JP4952015B2 - Temperature monitoring method for electronic equipment unit - Google Patents

Temperature monitoring method for electronic equipment unit Download PDF

Info

Publication number
JP4952015B2
JP4952015B2 JP2006086899A JP2006086899A JP4952015B2 JP 4952015 B2 JP4952015 B2 JP 4952015B2 JP 2006086899 A JP2006086899 A JP 2006086899A JP 2006086899 A JP2006086899 A JP 2006086899A JP 4952015 B2 JP4952015 B2 JP 4952015B2
Authority
JP
Japan
Prior art keywords
temperature
printed board
temperature sensor
electronic device
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006086899A
Other languages
Japanese (ja)
Other versions
JP2007263636A (en
Inventor
孝幸 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2006086899A priority Critical patent/JP4952015B2/en
Publication of JP2007263636A publication Critical patent/JP2007263636A/en
Application granted granted Critical
Publication of JP4952015B2 publication Critical patent/JP4952015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

この発明は、電子機器ユニットの温度監視方法に関するものである。 The present invention relates to temperature monitoring method for an electronic device unit.

電子機器ユニットにおいては、その温度監視、温度制御のために、その内部に実装されたプリント板に温度センサを実装することがある。図7は従来の電子機器ユニットの温度測定装置の一例を示し、1はユニット内部に固定された温度センサであり、温度センサ1には配線2を介してコネクタ3が接続され、コネクタ3はプリント板4に設けられた接続端子4aに接続される。この例では、温度センサ1は配線2を介してプリント板4と接続されているので、温度センサ1にプリント板4の熱が熱伝導により伝わることはなく、温度センサ1は周囲の空気温度を正確に測定することができる。図8(a),(b)はデバイス型温度センサ5の平面図及びこの温度センサ5をプリント板4に実装する状態を示し、デバイス型の温度センサにはDIP形状にものの他に表面実装タイプがあるが、いずれの場合もプリント板4に直接実装される。温度センサ5はプリント板4に直接実装されるため、プリント板4の温度が熱伝導により温度センサ5に伝わり、温度センサ5の測定温度はプリント板4の温度とその周囲の空気温度により決まる温度となる。特に、SMD部品を自然空冷のユニットのプリント板4に実装した場合、SMD部品の温度はプリント板4の温度とほぼ等しくなるため、プリント板4の温度の測定が容易となる。   In an electronic device unit, a temperature sensor may be mounted on a printed board mounted therein for temperature monitoring and temperature control. FIG. 7 shows an example of a temperature measuring apparatus for a conventional electronic device unit. Reference numeral 1 denotes a temperature sensor fixed inside the unit. A connector 3 is connected to the temperature sensor 1 via a wiring 2, and the connector 3 is printed. It is connected to a connection terminal 4 a provided on the plate 4. In this example, since the temperature sensor 1 is connected to the printed board 4 via the wiring 2, the heat of the printed board 4 is not transmitted to the temperature sensor 1 by heat conduction, and the temperature sensor 1 indicates the ambient air temperature. It can be measured accurately. 8A and 8B show a plan view of the device type temperature sensor 5 and a state in which the temperature sensor 5 is mounted on the printed board 4. The device type temperature sensor has a surface mount type in addition to a DIP shape. In either case, it is mounted directly on the printed board 4. Since the temperature sensor 5 is directly mounted on the printed board 4, the temperature of the printed board 4 is transmitted to the temperature sensor 5 by heat conduction, and the measured temperature of the temperature sensor 5 is a temperature determined by the temperature of the printed board 4 and the ambient air temperature. It becomes. In particular, when the SMD component is mounted on the printed board 4 of the naturally air-cooled unit, the temperature of the SMD component becomes almost equal to the temperature of the printed board 4, so that the temperature of the printed board 4 can be easily measured.

一方、自然空冷電子機器ユニットの温度監視においては、温度センサの取付位置及び監視対象は次のように行われている。まず、局部発熱する部品やシステム上最も重要なデバイス(例えば、CPUプロセッサ)等の特定部品に温度センサを取り付けた場合、監視対象は特定部品温度となり、この場合、ユニット全体の監視はできないが、対象部品の監視は精度良く行われる。次に、温度センサをユニット吸気部に取り付けた場合、ユニット吸気(周囲)温度が監視対象となり、測定結果はユニットの温度仕様に基づいた判定値で評価される。即ち、ユニットが最大負荷となった時の各部品温度が許容内に必ず入るように判定されるために、安全な監視が可能となる。反面、負荷が少なく、内部温度が低いにもかかわらず、吸気(周囲)温度が高いだけで、許容外と判定されることがある。次に、温度センサをユニット排気部に取り付けた場合、ユニット排気(内部)温度が監視対象となり、ユニット負荷に吸気(周囲)温度をプラスした温度で判定を行うこととなり、負荷を抑えてより高い周囲温度の環境で使用することが可能となる。即ち、図9はユニット負荷とユニット許容周囲温度との関係を示し、イの部分は吸気尾温度のみで判定した場合の許容範囲であり、ロの部分はユニット負荷に対応した許容範囲であり、負荷が小さいほどユニット許容周囲温度は高くなる。ただし、ユニット排気温度を監視対象とした場合、局部発熱部品の監視はできない。   On the other hand, in the temperature monitoring of the natural air-cooled electronic device unit, the mounting position of the temperature sensor and the monitoring target are performed as follows. First, when a temperature sensor is attached to a specific part such as a part that generates heat locally or the most important device in the system (for example, a CPU processor), the monitoring target is a specific part temperature. In this case, the entire unit cannot be monitored. The target parts are monitored with high accuracy. Next, when the temperature sensor is attached to the unit intake section, the unit intake (ambient) temperature becomes a monitoring target, and the measurement result is evaluated by a determination value based on the temperature specification of the unit. That is, since it is determined that the temperature of each component when the unit reaches the maximum load is always within the allowable range, safe monitoring is possible. On the other hand, even though the load is small and the internal temperature is low, it may be determined that the intake (ambient) temperature is high and that it is not acceptable. Next, when a temperature sensor is attached to the unit exhaust section, the unit exhaust (internal) temperature will be monitored, and judgment will be made at a temperature obtained by adding the intake (ambient) temperature to the unit load. It can be used in an ambient temperature environment. That is, FIG. 9 shows the relationship between the unit load and the unit allowable ambient temperature, the part a is the allowable range when judged only by the intake tail temperature, and the part b is the allowable range corresponding to the unit load. The smaller the load, the higher the allowable ambient temperature of the unit. However, when the unit exhaust temperature is monitored, local heating parts cannot be monitored.

この出願の発明に関連する技術文献情報としては、次のものがある。
特開平8−63237号公報 特開2000−124367号公報
Technical literature information relating to the invention of this application includes the following.
JP-A-8-63237 JP 2000-124367 A

図7に示した従来の電子機器ユニットの温度測定装置においては、プリント板4に温度センサ1をコネクタ3により接続しているため、組立工数が多くなり、高価になる。また、温度センサ1の取付構造が大きくなり、狭い場所では取付ができず、取付が可能な場合でも熱の対流を阻害することとなった。又、周囲の空気温度を測定するのには適しているが、プリント板4の表面温度を測定するためには、温度センサ1の取付構造を工夫する必要があり、精度良く測定することは困難であった。一方、図8に示すように、デバイス型の温度センサ5を用いた場合には、他の部品と同様に機械実装が可能であり、部品単価が安くなるために、安価になるが、温度センサ5がプリント板4上にあるために、周囲の空気温度が測定できなかった。特に、近傍に高発熱部品が実装されている場合には、その部品からの熱伝導による熱の影響を大きく受けるため、周囲の空気温度の測定は不可能であった。   In the conventional temperature measuring device for an electronic device unit shown in FIG. 7, the temperature sensor 1 is connected to the printed board 4 by the connector 3, so that the number of assembling steps increases and the cost increases. Moreover, the mounting structure of the temperature sensor 1 becomes large, so that it cannot be mounted in a narrow place, and even when the mounting is possible, the convection of heat is inhibited. Although it is suitable for measuring the ambient air temperature, in order to measure the surface temperature of the printed board 4, it is necessary to devise the mounting structure of the temperature sensor 1, and it is difficult to measure with high accuracy. Met. On the other hand, as shown in FIG. 8, when the device-type temperature sensor 5 is used, it can be mechanically mounted in the same manner as other components, and the unit unit price is reduced. Since 5 is on the printed board 4, the ambient air temperature could not be measured. In particular, when a highly heat-generating component is mounted in the vicinity, it is impossible to measure the ambient air temperature because it is greatly affected by heat from heat conduction from the component.

又、上記した従来の電子機器ユニットの温度監視方法においては、自然空冷の電子機器ユニットの実装可能方向が多方向の場合、方向により温度センサによる測定温度が変化し、特定部品の温度測定により温度監視、制御を行うことしかできず、ユニット内の部品全体の温度監視、制御を行うことは不可能であった。   Further, in the above-described conventional temperature monitoring method for an electronic device unit, when the mounting direction of a naturally air-cooled electronic device unit is multi-directional, the temperature measured by the temperature sensor varies depending on the direction, and the temperature is measured by measuring the temperature of a specific component. It was only possible to monitor and control, and it was impossible to monitor and control the temperature of the entire components in the unit.

この発明は上記のような課題を解決するために成されたものであり、周囲の空気温度を安価、正確に測定することができるとともに、実装方向が多方向である自然空冷ユニットの温度監視、制御が可能な電子機器ユニットの温度監視方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and can monitor the temperature of a natural air cooling unit in which the ambient air temperature can be measured inexpensively and accurately and the mounting direction is multidirectional. and to obtain a temperature monitoring method for an electronic device unit capable controlled.

請求項に係る電子機器ユニットの温度監視方法は、電子機器ユニット内に実装されたプリント板の一方の側及び他方の側にそれぞれ温度センサを設け、一方の側と他方の側との温度差が正、負、ほぼ零により、一方の側が上側の排気側の縦実装か他方の側が上側の排気側の縦実装か水平実装かを判定するとともに、各実装方向の場合の排気側温度が各実装方向別に設定された最大許容排気温度より低く、かつ縦実装の場合に上記温度差の絶対値が最大許容温度上昇値より小さいことにより、電子機器ユニット内が温度上許容範囲内であると判定するものである。 The temperature monitoring method for an electronic device unit according to claim 1 is provided with temperature sensors on one side and the other side of a printed board mounted in the electronic device unit, respectively, and a temperature difference between one side and the other side. Is positive, negative, or nearly zero, and it is determined whether one side is the vertical mounting on the upper exhaust side or the other side is the vertical mounting or horizontal mounting on the upper exhaust side, and the exhaust side temperature in each mounting direction is It is determined that the electronic device unit is within the allowable temperature range because the absolute value of the temperature difference is lower than the maximum allowable temperature rise value when the vertical mounting is lower than the maximum allowable exhaust temperature set for each mounting direction. To do.

請求項によれば、電子機器ユニット内に実装されたプリント板の一方の側及び他方の側にそれぞれ温度センサを設け、各温度センサの測定温度の差が正、負、ほぼ零かによりプリント板の実装方向を判定し、各実装方向の場合の排気側温度が実装方向別に設定された最大許容排気温度より低いことにより、電子機器ユニット内の温度が許容温度内であることを判定し、さらに縦実装の場合に各温度センサの測定温度差の絶対値が最大許容温度上昇値より小さいことにより、内部実装異常や動作異常が判定される。従って、実装可能方向が多方向の場合に、実装方向を判定して、実装方向別に排気側温度が最大許容排気温度より低いこと、及び縦実装の場合に測定温度差の絶対値が最大許容温度上昇値より小さいことにより、電子機器ユニット内が温度上許容範囲内であると判定することができる。 According to the first aspect of the present invention , the temperature sensor is provided on one side and the other side of the printed board mounted in the electronic device unit, and printing is performed depending on whether the difference in measured temperature of each temperature sensor is positive, negative, or substantially zero. Determine the mounting direction of the board, determine that the temperature in the electronic device unit is within the allowable temperature by the exhaust side temperature in each mounting direction being lower than the maximum allowable exhaust temperature set for each mounting direction, Further, in the case of vertical mounting, the internal mounting abnormality or operation abnormality is determined by the absolute value of the measured temperature difference of each temperature sensor being smaller than the maximum allowable temperature rise value. Therefore, when the mountable directions are multi-directional, the mounting direction is determined, the exhaust side temperature is lower than the maximum allowable exhaust temperature for each mounting direction, and the absolute value of the measured temperature difference is the maximum allowable temperature for vertical mounting. By being smaller than the increase value, it can be determined that the inside of the electronic device unit is within the allowable range in terms of temperature.

参考例
図1(a),(b)はこの発明の参考例の電子機器ユニットの温度測定装置の平面図及びその要部拡大図を示し、プリント板4には実装部品6を実装するとともに、デバイス型温度センサ5を実装する。プリント板4には実装部品6や温度センサ5間を接続する配線パターンが形成されており、これにより回路が形成される。プリント板4の温度センサ5を実装した部分の周囲には、温度センサ5とプリント板4に形成された回路とを接続する配線パターンが通過するエリア4bを残して切り欠き溝4cを形成する。
Reference example 1
FIGS. 1A and 1B are a plan view and an enlarged view of a main part of a temperature measuring device for an electronic device unit according to a first embodiment of the present invention. A mold temperature sensor 5 is mounted. The printed circuit board 4 is formed with a wiring pattern for connecting the mounting component 6 and the temperature sensor 5, thereby forming a circuit. A cutout groove 4c is formed around a portion of the printed board 4 where the temperature sensor 5 is mounted, leaving an area 4b through which a wiring pattern connecting the temperature sensor 5 and a circuit formed on the printed board 4 passes.

参考例においては、プリント板4の温度センサ5を実装した部分の周囲に、温度センサ5とプリント板4に形成された回路とを接続する配線パターンが通過するエリア4bを残して切り欠き溝4cを形成しており、プリント板4と温度センサ5を実装した部分との間の熱抵抗が非常に大きくなり、近傍に高発熱部品が実装されていても、その部品からの熱伝導による影響をほとんど受けなくなり、温度センサ5の周囲の空気温度を精度良く測定できるようになった。しかも、デバイス型の温度センサ5は機械実装が可能であり、安価にすることができる。従って、ユニット内の空気温度を安価に正確に測定することができる。又、温度センサ5をプリント板4に実装するだけでよく、取付構造が簡単小形で安価になる。さらに、配線が不要で通風抵抗の要因となるものがなく、安定した精度が高い測定が可能になるとともに、狭い空間でも実装可能である。また、周囲に高発熱部品が実装されていても、温度センサ5を風上側に設けることにより、高発熱部品の熱の影響を避けることができる。 In Example 1, the periphery of the portion mounting the temperature sensor 5 of the printed board 4, a groove notch leaving areas 4b of the wiring pattern for connecting the circuit formed on the temperature sensor 5 and the printed circuit board 4 passes 4c is formed, the thermal resistance between the printed board 4 and the portion where the temperature sensor 5 is mounted becomes very large, and even if a highly heat-generating component is mounted in the vicinity, the effect of heat conduction from that component The air temperature around the temperature sensor 5 can be measured with high accuracy. Moreover, the device-type temperature sensor 5 can be mounted on a machine and can be made inexpensive. Therefore, the air temperature in the unit can be accurately measured at a low cost. Further, the temperature sensor 5 need only be mounted on the printed board 4, and the mounting structure is simple, small and inexpensive. Furthermore, no wiring is required and there is no factor of ventilation resistance, and stable and highly accurate measurement is possible, and mounting is possible even in a narrow space. Even if high heat-generating parts are mounted in the surrounding area, the influence of heat of the high heat-generating parts can be avoided by providing the temperature sensor 5 on the windward side.

参考例2
図2はこの発明の参考例2による電子機器ユニットの温度測定装置の平面図であり、電子機器ユニット7内のプリント板4には実装部品6を実装するとともに、プリント板4の吸気側または排気側にプリント板4の拡張部分4d,4eを設け、拡張部分4d,4eにはデバイス型温度センサ5を実装する。又、プリント板4とその拡張部分4d,4eとの接続部分4f,4gは温度センサ5とプリント板4に形成された回路とを接続する配線パターンが通過するのみのエリアとする。
Reference example 2
FIG. 2 is a plan view of a temperature measuring device for an electronic device unit according to a second embodiment of the present invention. The mounting component 6 is mounted on the printed board 4 in the electronic device unit 7 and the intake side or the exhaust of the printed board 4 is mounted. The extended portions 4d and 4e of the printed board 4 are provided on the side, and the device type temperature sensor 5 is mounted on the extended portions 4d and 4e. Further, the connection parts 4f and 4g between the printed board 4 and the extended parts 4d and 4e are areas through which the wiring pattern connecting the temperature sensor 5 and the circuit formed on the printed board 4 only passes.

参考例2においては、プリント板4とその吸気側又は排気側の拡張部分4d,4eとの接続部分4f,4gを温度センサ5とプリント板4に形成された回路とを接続する配線パターンが通過するのみのエリアとしたので、プリント板4とその拡張部分4d,4eとの間の熱抵抗が非常に大きくなり、近傍に高発熱部品が実装されていても、その部品からの伝導による熱の影響をあまり受けなくなり、温度センサ5は周囲の空気温度を精度良く測定することができる。又、デバイス型温度センサ5は機械実装が可能で安価になり、周囲の空気温度を安価に精度よく測定することができる。また、温度センサ5を吸気側の拡張部分4dに設ければ、高発熱部品の風上側に設けることができ、温度センサ5は高発熱部品の熱の影響を受けず、周囲の空気温度を精度良く測定することができる。又、温度センサ5を排気側の拡張部分4eに設ければ、高発熱部品の風下側に設けることになるが、風の通り道に設けられるので、冷却効果が良く、やはり高発熱部品の熱の影響をほとんど受けない。その他、参考例と同様の効果を奏する。 In the reference example 2 , the wiring pattern connecting the temperature sensor 5 and the circuit formed on the printed board 4 passes through the connection parts 4f and 4g between the printed board 4 and the expansion parts 4d and 4e on the intake side or the exhaust side thereof. Since the area is merely an area, the thermal resistance between the printed board 4 and the extended portions 4d and 4e becomes very large, and even if a high heat-generating part is mounted in the vicinity, the heat generated by conduction from the part is reduced. The temperature sensor 5 can measure the ambient air temperature with high accuracy. Further, the device type temperature sensor 5 can be mounted on a machine and is inexpensive, and the ambient air temperature can be measured accurately at low cost. Further, if the temperature sensor 5 is provided in the extended portion 4d on the intake side, it can be provided on the windward side of the high heat generating component, and the temperature sensor 5 is not affected by the heat of the high heat generating component, and the ambient air temperature is accurately measured. It can be measured well. Further, if the temperature sensor 5 is provided in the extended portion 4e on the exhaust side, it is provided on the leeward side of the high heat generating component. However, since it is provided in the path of the wind, the cooling effect is good, and the heat of the high heat generating component is still good. Little affected. In addition, the same effects as Reference Example 1 are obtained.

参考例3
図3(a),(b)は参考例3による電子機器ユニットの温度測定装置におけるプリント板の平面図及び小プリント板をメインプリント板に実装する状態を示し、図3(a)に示すようにメインプリント板8と小プリント板9とを共取りにより一体に製作し、メインプリント板8部分には実装部品6を実装するとともに、小プリント板9部分にはデバイス型温度センサ5を実装し、小プリント板9にはリード10を設ける。ここで、メインプリント板8と小プリント板9を切り離し、捨て基板となる部分8aも切り離す。次に、図3(b)に示すようにリード10をメインプリント板8に半田付けし、小プリント板9をメインプリント板8に実装する。ここで、小プリント板9のリード10は、メインプリント板8と温度センサ5間の熱抵抗を大きくするために長く細い形状とする。
Reference example 3
FIGS. 3A and 3B show a plan view of a printed board and a state in which a small printed board is mounted on the main printed board in the temperature measuring device for an electronic device unit according to Reference Example 3 , as shown in FIG. In addition, the main printed board 8 and the small printed board 9 are integrally manufactured, and the mounting component 6 is mounted on the main printed board 8 and the device type temperature sensor 5 is mounted on the small printed board 9. The small printed board 9 is provided with leads 10. Here, the main printed board 8 and the small printed board 9 are separated, and the portion 8a to be a discarded board is also separated. Next, as shown in FIG. 3B, the lead 10 is soldered to the main printed board 8, and the small printed board 9 is mounted on the main printed board 8. Here, the lead 10 of the small printed board 9 has a long and thin shape in order to increase the thermal resistance between the main printed board 8 and the temperature sensor 5.

参考例3においては、小プリント板9を細長いリード10を介してメインプリント板8に実装したので、小プリント板9に実装された温度センサ5とメインプリント板8との間の熱抵抗が大きくなり、温度センサ5はメインプリント板8に実装された実装部品6の熱の影響をほとんど受けなくなり、安価なデバイス型温度センサ5を用いて、周囲の空気温度を正確に測定することができる。その他、参考例と同様の効果を奏する。 In Reference Example 3 , since the small printed board 9 is mounted on the main printed board 8 through the elongated leads 10, the thermal resistance between the temperature sensor 5 mounted on the small printed board 9 and the main printed board 8 is large. Thus, the temperature sensor 5 is hardly affected by the heat of the mounting component 6 mounted on the main printed board 8, and the ambient air temperature can be accurately measured using the inexpensive device type temperature sensor 5. In addition, the same effects as Reference Example 1 are obtained.

実施最良形態
図4〜図6は実施最良形態による電子機器ユニットの温度監視方法を説明する説明図であり、図4は電子機器ユニット7内に実装されたプリント板4がその一方の側を電子機器ユニット7の上側の排気側にして縦実装された場合を示し、図5はプリント板がその他方の側を電子機器ユニット7の上側の排気側にして縦実装された場合を示し、図6はプリント板4が水平実装された場合を示す。又、図4の場合、縦実装されたプリント板4の一方の側(上側の排気側)に温度センサ11aを設けるとともに、プリント板4の他方の側(下側の吸気側)に温度センサ11bを設ける。また、図5の場合には、縦実装されたプリント板4の一方の側(下側の吸気側)に温度センサ11aを設けるとともに、プリント板4の他方の側(上側の排気側)に温度センサ11bを設ける。さらに、図6の場合には、水平実装されたプリント板4の一方の側(吸気側又は排気側)に温度センサ11aを設けるとともに、プリント板4の他方の側(排気側又は吸気側)に温度センサ11bを設ける。
Best Embodiment 1
4 to 6 are explanatory views for explaining a temperature monitoring method for the electronic device unit according to the first embodiment, and FIG. 4 shows the printed board 4 mounted in the electronic device unit 7 on one side of the electronic device unit. FIG. 5 shows a case where the printed board is vertically mounted with the other side being the upper exhaust side of the electronic device unit 7, and FIG. The case where the board 4 is mounted horizontally is shown. In the case of FIG. 4, a temperature sensor 11a is provided on one side (upper exhaust side) of the vertically mounted printed board 4, and a temperature sensor 11b is provided on the other side (lower intake side) of the printed board 4. Is provided. In the case of FIG. 5, the temperature sensor 11a is provided on one side (lower intake side) of the vertically mounted printed board 4, and the temperature is provided on the other side (upper exhaust side) of the printed board 4. A sensor 11b is provided. Further, in the case of FIG. 6, the temperature sensor 11a is provided on one side (intake side or exhaust side) of the horizontally mounted printed board 4, and on the other side (exhaust side or intake side) of the printed board 4. A temperature sensor 11b is provided.

ここで、温度センサ11a,11bの測定温度をTa,Tbとして、その温度差ΔTをΔT=Ta−Tbの式により演算し、このΔTにより実装方向を判定する。即ち、ΔTが正の場合は、図4に示すようにプリント板4の一方の側が上側の排気側の縦実装の場合と判定し、ΔTが負の場合は、図5に示すようにプリント板4の他方の側が上側の排気側の縦実装の場合と判定し、ΔTがほぼ零の場合は、図6に示すようにプリント板4が水平実装の場合と判定する。又、図4の場合、即ち、プリント板4の一方の側が上側の排気側の縦実装の場合には、その判定値である縦実装最大許容排気温度(内部部品仕様温度が満足する時の最大温度、以下同様)をTvamaxとして、排気側温度Ta<Tvamaxか否かを判定する。また、図5の場合、即ち、プリント板4の他方の側が上側の排気側の縦実装の場合には、その判定値である縦実装最大許容排気温度をTvbmaxとして、排気側温度Tb<Tvbmaxか否かを判定する。さらに、図6の場合、即ち、プリント板4が水平実装の場合には、その判定値である縦実装最大許容排気温度をThamaxとして、排気側温度Ta又はTb<Thamaxか否かを判定する。このように、それぞれの場合に排気側温度が実装方向別の最大許容排気温度より低いことにより、電子機器ユニット7内の温度が許容温度内であると判定する。   Here, the measured temperatures of the temperature sensors 11a and 11b are Ta and Tb, the temperature difference ΔT is calculated by the equation ΔT = Ta−Tb, and the mounting direction is determined based on ΔT. That is, when ΔT is positive, it is determined that one side of the printed board 4 is vertically mounted on the upper exhaust side as shown in FIG. 4, and when ΔT is negative, the printed board is shown as shown in FIG. 4 is determined to be the vertical mounting on the upper exhaust side, and when ΔT is substantially zero, it is determined that the printed board 4 is horizontally mounted as shown in FIG. In the case of FIG. 4, that is, when one side of the printed board 4 is vertically mounted on the exhaust side on the upper side, the vertical mounting maximum allowable exhaust temperature (maximum when the internal component specification temperature is satisfied), which is the judgment value, It is determined whether or not the exhaust side temperature Ta <Tvamax, where Tvamax is the temperature. Further, in the case of FIG. 5, that is, when the other side of the printed board 4 is vertically mounted on the exhaust side on the upper side, whether the exhaust side temperature Tb <Tvbmax is set, where Tvbmax is the maximum allowable exhaust temperature for vertical mounting as the determination value. Determine whether or not. Further, in the case of FIG. 6, that is, when the printed board 4 is horizontally mounted, it is determined whether or not the exhaust side temperature Ta or Tb <Thamax, where the maximum allowable exhaust temperature for vertical mounting as the determination value is Thamax. Thus, in each case, the exhaust side temperature is lower than the maximum allowable exhaust temperature for each mounting direction, so that the temperature in the electronic device unit 7 is determined to be within the allowable temperature.

さらに、図4,図5の縦実装の場合には、上記ΔTの絶対値が判定値である最大許容温度上昇値ΔTmaxより小さいことが必要であり、これにより内部実装異常や動作異常がないことが判定される。   Furthermore, in the case of the vertical mounting shown in FIGS. 4 and 5, the absolute value of ΔT needs to be smaller than the maximum allowable temperature rise value ΔTmax, which is a determination value, so that there is no internal mounting abnormality or abnormal operation. Is determined.

実施最良形態においては、プリント板4の一方の側と他方の側に温度センサ11a,11bを設け、それぞれの測定温度をTa,Tbとして、その温度差ΔTが正の場合には一方の側が上側の排気側の縦実装と判定することができ、負の場合には他方の側が上側の排気側の縦実装と判定することができ、ほぼ零の場合には水平実装と判定することができる。又、排気側温度が実装方向別の最大許容排気温度より低いことにより、電子機器ユニット7内の温度が許容温度内であると判定し、かつ縦実装の場合には温度差の絶対値が最大許容温度上昇値より小さいことにより、電子機器ユニット7内に内部実装異常及び動作異常がないことが判定される。そして、これらの条件をすべて満足するときに電子機器ユニット7内が温度上許容範囲内であると判定する。 Implemented in the best mode 1, the temperature sensor 11a, and 11b provided on one side and the other side of the printed circuit board 4, the respective measured temperature Ta, as Tb, one side is in that case the temperature difference ΔT is positive It can be determined that the upper exhaust side is vertically mounted, and if it is negative, the other side can be determined as the upper exhaust side vertical mounting, and if it is almost zero, it can be determined as horizontal mounting. . Further, since the exhaust side temperature is lower than the maximum allowable exhaust temperature in each mounting direction, it is determined that the temperature in the electronic device unit 7 is within the allowable temperature, and the absolute value of the temperature difference is maximum in the case of vertical mounting. When the temperature is smaller than the allowable temperature increase value, it is determined that there is no internal mounting abnormality or operation abnormality in the electronic device unit 7. When all of these conditions are satisfied, it is determined that the inside of the electronic device unit 7 is within the allowable range in terms of temperature.

以上のようにして、実施可能方向が多方向の自然空冷電子機器ユニット7の温度監視、制御が可能となり、また各実装方向の排気側温度を判定温度とすることにより、電子機器ユニット7内の負荷を抑えることでより高い周囲温度の環境で使用可能となり、実装方向に応じた詳細な温度制御、監視が可能となって、信頼性が向上する。又、従来の技術にはなかった実装異常や内部部品の異常による温度異常なども検出可能となる。   As described above, it is possible to monitor and control the temperature of the natural air-cooled electronic device unit 7 in which the possible directions are multi-directional, and by setting the exhaust side temperature in each mounting direction as the determination temperature, By suppressing the load, it can be used in an environment with a higher ambient temperature, and detailed temperature control and monitoring according to the mounting direction becomes possible, improving reliability. Further, it is possible to detect a temperature abnormality caused by a mounting abnormality or an internal component abnormality that was not found in the prior art.

この発明の参考例の電子機器ユニットの温度測定装置の平面図及びその要部拡大図である。It is the top view of the temperature measuring apparatus of the electronic device unit of the reference example 1 of this invention, and its principal part enlarged view. この発明の参考例2による電子機器ユニットの温度測定装置の平面図である。It is a top view of the temperature measuring apparatus of the electronic device unit by the reference example 2 of this invention. この発明の参考例3による電子機器ユニットの温度測定装置におけるプリント板の平面図及び小プリント板をメインプリント板に実装する状態を示す図である。It is a figure which shows the state which mounts the top view of a printed circuit board and the small printed circuit board in the main printed circuit board in the temperature measuring apparatus of the electronic device unit by the reference example 3 of this invention. 実施最良形態による電子機器ユニットの温度監視方法の説明図である。It is explanatory drawing of the temperature monitoring method of the electronic device unit by Embodiment 1. FIG. 実施最良形態による電子機器ユニットの温度監視方法の説明図である。It is explanatory drawing of the temperature monitoring method of the electronic device unit by Embodiment 1. FIG. 実施最良形態による電子機器ユニットの温度監視方法の説明図である。It is explanatory drawing of the temperature monitoring method of the electronic device unit by Embodiment 1. FIG. 従来の電子機器ユニットの温度測定装置の正面図である。It is a front view of the temperature measuring apparatus of the conventional electronic device unit. 従来のデバイス型温度センサの平面図及びこの温度センサをプリント板に実装する状態を示す図である。It is a figure which shows the top view of the conventional device type temperature sensor, and the state which mounts this temperature sensor on a printed circuit board. ユニット負荷とユニット許容周囲温度との関係図である。FIG. 6 is a relationship diagram between unit load and unit allowable ambient temperature.

4…プリント板
4b…配線パターン通過エリア
4c…切り欠き溝
4d,4e…拡張部分
4f,4g…接続部分
5…デバイス型温度センサ
6…実装部品
7…電子機器ユニット
8…メインプリント板
9…小プリント板
10…リード
DESCRIPTION OF SYMBOLS 4 ... Printed board 4b ... Wiring pattern passage area 4c ... Notch groove 4d, 4e ... Expansion part 4f, 4g ... Connection part 5 ... Device type temperature sensor 6 ... Mounting component 7 ... Electronic equipment unit 8 ... Main printed board 9 ... Small Print board 10 ... Lead

Claims (1)

電子機器ユニット内に実装されたプリント板の一方の側及び他方の側にそれぞれ温度センサを設け、一方の側と他方の側との温度差が正、負、ほぼ零により、一方の側が上側の排気側の縦実装か他方の側が上側の排気側の縦実装か水平実装かを判定するとともに、各実装方向の場合の排気側温度が各実装方向別に設定された最大許容排気温度より低く、かつ縦実装の場合に上記温度差の絶対値が最大許容温度上昇値より小さいことにより、電子機器ユニット内が温度上許容範囲内であると判定することを特徴とする電子機器ユニットの温度監視方法。Temperature sensors are provided on one side and the other side of the printed board mounted in the electronic device unit, respectively, and the temperature difference between one side and the other side is positive, negative, almost zero, and one side is the upper side. Determine whether the exhaust side vertical mounting or the other side is the upper exhaust side vertical mounting or horizontal mounting, and the exhaust side temperature in each mounting direction is lower than the maximum allowable exhaust temperature set for each mounting direction, and A temperature monitoring method for an electronic device unit, wherein in the case of vertical mounting, the electronic device unit is determined to be within an allowable temperature range when the absolute value of the temperature difference is smaller than a maximum allowable temperature rise value.
JP2006086899A 2006-03-28 2006-03-28 Temperature monitoring method for electronic equipment unit Expired - Fee Related JP4952015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086899A JP4952015B2 (en) 2006-03-28 2006-03-28 Temperature monitoring method for electronic equipment unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086899A JP4952015B2 (en) 2006-03-28 2006-03-28 Temperature monitoring method for electronic equipment unit

Publications (2)

Publication Number Publication Date
JP2007263636A JP2007263636A (en) 2007-10-11
JP4952015B2 true JP4952015B2 (en) 2012-06-13

Family

ID=38636780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086899A Expired - Fee Related JP4952015B2 (en) 2006-03-28 2006-03-28 Temperature monitoring method for electronic equipment unit

Country Status (1)

Country Link
JP (1) JP4952015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210466A (en) * 2013-05-09 2015-12-30 苹果公司 System and methods for thermal control using sensors on die

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354641B2 (en) 2015-04-06 2018-07-11 株式会社デンソー Electronic equipment
US20200103293A1 (en) * 2018-09-28 2020-04-02 Rosemount Inc. Non-invasive process fluid temperature indication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995382B2 (en) * 2000-02-14 2007-10-24 三洋電機株式会社 Control device with temperature sensor
JP4586413B2 (en) * 2004-05-17 2010-11-24 Nok株式会社 Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210466A (en) * 2013-05-09 2015-12-30 苹果公司 System and methods for thermal control using sensors on die
CN105210466B (en) * 2013-05-09 2017-05-03 苹果公司 System and methods for thermal control using sensors on die

Also Published As

Publication number Publication date
JP2007263636A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP6275830B2 (en) Method and system for measuring heat flux
JP5350413B2 (en) Intake air temperature sensor and thermal air flow meter having the same
JP2008537325A (en) Apparatus and method for measuring temperature of heat absorber
JP7059836B2 (en) Wind condition detector
US8905635B2 (en) Temperature sensor attachment facilitating thermal conductivity to a measurement point and insulation from a surrounding environment
WO2010006003A1 (en) Method and apparatus to accurately read ambient room temperature for a room sensor apparatus
JP2013531248A (en) Infrared temperature measurement and stabilization
EP1279934A2 (en) Thermal mass flow meter with air-cooled support member
JP2008209402A (en) Sensor configuration for temperature measurement
JP2014064419A (en) Electronic control device
JP4952015B2 (en) Temperature monitoring method for electronic equipment unit
JP5458966B2 (en) Mounting structure of temperature detection element
KR101624105B1 (en) Terminal block for temperature compensating of thermocouple
US20140050248A1 (en) I/o connector incorporating a cold junction
US20220397461A1 (en) Thermal Insulated Metallic Housing Comprising Internal Shell
US11609125B2 (en) Systems and methods for thermal monitoring
JP2010267724A (en) Electronic device
JP2009528539A (en) Circuit lid with thermocouple
JP7365049B2 (en) Thermal flow rate/flow sensor
US20240044685A1 (en) Electronic heat balance flow meter
CN113720874B (en) Microwave product thermal simulation method based on soldering tin thermal conductivity test
CN114270502A (en) Electronic device and method for assembling electronic device
JP2022038494A (en) Method and device for measuring thermal resistance of thermocouple
JP2018155626A (en) Current sensor
CN106441959A (en) IGBT module heat radiation performance assessment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4952015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees