバート41の外側には、土砂42が存在しており、BOXカルバートの外壁部43には、土砂42の土圧Qが作用している。   FIG. 1 is a cross-sectional view showing an underground BOX culvert 41 that is an object of installation of the shear reinforcement structure of the present embodiment. As shown in FIG. 1, earth and sand 42 exist outside the BOX culvert 41, and earth pressure Q of the earth and sand 42 acts on the outer wall 43 of the BOX culvert.

図2は、図1におけるBOXカルバート41の外壁部の破線で囲まれた部分の鉄筋コンクリート部材の拡大図であり、図3は、図2のA−A’断面図である。   FIG. 2 is an enlarged view of a reinforced concrete member in a portion surrounded by a broken line in the outer wall portion of the BOX culvert 41 in FIG. 1, and FIG. 3 is a cross-sectional view taken along line A-A ′ in FIG.

図2及び図3に示すように、一般的にBOXカルバート41を構成する鉄筋コンクリート部材10は、コンクリート部材12と、その外側及び内側に配置された主鉄筋11と、主鉄筋11と直交するように配置された配力筋13とを備える。   As shown in FIGS. 2 and 3, the reinforced concrete member 10 that generally constitutes the BOX culvert 41 includes a concrete member 12, main reinforcing bars 11 arranged on the outside and inside of the concrete member 12, and orthogonal to the main reinforcing bars 11. It is provided with the arranged distribution muscle 13.

鉄筋コンクリート部材10には、土圧Qがせん断荷重Pとして作用し、その反力P´が図1における外壁部43の支持部に作用している。後述するように、このせん断荷重P及びその反力P´により、図2に一点鎖線で示すような斜めひび割れ面(せん断荷重によるひび割れが生じやすい面)が発生する。   The earth pressure Q acts on the reinforced concrete member 10 as the shear load P, and the reaction force P ′ acts on the support portion of the outer wall portion 43 in FIG. As will be described later, the shear load P and its reaction force P ′ generate an oblique crack surface (a surface on which cracks are likely to occur due to the shear load) as shown by a one-dot chain line in FIG.

本実施形態のせん断補強構造20は、このような鉄筋コンクリート部材10の一方の面に適宜な間隔で上記の斜めひび割れ面と交差するように掘削孔21を設け、この掘削孔21に補強部材22を挿入し、掘削孔21内の空隙にグラウト27を充填し、このグラウト27が硬化することで形成される。すなわち、せん断補強構造20は、図2及び図3に示すように、鉄筋コンクリート部材10の表面に設けられた掘削孔21と、掘削孔21内に挿入された補強部材22と、掘削孔21内の空隙に充填されたグラウト27とを備えた構成となる。   In the shear reinforcement structure 20 of the present embodiment, a drilling hole 21 is provided on one surface of such a reinforced concrete member 10 so as to intersect with the oblique crack surface at an appropriate interval, and the reinforcing member 22 is provided in the drilling hole 21. It is formed by inserting and filling the gap in the excavation hole 21 with the grout 27 and hardening the grout 27. That is, as shown in FIGS. 2 and 3, the shear reinforcement structure 20 includes an excavation hole 21 provided on the surface of the reinforced concrete member 10, a reinforcement member 22 inserted into the excavation hole 21, and an inside of the excavation hole 21. The structure includes a grout 27 filled in the gap.

図4は、本実施形態に係る補強部材22を示す図であり、図5は、図4のB−B’断面図である。図4及び図5に示すように、補強部材22は、棒状の補強材23と、この補強材23の両端に取り付けられた支圧機構24a、24bとから構成され、図2に示すように、その軸方向がせん断荷重の作用方向と略並行に配置される。   4 is a view showing the reinforcing member 22 according to the present embodiment, and FIG. 5 is a cross-sectional view taken along the line B-B ′ of FIG. 4. As shown in FIGS. 4 and 5, the reinforcing member 22 is composed of a rod-shaped reinforcing material 23 and supporting pressure mechanisms 24a and 24b attached to both ends of the reinforcing material 23. As shown in FIG. The axial direction is arranged substantially in parallel with the direction of action of the shear load.

補強材23は、4枚の帯状の板材25を断面形状が十字状になるように互いに直角に接続して構成されている。
支圧機構24は鋼材からなる円盤形状の定着板24から構成され、補強材23の両端に堅固に取り付けられている。
補強部材22は、板材25の向きがせん断荷重の作用方向に対して45°程度となるように鉄筋コンクリート部材10内に配置される。
The reinforcing member 23 is configured by connecting four strip-shaped plate members 25 at right angles to each other so that the cross-sectional shape is a cross.
The pressure bearing mechanism 24 includes a disk-shaped fixing plate 24 made of a steel material, and is firmly attached to both ends of the reinforcing material 23.
The reinforcing member 22 is disposed in the reinforced concrete member 10 so that the direction of the plate member 25 is about 45 ° with respect to the direction of the shear load.

なお、本実施形態においては、4枚の板材25で補強材23の断面形状を十字状とする方法について説明したが、これに限定されるものではなく、3枚の板材25(図6)や2本のアングル26(図7)や中央部分にスリットを有する2枚の板材(図示しない)等を組み合わせて、断面形状を十字状としてもよい。   In the present embodiment, the method of making the cross-sectional shape of the reinforcing member 23 cross with four plate members 25 has been described, but the present invention is not limited to this, and three plate members 25 (FIG. 6) or The cross-sectional shape may be a cross shape by combining two angles 26 (FIG. 7), two plate members (not shown) having a slit in the center portion, and the like.

また、本実施形態においては、支圧機構24を円盤形状の定着板24の形状を円盤形状とする方法について説明したが、この形状に限定されるものではなく、例えば、正方形や円筒形としてもよい。   Further, in the present embodiment, the method for making the support mechanism 24 the disk-shaped fixing plate 24 in the disk shape has been described. However, the present invention is not limited to this, and for example, a square or a cylindrical shape may be used. Good.

さらに、本実施形態においては、補強材23及び支圧機構24の材質は、鋼材を用いているが、これに限定されるものではなく、FRP等の強化プラスチックを用いてもよい。   Furthermore, in the present embodiment, the reinforcing material 23 and the support mechanism 24 are made of steel, but the material is not limited to this, and reinforced plastic such as FRP may be used.

また、本実施形態においては、補強材23の両端に支圧機構24を設ける方法について説明したが、これに限定されるものではなく、補強材23のいずれの箇所に支圧機構24を設けてもよい。   Moreover, in this embodiment, although the method to provide the bearing mechanism 24 in the both ends of the reinforcing material 23 was demonstrated, it is not limited to this, The bearing mechanism 24 is provided in any location of the reinforcing material 23. Also good.

次に、本発明のせん断補強構造20により鉄筋コンクリート部材10のせん断耐力が向上する原理を、一例として鉄筋コンクリート部材10の単純梁を用い、この梁の中心に関して対称な任意の2箇所にせん断荷重が作用する場合、つまり、作用点と支点間のコンクリート部材12には、一定のせん断力が生じる場合について説明する。なお、以下の説明において、鉄筋コンクリート部材10に作用する荷重は、鉄筋コンクリート部材10の中央面に対して対称であるため、鉄筋コンクリート部材10の片側半分の解析モデルについて考える。   Next, the principle that the shear strength of the reinforced concrete member 10 is improved by the shear reinforcement structure 20 of the present invention is as follows. As an example, a simple beam of the reinforced concrete member 10 is used, and a shear load acts on any two symmetrical points with respect to the center of the beam. In other words, a case where a certain shear force is generated in the concrete member 12 between the action point and the fulcrum will be described. In the following description, since the load acting on the reinforced concrete member 10 is symmetric with respect to the center plane of the reinforced concrete member 10, an analysis model of one half of the reinforced concrete member 10 is considered.

図8は、せん断荷重が作用している状態の鉄筋コンクリート部材10における応力伝達を示す図である。図8に示すように、鉄筋コンクリート部材10は、対称性を考慮すると、作用荷重Pと、その反作用による支点反力P(=P)とにより釣合い状態となる。 FIG. 8 is a diagram illustrating stress transmission in the reinforced concrete member 10 in a state where a shear load is applied. As shown in FIG. 8, reinforced concrete member 10, in consideration of symmetry, the applied load P 1, the equilibrium by its fulcrum by reaction the reaction force P 2 (= P 1).

釣合い状態にあるコンクリート部材12には、荷重Pの作用する点と支点反力の作用する点Pとを結ぶ方向に作用する圧縮応力を伝達する応力伝達機構が形成される。また、上記の応力伝達機構には、モールの応力円の理論により圧縮応力の作用する方向と略垂直に引張応力が作用しており、鉄筋コンクリート部材10に作用するせん断荷重が大きくなると、それに伴ってこの引張応力も大きくなる。引張応力が過大になり、この引張応力にコンクリート部材12が耐えられなくなると、応力伝達機構に沿ってコンクリート部材12に斜めひび割れが生じ、せん断破壊を起こしてしまう。すなわち、斜めひび割れ面は、荷重の作用する点と、支点反力の作用する点とを結ぶ方向に発生する。 Concrete member 12 in the balanced state, the stress transfer mechanism for transmitting a compressive stress acting in the direction connecting the point P 2 acting point and the fulcrum reaction force acting load P 1 is formed. In addition, tensile stress acts on the stress transmission mechanism approximately perpendicular to the direction in which compressive stress acts according to the theory of the stress circle of the molding, and when the shear load acting on the reinforced concrete member 10 increases, This tensile stress also increases. If the tensile stress becomes excessive and the concrete member 12 cannot withstand this tensile stress, the concrete member 12 will be obliquely cracked along the stress transmission mechanism, causing shear failure. That is, the oblique crack surface is generated in the direction connecting the point where the load acts and the point where the fulcrum reaction force acts.

次に、定着板24のくさび効果について説明する。
図9は、図5のC−C’断面図であり、定着板24の定着部におけるくさび効果を示す図である。図9に示すように、補強材23に引張り応力が作用した場合、補強材23の端部に取り付けた定着板24近傍には、補強材23に対してθ=20°程度のくさび形状の引張り応力とその反力による圧縮領域が形成される。この圧縮領域がくさびの効果(以下、くさび効果という)をはたして、補強部材22は引張り応力に対して確実に支圧定着される。
Next, the wedge effect of the fixing plate 24 will be described.
FIG. 9 is a cross-sectional view taken along the line CC ′ of FIG. 5 and shows the wedge effect in the fixing portion of the fixing plate 24. As shown in FIG. 9, when a tensile stress is applied to the reinforcing member 23, a wedge-shaped tensile member having a θ of about 20 ° with respect to the reinforcing member 23 is provided near the fixing plate 24 attached to the end of the reinforcing member 23. A compression region is formed by the stress and the reaction force. This compression region exerts a wedge effect (hereinafter referred to as a wedge effect), and the reinforcing member 22 is reliably supported and fixed against a tensile stress.

そこで、本発明のせん断補強構造20は、図2〜図5に示すように、補強材23の両端に定着板24a、24bを取り付け、コンクリート部材12に作用する引張応力を斜めひび割れ面(図1における一点鎖線)と交差するように設けた補強材23に負担させるものである。さらに、補強材23に作用する引張り応力は、定着板24a、24bにくさび効果を生じさせ、このくさび効果により補強部材22はコンクリート部材12により堅固に支圧定着され、補強材23は引張り応力に対してより効果的に抵抗できるようになる。   Accordingly, as shown in FIGS. 2 to 5, the shear reinforcement structure 20 of the present invention is provided with fixing plates 24 a and 24 b at both ends of the reinforcing member 23, and the tensile stress acting on the concrete member 12 is obliquely cracked (see FIG. 1). It is to be borne by the reinforcing material 23 provided so as to cross. Further, the tensile stress acting on the reinforcing member 23 causes a wedge effect on the fixing plates 24a and 24b, and the reinforcing member 22 is firmly supported and fixed by the concrete member 12 due to the wedge effect, and the reinforcing member 23 is subjected to the tensile stress. It becomes possible to resist more effectively.

また、斜めひび割れ面と交差するように補強部材22を設け、この補強部材22の補強材23がほぞとして作用する効果(いわゆる、ダウエル効果)を利用して、せん断破壊を防止するという考えに基づくものである。   Further, the reinforcing member 22 is provided so as to intersect with the oblique crack surface, and the effect that the reinforcing member 23 of the reinforcing member 22 acts as a tenon (so-called dowel effect) is used to prevent shear fracture. Is.

従来のせん断補強構造に用いられるせん断補強筋32は(図12及び図13)、引張応力のみを負担させることを目的として設けられていたため、曲げ耐力の小さい鉄筋が用いられている。したがって、コンクリート部材12とともにせん断補強筋32も変形してしまうので、ほぞとしての機能が低く、せん断荷重の増加に伴ってせん断破壊の進行を許してしまい、最終的にダウエル効果が充分に発生する以前に鉄筋コンクリート部材10が破壊し、せん断耐力を向上することはできない。   Since the shear reinforcement bars 32 used in the conventional shear reinforcement structure (FIGS. 12 and 13) are provided for the purpose of bearing only the tensile stress, reinforcing bars having a small bending strength are used. Accordingly, since the shear reinforcement bars 32 are also deformed together with the concrete member 12, the function as a tenon is low, and the shear failure is allowed to proceed with an increase in the shear load, and finally the dowel effect is sufficiently generated. The reinforced concrete member 10 has been destroyed before, and the shear strength cannot be improved.

これに対し、本実施形態のせん断補強構造20に用いられている補強部材22は、せん断補強筋32に比べて断面2次モーメントが大きく、大きな曲げ剛性を有する。このため、ほぞとしての機能が高く、せん断荷重載荷当初から、充分なダウエル効果が期待でき、せん断耐力を向上することができる。また、補強材23として、斜めひび割れ面に生じるせん断力以上のせん断耐力を有する補強材を用いると、斜めひび割れ面に沿って引き離そうとする力に対して抵抗することができるため、確実にせん断耐力を向上できる。   On the other hand, the reinforcing member 22 used in the shear reinforcing structure 20 of the present embodiment has a larger sectional secondary moment than the shear reinforcing bar 32 and a large bending rigidity. For this reason, the function as a tenon is high, a sufficient dowel effect can be expected from the beginning of loading of the shear load, and the shear strength can be improved. In addition, when a reinforcing material having a shear strength equal to or greater than the shearing force generated on the oblique crack surface is used as the reinforcing material 23, the reinforcing material 23 can resist the force to be separated along the oblique crack surface. Can be improved.

また、ほぞ効果を期待して曲げ剛性の大きい鋼管を補強材として用いた場合は、所定のくさび効果を得るために定着板24を鋼管の径よりもさらに大きくしなければならないが、本実施形態の補強部材22は、複数の板材から構成された補強材23を用いることにより、鋼管を用いた場合と比べて定着板24を小さくしても、所定のくさび効果を得るために必要なコンクリート部材12と定着板24との接触面積を確保できる。   Further, when a steel pipe having a large bending rigidity is used as a reinforcing material in anticipation of the tenon effect, the fixing plate 24 must be made larger than the diameter of the steel pipe in order to obtain a predetermined wedge effect. The reinforcing member 22 is a concrete member necessary for obtaining a predetermined wedge effect even when the fixing plate 24 is made smaller by using a reinforcing member 23 composed of a plurality of plate members as compared with the case where a steel pipe is used. 12 and the contact area between the fixing plate 24 can be secured.

また、図2及び図3に示すように、本実施形態のせん断補強構造20は、部材軸に対して直交方向に補強部材22を配置している、通常、斜めひび割れは、応力伝達機構に沿って、すなわち、部材軸に対して斜め方向に発生するため、補強部材22は斜めひび割れと交差する。このため、本実施形態のせん断補強構造20のように、部材軸に対して直交方向に補強部材22を配置しても、せん断補強効果が得られる。   As shown in FIGS. 2 and 3, the shear reinforcement structure 20 of the present embodiment has a reinforcement member 22 arranged in a direction orthogonal to the member axis. Normally, oblique cracks follow the stress transmission mechanism. In other words, the reinforcing member 22 intersects with the oblique crack because it occurs in an oblique direction with respect to the member axis. For this reason, even if the reinforcing member 22 is arranged in a direction orthogonal to the member axis as in the shear reinforcing structure 20 of the present embodiment, a shear reinforcing effect can be obtained.

また、鉄筋コンクリート部材10の一方の面のみから補強部材22を部材直交方向に挿入することで、補強部材22を斜めひび割れと交差するように配置させることできる。このため、本実施形態のせん断補強構造20は、鉄筋コンクリート部材10の一方の面からせん断補強を行うことが可能となる。   Moreover, the reinforcement member 22 can be arrange | positioned so that it may cross | intersect an oblique crack by inserting the reinforcement member 22 only in one surface of the reinforced concrete member 10 in a member orthogonal direction. For this reason, the shear reinforcement structure 20 of this embodiment can perform shear reinforcement from one surface of the reinforced concrete member 10.

このように鉄筋コンクリート部材10の一方の面からせん断補強を行うことができるので、地中構造物であるBOXカルバートの外壁部のせん断補強を行う場合などに、特に有効である。図1に示すように、BOXカルバート41の外壁部43の外側には土砂42が存在している。本実施形態のせん断補強構造20によれば、上記説明したように、鉄筋コンクリート部材10の一方から施工を行うことが可能であり、BOXカルバート41の外壁部43にせん断補強工事を行う場合であっても、外壁部43の両面から作業する必要はなく、したがって、土砂42を掘削することなく、BOXカルバート41内側より施工を行うことができる。   Thus, since the shear reinforcement can be performed from one surface of the reinforced concrete member 10, it is particularly effective when the outer wall portion of the BOX culvert that is an underground structure is to be sheared. As shown in FIG. 1, earth and sand 42 exist outside the outer wall 43 of the BOX culvert 41. According to the shear reinforcement structure 20 of the present embodiment, as described above, it is possible to perform construction from one side of the reinforced concrete member 10 and to perform shear reinforcement work on the outer wall portion 43 of the BOX culvert 41. However, it is not necessary to work from both sides of the outer wall portion 43, and therefore construction can be performed from the inside of the BOX culvert 41 without excavating the earth and sand 42.

さらに、板材25の向きをせん断荷重の主応力方向に対して45°程度となるように配置して、主応力方向と板材25の向きとを異なる方向にすることにより、せん断荷重作用時に板材がくさびの働きをして、主応力方向の割裂を誘発することを防止できる。したがって、板材は鉄筋コンクリート部材の弱点となることがない。   Furthermore, the plate material 25 is arranged so that the direction of the plate material 25 is about 45 ° with respect to the main stress direction of the shear load, and the direction of the main stress direction and the direction of the plate material 25 are different from each other. It acts as a wedge and can prevent the splitting in the principal stress direction. Therefore, a board | plate material does not become a weak point of a reinforced concrete member.

以上説明したように、本実施形態のせん断補強構造によれば、補強部材は鉄筋コンクリート部材に十分支圧定着されるので、鉄筋コンクリート部材のせん断耐力を向上させることが可能となる。
また、せん断荷重により生じるひび割れ面と交差するように補強部材を設けるために、効率的な補強が可能である。
As described above, according to the shear reinforcement structure of the present embodiment, since the reinforcing member is sufficiently supported and fixed to the reinforced concrete member, the shear strength of the reinforced concrete member can be improved.
In addition, since the reinforcing member is provided so as to intersect with the crack surface caused by the shear load, efficient reinforcement is possible.

以上の2点の効果により、従来の方法で用いられていたせん断補強筋に比べて、補強部材は少ない本数でせん断補強を行うことができるため、コンクリート部材に設ける掘削孔を減らすことができ、施工性が向上される。また、鉄筋コンクリート部材の一方の側から施工できるため、BOXカルバートのような他方に外壁背面に土砂があるような場合にも、土砂を掘削することなく、内側から施工できる。   By the effect of the above two points, compared to the shear reinforcement bars used in the conventional method, since the reinforcement member can perform the shear reinforcement with a small number, the number of excavation holes provided in the concrete member can be reduced, Workability is improved. Moreover, since it can construct from one side of a reinforced concrete member, even when there is earth and sand on the back of the outer wall on the other side such as a BOX culvert, construction can be performed from the inside without excavating the earth and sand.

なお、本実施形態では、補強材23として帯状の板材25を断面十字状にして用いたが、これに限定されるものではなく、例えば、断面米字状(図10)等の断面2次モーメントが大きくなる配置であり、かつ、定着板24が所定のくさび効果を得ることが可能となるような配置であればよい。かかる場合には、補強部材22の隣接する板材25同士により形成される角度の中心が、せん断荷重の主応力方向と略一致するように補強部材22を鉄筋コンクリート部材10内に配置することが望ましい。   In the present embodiment, the strip-shaped plate member 25 is used in a cross-shaped cross section as the reinforcing member 23. However, the present invention is not limited to this. As long as the fixing plate 24 can obtain a predetermined wedge effect, the fixing plate 24 may be arranged. In such a case, it is desirable to arrange the reinforcing member 22 in the reinforced concrete member 10 so that the center of the angle formed by the adjacent plate members 25 of the reinforcing member 22 substantially coincides with the main stress direction of the shear load.

なお、本実施形態においては、既設の鉄筋コンクリート部材10への適用例について説明したが、本発明は鉄筋コンクリート部材10への適用に限定されるものではなく、鉄骨鉄筋コンクリート部材にも適用できることはいうまでもない。   In addition, in this embodiment, although the application example to the existing reinforced concrete member 10 was demonstrated, it cannot be overemphasized that this invention is not limited to the application to the reinforced concrete member 10, and can be applied also to a steel frame reinforced concrete member. Absent.

せん断補強構造の設置の対象となる地中BOXカルバートを示す断面図である。It is sectional drawing which shows the underground BOX culvert used as the installation object of a shear reinforcement structure. 図1におけるBOXカルバート41の外壁部の破線で囲まれた部分の鉄筋コンクリート部材の拡大図である。It is an enlarged view of the reinforced concrete member of the part enclosed with the broken line of the outer wall part of the BOX culvert 41 in FIG. 図2のA−A’断面図である。It is A-A 'sectional drawing of FIG. 本実施形態に係る補強部材を示す図である。It is a figure which shows the reinforcement member which concerns on this embodiment. 図4のB−B’断面図である。FIG. 5 is a B-B ′ cross-sectional view of FIG. 4. 3枚の板材から構成される補強材の例を示し、補強材断面図である。The example of the reinforcing material comprised from three board | plate materials is shown, and it is a reinforcing material sectional drawing. 2本のアングルから構成される補強材の例を示し、補強材断面図である。An example of a reinforcing material composed of two angles is shown and is a cross-sectional view of the reinforcing material. せん断荷重が作用している状態の鉄筋コンクリート部材における応力伝達を示す図である。It is a figure which shows the stress transmission in the reinforced concrete member in the state where the shear load is acting. 図5のC−C’断面図であり、定着板の定着部におけるくさび効果を示す図である。FIG. 6 is a cross-sectional view taken along the line C-C ′ of FIG. 5, illustrating a wedge effect at a fixing portion of the fixing plate. 断面米字状の補強材の例を示し、補強材断面図である。An example of a reinforcing material having a cross-sectional rice shape is shown, and is a cross-sectional view of the reinforcing material. せん断補強筋の両端に定着具を有する従来のせん断補強構造を示す横断面図である。It is a cross-sectional view which shows the conventional shear reinforcement structure which has a fixing tool in the both ends of a shear reinforcement. 図11のD−D’断面図である。It is D-D 'sectional drawing of FIG.

符号の説明Explanation of symbols

10 鉄筋コンクリート部材
11 主鉄筋
12 コンクリート部材
13 配力筋
20 せん断補強構造
21 掘削孔
22 補強部材
23 補強材
24 支圧機構(=定着板)
25 板材
26 アングル
27 グラウト
30 従来のせん断補強構造
31 定着材
32 せん断補強筋
33 充填材
41 BOXカルバート
42 土砂
43 外壁部
DESCRIPTION OF SYMBOLS 10 Reinforced concrete member 11 Main rebar 12 Concrete member 13 Power distribution bar 20 Shear reinforcement structure 21 Excavation hole 22 Reinforcement member 23 Reinforcement material 24 Support mechanism (= fixing plate)
25 Plate material 26 Angle 27 Grout 30 Conventional shear reinforcement structure 31 Fixing material 32 Shear reinforcement bar 33 Filler 41 BOX culvert 42 Earth and sand 43 Outer wall

Claims (8)

せん断荷重の作用する既存の鉄筋コンクリート部材のせん断補強構造であって、
前記せん断荷重により生じる斜めひび割れ面と交差するように、鉄筋コンクリート部材に設けられた掘削孔と、
断面が十字状となるように複数の帯状の板材を互いに直角に組み合わせてなる棒状の補強材と該補強材の少なくとも2箇所に取り付けられた支圧機構とから構成され、前記掘削孔に、前記板材の向きが前記鉄筋コンクリート部材に作用する前記せん断荷重の主応力方向に対して45°程度となるように挿入される補強部材と、
前記掘削孔に充填されたグラウトとを備えることを特徴とする鉄筋コンクリート部材のせん断補強構造。
A shear reinforcement structure for an existing reinforced concrete member on which a shear load acts,
Excavation holes provided in the reinforced concrete member so as to intersect the oblique crack surface caused by the shear load,
It is composed of a bar-shaped reinforcing material obtained by combining a plurality of strip-shaped plate members at right angles so that the cross section has a cross shape, and a support mechanism attached to at least two locations of the reinforcing material , A reinforcing member inserted so that the orientation of the plate material is about 45 ° with respect to the principal stress direction of the shear load acting on the reinforced concrete member ;
A shear reinforcement structure for a reinforced concrete member, comprising a grout filled in the excavation hole.
前記補強材は、前記斜めひび割れ面に作用するせん断荷重よりも大きなせん断耐力を有することを特徴とする請求項1に記載の鉄筋コンクリート部材のせん断補強構造。   The shear reinforcement structure for a reinforced concrete member according to claim 1, wherein the reinforcing material has a shear strength greater than a shear load acting on the oblique crack surface. 前記支圧機構は、前記補強材の両端に取り付けられた板状部材であることを特徴とする請求項1又は2に記載の鉄筋コンクリート部材のせん断補強構造。 3. The shear reinforcement structure for a reinforced concrete member according to claim 1, wherein the bearing mechanism is a plate-like member attached to both ends of the reinforcing material. 前記鉄筋コンクリート部材はカルバートであることを特徴とする請求項1からのいずれかに記載の鉄筋コンクリート部材のせん断補強構造。 The reinforced concrete member shear reinforcement structure according to any one of claims 1 to 3 , wherein the reinforced concrete member is a culvert. 前記掘削孔は、前記鉄筋コンクリート部材の一方の面のみに設けられていることを特徴とする請求項1からのいずれかに記載の鉄筋コンクリート部材のせん断補強構造。 The shear reinforcement structure for a reinforced concrete member according to any one of claims 1 to 4 , wherein the excavation hole is provided only on one surface of the reinforced concrete member. 前記補強材は、鋼材又はFRP等の強化プラスチックからなることを特徴とする請求項1からのいずれかに記載の鉄筋コンクリート部材のせん断補強構造。 The shear reinforcement structure for a reinforced concrete member according to any one of claims 1 to 5 , wherein the reinforcing material is made of a reinforced plastic such as a steel material or FRP. 前記支圧機構は、鋼材又はFRP等の強化プラスチックからなることを特徴とする請求項1からのいずれかに記載の鉄筋コンクリート部材のせん断補強構造。 The shear reinforcement structure for a reinforced concrete member according to any one of claims 1 to 6 , wherein the bearing mechanism is made of a reinforced plastic such as steel or FRP. せん断荷重の作用する既存の鉄筋コンクリート部材のせん断補強方法において、
前記せん断荷重により生じる斜めひび割れ面と交差するように、鉄筋コンクリート部材に設けられた掘削孔を設け、
断面が放射状となるように複数の帯状の板材を組み合わせてなる棒状の補強材と該補強材の両端に取り付けられた支圧機構とから構成された補強部材を前記掘削孔に挿入し、
前記掘削孔にグラウトを充填し、
前記補強部材のダウウェル効果によりせん断補強を行うことを特徴とする鉄筋コンクリート部材のせん断補強方法。
In the shear reinforcement method of the existing reinforced concrete member where the shear load acts,
Excavation holes provided in reinforced concrete members are provided so as to intersect with the oblique crack surface caused by the shear load,
Inserting a reinforcing member composed of a rod-shaped reinforcing material formed by combining a plurality of strip-shaped plate members so that the cross section is radial and a pressure bearing mechanism attached to both ends of the reinforcing material into the excavation hole,
Filling the borehole with grout ,
A shear reinforcement method for a reinforced concrete member, wherein shear reinforcement is performed by the Dowwell effect of the reinforcement member.
JP2006130616A 2006-05-09 2006-05-09 Shear reinforcement structure and method for reinforced concrete members Active JP4952049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006130616A JP4952049B2 (en) 2006-05-09 2006-05-09 Shear reinforcement structure and method for reinforced concrete members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006130616A JP4952049B2 (en) 2006-05-09 2006-05-09 Shear reinforcement structure and method for reinforced concrete members

Publications (2)

Publication Number Publication Date
JP2007303100A JP2007303100A (en) 2007-11-22
JP4952049B2 true JP4952049B2 (en) 2012-06-13

Family

ID=38837266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006130616A Active JP4952049B2 (en) 2006-05-09 2006-05-09 Shear reinforcement structure and method for reinforced concrete members

Country Status (1)

Country Link
JP (1) JP4952049B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7178860B2 (en) * 2018-10-11 2022-11-28 株式会社フジタ Concrete wall reinforcement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670347A (en) * 1979-11-09 1981-06-12 Yukio Shimono Starrshaped steel bar
JP3870365B2 (en) * 1997-09-16 2007-01-17 清水建設株式会社 Reinforcement structure and reinforcement method for concrete members
DE10108357A1 (en) * 2001-02-21 2002-08-29 Sika Ag, Vorm. Kaspar Winkler & Co Reinforcing bar and method for its production
JP4157510B2 (en) * 2004-08-18 2008-10-01 大成建設株式会社 Shear reinforcement structure
JP3700980B1 (en) * 2004-08-18 2005-09-28 大成建設株式会社 Shear force reinforcement method, shear force reinforcement structure, and shear reinforcement member

Also Published As

Publication number Publication date
JP2007303100A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP2009001987A (en) Reinforcing structure and reinforcing method
KR20200008685A (en) Method for reinforcing the Earthquake of a concrete columns
JP2010059717A (en) Joint structure of structural body and anchoring member for shear force transmission used in the same
JP7330003B2 (en) Method for reinforcing masonry structures
JP5308012B2 (en) Reinforcement structure for wall column members
JP2008266910A (en) Projection structure of anchorage or deviator of tendon, and construction method therefor
JP4780457B2 (en) Seismic reinforcement structure for pile foundation structure and seismic reinforcement method
JP4952049B2 (en) Shear reinforcement structure and method for reinforced concrete members
KR20200004056A (en) Device for reinforcing the Earthquake of a concrete columns and Methods
KR101742438B1 (en) Integral abutment bridge having rotation receptive device at abutment-pile jointing site
JP5785476B2 (en) Reinforcing method and structure of existing foundation
JP2010084503A (en) Structure and method for joining concrete column and steel-frame beam
JP5140534B2 (en) Seismic reinforcement structure
JP2015148099A (en) Earth supporting material and end metal part used for the same
JP5166837B2 (en) Method for reinforcing wall structure and reinforcing structure
JP4867445B2 (en) Shear reinforcement structure and method for reinforced concrete members
JP5135689B2 (en) Shear reinforcement method
JP2009091743A (en) Continuous i-beam bridge and structure near its intermediate supporting point
JP4870004B2 (en) Fixing structure
JP2007040049A (en) Antiseismic reinforcing structure for existing building
JP2018178363A (en) Skeleton joining structure and construction method thereof, and split prevention rebar
JP5974228B2 (en) Earthquake-resistant precast box culvert
JP2018053706A (en) Method for repairing concrete structure
JP4522211B2 (en) Joint structure of vertical member and horizontal member
JP2009185488A (en) Precast concrete beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4952049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3