JP2010059717A - Joint structure of structural body and anchoring member for shear force transmission used in the same - Google Patents

Joint structure of structural body and anchoring member for shear force transmission used in the same Download PDF

Info

Publication number
JP2010059717A
JP2010059717A JP2008227762A JP2008227762A JP2010059717A JP 2010059717 A JP2010059717 A JP 2010059717A JP 2008227762 A JP2008227762 A JP 2008227762A JP 2008227762 A JP2008227762 A JP 2008227762A JP 2010059717 A JP2010059717 A JP 2010059717A
Authority
JP
Japan
Prior art keywords
main body
fixing member
old
shearing force
new structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008227762A
Other languages
Japanese (ja)
Other versions
JP4230533B1 (en
Inventor
Hitoshi Shiobara
等 塩原
Yoji Hosokawa
洋治 細川
Kenichiro Yamamoto
憲一郎 山本
Takashi Sato
貴志 佐藤
Koji Oka
功治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohmoto Gumi Co Ltd
SankoTechno Co Ltd
Original Assignee
Ohmoto Gumi Co Ltd
SankoTechno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohmoto Gumi Co Ltd, SankoTechno Co Ltd filed Critical Ohmoto Gumi Co Ltd
Priority to JP2008227762A priority Critical patent/JP4230533B1/en
Application granted granted Critical
Publication of JP4230533B1 publication Critical patent/JP4230533B1/en
Publication of JP2010059717A publication Critical patent/JP2010059717A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance, when a new concrete-structural body adjacent to an existing concrete-structural body is constructed, shear force transmission efficiency between the two structures. <P>SOLUTION: In a joint structure wherein an anchoring member 3 is arranged over an old structure 1 and a new structure 2 adjacent to each other and a shear force caused when the new structure 2 is relatively displaced to the old structure 1 is transmitted to the old structure 1 via the anchoring member 3, a groove 1a is formed in the old structure 1 from the front face side, and the anchoring member 3 is formed of a flat-plate shaped body 31 superposed on a boundary face between the old structure 1 and the new structure 2 and an annular protrusion 32 formed on the rear face of the body 31 and fitted in the groove 1a. While at least a part of the body 31 in the thickness direction is positioned inside the new structure 2 and at least a part of the protrusion 32 in the thickness direction is positioned inside the old structure 1, the anchoring member 3 is embedded in the old structure 1 and the new structure 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は例えば既存コンクリート造の構造体とこれに接して構築される新設コンクリート造の構造体を、両構造体間に相対変位(ズレ変形)が生じようとするときに両構造体間でせん断力が伝達されるように接合した構造体の接合構造、及びその接合構造に使用されるせん断力伝達用定着部材に関するものである。   In the present invention, for example, an existing concrete structure and a new concrete structure constructed in contact with the structure are sheared between the two structures when relative displacement (displacement deformation) is about to occur between the two structures. The present invention relates to a joining structure of structures that are joined so that force is transmitted, and a shear force transmitting fixing member used in the joining structure.

既存コンクリート造構造体の表面に接して新設のコンクリート造構造体を構築する場合、両構造体間で地震時のせん断力の伝達が行われるように新設構造体(新構造体)を既設構造体(旧構造体)に接合する必要がある。例えば新構造体がスラブで、その端面において旧構造体に接合される場合には、新構造体は地震時の水平力に対して旧構造体を補強する目的で旧構造体に一体化されることから、両構造体間で水平方向のせん断力が伝達されるように旧構造体に接合される必要がある。   When constructing a new concrete structure in contact with the surface of an existing concrete structure, the existing structure (new structure) is installed so that shear force is transferred between the two structures. It is necessary to join to (old structure). For example, if the new structure is a slab and is joined to the old structure at its end face, the new structure is integrated into the old structure for the purpose of reinforcing the old structure against horizontal forces during an earthquake. Therefore, it is necessary to join the old structure so that the horizontal shearing force is transmitted between the two structures.

このような場合、通常は旧構造体の表面に、アンカーボルト等のアンカーによって旧構造体に定着されるせん断力伝達部材を新構造体中に突出させた状態で固定することが行われる(特許文献1、2参照)。   In such a case, the shearing force transmission member fixed to the old structure by an anchor such as an anchor bolt is usually fixed to the surface of the old structure in a state of protruding into the new structure (patent) References 1 and 2).

只、特許文献1、2は新構造体の打ち継ぎが旧構造体の構築時に予定され、旧構造体の構築時にせん断力伝達部材を事前に埋設しておくことができる場合の例であるため、旧構造体の完成時にせん断力伝達部材を旧構造体の表面寄りの部分に埋設しておくことが可能である。一方、旧構造体の表面に新構造体の打ち継ぎが予定されていない場合には、旧構造体の表面寄りにせん断力伝達部材を埋設する必然性がないため、新構造体の構築時には改めてせん断力伝達部材を埋設することが必要になる。   只, Patent Documents 1 and 2 are examples where a new structure is planned to be spliced at the time of construction of the old structure, and the shear force transmission member can be embedded in advance at the time of construction of the old structure. When the old structure is completed, it is possible to embed a shear force transmission member in a portion near the surface of the old structure. On the other hand, when the new structure is not planned to be joined to the surface of the old structure, there is no necessity to embed a shear force transmission member near the surface of the old structure. It is necessary to embed a force transmission member.

従って前記のように完成している旧構造体の表面に新たにせん断力伝達部材を定着させる必要がある場合には特許文献1、2の方法を適用することはできない。結局、既存の構造体に対して新設の構造体を接して接合する場合には、既存の構造体中にアンカーボルトを新たに埋設することによって新構造体を旧構造体に接合する方法に依らざるを得ない(特許文献3参照)。   Therefore, when it is necessary to newly fix the shearing force transmitting member on the surface of the old structure completed as described above, the methods of Patent Documents 1 and 2 cannot be applied. After all, when joining a new structure to an existing structure, it depends on the method of joining the new structure to the old structure by embedding anchor bolts in the existing structure. Inevitably (see Patent Document 3).

特開平7−180352号公報(請求項1、段落0017〜0024、図3〜図5)JP-A-7-180352 (Claim 1, paragraphs 0017 to 0024, FIGS. 3 to 5) 特開平7−180353号公報(段落0010〜0017、図1〜図3)Japanese Patent Laid-Open No. 7-180353 (paragraphs 0010 to 0017, FIGS. 1 to 3) 特開平7−91060号公報(請求項1、段落0008〜0012、図1〜図4)Japanese Unexamined Patent Publication No. 7-91060 (Claim 1, paragraphs 0008 to 0012, FIGS. 1 to 4)

しかしながら、新旧コンクリートの打継ぎ面におけるせん断力の伝達効率はせん断伝達部材のせん断力作用方向への投影面積によって決まるから、作用せん断力の伝達をアンカーボルトに依存する場合には、埋設本数を多くする必要がある。結果としてせん断力伝達部材がスラブの端面に納まりきれなくなるか、コンクリートの充填性が阻害されることが想定される。   However, since the transmission efficiency of shear force at the joint surface of old and new concrete is determined by the projected area of the shear transmission member in the direction of the acting shear force, if the transmission of the acting shear force is dependent on anchor bolts, the number of burials is increased. There is a need to. As a result, it is assumed that the shearing force transmission member cannot fit in the end surface of the slab, or the concrete filling property is hindered.

この発明は上記背景より、主として既存のコンクリート造構造体に接して新設のコンクリート造構造体を構築する場合に、両構造体間でのせん断力の伝達効率のよい接合構造、及びそれに使用されるせん断力伝達用定着部材を提案するものである。   In view of the above background, the present invention mainly uses a joint structure with good shear force transmission efficiency between two structures when a new concrete structure is constructed in contact with an existing concrete structure. A fixing member for transmitting shear force is proposed.

請求項1に記載の発明の構造体の接合構造は、互いに接する旧構造体と新構造体間に跨って定着部材を配置し、新構造体が旧構造体に対して相対変位しようとするときのせん断力を定着部材を通じて旧構造体に伝達させる構造体の接合構造であり、
旧構造体にその表面側から溝部が形成され、
定着部材が旧構造体と新構造体との境界面に重なる平板状の本体部と、この本体部の背面に形成され、溝部に嵌入する環状の凸部とを有し、本体部の少なくとも厚さ方向の一部が新構造体中に位置し、凸部の少なくとも厚さ方向の一部が旧構造体中に位置した状態で、旧構造体と新構造体中に埋設されていることを構成要件とする。
When the fixing member is arranged between the old structure and the new structure that are in contact with each other, and the new structure is about to be displaced relative to the old structure It is a joint structure of the structure that transmits the shear force of the old structure to the old structure through the fixing member
Grooves are formed from the surface side of the old structure,
The fixing member has a flat plate-like main body portion that overlaps a boundary surface between the old structure and the new structure, and an annular convex portion that is formed on the back surface of the main body portion and fits into the groove portion, and has at least a thickness of the main body portion. It is embedded in the old structure and the new structure with a part in the vertical direction located in the new structure and at least a part in the thickness direction of the convex part located in the old structure. This is a configuration requirement.

「境界面に重なる」の「重なる」は定着部材が境界面に直接、重なる場合と、隙間をおいて重なる場合を含む。後者の場合、隙間には接着剤等の充填材が充填され、定着部材の旧構造体に対する滑りが防止される。   “Overlap” of “overlap with boundary surface” includes a case where the fixing member directly overlaps the boundary surface and a case where the fixing member overlaps with a gap. In the latter case, the gap is filled with a filler such as an adhesive to prevent the fixing member from sliding relative to the old structure.

新構造体の旧構造体に対する相対変位は旧構造体の新構造体に対する相対変位でもあり、主に両構造体の境界面に平行なせん断力によって生じようとする相対変位(ズレ変形)を指す。両構造体が対向する方向に分離(離間)する向きの相対変位は、定着部材にアンカーが接続された場合のアンカーに軸方向力を作用させ得るが、旧構造体と新構造体間の境界面では互いに分離しようとする向きの相対変位よりズレ変形を阻止することが課題になるため、本発明では分離しようとする向きの相対変位を想定していない。   The relative displacement of the new structure with respect to the old structure is also the relative displacement of the old structure with respect to the new structure, and mainly refers to the relative displacement (displacement deformation) that is caused by the shear force parallel to the boundary surface between the two structures. . The relative displacement in the direction in which both structures are separated (separated) in the opposing direction can cause an axial force to act on the anchor when the anchor is connected to the fixing member, but the boundary between the old structure and the new structure In the present invention, since it becomes a problem to prevent the displacement deformation from the relative displacement in the directions to be separated from each other, the present invention does not assume the relative displacement in the direction to be separated.

構造体は主として鉄筋コンクリート造構造物の一部であるが、無筋コンクリートやモルタル等の場合もある。旧構造体は例えば既存のコンクリート造構造物、新構造体は既存のコンクリート造構造物の表面に接触して構築されるコンクリート造構造物を指す。構造体は建築構造物と土木構造物の双方を含み、建物の柱、梁、スラブ、基礎等の他、橋梁の橋桁、橋脚、フーチング等が該当する。   The structure is mainly a part of a reinforced concrete structure, but may be unreinforced concrete or mortar. The old structure refers to, for example, an existing concrete structure, and the new structure refers to a concrete structure constructed in contact with the surface of an existing concrete structure. The structure includes both building structures and civil engineering structures, and includes bridge girders, bridge piers, footings, etc. in addition to building columns, beams, slabs, foundations, and the like.

旧構造体と新構造体の接合部位は問われず、例えば新旧のスラブ同士、梁(桁)同士、柱同士、基礎同士、あるいは新構造体の構築位置等に応じ、これらの任意の組み合わせ等になる。新構造体が旧構造体に対する耐震補強の役目を持つ場合には、旧構造体のいずれかの部位の表面に新構造体のスラブや梁等が接した状態で構築される。   The joint part of the old structure and the new structure is not limited. For example, the old and new slabs, beams (girder), columns, foundations, or any combination of these according to the construction position of the new structure Become. When the new structure has a role of seismic reinforcement for the old structure, the new structure is constructed with the slab or beam of the new structure in contact with the surface of any part of the old structure.

旧構造体に対する新構造体の構築の時期も問われず、旧構造体と新構造体の打ち継ぎのように旧構造体の構築直後に新構造体を構築する場合の他、旧構造体の構築が完了し、使用期間中に旧構造体に対する補強の必要性が発生したとき等になる。   Regardless of the time of construction of the new structure with respect to the old structure, the construction of the old structure is performed in addition to the construction of the new structure immediately after the construction of the old structure, such as the joining of the old structure and the new structure. Is completed, and there is a need to reinforce the old structure during use.

旧構造体と新構造体の境界面には、前記のように地震時に双方の接触面が平行な状態のまま、相対変位(ズレ変形)が生じようとするため、この相対変位時に定着部材は旧構造体と新構造体からせん断力を受けようとする。定着部材の全厚の内、少なくとも厚さ方向の一部である新構造体中に埋設される区間(部分)が新構造体からせん断力を受け、凸部の少なくとも厚さ方向の一部である旧構造体中に埋設される区間(部分)が新構造体からのせん断力を旧構造体に伝達し、その反力を負担する。   At the boundary surface between the old structure and the new structure, relative contact (displacement deformation) tends to occur while the contact surfaces of both sides remain parallel during an earthquake as described above. Trying to receive shear force from the old and new structures. Of the entire thickness of the fixing member, at least a part (part) embedded in the new structure which is a part in the thickness direction receives shearing force from the new structure, and at least a part of the convex part in the thickness direction. A section (portion) embedded in a certain old structure transmits the shearing force from the new structure to the old structure and bears the reaction force.

請求項1の接合構造に使用される定着部材は請求項2に記載のように平板状の本体部と、この本体部の周囲、もしくは周囲寄りの位置から背面側へ突出し、旧構造体の表面に形成された前記溝部に嵌入する環状の凸部とを有する。本体部の少なくとも厚さ方向の一部が新構造体中に位置し、凸部の少なくとも厚さ方向の一部が旧構造体中に位置した状態で使用されることで、本体部の新構造体寄りの一部が新構造体からのせん断力を負担し、凸部の旧構造体寄りの一部がせん断力を旧構造体に伝達する。   The fixing member used in the joining structure according to claim 1 is a flat main body and, as described in claim 2, protrudes from the periphery of the main body or from a position close to the periphery to the back side, and the surface of the old structure. And an annular convex portion that fits into the groove portion. The new structure of the main body part is used by using at least a part of the main body part in the thickness direction in the new structure and at least a part of the convex part in the thickness direction in the old structure. A part near the body bears a shearing force from the new structure, and a part near the old structure of the convex part transmits the shearing force to the old structure.

本体部における凸部の形成位置と形状は問われず、旧構造体の溝部に嵌入する環状の凸部は本体部の外周に形成される他、本体部の外周より内側に寄った位置に形成される。前者の場合、凸部の外周面は本体部の外周面に連続し、後者の場合には凸部の外周面は本体部外周面より内周側に位置する。凸部はその形状に対応して環状、もしくは面状等に形成されている溝部に全周に亘って嵌入する。溝部へは、その深さ方向に凸部の全体が嵌入する場合と一部区間が嵌入する場合がある。   Regardless of the formation position and shape of the convex part in the main body part, the annular convex part that fits into the groove part of the old structure is formed on the outer periphery of the main body part, and is formed at a position closer to the inner side than the outer periphery of the main body part. The In the former case, the outer peripheral surface of the convex portion is continuous with the outer peripheral surface of the main body portion, and in the latter case, the outer peripheral surface of the convex portion is located on the inner peripheral side from the outer peripheral surface of the main body portion. The convex portion is fitted over the entire circumference in a groove portion formed in an annular shape or a planar shape corresponding to the shape. In the groove part, the whole convex part may be inserted in the depth direction, or a partial section may be inserted.

凸部全体が溝部に嵌入する場合には、本体部の外周面が新構造体に接触する。凸部の一部区間が溝部に嵌入する場合には、本体部の外周面と凸部の一部が新構造体に接触する。いずれの場合も、後述のように本体部の外周面が新構造体からのせん断力を負担し、凸部の外周面と内周面から旧構造体にせん断力を伝達する。   When the whole convex part fits into a groove part, the outer peripheral surface of a main-body part contacts a new structure. When a partial section of the convex part is fitted into the groove part, the outer peripheral surface of the main body part and a part of the convex part are in contact with the new structure. In either case, as will be described later, the outer peripheral surface of the main body bears the shearing force from the new structure, and the shearing force is transmitted from the outer peripheral surface and the inner peripheral surface of the convex portion to the old structure.

凸部はまた、同心円状に、本体部の放射方向(半径方向)に複数形成されることもある。定着部材の本体部は基本的には方向性のない円板状に形成されるが、多角形状、または楕円形状等に形成されることもある。   A plurality of convex portions may be concentrically formed in the radial direction (radial direction) of the main body portion. The main body of the fixing member is basically formed in a disk shape having no directionality, but may be formed in a polygonal shape, an elliptical shape, or the like.

定着部材の凸部が旧構造体の溝部に嵌入することで、前記の通り、新構造体からのせん断力が凸部から旧構造体に伝達されるが、新構造体からのせん断力を受ける本体部は凸部から旧構造体に伝達する際に、凸部が旧構造体からの反力によって変形しないように凸部の剛性を確保する機能を有する。   When the convex portion of the fixing member is fitted into the groove portion of the old structure, as described above, the shear force from the new structure is transmitted from the convex portion to the old structure, but the shear force from the new structure is received. The main body portion has a function of ensuring the rigidity of the convex portion so that the convex portion is not deformed by a reaction force from the old structure when transmitting from the convex portion to the old structure.

例えば定着部材が環状の凸部のみからなり、凸部をつなぐ本体部がないとすれば、定着部材は鋼管と同等の形状をするため(特許第3384992号)、凸部が新構造体、もしくは旧構造体からせん断力の反力を受けたときに凸部が径方向に変形することが想定される。すなわち、本体部のない鋼管が旧構造体と新構造体に跨り、双方の溝に埋設された場合、鋼管は新構造体から軸に直交する方向のせん断力を負担したときと、旧構造体から反力を受けたときに、径方向の力によって曲げ変形し易いため、旧構造体へのせん断力の伝達能力は低い。   For example, if the fixing member is composed only of an annular convex part and there is no main body part connecting the convex part, the fixing member has the same shape as a steel pipe (Japanese Patent No. 3384992). It is assumed that the convex portion is deformed in the radial direction when receiving the reaction force of the shearing force from the old structure. That is, when a steel pipe without a main body straddles the old structure and the new structure and is embedded in both grooves, the steel pipe bears a shearing force in a direction perpendicular to the axis from the new structure, and the old structure When subjected to a reaction force, the bending force is easily deformed by a radial force, so that the ability to transmit shear force to the old structure is low.

これに対し、定着部材が円板状等、板状の本体部が環状の凸部の内周に位置することで、凸部は放射方向(半径方向)に拘束される。本体部がせん断力を面内力によって凸部に伝達する状態にあるため、凸部の径方向の曲げ剛性が大きく、凸部はその方向の変形を起こしにくい形態になる。従って凸部が旧構造体にせん断力を伝達するときに、旧構造体からの反力に対する抵抗力が高いため、凸部が受けるせん断力を定着部材全体に伝達することが可能になっている。   On the other hand, the fixing member is disc-shaped or the like, and the plate-like main body portion is positioned on the inner periphery of the annular convex portion, so that the convex portion is restrained in the radial direction (radial direction). Since the main body portion is in a state of transmitting a shearing force to the convex portion by an in-plane force, the convex portion has a large bending rigidity in the radial direction, and the convex portion is less likely to be deformed in that direction. Therefore, when the convex portion transmits the shearing force to the old structure, since the resistance force against the reaction force from the old structure is high, the shearing force received by the convex portion can be transmitted to the entire fixing member. .

定着部材本体部の外周に凸部が形成された場合、本体部の少なくとも一部が新構造体中に位置し、凸部の少なくとも一部が旧構造体の溝部に嵌入することで、新構造体には本体部の外周面が接触し、旧構造体には凸部の外周面が接触する状態になる。このため、新構造体からのせん断力は本体部の外周面から本体部に伝達され、凸部から旧構造体に伝達される。定着部材の凸部は環状等に形成されている溝部に嵌入しているため、旧構造体には凸部の外周面と内周面からせん断力が伝達される。   When a convex part is formed on the outer periphery of the fixing member main body part, at least a part of the main body part is positioned in the new structure, and at least a part of the convex part is fitted into the groove part of the old structure, so that the new structure The outer peripheral surface of the main body is in contact with the body, and the outer peripheral surface of the convex portion is in contact with the old structure. For this reason, the shearing force from the new structure is transmitted from the outer peripheral surface of the main body to the main body, and from the convex portion to the old structure. Since the convex portion of the fixing member is fitted into a groove portion formed in an annular shape or the like, shear force is transmitted to the old structure from the outer peripheral surface and the inner peripheral surface of the convex portion.

図2−(a)、(b)に示すように定着部材に新構造体から右向きのせん断力が作用したとき、そのせん断力はその作用の向きに対向する定着部材本体部の外周面が受ける。新構造体からのせん断力は本体部外周面の内、せん断力作用方向への投影面積分が受ける。図2−(a)、(b)中、せん断力を受ける面を太線で示している。   As shown in FIGS. 2A and 2B, when a rightward shearing force is applied to the fixing member from the new structure, the shearing force is received by the outer peripheral surface of the fixing member main body facing the direction of the action. . The shear force from the new structure is received by the projected area in the shearing force acting direction in the outer peripheral surface of the main body. In FIG. 2 (a) and (b), the surface which receives a shear force is shown by the thick line.

本体部の外周面が受けたせん断力はその外周面に対向する側を向く凸部の外周面と内周面から旧構造体に伝達される。凸部も図2−(b)に示すようにせん断力の作用方向を向く投影面積分でせん断力を旧構造体に伝達する。本体部の外周面が受けた新構造体からのせん断力は本体部外周面に対向する側に位置する凸部の外周面と、この本体部外周面と同一側に位置する凸部の内周面から旧構造体に伝達される。旧構造体に作用するせん断力は逆の経路で新構造体に伝達される。以下ではせん断力が新構造体から旧構造体に伝達される場合を説明する。   The shearing force received by the outer peripheral surface of the main body is transmitted to the old structure from the outer peripheral surface and inner peripheral surface of the convex portion facing the outer surface. As shown in FIG. 2B, the convex portion also transmits the shearing force to the old structure by the projected area corresponding to the direction in which the shearing force acts. The shear force from the new structure received by the outer peripheral surface of the main body is the outer peripheral surface of the convex portion located on the side facing the outer peripheral surface of the main body portion, and the inner periphery of the convex portion located on the same side as the outer peripheral surface of the main body portion. It is transmitted from the surface to the old structure. Shear force acting on the old structure is transferred to the new structure in the reverse path. Hereinafter, a case where shear force is transmitted from the new structure to the old structure will be described.

このように新構造体からのせん断力は本体部の外周面から作用し、凸部の外周面と内周面から旧構造体に伝達されるが、本体部のせん断力に対する抵抗能力と凸部のせん断力伝達能力はせん断力の作用方向への投影面積で決まり、この能力は凸部がせん断力によって変形しない剛性を有することで発揮される。   In this way, the shear force from the new structure acts from the outer peripheral surface of the main body and is transmitted to the old structure from the outer peripheral surface and inner peripheral surface of the convex portion. The shearing force transmission capability of is determined by the projected area in the direction in which the shearing force is applied, and this capability is exhibited by the fact that the convex portion has rigidity that is not deformed by the shearing force.

例えば本体部に凸部が形成されていない場合には、旧構造体へは旧構造体中に埋設されている本体部の区間の内、本体部の外周面からしかせん断力が伝達されないが、凸部を有することで、凸部の内周面からもせん断力の伝達が可能になる。従って定着部材は凸部を有することで、凸部がない場合との対比では、凸部の内周面が受ける支圧面積分、せん断応力が小さくなり、凸部から旧構造体へのせん断力伝達の確実性が増す。   For example, when the convex part is not formed in the main body part, the shearing force is transmitted only from the outer peripheral surface of the main body part in the section of the main body part embedded in the old structure to the old structure, By having the convex portion, the shearing force can be transmitted also from the inner peripheral surface of the convex portion. Therefore, the fixing member has a convex portion, and in contrast to the case where there is no convex portion, the shear stress is reduced by the bearing pressure area received by the inner peripheral surface of the convex portion, and the shearing force from the convex portion to the old structure is reduced. Increased certainty of transmission.

図2の場合、凸部は本体部が受けたせん断力を旧構造体へ伝達する部分であるため、せん断力を伝達するための支圧面積を稼ぐ上では、本体部の周囲(外周)に形成されることが有利である。但し、前記のように必ずしもその必要はなく、本体部の周囲より内周側へ寄った位置に形成されることもある。   In the case of FIG. 2, the convex part is a part that transmits the shearing force received by the main body part to the old structure. Therefore, in order to increase the bearing area for transmitting the shearing force, around the main body part (outer periphery) Advantageously formed. However, as described above, it is not always necessary, and it may be formed at a position closer to the inner peripheral side than the periphery of the main body.

本体部が受けたせん断力が凸部から旧構造体に伝達されるとき、定着部材は本体部を有することで、本体部の面内力によって凸部にせん断力を伝達するため、本体部はせん断力によって曲げモーメントを受けることはない。従って本体部は新構造体からのせん断力によって曲げ変形を生じにくい形態になっているため、せん断力を損失させることなく旧構造体に伝達することを可能にしている。   When the shearing force received by the main body is transmitted from the convex part to the old structure, the fixing member has the main body part, so that the shearing force is transmitted to the convex part by the in-plane force of the main body part. There is no bending moment by force. Therefore, the main body portion is in a form in which bending deformation is unlikely to occur due to the shearing force from the new structure, so that the shearing force can be transmitted to the old structure without loss.

定着部材の凸部が嵌入する旧構造体の溝部は旧構造体を表面側から斫ることによって形成される。このとき、凸部と溝部との間に空隙が存在する場合には凸部を安定させる目的で、溝部内に接着剤、もしくは(無収縮)モルタル等の充填材が充填される。充填材は定着部材本体部の背面と旧構造体との間に充填されることもある。充填材は定着部材が受けるせん断力を摩擦力によって旧構造体に伝達するため、定着部材によるせん断力の伝達を補う働きをする。   The groove portion of the old structure into which the convex portion of the fixing member is fitted is formed by rolling the old structure from the surface side. At this time, if there is a gap between the convex portion and the groove portion, the groove portion is filled with an adhesive or a filler such as (non-shrink) mortar for the purpose of stabilizing the convex portion. The filler may be filled between the back surface of the fixing member main body and the old structure. Since the filler transmits the shearing force received by the fixing member to the old structure by the frictional force, the filler serves to supplement the transmission of the shearing force by the fixing member.

例えば旧構造体にアンカーボルトを定着させる場合には、旧構造体に対してコアドリル等を用いて定着に十分な深さの削孔を形成することが必要であり、その際には旧構造体に与える振動と騒音が問題になる可能性がある。これに対し、本発明のように旧構造体に溝部を形成する方法では、旧構造体の表面側からショットブラスト等による目荒らしをする程度の深さの溝を形成すれば足りるため、旧構造体に与える影響が低減される。   For example, when anchor bolts are fixed to an old structure, it is necessary to form a drilling hole having a depth sufficient for fixing using a core drill or the like on the old structure. The vibration and noise applied to can be a problem. On the other hand, in the method of forming a groove in the old structure as in the present invention, it is sufficient to form a groove having a depth enough to roughen the surface by shot blasting from the surface side of the old structure. The effect on the body is reduced.

前記のように定着部材は本体部と凸部を有することで、本体部が受けたせん断力が損失することなく旧構造体に伝達することができるため、単一(単独)で高いせん断力伝達能力を保有する。   As described above, the fixing member has a main body portion and a convex portion so that the shearing force received by the main body portion can be transmitted to the old structure without loss. Possess the ability.

特に凸部が外周面と内周面においてせん断力に抵抗できることで、一定着部材当たりのせん断抵抗力をアンカーボルトによる場合より稼ぐことができる。この結果、旧構造体と新構造体の境界面への定着部材の配置数を削減することが可能であり、アンカーボルトに依存する場合のように境界面にせん断抵抗要素を過密状態で配置する事態が回避され、新構造体を構成するコンクリート等、流動性を有する硬化材料の充填が阻害されることがない。   In particular, since the convex portion can resist the shearing force on the outer peripheral surface and the inner peripheral surface, the shearing resistance force per fixed member can be earned more than when using the anchor bolt. As a result, it is possible to reduce the number of fixing members arranged on the boundary surface between the old structure and the new structure, and to arrange the shear resistance elements on the boundary surface in an overcrowded state as in the case of depending on the anchor bolt. The situation is avoided, and filling of the hardened material having fluidity such as concrete constituting the new structure is not hindered.

定着部材には請求項6に記載のように本体部の厚さ方向にアンカーが接続されることもある。この場合のアンカーは主に軸方向の引き抜き力に対する抵抗要素としてではなく、軸に直交する方向のせん断力に対する抵抗要素として機能する。従ってアンカーのせん断力作用方向への投影面積分の抵抗力が凸部のせん断抵抗力に加算される。アンカーにはこれに期待すべきせん断抵抗力に応じた径(太さ)と長さが与えられる。アンカーは定着部材に形成された挿通孔に螺合することにより、もしくは挿通孔に単純に挿通し、挿通孔内に接着剤やモルタル等が充填されることにより定着部材の本体部に接続される。   An anchor may be connected to the fixing member in the thickness direction of the main body as described in claim 6. The anchor in this case mainly functions as a resistance element against a shearing force in a direction perpendicular to the axis, not as a resistance element against the pulling force in the axial direction. Accordingly, the resistance force corresponding to the projected area of the anchor in the shearing force acting direction is added to the shearing resistance force of the convex portion. The anchor is given a diameter (thickness) and length corresponding to the shear resistance that should be expected. The anchor is connected to the main body portion of the fixing member by screwing into an insertion hole formed in the fixing member or simply passing through the insertion hole and filling the insertion hole with an adhesive or mortar. .

アンカーは本体部の表面(新構造体)側から接続される場合と、背面(旧構造体)側から接続される場合があり、本体部を厚さ方向に貫通することもある。「接続」には螺合による場合と、挿通と接着剤等の充填による場合がある。   The anchor may be connected from the front surface (new structure) side of the main body portion or may be connected from the back surface (old structure) side, and may penetrate the main body portion in the thickness direction. “Connection” may be performed by screwing or by insertion and filling with an adhesive or the like.

アンカーが本体部の背面側から接続される場合には、アンカーが旧構造体中に埋設されることになるが、その埋設深さは旧構造体への定着長が過大にならない程度に設定される。アンカーが本体部の背面側から接続される場合、アンカーは定着部材がアンカーに対して回転させられることにより、もしくは軸方向に落とし込まれることにより、後述の突出部に接続される。   When the anchor is connected from the back side of the main body, the anchor is embedded in the old structure, but the embedded depth is set to such an extent that the anchoring length to the old structure does not become excessive. The When the anchor is connected from the back side of the main body, the anchor is connected to a protrusion described later by rotating the fixing member relative to the anchor or dropping in the axial direction.

アンカーが本体部の表面側に接続される場合にはアンカーは新構造体からのせん断力を負担し、背面側に接続される場合には、新構造体からのせん断力を旧構造体に伝達する役目を持つ。本体部を貫通する場合には新構造体からのせん断力を負担する役目と旧構造体に伝達する役目を持つ。アンカーは本体部の表面側に接続され、新構造体中に埋設される場合には、新構造体と定着部材とを一体化させる働きをする。   When the anchor is connected to the front side of the main body, the anchor bears the shearing force from the new structure, and when it is connected to the back side, the shearing force from the new structure is transmitted to the old structure. Have a role to do. When penetrating the main body, it has a role of bearing a shearing force from the new structure and a role of transmitting to the old structure. The anchor is connected to the surface side of the main body, and functions to integrate the new structure and the fixing member when embedded in the new structure.

定着部材の本体部は厚さ方向の一部が新構造体中に埋設されることで、新構造体からのせん断力を負担できる程度の厚さを有すれば、凸部から旧構造体にせん断力を伝達することができる。従って本体部を軸方向に切断したときの断面形状は問われず、例えば平板状の本体部に付加的な部位が連続して形成されることもある。   If the main body of the fixing member is embedded in the new structure partly in the thickness direction, and has a thickness that can bear the shearing force from the new structure, the main part of the fixing member will change from the convex part to the old structure. Shear force can be transmitted. Therefore, the cross-sectional shape when the main body is cut in the axial direction is not limited, and for example, additional portions may be continuously formed on the flat main body.

具体的には請求項3に記載のように、定着部材の本体部にその表面側と背面側の少なくともいずれかへ突出する筒状の突出部が形成されることもある。   Specifically, as described in claim 3, a cylindrical projecting portion that projects to at least one of the front surface side and the back surface side may be formed on the main body portion of the fixing member.

突出部は本体部からその表面側(新構造体側)と背面側(旧構造体側)の少なくともいずれかへ突出した形で形成されることで、新構造体からのせん断力を本体部と共に負担する、または新構造体からのせん断力を凸部と共に旧構造体に伝達する働きをする。突出部は本体部の表面側に形成された場合に新構造体からのせん断力を負担し、背面側に形成された場合に旧構造体にせん断力を伝達する。突出部は本体部の表面側と背面側に連続的に形成されることもある。   The projecting part is formed so as to project from the main body part to at least one of the front surface side (new structure side) and the back surface side (old structure side), thereby bearing the shearing force from the new structure together with the main body part. Or, it functions to transmit the shearing force from the new structure to the old structure together with the convex portions. When the protrusion is formed on the surface side of the main body, it bears the shearing force from the new structure, and when it is formed on the back side, it transmits the shearing force to the old structure. The protrusion may be continuously formed on the front side and the back side of the main body.

本体部への突出部の形成は本体部の断面形状を変化させるため、突出部は本体部の断面性能(断面2次モーメント)を向上させる働きをする。すなわち、突出部にアンカーを接続し、アンカーが受けるせん断力によって本体部に作用する曲げモーメントが無視できないような場合に、突出部が本体部の曲げ剛性を高め、曲げモーメントに対する抵抗力を高め、安定性を確保する役目も有する。   Since the formation of the protrusion on the main body changes the cross-sectional shape of the main body, the protrusion functions to improve the cross-sectional performance (second moment of cross-section) of the main body. That is, when the anchor is connected to the protrusion, and the bending moment acting on the main body due to the shearing force received by the anchor cannot be ignored, the protrusion increases the bending rigidity of the main body and increases the resistance to the bending moment. It also has the role of ensuring stability.

突出部は中実断面の場合もあるが、中空断面で形成されることもある。請求項5に記載のように本体部の厚さ方向に挿通孔が形成された場合には、挿通孔は突出部に形成されることになるため、突出部は中空断面で形成され、アンカーは突出部の挿通孔に接続される。突出部に挿通孔が形成される場合、突出部は挿通孔の形成位置に対応し、本体部の中央部等に形成されるが、必ずしも本体部の中央部に1箇所である必要はなく、複数個形成されることもある。   The protrusion may be a solid cross section, but may be formed with a hollow cross section. When the insertion hole is formed in the thickness direction of the main body as described in claim 5, the insertion hole is formed in the protrusion, so the protrusion is formed with a hollow cross section, and the anchor is It connects with the insertion hole of a protrusion part. When the insertion hole is formed in the protrusion, the protrusion corresponds to the formation position of the insertion hole and is formed in the central part of the main body part, etc. A plurality may be formed.

本体部に挿通孔が形成された場合に、挿通孔にアンカーを接続しない状態で定着部材が使用された場合には、挿通孔内に新構造体のコンクリートやモルタル等の硬化材料が充填されることで、挿通孔の内周面でコンクリートからの支圧力を受けることができる。この場合、挿通孔内に新構造体の硬化材料が充填されることで、この硬化材料分のせん断力が加算されるため、定着部材のせん断力伝達能力が向上する。   When an insertion hole is formed in the main body and the fixing member is used without an anchor connected to the insertion hole, the insertion hole is filled with a hardened material such as concrete or mortar of the new structure. Thus, the bearing pressure from the concrete can be received on the inner peripheral surface of the insertion hole. In this case, since the hardening material of the new structure is filled in the insertion hole, the shearing force for this hardening material is added, so that the shearing force transmission capability of the fixing member is improved.

このため、挿通孔にアンカーが接続されなくても、挿通孔を有する定着部材は一定のせん断力に対する抵抗力を確保することが可能である。挿通孔内に硬化材料が充填されることで、新構造体からのせん断力は挿通孔内からも定着部材に伝達され、そのせん断力は挿通孔内周面のせん断力作用方向への投影面積分になるため、アンカーが接続される場合と同等程度のせん断力を新構造体から受けることが可能になる。   For this reason, even if an anchor is not connected to the insertion hole, the fixing member having the insertion hole can ensure a resistance against a certain shearing force. By filling the insertion hole with a hardening material, the shear force from the new structure is transmitted to the fixing member also from the inside of the insertion hole, and the shear force is the projected area of the inner peripheral surface of the insertion hole in the shearing force acting direction. Therefore, it becomes possible to receive a shearing force from the new structure equivalent to that when the anchor is connected.

一方、本体部に挿通孔が形成された場合に、挿通孔にアンカーが接続された場合には、前記の通り、アンカーが新構造体からのせん断力を受けることで、アンカーが接続されない場合との対比ではアンカー分のせん断力が加算されるため、定着部材のせん断力伝達効果が向上する利点がある。   On the other hand, when the insertion hole is formed in the main body portion, and the anchor is connected to the insertion hole, as described above, the anchor receives a shearing force from the new structure, and the anchor is not connected. In contrast, since the shearing force for the anchor is added, there is an advantage that the shearing force transmission effect of the fixing member is improved.

定着部材はその軸方向(厚さ方向)に直交する方向に作用する新構造体からのせん断力を旧構造体に伝達するせん断力伝達部材として機能し、軸方向の引き抜き力に対して抵抗する必要はないため、旧構造体及び新構造体との間での付着が期待されることはない。   The fixing member functions as a shearing force transmission member that transmits the shearing force from the new structure acting in the direction orthogonal to the axial direction (thickness direction) to the old structure, and resists the pulling force in the axial direction. Since it is not necessary, adhesion between the old structure and the new structure is not expected.

例えば突出部における付着を期待するために突出部に雄ねじを形成するとすれば、新構造体との付着力によって定着部材に曲げモーメントを作用させる可能性がある。結果として、定着部材が純粋にせん断力に抵抗する状態を得ることが難しくなるため、定着部材の機能上、突出部には雄ねじを形成しない方が合理的である。従って本体部に突出部が形成される場合に、突出部の外周に雄ねじが形成される必要はない。   For example, if an external thread is formed on the protruding portion in order to expect adhesion at the protruding portion, a bending moment may be applied to the fixing member due to the adhesive force with the new structure. As a result, it becomes difficult to obtain a state in which the fixing member purely resists the shearing force. Therefore, it is reasonable not to form a male screw on the protruding portion in terms of the function of the fixing member. Therefore, when a protrusion is formed on the main body, it is not necessary to form a male screw on the outer periphery of the protrusion.

定着部材は本体部と凸部を有する形態から、主に鋳造、もしくは鍛造、あるいは切削によって製作される。例えば定着部材を切削によって製作する場合に、突出部に雄ねじを形成するとすれば、雄ねじを形成するための切削によって失われる鋼材の量が多く、鋼材が無駄になる。鋳造や鍛造によって製作する場合には、脱型時に雄ねじ(ねじ山)の存在によって型を外すことができない等、突出部に雄ねじを形成することは製作上の不都合も多い。   The fixing member is manufactured mainly by casting, forging, or cutting from a form having a main body portion and a convex portion. For example, when the fixing member is manufactured by cutting, if a male screw is formed on the protruding portion, the amount of steel material lost by the cutting for forming the male screw is large, and the steel material is wasted. In the case of manufacturing by casting or forging, forming the male screw at the projecting portion has many inconveniences in manufacturing, for example, the die cannot be removed due to the presence of the male screw (thread) at the time of demolding.

前記のように定着部材は本体部と凸部を有しさえすれば、新構造体と旧構造体との間でのせん断力の伝達を図ることが可能であり、前記した突出部のように本体部には付加的な部位が連続して形成される自由さがある。本体部には突出部の他、例えば請求項4に記載のように本体部の周囲から表面側へ突出する枠部が形成され、定着部材はH形の断面形状に形成されることもある。   As described above, as long as the fixing member has a main body portion and a convex portion, it is possible to transmit a shearing force between the new structure and the old structure. The main body has the freedom to form additional portions continuously. In addition to the protruding portion, the main body portion may be formed with a frame portion that protrudes from the periphery of the main body portion to the surface side, for example, and the fixing member may be formed in an H-shaped cross-sectional shape.

枠部は凸部と同様、本体部の外周面に連続して形成される場合と、外周面の内側に形成される場合があり、同心円状に複数形成されることもある。凸部が本体部外周面の内側に形成され、枠部も本体部外周面の内側に形成される場合、定着部材の断面は草冠形状になる(図4−(b))。   Like the convex portion, the frame portion may be formed continuously on the outer peripheral surface of the main body portion or may be formed inside the outer peripheral surface, and may be formed in a plurality of concentric shapes. When the convex part is formed inside the outer peripheral surface of the main body part and the frame part is also formed inside the outer peripheral surface of the main body part, the cross section of the fixing member has a crown shape (FIG. 4- (b)).

枠部が本体部の外周面に連続する場合もその内周側に位置する場合も、新構造体からのせん断力の作用面積が拡大することで、定着部材が新構造体から受けられる(負担できる)せん断力が増大するため、枠部がない場合より旧構造体と新構造体の境界面に配置すべき定着部材の数を削減することが可能になる。新構造体からのせん断力はその作用の向きに対向する枠部の面が受けるため、図4に示すようにせん断力が右側へ作用する場合には、図中、枠部における左側に位置する部分の外周面と、右側に位置する部分の内周面がせん断力を受ける。   Whether the frame portion is continuous with the outer peripheral surface of the main body portion or located on the inner peripheral side thereof, the working area of the shearing force from the new structure is increased, so that the fixing member can be received from the new structure (load) Since the shearing force increases, it is possible to reduce the number of fixing members to be arranged on the boundary surface between the old structure and the new structure, compared to the case where there is no frame portion. Since the shearing force from the new structure is received by the surface of the frame part facing the direction of the action, when the shearing force acts on the right side as shown in FIG. 4, it is located on the left side in the frame part in the figure. The outer peripheral surface of the portion and the inner peripheral surface of the portion located on the right side receive a shearing force.

また本体部周囲の背面に凸部が、表面に枠部が形成されることで、定着部材はH形断面形状等をするが、本体部が存在していることで、前記のように本体部が凸部と枠部の剛性を高める働きをするため、環状の凸部と枠部の曲げ変形が生じにくくなっている。従ってH形断面形状等の定着部材は枠部での新構造体からのせん断力の負担効果と、凸部からの旧構造体へのせん断力の伝達効果が確保される。   Further, the fixing member has an H-shaped cross-sectional shape by forming a convex portion on the back surface around the main body portion and a frame portion on the surface, but the main body portion is present as described above due to the presence of the main body portion. Since this works to increase the rigidity of the convex portion and the frame portion, bending deformation of the annular convex portion and the frame portion is difficult to occur. Accordingly, the fixing member having an H-shaped cross-sectional shape and the like ensures the effect of bearing the shear force from the new structure at the frame portion and the effect of transmitting the shear force from the convex portion to the old structure.

定着部材は請求項6に記載のように挿通孔に接続されるアンカーとセットで使用されることもある。この場合、アンカーも新構造体からのせん断力をその作用方向への投影面積分の支圧力として受けるため、定着部材が負担し、旧構造体に伝達できるせん断力が増大する。アンカーは前記のように定着部材の本体部を貫通し、旧構造体中に埋設されることもあり、その場合にはアンカーは旧構造体にせん断力を伝達する働きをする。   The fixing member may be used as a set with an anchor connected to the insertion hole as described in claim 6. In this case, since the anchor also receives the shearing force from the new structure as a support pressure corresponding to the projected area in the direction of action, the fixing member bears the shearing force that can be transmitted to the old structure. As described above, the anchor penetrates the main body of the fixing member and is embedded in the old structure. In this case, the anchor functions to transmit a shearing force to the old structure.

旧構造体の表面側から形成された溝部に定着部材本体部の外周の凸部を嵌入させるため、新構造体からのせん断力を本体部の外周面から定着部材に伝達し、凸部から旧構造体に伝達することができる。特に定着部材は本体部を有することで、本体部の面内力によって凸部にせん断力を伝達することができるため、せん断力を損失させることなく旧構造体に伝達することを可能である。   In order to fit the convex part on the outer periphery of the fixing member main body into the groove formed from the surface side of the old structure, the shearing force from the new structure is transmitted from the outer peripheral surface of the main body part to the fixing member, Can be transmitted to the structure. In particular, since the fixing member has the main body portion, the shearing force can be transmitted to the convex portion by the in-plane force of the main body portion, so that the shearing force can be transmitted to the old structure without loss.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1−(a)は互いに接する旧構造体1と新構造体2間に跨って定着部材3を配置し、新構造体2が旧構造体1に対して相対変位しようとするときのせん断力を定着部材3を通じて旧構造体1に伝達させる構造体の接合構造の例を示す。   1A shows a shearing force when the fixing member 3 is disposed between the old structure 1 and the new structure 2 that are in contact with each other, and the new structure 2 is about to be displaced relative to the old structure 1. An example of a joining structure of a structure that transmits the current to the old structure 1 through the fixing member 3 is shown.

旧構造体1にはその表面側から溝部1aが形成される。定着部材3は旧構造体1と新構造体2との境界面に重なる平板状の本体部31と、本体部31の背面に形成され、溝部1aに嵌入する環状の凸部32とを有し、本体部31の少なくとも厚さ方向の一部が新構造体2中に位置し、凸部32の少なくとも厚さ方向の一部が旧構造体1中に位置した状態で、旧構造体1と新構造体2中に埋設される。溝部1aは凸部32の形状に対応して環状に、もしくは凸部32を包囲する環状を含む円板状等、板状に形成される。   In the old structure 1, a groove 1a is formed from the surface side. The fixing member 3 has a flat plate-like main body 31 that overlaps the boundary surface between the old structure 1 and the new structure 2, and an annular convex portion 32 that is formed on the back surface of the main body 31 and fits into the groove 1a. In the state where at least a part of the main body part 31 in the thickness direction is located in the new structure 2 and at least a part of the convex part 32 is located in the old structure 1, It is embedded in the new structure 2. The groove portion 1 a is formed in a ring shape corresponding to the shape of the convex portion 32, or a plate shape such as a disk shape including an annular shape surrounding the convex portion 32.

図1−(a)は定着部材3の最も基本的な形状例を示している。ここに示す定着部材3は平板状の本体部31と、この本体部31の周囲、もしくは周囲寄りの位置から背面側へ突出し、旧構造体1の表面に形成された溝部1aに嵌入する凸部32を有し、全体として板状に形成される。本体部31の平面形状は問われず、円形、楕円形、多角形状等に形成される。定着部材3は主に鋼材等の金属材料から形成されるが、定着部材3の材料は問われず、繊維強化プラスチック等からも成形される。   FIG. 1A shows an example of the most basic shape of the fixing member 3. The fixing member 3 shown here has a flat plate-like main body portion 31 and a convex portion that protrudes from the periphery of the main body portion 31 or a position close to the periphery to the back side and fits into a groove portion 1 a formed on the surface of the old structure 1. 32 and is formed in a plate shape as a whole. The planar shape of the main body 31 is not limited and is formed in a circular shape, an elliptical shape, a polygonal shape, or the like. The fixing member 3 is mainly formed of a metal material such as a steel material, but the material of the fixing member 3 is not limited, and the fixing member 3 is also formed of a fiber reinforced plastic or the like.

定着部材3は旧構造体1の表面、すなわち新構造体2との境界面に重なって、または僅かなクリアランスを確保した状態でこの境界面に配置される。図1−(a)は本体部31が単なる板状の(挿通孔31aがない)場合の例を示しているが、図1−(b)は本体部31の中央部に1箇所、挿通孔31aを形成した場合の例を示している。挿通孔31aは新構造体2の構成材料(硬化材料)を充填させるために利用される他、アンカー4が接続されるために利用される。図1−(b)では挿通孔31aの内周に雌ねじを切っていないが、アンカー4を螺合させるために図3−(a)に示すように雌ねじを切る場合もある。   The fixing member 3 is arranged on the boundary surface with the surface of the old structure 1, that is, the boundary surface with the new structure 2, or with a slight clearance secured. 1- (a) shows an example in which the main body 31 is simply plate-shaped (there is no insertion hole 31a), FIG. 1- (b) shows one insertion hole in the center of the main body 31. The example at the time of forming 31a is shown. The insertion hole 31a is used not only for filling the constituent material (curing material) of the new structure 2, but also for connecting the anchor 4. In FIG. 1- (b), the internal thread is not cut on the inner periphery of the insertion hole 31a, but the internal thread may be cut as shown in FIG.

図1−(b)、(c)は挿通孔31aの内径をアンカー4の径より大きくしてアンカー4と挿通孔31aとの間にクリアランスを確保し、このクリアランスに、定着部材3の背面と旧構造体1との間に充填される接着剤やモルタル等の充填材6を充填させることによりアンカー4を定着部材3に接続した場合を示している。図1−(c)は特にアンカー4の軸部に旧構造体1中に定着されるに十分な長さを与え、定着部材3と旧構造体1、及び新構造体2との一体性を高めた場合の例を示す。(c)の場合、旧構造体1にアンカー4の軸部が挿入される削孔を形成し、挿通孔31aを挿通させて削孔にアンカー4を挿入し、削孔に充填材6を充填することによってアンカー4が旧構造体1に定着させられる。図1−(b)、(c)の例においても、挿通孔31aに雌ねじを切り、アンカー4を挿通孔31aに螺合させることもある。   1B and 1C, the inner diameter of the insertion hole 31a is made larger than the diameter of the anchor 4 to secure a clearance between the anchor 4 and the insertion hole 31a. The case where the anchor 4 is connected to the fixing member 3 by filling a filler 6 such as an adhesive or mortar filled with the old structure 1 is shown. FIG. 1- (c) gives the shaft 4 of the anchor 4 a length sufficient to be fixed in the old structure 1, and the integrity of the fixing member 3, the old structure 1, and the new structure 2 is improved. An example in the case of raising is shown. In the case of (c), a drilling hole into which the shaft portion of the anchor 4 is inserted is formed in the old structure 1, the insertion hole 31a is inserted, the anchor 4 is inserted into the drilling hole, and the filler 6 is filled into the drilling hole. By doing so, the anchor 4 is fixed to the old structure 1. In the example of FIGS. 1- (b) and (c), an internal thread may be cut into the insertion hole 31a, and the anchor 4 may be screwed into the insertion hole 31a.

図2−(a)は新構造体2から矢印で示すせん断力が定着部材3に作用し、定着部材3が旧構造体1からせん断力の反力を受けているときの様子を示している。図2−(b)は(a)に示す定着部材3の背面を示している。定着部材3は本体部31の新構造体2寄りの一部区間が新構造体2からのせん断力を負担し、凸部32の外周面の内、旧構造体1寄りの一部区間が旧構造体1からのせん断力を負担する状態に置かれる。   FIG. 2A shows a state in which the shearing force indicated by the arrow from the new structure 2 acts on the fixing member 3 and the fixing member 3 receives the reaction force of the shearing force from the old structure 1. . FIG. 2B shows the back surface of the fixing member 3 shown in FIG. In the fixing member 3, a part of the main body 31 near the new structure 2 bears a shearing force from the new structure 2, and a part of the outer peripheral surface of the convex portion 32 near the old structure 1 is old. It is placed in a state of bearing a shearing force from the structure 1.

挿通孔31aを形成する場合、挿通孔31aは本体部31を厚さ方向に貫通して、または表面側と背面側のいずれかから中途までの区間に形成される。挿通孔31aが形成されても、挿通孔31aにはアンカー4が接続されず、新構造体2の構成材料が入り込むこともある。   When forming the insertion hole 31a, the insertion hole 31a penetrates the main body 31 in the thickness direction or is formed in a section from one of the front side and the back side to the middle. Even if the insertion hole 31a is formed, the anchor 4 is not connected to the insertion hole 31a, and the constituent material of the new structure 2 may enter.

図面では凸部32を本体部31の外周面に連続する位置に形成し、本体部31の外周面と凸部32の外周面を同一にしているが、凸部32は本体部31の外周の内周寄りに形成されることもある。また本体部31の放射方向(径方向)に多重に凸部32を形成することもある。   In the drawing, the convex portion 32 is formed at a position continuous with the outer peripheral surface of the main body portion 31, and the outer peripheral surface of the main body portion 31 and the outer peripheral surface of the convex portion 32 are the same. It may be formed closer to the inner periphery. Moreover, the convex part 32 may be formed in multiple in the radial direction (radial direction) of the main-body part 31. FIG.

定着部材3の凸部32が旧構造体1の溝部1aに嵌入した状態では、凸部32が安定するよう、図3に示すように溝部1aには上記充填材6が充填され、凸部32(定着部材3)の旧構造体1に対する移動が拘束される。溝部1a内への充填材6の充填により、または充填材6が充填された溝部1a内への凸部32の挿入により、図3に示すように充填材6を定着部材3の本体部31背面と旧構造体1表面との間に回り込ませ、定着部材3の全体の、せん断力に対する安定性、すなわち定着部材3の旧構造体1との一体性を高めることもできる。   In the state where the convex portion 32 of the fixing member 3 is fitted into the groove portion 1a of the old structure 1, the groove portion 1a is filled with the filler 6 as shown in FIG. The movement of the (fixing member 3) relative to the old structure 1 is restricted. By filling the groove 6a with the filler 6 or by inserting the convex portion 32 into the groove 1a filled with the filler 6, the filler 6 is attached to the back surface of the main body 31 of the fixing member 3 as shown in FIG. And the stability of the entire fixing member 3 with respect to the shearing force, that is, the integrity of the fixing member 3 with the old structure 1 can be increased.

旧構造体1の溝部1aに定着部材3の凸部32が嵌入し、充填材6によって拘束されることで、新構造体2からのせん断力は定着部材3の本体部31と凸部32を通じて旧構造体1に伝達される。充填材6を定着部材3の本体部31と旧構造体1との間にも回り込ませた場合には、本体部31背面と旧構造体1表面との間での滑りが阻止されるため、本体部31と旧構造体1表面との間においてもせん断力の伝達が行われる。   When the convex portion 32 of the fixing member 3 is fitted into the groove portion 1 a of the old structure 1 and is restrained by the filler 6, the shearing force from the new structure 2 passes through the main body portion 31 and the convex portion 32 of the fixing member 3. It is transmitted to the old structure 1. When the filler 6 is also passed between the main body 31 of the fixing member 3 and the old structure 1, slippage between the back of the main body 31 and the surface of the old structure 1 is prevented. Shear force is transmitted between the main body 31 and the surface of the old structure 1.

本体部31に挿通孔31aを形成した場合、挿通孔31aには新構造体2からのせん断力の負担能力を上げるために、基本的に図3に示すように定着部材3と共に新構造体1からのせん断力を負担するアンカー4が接続される。但し、挿通孔31a内にコンクリート等が流入することで、挿通孔31aの内周面をせん断力を受けるために利用することができるため、挿通孔31aにアンカー4を接続することなく、挿通孔31a内に新構造体2を構成するコンクリート等を充填させることもある。   When the insertion hole 31a is formed in the main body 31, the new structure 1 is basically combined with the fixing member 3 as shown in FIG. 3 in order to increase the load capacity of the shearing force from the new structure 2 in the insertion hole 31a. An anchor 4 that bears a shearing force is connected. However, since concrete or the like flows into the insertion hole 31a, the inner peripheral surface of the insertion hole 31a can be used to receive a shearing force, so that the insertion hole 31a is not connected to the insertion hole 31a. The concrete which comprises the new structure 2 may be filled in 31a.

アンカー4は図3−(a)に示すように挿通孔31aの内周面に形成された雌ねじに直接螺合する他、(b)に示すように単純に挿通し、挿通孔31aの両側にナット5が螺合することにより、あるいは挿通孔31a内に接着剤やモルタル等の充填材6が充填されることにより本体部31に接続される。   The anchor 4 is directly screwed into a female screw formed on the inner peripheral surface of the insertion hole 31a as shown in FIG. 3 (a), and is simply inserted as shown in FIG. 3 (b), on both sides of the insertion hole 31a. The nut 5 is connected to the main body 31 by screwing or by filling the insertion hole 31a with a filler 6 such as an adhesive or mortar.

アンカー4はせん断力の作用方向への投影面積分の側面が新構造体2からのせん断力を負担し、定着部材3に伝達する。図面ではアンカー4として頭部を有するボルトを使用しているが、アンカー4の形態は棒状には限らず、ブロック状の場合もある。アンカー4は新構造体2からのせん断力によって曲げ変形しない程度の曲げ剛性を有していればよい。   The anchor 4 bears the shearing force from the new structure 2 on the side surface corresponding to the projected area in the direction in which the shearing force acts, and transmits the shearing force to the fixing member 3. In the drawing, a bolt having a head is used as the anchor 4, but the form of the anchor 4 is not limited to a rod shape but may be a block shape. The anchor 4 only needs to have a bending rigidity that does not cause bending deformation due to the shearing force from the new structure 2.

図3はまた、本体部31の挿通孔31aが形成される位置に、本体部31aの表面側と背面側の少なくともいずれかへ突出する筒状の突出部33を形成し、この突出部33に挿通孔31aを形成した場合を示している。図3−(a)、(b)は本体部31の表面側に突出部33を形成した場合、図4−(a)は本体部33の表面側と背面側に形成した場合である。   FIG. 3 also shows that a cylindrical protrusion 33 that protrudes to at least one of the front side and the rear side of the main body 31 a is formed at a position where the insertion hole 31 a of the main body 31 is formed. The case where the insertion hole 31a is formed is shown. 3A and 3B show the case where the protrusions 33 are formed on the front surface side of the main body 31, and FIG. 4A shows the case where the protrusions 33 are formed on the front surface side and the back surface side of the main body portion 33.

図3−(a)に示すように突出部33にアンカー4を螺合によって接続する場合にはその内周面に雌ねじが形成されるが、図3−(b)のように突出部33の軸方向両側においてナット5により接続する場合には必ずしも雌ねじを形成する必要はない。   When the anchor 4 is connected to the projecting portion 33 by screwing as shown in FIG. 3- (a), an internal thread is formed on the inner peripheral surface thereof, but as shown in FIG. When connecting with the nut 5 on both sides in the axial direction, it is not always necessary to form a female thread.

図3−(b)の場合にはアンカー4の先端とそれに螺合するナット5が本体部31の背面に突出するため、旧構造体1にはその部分が入り込むための座掘り部1bが形成される。この場合、座掘り部1bが形成されることで、座掘り部1bに入り込むアンカー4、もしくはナット5を経て本体部31からのせん断力が旧構造体1に伝達できる利点がある。座掘り部1b内には(a)と同様に充填材6が充填され、ナット5と座掘り部1b内周面との間の空隙が塞がれ、定着部材3からのせん断力は座掘り部1bの内周面から旧構造体1に伝達される。   In the case of FIG. 3B, the tip of the anchor 4 and the nut 5 screwed to the anchor 4 protrude from the back surface of the main body 31, so that the old structure 1 is formed with a countersunk portion 1b for the portion to enter. Is done. In this case, there is an advantage that the shearing force from the main body portion 31 can be transmitted to the old structure 1 through the anchor 4 or the nut 5 entering the counterboring portion 1b by forming the counterboring portion 1b. As in (a), the filling material 6 is filled in the spot digging portion 1b, the gap between the nut 5 and the inner peripheral surface of the digging portion 1b is closed, and the shearing force from the fixing member 3 is It is transmitted from the inner peripheral surface of the part 1b to the old structure 1.

定着部材3に新構造体2から作用するせん断力と旧構造体1から受ける反力は偶力を構成し、定着部材3にモーメントを作用させる。そこで、定着部材3の配置状態、例えば凸部32の旧構造体1への嵌入深さ等によって定着部材3に作用するモーメントが過大になるような場合には、図3−(a)に鎖線で示すようにアンカー4がモーメントに抵抗できるだけの抵抗力を新構造体2、または旧構造体1と新構造体2から受けるための長さがアンカー4に与えられる。   The shearing force acting on the fixing member 3 from the new structure 2 and the reaction force received from the old structure 1 constitute a couple, and a moment acts on the fixing member 3. Therefore, in the case where the moment acting on the fixing member 3 is excessive due to the arrangement state of the fixing member 3, for example, the depth of insertion of the convex portion 32 into the old structure 1, the chain line in FIG. As shown in FIG. 4, the anchor 4 is given a length for receiving a resistance force from the new structure 2, or the old structure 1 and the new structure 2, which can cause the anchor 4 to resist the moment.

本体部31に突出部33を形成した場合には、突出部33は本体部31に挿通孔31aを形成したことに伴う剛性の低下分が補う役目を有する。突出部33はまた、本体部31の表面側に形成された場合には、新構造体2からのせん断力を分担し、背面側に形成された場合には、新構造体2からのせん断力を旧構造体1に伝達する働きもする。   When the projecting portion 33 is formed in the main body portion 31, the projecting portion 33 has a function of compensating for a decrease in rigidity due to the formation of the insertion hole 31 a in the main body portion 31. When the protrusion 33 is formed on the front surface side of the main body 31, the shear force from the new structure 2 is shared. When the protrusion 33 is formed on the back surface, the shear force from the new structure 2 is shared. Is also transmitted to the old structure 1.

図4−(a)は上記のように本体部31の表面側と背面側に連続して突出部33を形成した場合である。この場合は突出部33が本体部31の両面に形成されることで、本体部31の剛性を高める効果が向上することの他、図3−(b)の例と同様に本体部31が受けたせん断力の旧構造体1への伝達効果も高まる。突出部33の挿通孔31aにアンカー4が接続されない場合には、突出部33が背面に形成されない場合との対比では新構造体2から受けるせん断力の負担能力も向上する。図4の例においてもアンカー4が接続される場合、アンカー4は挿通孔31aに螺合、もしくは挿通孔31aへの挿通と充填材6によって接続される。   FIG. 4- (a) shows a case where the protrusions 33 are formed continuously on the front side and the back side of the main body 31 as described above. In this case, the protrusions 33 are formed on both surfaces of the main body 31 to improve the effect of increasing the rigidity of the main body 31, and the main body 31 receives the same as in the example of FIG. The effect of transmitting the shearing force to the old structure 1 is also enhanced. When the anchor 4 is not connected to the insertion hole 31a of the protrusion 33, the load capacity of the shearing force received from the new structure 2 is improved in comparison with the case where the protrusion 33 is not formed on the back surface. Also in the example of FIG. 4, when the anchor 4 is connected, the anchor 4 is screwed into the insertion hole 31 a or connected to the insertion hole 31 a and the filler 6.

図4−(a)はまた、本体部31の周囲に表面側へ突出する枠部34を形成した場合を示している。この場合、本体部31が枠部34を有することで、本体部31と新構造体2との接触面積が拡大するため、定着部材3が新構造体2から受けられるせん断力が増大し、定着部材3の設置個数を削減できる利点がある。枠部34も凸部32と同様、本体部31の外周より内側へ寄った位置に形成される場合と、本体部31の径方向に多重に形成される場合がある。図4−(b)は凸部32と枠部34を本体部31の外周より内周側に形成した場合を示している。   FIG. 4- (a) also shows a case where a frame portion 34 protruding to the surface side is formed around the main body portion 31. In this case, since the main body portion 31 includes the frame portion 34, the contact area between the main body portion 31 and the new structure 2 is increased, so that the shearing force that the fixing member 3 receives from the new structure 2 is increased, and the fixing is performed. There is an advantage that the number of installed members 3 can be reduced. Similarly to the convex portion 32, the frame portion 34 may be formed at a position closer to the inside than the outer periphery of the main body portion 31, or may be formed in multiple in the radial direction of the main body portion 31. FIG. 4B shows a case where the convex part 32 and the frame part 34 are formed on the inner peripheral side from the outer periphery of the main body part 31.

図5−(a)は図4−(a)と同様に本体部31の表面側と背面側に連続する突出部33を形成した場合において、特に背面側へ突出する突出部33の底面の深さを凸部32の底面の深さより大きくし、突出部33を旧構造体1中に嵌入させた場合の例を示す。この場合、旧構造体1には本体部31背面側の突出部33が嵌入するための座掘り部1bを形成することになるが、座掘り部1bの内周面を通じて定着部材3からのせん断力が旧構造体1に伝達されるため、定着部材3からのせん断力の伝達効果が向上する利点がある。   FIG. 5- (a) shows the depth of the bottom surface of the projecting portion 33 projecting to the back side particularly when the projecting portion 33 continuous to the front surface side and the back surface side of the main body portion 31 is formed as in FIG. 4- (a). An example in which the height is made larger than the depth of the bottom surface of the convex portion 32 and the protruding portion 33 is fitted into the old structure 1 is shown. In this case, the old structure 1 is formed with a spot digging portion 1b into which the protrusion 33 on the back side of the main body 31 is fitted, but shearing from the fixing member 3 through the inner peripheral surface of the digging portion 1b. Since the force is transmitted to the old structure 1, there is an advantage that the transmission effect of the shearing force from the fixing member 3 is improved.

図5ではまた、本体部31自身の肉厚を大きめにし、相対的に本体部31背面からの凸部32の高さ(深さ)を小さくすることで、本体部31自体に、新構造体2からのせん断力を負担する機能と、旧構造体1へのせん断力を伝達する機能を併せ持たせた場合の定着部材3の製作例を示している。   In FIG. 5, the main body 31 itself is increased in thickness, and the height (depth) of the protrusion 32 from the back surface of the main body 31 is relatively reduced, so that the main body 31 itself has a new structure. 2 shows an example of manufacturing the fixing member 3 in the case where both the function of bearing the shearing force from 2 and the function of transmitting the shearing force to the old structure 1 are provided.

図5では凸部32の幅を小さくしていることで、凸部1aと共に、本体部31の厚さ方向の半分程度が旧構造体1中に入り込むため、凸部32が嵌入する溝部1aを本体部31が嵌入する円板状の溝として形成している。この場合、凸部32が嵌入するための溝部1aは本体部31の全体が嵌入する面積と、本体部31の半分程度の厚さが嵌入する深さを持つことになる。図5の例では凸部32の深さより大きい深さの座掘り部1bが形成されるため、座掘り部1bに嵌入する突出部33と座掘り部1b内周面を通じて伝達されるせん断力が増大する利点がある。   In FIG. 5, since the width of the convex portion 32 is reduced, about half of the thickness of the main body portion 31 enters the old structure 1 together with the convex portion 1a, so that the groove portion 1a into which the convex portion 32 is fitted is formed. It is formed as a disk-like groove into which the main body 31 is inserted. In this case, the groove part 1a for inserting the convex part 32 has an area where the whole main body part 31 is inserted and a depth at which about half the thickness of the main body part 31 is inserted. In the example of FIG. 5, the spot digging portion 1b having a depth larger than the depth of the convex portion 32 is formed, so that the shearing force transmitted through the projecting portion 33 and the inner peripheral surface of the digging portion 1b are inserted into the pocket digging portion 1b. There are increasing benefits.

定着部材3の本体部31の肉厚を大きめにし、本体部31が旧構造体1と新構造体2に等しく跨るように定着部材3が両構造体1、2間に配置された場合には、本体部31が新構造体2からのせん断力を面内方向の力として負担し、そのまま旧構造体1に伝達する。本体部31は面内方向の剛性が大きい板状であることで、面内方向に受ける新構造体2からのせん断力を有効に旧構造体1に伝達する能力を有している。   In the case where the thickness of the main body 31 of the fixing member 3 is increased and the fixing member 3 is disposed between the two structures 1 and 2 so that the main body 31 extends over the old structure 1 and the new structure 2 equally. The main body 31 bears the shearing force from the new structure 2 as a force in the in-plane direction and transmits it to the old structure 1 as it is. The main body 31 is a plate having a large in-plane rigidity, and thus has the ability to effectively transmit the shearing force from the new structure 2 received in the in-plane direction to the old structure 1.

図5ではまた、本体部31の上下に形成されている突出部33の全長を貫通する挿通孔31aを形成し、この挿通孔31aの全長に、周面に雄ねじが形成されたアンカー4を螺入させている。アンカー4の、新構造体2側の先端には表面積を稼ぐためのナット5を螺合させている。アンカー4の、新構造体2側の突出部33との接続部には突出部33から露出するアンカー4の剛性を確保するためにナット5を締結している。図5の例においてもアンカー4は挿通孔31aへの挿通と充填材6によって接続されることもある。   In FIG. 5, an insertion hole 31 a penetrating the entire length of the projecting portion 33 formed above and below the main body 31 is formed, and an anchor 4 having a male screw formed on the peripheral surface is screwed to the entire length of the insertion hole 31 a. I am allowed to enter. A nut 5 for increasing the surface area is screwed to the tip of the anchor 4 on the new structure 2 side. A nut 5 is fastened to the connecting portion of the anchor 4 with the protruding portion 33 on the new structure 2 side in order to ensure the rigidity of the anchor 4 exposed from the protruding portion 33. Also in the example of FIG. 5, the anchor 4 may be connected to the insertion hole 31 a and the filler 6.

図6は旧構造体1に新構造体2を接触した状態で構築することで、旧構造体1を耐震補強した場合の施工例を示す。具体的には旧構造体1である鉄筋コンクリート造の既存構造物の屋外側の梁7に新構造体2であるスラブ8を突き合わせて接合することで、既存の梁からのせん断力がスラブ8を通じてその端部に接続される耐震補強架構9に流れるようにしている。耐震補強架構9はスラブ8の端部に接続される柱91と、柱91、91間に架設される梁92、及び柱・梁の接合部間に架設されるブレース93から構成されている。   FIG. 6 shows a construction example when the old structure 1 is constructed in a state in which the new structure 2 is in contact with the old structure 1 and the old structure 1 is seismically reinforced. Specifically, the slab 8 as the new structure 2 is abutted and joined to the beam 7 on the outdoor side of the existing structure of the reinforced concrete structure as the old structure 1, so that the shearing force from the existing beam passes through the slab 8. It is made to flow into the earthquake-proof reinforcement frame 9 connected to the end. The seismic strengthening frame 9 includes a column 91 connected to the end of the slab 8, a beam 92 laid between the columns 91 and 91, and a brace 93 laid between the column / beam junction.

定着部材3は旧構造体1である梁7の側面と新構造体2であるスラブ8の端面との間の境界面に配置され、定着部材3の新構造体2側からアンカー4が突出し、新構造体2中に埋設されている。   The fixing member 3 is disposed on the boundary surface between the side surface of the beam 7 as the old structure 1 and the end face of the slab 8 as the new structure 2, and the anchor 4 protrudes from the new structure 2 side of the fixing member 3, It is embedded in the new structure 2.

図6の詳細を図7−(a)に、その旧構造体1の表面部分(鎖線円部分)を拡大した様子を(b)に示す。図6、図7の例では図7−(b)に示すようにアンカー4が接続された定着部材3を梁7の軸方向に適度な間隔をおいて配置しているが、定着部材3は梁7の成方向(スラブ8の厚さ方向)に複数段、配置されることもある。図7では特に、アンカー4の軸部を旧構造体1に形成した削孔中に挿入した様子を示している。この場合、アンカー4の周面と、定着部材3の挿通孔31aの内周面との間にはクリアランスが確保されている。   The details of FIG. 6 are shown in FIG. 7- (a) and the surface portion (dashed line circle portion) of the old structure 1 is shown in FIG. 7 (b). 6 and 7, the fixing member 3 to which the anchor 4 is connected is arranged at an appropriate interval in the axial direction of the beam 7 as shown in FIG. 7- (b). A plurality of stages may be arranged in the forming direction of the beam 7 (the thickness direction of the slab 8). In particular, FIG. 7 shows a state where the shaft portion of the anchor 4 is inserted into a drilling hole formed in the old structure 1. In this case, a clearance is secured between the peripheral surface of the anchor 4 and the inner peripheral surface of the insertion hole 31 a of the fixing member 3.

図8−(a)は旧構造体1と新構造体2の境界面が水平面となるように重ね、その境界面に本発明の図3−(a)に実線で示す定着部材3を介在させ、旧構造体1を固定した状態で、新構造体2に水平に交番荷重(せん断力)を加えたときの、新構造体2に作用した荷重(せん断力)Q(kN)と旧構造体1に対する相対変位δ(mm)との関係を示す。定着部材3と旧構造体1との間には充填材6としての接着剤が充填されている。(b)は比較のため、旧構造体1に穿設した削孔に接着剤を充填してアンカーを挿入した接着系アンカーのみをせん断力抵抗部材として旧構造体と新構造体間に介在させた場合の荷重Qと相対変位δの関係を示す。旧構造体1と新構造体2を構成するコンクリートの圧縮強度Fcは16N/mmである。 FIG. 8- (a) is overlapped so that the boundary surface between the old structure 1 and the new structure 2 is a horizontal plane, and the fixing member 3 indicated by the solid line in FIG. The load (shear force) Q (kN) applied to the new structure 2 and the old structure when an alternating load (shear force) is applied horizontally to the new structure 2 with the old structure 1 fixed The relationship with relative displacement δ (mm) with respect to 1 is shown. An adhesive as a filler 6 is filled between the fixing member 3 and the old structure 1. (B) is for comparison, and only an adhesive anchor in which a drilling hole formed in the old structure 1 is filled with an adhesive and an anchor is inserted is interposed between the old structure and the new structure as a shear force resistance member. The relationship between the load Q and the relative displacement δ is shown. The compressive strength Fc of the concrete constituting the old structure 1 and the new structure 2 is 16 N / mm 2 .

相対変位が0〜2mmの範囲で定着部材3の性能を評価すれば、定着部材3が不在の場合には((b))、境界面で伝達できるせん断力Qは60kN前後程度に留まっているのに対し、定着部材3を介在させた場合には((a))、180kNを超える高いせん断力Qを定着部材3が負担していることが分かる。   If the performance of the fixing member 3 is evaluated in a range where the relative displacement is 0 to 2 mm, when the fixing member 3 is absent ((b)), the shearing force Q that can be transmitted at the boundary surface remains at about 60 kN. On the other hand, when the fixing member 3 is interposed ((a)), it can be seen that the fixing member 3 bears a high shearing force Q exceeding 180 kN.

定着部材3が不在の場合にはせん断力の大きさが境界面における摩擦力のみに依存するのに対し、定着部材3が介在する場合には定着部材3がせん断力を負担し、伝達する能力を発揮することで、摩擦力のみに依存する場合の3倍近い値のせん断力が得られることになる。   When the fixing member 3 is absent, the magnitude of the shearing force depends only on the frictional force at the boundary surface, whereas when the fixing member 3 is present, the fixing member 3 bears and transmits the shearing force. By exhibiting the above, a shearing force that is nearly three times as large as when relying only on the frictional force is obtained.

また定着部材3が不在の場合、相対変位が2mmを超え、10mm程度までの範囲では、せん断力が60kN程度を維持しているのに対し、定着部材3が介在する場合には相対変位が8mmを超える程度までにせん断力が徐々に低下する傾向を示すことが分かる。但し、相対変位が8mmの時点でもせん断力は100kN程度を維持し、不在の場合より高い値を示している。   When the fixing member 3 is not present, the relative displacement exceeds 2 mm and the shearing force is maintained at about 60 kN in the range up to about 10 mm, whereas when the fixing member 3 is interposed, the relative displacement is 8 mm. It can be seen that the shearing force tends to decrease gradually to a level exceeding. However, even when the relative displacement is 8 mm, the shear force is maintained at about 100 kN, which is higher than that in the absence.

定着部材3が介在する場合に、相対変位が2mm程度の時点でせん断力が最大値を取った後、相対変位の増大に伴い、せん断力が次第に低下する傾向を示すことは以下の理由によるものと考えられる。   When the fixing member 3 is interposed, the shearing force tends to gradually decrease as the relative displacement increases after the shearing force reaches the maximum when the relative displacement is about 2 mm. it is conceivable that.

せん断力が作用し始めた時点では定着部材3と旧構造体1との間に充填されている接着剤等の充填材6が付着により定着部材3と旧構造体1との一体性を確保し、定着部材3のせん断力に対する剛性が高い状態にある。このため、充填材6の付着が確保されている限り、定着部材3自身のせん断剛性が発揮されると考えられる。旧構造体1との付着が切れ、一体性が低下するに伴い、定着部材3が旧構造体1に対して相対移動を生じながら、せん断抵抗力を発揮すると考えられる。   When the shearing force starts to act, a filler 6 such as an adhesive filled between the fixing member 3 and the old structure 1 adheres to ensure the integrity of the fixing member 3 and the old structure 1. The fixing member 3 has a high rigidity against the shearing force. For this reason, it is considered that the shear rigidity of the fixing member 3 itself is exhibited as long as the filler 6 is adhered. It is considered that as the adhesion with the old structure 1 is cut and the integrity is lowered, the fixing member 3 exerts a shear resistance force while causing a relative movement with respect to the old structure 1.

図8−(a)、(b)に示すせん断力−変形曲線の包絡線を描けば、図9−(a)、(b)に示すようになる。定着部材3が不在の場合、相対変位の増加に伴い、せん断力は最大値を迎えるまでの範囲とその後に緩い傾斜の曲線を描き、最大値は100kN程度に留まる(図9−(b))。   If the envelope of the shear force-deformation curve shown in FIGS. 8A and 8B is drawn, it will be as shown in FIGS. 9A and 9B. In the absence of the fixing member 3, as the relative displacement increases, the shear force draws a range until reaching the maximum value and then a gentle slope curve, and the maximum value remains at about 100 kN (FIG. 9- (b)). .

これに対し、定着部材3が介在する場合には、相対変位の発生と共にせん断力が増大し、最大値を迎えた後も、極端に低下することなく次第に低下する傾向を示し、せん断力は100kNを超えた数値を維持している(図9−(a))。この(a)、(b)の対比から、せん断力が100kNを超えた数値を維持する範囲が、定着部材3が介在することの効果となっていることが分かる。図9−(a)には(b)に示す曲線を破線で示しているが、実線と破線の差(せん断力)が定着部材3介在の効果となる。   On the other hand, when the fixing member 3 is interposed, the shearing force increases with the occurrence of the relative displacement, and even after reaching the maximum value, the shearing force tends to decrease without extremely decreasing, and the shearing force is 100 kN. The numerical value exceeding this is maintained (FIG. 9- (a)). From the comparison of (a) and (b), it can be seen that the range in which the numerical value in which the shearing force exceeds 100 kN is maintained is the effect of the interposition of the fixing member 3. In FIG. 9A, the curve shown in FIG. 9B is indicated by a broken line, but the difference (shearing force) between the solid line and the broken line is the effect of the fixing member 3 interposed.

(a)は本発明の定着部材の基本形状と、新構造体から旧構造体へのせん断力の伝達の様子を示した縦断面図、(b)、(c)は(a)定着部材本体部に挿通孔を形成し、挿通孔にアンカーを挿通させた様子を示した縦断面図である。(A) is a longitudinal sectional view showing the basic shape of the fixing member of the present invention and how shear force is transmitted from the new structure to the old structure, and (b) and (c) are (a) the fixing member main body. It is the longitudinal cross-sectional view which showed a mode that the penetration hole was formed in the part and the anchor was penetrated to the penetration hole. (a)は挿通孔を有する定着部材の基本形状と、新構造体から旧構造体へのせん断力の伝達の様子を示した縦断面図、(b)は(a)の背面図である。(A) is a longitudinal sectional view showing a basic shape of a fixing member having an insertion hole and a state of transmission of shearing force from the new structure to the old structure, and (b) is a rear view of (a). (a)は図2に示す定着部材に突出部を形成し、突出部にアンカーを接続した様子を示した縦断面図、(b)は本体部の両側に突出するアンカーにナットを螺合した様子を示した縦断面図である。(A) is a longitudinal sectional view showing a state in which a protrusion is formed on the fixing member shown in FIG. 2 and an anchor is connected to the protrusion, and (b) is a nut screwed to the anchor protruding on both sides of the main body. It is the longitudinal cross-sectional view which showed the mode. (a)は定着部材本体部の周囲に凸部と枠部を形成した様子を示した縦断面図、(b)は周囲の内側に凸部と枠部を形成した様子を示した斜視図である。(A) is the longitudinal cross-sectional view which showed a mode that the convex part and the frame part were formed in the circumference | surroundings of the fixing member main-body part, (b) is the perspective view which showed the mode that the convex part and the frame part were formed inside the circumference | surroundings. is there. (a)は本体部背面の突出部の深さを大きくし、旧構造体に座掘り部を形成した様子を示した縦断面図、(b)は(a)の背面図である。(A) is the longitudinal cross-sectional view which showed a mode that the depth of the protrusion part of a main-body part back surface was enlarged, and formed the countersink part in the old structure, (b) is a rear view of (a). 旧構造体(既存構造物)と新構造体(新設構造物)との境界面に定着部材を介在させた場合の使用例を示した縦断面図である。It is the longitudinal cross-sectional view which showed the usage example when the fixing member is interposed in the interface of an old structure (existing structure) and a new structure (new structure). (a)は図6の一部を拡大して示した斜視図、(b)は(a)における新構造体の構築前の様子を示した斜視図である。(A) is the perspective view which expanded and showed a part of FIG. 6, (b) is the perspective view which showed the mode before construction of the new structure in (a). (a)は本発明の定着部材を旧構造体と新構造体との境界面に介在させて新構造体にせん断力を加えたときのせん断力−変形関係を示したグラフ、(b)は定着部材が介在しない場合のせん断力−変形関係を示したグラフである。(A) is a graph showing a shearing force-deformation relationship when the fixing member of the present invention is interposed at the boundary surface between the old structure and the new structure and a shearing force is applied to the new structure, (b) 6 is a graph showing a shearing force-deformation relationship when no fixing member is interposed. (a)は図8−(a)の包絡線、(b)は図8−(b)の包絡線である。(A) is the envelope of FIG. 8- (a), (b) is the envelope of FIG. 8- (b).

符号の説明Explanation of symbols

1……旧構造体、1a……溝部、1b……座掘り部、2……新構造体、
3……定着部材、31……本体部、31a……挿通孔、32……凸部、33……突出部、34……枠部、
4……アンカー、5……ナット、6……充填材、
7……既存の梁、8……新設のスラブ、
9……耐震補強架構、91……柱、92……梁、93……ブレース。
1 ... Old structure, 1a ... Groove, 1b ... Cutter, 2 ... New structure,
3... Fixing member, 31... Body portion, 31 a .. insertion hole, 32... Convex portion, 33.
4 ... Anchor, 5 ... Nut, 6 ... Filler,
7 ... Existing beams, 8 ... New slabs,
9: Seismic retrofit frame, 91 ... Column, 92 ... Beam, 93 ... Brace.

Claims (6)

互いに接する旧構造体と新構造体間に跨って定着部材を配置し、前記新構造体が前記旧構造体に対して相対変位しようとするときのせん断力を前記定着部材を通じて前記旧構造体に伝達させる構造体の接合構造であり、
前記旧構造体にその表面側から溝部が形成され、
前記定着部材は前記旧構造体と前記新構造体との境界面に重なる平板状の本体部と、この本体部の背面に形成され、前記溝部に嵌入する環状の凸部とを有し、前記本体部の少なくとも厚さ方向の一部が前記新構造体中に位置し、前記凸部の少なくとも厚さ方向の一部が前記旧構造体中に位置した状態で、前記旧構造体と前記新構造体中に埋設されていることを特徴とする構造体の接合構造。
A fixing member is disposed across the old structure and the new structure that are in contact with each other, and shear force when the new structure is about to be displaced relative to the old structure is applied to the old structure through the fixing member. It is the joint structure of the structure to be transmitted,
Grooves are formed from the surface side of the old structure,
The fixing member has a flat plate-like main body portion that overlaps a boundary surface between the old structure and the new structure, and an annular convex portion that is formed on the back surface of the main body portion and fits into the groove portion. At least a part of the main body in the thickness direction is located in the new structure, and at least a part of the convex part in the thickness direction is located in the old structure, the old structure and the new structure A structure joining structure characterized by being embedded in a structure.
請求項1に記載の構造体の接合構造に使用される定着部材であり、
平板状の本体部と、この本体部の周囲、もしくは周囲寄りの位置から背面側へ突出し、前記旧構造体の表面に形成された前記溝部に嵌入する環状の凸部とを有し、
前記本体部の少なくとも厚さ方向の一部が前記新構造体中に位置し、前記凸部の少なくとも厚さ方向の一部が前記旧構造体中に位置した状態で使用され、
前記本体部の前記新構造体寄りの一部が前記新構造体からのせん断力を負担し、前記凸部の前記旧構造体寄りの一部が前記せん断力を前記旧構造体に伝達することを特徴とするせん断力伝達用定着部材。
A fixing member used for the structure joining structure according to claim 1,
It has a flat plate-like main body part, and an annular convex part that protrudes from the periphery of the main body part, or a position close to the periphery to the back side, and fits into the groove part formed on the surface of the old structure,
At least a part of the main body part in the thickness direction is located in the new structure, and at least a part of the convex part in the thickness direction is used in a state of being located in the old structure,
A part of the main body near the new structure bears a shearing force from the new structure, and a part of the convex part near the old structure transmits the shearing force to the old structure. A fixing member for transmitting a shearing force characterized by the above.
前記本体部に、その表面側と背面側の少なくともいずれかへ突出する筒状の突出部が形成されていることを特徴とする請求項2に記載のせん断力伝達用定着部材。   The shearing force transmitting fixing member according to claim 2, wherein the main body portion is formed with a cylindrical protruding portion that protrudes to at least one of a front surface side and a back surface side thereof. 前記本体部の周囲から表面側へ突出する枠部が形成されていることを特徴とする請求項2、もしくは請求項3に記載のせん断力伝達用定着部材。   The shearing force transmitting fixing member according to claim 2, wherein a frame portion that protrudes from the periphery of the main body portion to the surface side is formed. 前記本体部の厚さ方向に挿通孔が形成されていることを特徴とする請求項2乃至請求項4のいずれかに記載のせん断力伝達用定着部材。   The shearing force transmitting fixing member according to claim 2, wherein an insertion hole is formed in a thickness direction of the main body portion. 前記本体部の前記挿通孔にアンカーが接続されていることを特徴とする請求項5に記載のせん断力伝達用定着部材。

The fixing member for shear force transmission according to claim 5, wherein an anchor is connected to the insertion hole of the main body.

JP2008227762A 2008-09-05 2008-09-05 Bonding structure of structure and fixing member for shear force transmission used therefor Active JP4230533B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008227762A JP4230533B1 (en) 2008-09-05 2008-09-05 Bonding structure of structure and fixing member for shear force transmission used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227762A JP4230533B1 (en) 2008-09-05 2008-09-05 Bonding structure of structure and fixing member for shear force transmission used therefor

Publications (2)

Publication Number Publication Date
JP4230533B1 JP4230533B1 (en) 2009-02-25
JP2010059717A true JP2010059717A (en) 2010-03-18

Family

ID=40445140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227762A Active JP4230533B1 (en) 2008-09-05 2008-09-05 Bonding structure of structure and fixing member for shear force transmission used therefor

Country Status (1)

Country Link
JP (1) JP4230533B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424347B1 (en) * 2012-11-16 2014-08-01 청원화학 주식회사 Shear anchor for joing new and old concrete and method for joining new and old concrete
KR101549394B1 (en) 2014-03-31 2015-09-03 청원화학 주식회사 Socket shaped anchor
KR101674823B1 (en) * 2015-08-21 2016-11-10 인천대학교 산학협력단 Beam section enlargement method using socket shaped anchor
KR101677858B1 (en) * 2015-08-21 2016-11-21 인천대학교 산학협력단 Column section enlargement method using socket shaped anchor
KR101752058B1 (en) * 2015-08-21 2017-07-12 (주)삼우아이티 Seismic reinforcing method using socket shaped anchor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337329B2 (en) * 2009-08-21 2013-11-06 前田建設工業株式会社 Post-installed anchor, seismic reinforcement structure using the anchor, and seismic reinforcement method
JP4799703B1 (en) * 2011-04-08 2011-10-26 等 塩原 Bonding structure of structure
JP5783799B2 (en) * 2011-05-26 2015-09-24 飛島建設株式会社 Shear force resistance device
JP5438797B2 (en) * 2012-04-13 2014-03-12 矢作建設工業株式会社 Joining member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424347B1 (en) * 2012-11-16 2014-08-01 청원화학 주식회사 Shear anchor for joing new and old concrete and method for joining new and old concrete
KR101549394B1 (en) 2014-03-31 2015-09-03 청원화학 주식회사 Socket shaped anchor
KR101674823B1 (en) * 2015-08-21 2016-11-10 인천대학교 산학협력단 Beam section enlargement method using socket shaped anchor
KR101677858B1 (en) * 2015-08-21 2016-11-21 인천대학교 산학협력단 Column section enlargement method using socket shaped anchor
KR101752058B1 (en) * 2015-08-21 2017-07-12 (주)삼우아이티 Seismic reinforcing method using socket shaped anchor

Also Published As

Publication number Publication date
JP4230533B1 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP4230533B1 (en) Bonding structure of structure and fixing member for shear force transmission used therefor
JP2008255627A (en) Joint metal assembly for wooden member
JP2008267136A (en) Shearing resistance type anchoring disk
JP5814816B2 (en) Anchor bolt construction method
JP4189292B2 (en) Shear resistance type fixing device
JP4997354B1 (en) Fixing member for shear force transmission with fixing maintenance function
JP6172501B2 (en) Seismic reinforcement structure and seismic reinforcement method
JP4989409B2 (en) Foundation pile structure, ready-made concrete pile, and joint hardware of ready-made concrete pile and steel pipe pile
JPH11172810A (en) Earthquake resisting wall and earthquake resisting reinforcing structure
JP2009174249A (en) Reinforcing structure and reinforcing method
JP5337329B2 (en) Post-installed anchor, seismic reinforcement structure using the anchor, and seismic reinforcement method
JP2012001987A (en) Joint structure of structure and anchoring device for joining structures used therein
JP7157854B1 (en) Joint structure between columns/beams and seismic walls
JP4111262B2 (en) Connection structure between foundation pile and superstructure, pile head joint, connection method between foundation pile and superstructure
JP2011202420A (en) Structure and method for joining shaft member and rc member
JP5052396B2 (en) Pile head joint structure and temporary tool for pile head joint used in its construction
JP2005155131A (en) Intermediate floor base isolation structure of building
JP5192093B1 (en) Concrete beam shear reinforcement structure
JP5432320B2 (en) Foundation pile structure
JP2008223245A (en) Column base structure
JP6439978B2 (en) Joining member
JP5972709B2 (en) Pile head semi-rigid joint structure of new building and its construction method
JP4952049B2 (en) Shear reinforcement structure and method for reinforced concrete members
JP5775830B2 (en) Anchor bolt construction method
JP5314203B1 (en) Structure connection structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Ref document number: 4230533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250