JP4950002B2 - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP4950002B2
JP4950002B2 JP2007290481A JP2007290481A JP4950002B2 JP 4950002 B2 JP4950002 B2 JP 4950002B2 JP 2007290481 A JP2007290481 A JP 2007290481A JP 2007290481 A JP2007290481 A JP 2007290481A JP 4950002 B2 JP4950002 B2 JP 4950002B2
Authority
JP
Japan
Prior art keywords
magnetic field
processing
plasma
moving magnetic
annular core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007290481A
Other languages
English (en)
Other versions
JP2009117690A (ja
Inventor
郁夫 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007290481A priority Critical patent/JP4950002B2/ja
Publication of JP2009117690A publication Critical patent/JP2009117690A/ja
Application granted granted Critical
Publication of JP4950002B2 publication Critical patent/JP4950002B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は,処理ガスのプラズマを形成して被処理基板に所定の処理を施すプラズマ処理装置及びプラズマ処理方法に関する。
この種のプラズマ処理装置は,処理室内に所定のガスを供給して,被処理基板例えば半導体ウエハ(以下,単に「ウエハ」とも称する)に対して成膜,エッチング,スパッタリングなどの所定の処理を施すようになっている。このようなプラズマ処理装置は,例えば処理室内にウエハを載置する載置台を兼ねる下部電極と,ウエハに向けてガスを噴出するシャワーヘッドを兼ねる上部電極とを配設して構成される。このような平行平板型のプラズマ処理装置では,処理室内のウエハ上にシャワーヘッドから所定のガスを供給した状態で電極間に高周波電力を印加してプラズマを生成することによって,ウエハ表面にエッチングなど所定の処理を行うようになっている。
このようにウエハに対して成膜やエッチングなどの所定の処理を施すに当り,エッチングレートやエッチング選択比,成膜レートなどの処理特性をウエハ面内において均一にし,ウエハ処理の面内均一性を向上することは,従来からの重要課題である。
このような観点から,従来よりウエハ上の処理特性の均一性を向上させるために,処理室の側壁の外周を囲むようにダイポールリングを配置して,ウエハ上に一様な一方向傾斜磁場を形成するものが知られている(例えば特許文献1参照)。また,処理室の上部に環状に複数のセグメント磁石を配置してウエハよりも半径方向外側に磁力線を発生させて,これによる磁界によってプラズマをウエハ上の領域に閉じ込めるものもある(特許文献2,3参照)。
特開平9−186141号公報 特開2005−302875号公報 特開2005−302878号公報
しかしながら,処理室の側壁の外周を囲むようにダイポールリングを配置する構成では,ダイポールリングの配置によっては,そのダイポールリングによる磁場がウエハ上近くに発生して,ウエハ上に磁場が作用してウエハがダメージやストレスを受ける虞がある。また,処理室の上部に環状に複数のセグメント磁石を配置する構成では,ダメージやストレスが発生する虞はないものの,セグメント磁石により発生する磁場の強さなどの調整が容易でないという問題がある。例えばセグメント磁石の上下位置を調整したり,セグメント磁石自体を交換するなど調整に手間がかかるとともに,セグメント磁石を取付けた後に微調整するのは困難である。
ところが,近年ではウエハ上に形成される素子の更なる微細化やウエハ自体の更なる大径化に伴って,従来以上にプラズマ分布(プラズマ密度)を微調整できることが望まれている。例えばエッチングレートの面内均一性は従来は5%以下の精度でも十分であったが,最近では1%以下の精度まで要求される場合もある。特に処理室の側壁におけるプラズマの拡散や消滅による急激なプラズマ密度の低下によって,ウエハエッジ部で顕著にプラズマ密度が低下する傾向があるため,これを改善できれば従来以上の面内均一性が実現できるので,プラズマの周辺領域の分布を微調整できることが好ましい。
しかも,処理室内では異なる複数の処理条件(ガス種,ガス流量,圧力など)で処理が行われる場合があるため,そのような場合でもすべての処理条件でプラズマの周辺領域の分布が適正になるように調整できることが望まれている。
そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは,被処理基板の処理条件に応じてプラズマの周辺領域の分布を容易に制御でき,ひいてはプラズマの全体領域の分布を制御することができるプラズマ処理装置及びプラズマ処理方法を提供することにある。
上記課題を解決するために,本発明のある観点によれば,減圧可能な処理室内に互いに対向する上部電極及び下部電極を設け,所定の処理条件に基づいて前記電極間に処理ガスを供給するとともに高周波電力を印加してプラズマを生成することによって,前記下部電極上に配置された被処理基板の表面に所定のプラズマ処理を施すプラズマ処理装置であって,前記電極間に生成されるプラズマ生成空間のうち,前記被処理基板よりも半径方向外側に,周方向に回転する移動磁場を形成する移動磁場形成手段と,前記処理条件に応じて前記移動磁場を制御する制御部とを備え,前記移動磁場形成手段は,前記上部電極の周囲を囲むように固定して設けられた環状コアと,前記環状コアの下面に突出して形成され,前記環状コアの内側から外側に放射状に延びるように周方向に配列した複数のティース部と,前記複数のティース部間に下方に向かって上方に戻る経路を形成する磁力線が前記環状コアの周方向全周に亘って複数発生するように前記複数のティース部間に巻回した複数の巻線からなるコイルと,前記コイルの各巻線にそれぞれ位相の異なる交流電流を流して前記磁力線を時間的に変化させることで周方向に回転する移動磁場を形成するための磁場形成用電源とを有し,前記制御部は,前記処理条件に応じて前記磁場形成用電源からの交流電流を制御することにより前記移動磁場を制御することを特徴とするプラズマ処理装置が提供される。例えば上記コイルは3組の巻線からなり,これら各巻線にそれぞれ前記磁場形成用電源から三相交流電流を供給する。
上記課題を解決するために,本発明の別の観点によれば,減圧可能な処理室内に互いに対向する上部電極及び下部電極を設け,所定の処理条件に基づいて前記電極間に処理ガスを供給するとともに高周波電力を印加してプラズマを生成することによって,前記下部電極上に配置された被処理基板の表面に所定の処理を施すプラズマ処理方法であって,前記電極間に生成されるプラズマ生成空間のうち,前記被処理基板よりも半径方向外側に,周方向に回転する移動磁場を形成する移動磁場形成手段を備え,前記移動磁場形成手段は,前記上部電極の周囲を囲むように固定して設けられた環状コアと,前記環状コアの下面に突出して形成され,前記環状コアの内側から外側に放射状に延びるように周方向に配列した複数のティース部と,前記複数のティース部間に下方に向かって上方に戻る経路を形成する磁力線が前記環状コアの周方向全周に亘って複数発生するように前記複数のティース部間に巻回した複数の巻線からなるコイルと,前記コイルの各巻線にそれぞれ位相の異なる交流電流を流して前記磁力線を時間的に変化させることで周方向に回転する移動磁場を形成するための磁場形成用電源とを有してなり,前記処理条件に基づいて前記被処理基板の処理を行う際に,前記処理条件に応じて前記磁場形成用電源からの交流電流を制御することにより前記移動磁場を制御することを特徴とするプラズマ処理方法が提供される。
このような本発明によれば,磁場形成用電源からの交流電流がコイルに流れることにより,環状コアの下方には複数のティース部間に下方に向かって上方に戻る経路を形成する磁力線が発生するとともにこれらの磁力線が時間的に変化して,プラズマ生成空間における被処理基板よりも半径方向外側に周方向に回転する移動磁場が形成される。これにより,例えば処理室の側壁におけるプラズマの拡散や消滅による急激なプラズマ密度の低下を防止することができるので,プラズマの周辺領域の分布の均一性を高めることができ,ひいてはプラズマの全体領域の分布を制御することができる。
このとき,制御部により被処理基板の処理条件に応じて磁場形成用電源からコイルに流れる交流電流が制御されることにより,移動磁場の強さや回転速度などを容易に制御することができる。これにより,処理条件に応じてプラズマの周辺領域の分布を容易に制御でき,被処理基板の半径方向のみならず,周方向においてもプラズマ分布を制御できる。
また,上記処理条件は,例えば前記処理ガスの種類,前記処理室内の圧力,前記処理ガスの流量,前記高周波電力のうちのいずれか1つ又は2つ以上の任意の組合せである。これらの処理条件が変わることで被処理基板の面内においてプラズマ分布が変化したとしても,磁場形成用電源からの交流電流を制御することにより,常に最適なプラズマ分布になるように制御することができる。
また,上記制御部は,前記被処理基板の処理を複数の異なる処理条件で連続して実行する際に,前記処理条件での処理を行うごとに前記磁場形成用電源からの交流電流を切り換えるようにしてもよい。例えば処理条件が変わっても処理条件ごとに磁場形成用電源からコイルに流れる交流電流が切り換えられるので,処理条件が変わっても常にプラズマ分布を最適に保持することができる。
また,上記処理条件を複数記憶するとともに,前記各処理条件ごとにその処理条件で前記被処理基板の処理を行う際に前記コイルに流す交流電流を制御するのに必要な情報を関連づけて予め記憶部に記憶しておき,前記制御部は,前記処理条件を前記記憶部から読み出すとともに,それに関連づけられた前記交流電流の制御情報を読み出して,その交流電流の制御情報に基づいて前記磁場形成用電源を制御することにより前記処理条件に応じた移動磁場を形成しつつ,前記処理条件に基づいて前記被処理基板の処理を行うようにしてもよい。これによれば,被処理基板の処理を行うごとに自動的に処理条件に応じた移動磁場が形成されることにより,処理条件に応じたプラズマ分布を自動的に形成することができる。
また,上記制御部は,操作パネルからのオペレータの操作に基づいて前記磁場形成用電源からの交流電流を制御可能としてもよい。これによれば,オペレータの操作により,磁場形成用電源からの交流電流を制御することによって移動磁場を微調整することによって,プラズマ分布を容易に微調整することができる。
本発明によれば,被処理基板の処理条件に応じて磁場形成用電源からコイルに流れる交流電流を制御することで,移動磁場の強さや回転速度などを容易に制御することができ,微調整も容易に行うことができる。これにより,被処理基板の処理条件に応じてプラズマ分布を容易に制御でき,ひいてはプラズマの全体領域の分布を制御することができる。
以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
(プラズマ処理装置の構成例)
先ず,本発明の実施形態にかかるプラズマ処理装置100の構成例について図面を参照しながら説明する。図1は,プラズマ処理装置100の概略構成を示している。このプラズマ処理装置100は,被処理基板としての半導体ウエハ(以下,単に「ウエハ」とも称する)Wにエッチング処理を施す平行平板型のエッチング処理装置として構成されている。プラズマ処理装置100は,金属製(例えば,アルミニウム製またはステンレス製)の円筒形の処理室(チャンバ)110を備える。処理室110の側壁の内面はパーティクルが付着し難いように陽極酸化処理(例えばアルマイト処理)が施されている。
処理室110内には,例えば直径が300mmのウエハWを載置するステージとしての円柱状のサセプタ111が設けられている。処理室110の側壁とサセプタ111との間には,サセプタ111の上方の気体を処理室110の外へ排出する流路として機能する排気路112が形成されている。この排気路112の途中には環状のバッフル板113が配設されており,排気路112のバッフル板113から下の空間は,可変式バタフライバルブである自動圧力制御弁(以下,「APC(Adaptive Pressure Control)バルブ」という)114に通じている。APCバルブ114は,真空引き用の排気ポンプであるターボ分子ポンプ(以下,「TMP」という)115に接続されており,さらにこのTMP115を介して排気ポンプであるドライポンプ(以下,「DP」という)116に接続されている。これらAPCバルブ114,TMP115,およびDP116によって構成される排気流路(以下,「本排気ライン」という)は,処理室110内を高真空状態になるまで減圧するためのものである。そして処理室110内の圧力は,APCバルブ114によって調節される。
また,排気路112のバッフル板113から下の空間は,本排気ラインとは別の排気ライン(以下,「粗引きライン」という)にも接続されている。この粗引きラインは,途中にバルブV2を備えた排気管117とDP116によって構成されている。処理室110内の気体は通常,本排気ラインよりも先にこの粗引きラインによって排出されることになる。
下部電極としてのサセプタ111には高周波電源118が導線150を介して接続されており,高周波電源118から所定の高周波電力が印加される。導線150には,サセプタ111からの高周波電力の反射を低減して,この高周波電力のサセプタ111への入射効率を最大限とする整合器119と,導線150の導通および切断を切り替えるスイッチ151が備えられている。このスイッチ151は,電気的にサセプタ111と高周波電源118の間に位置しており,サセプタ111の電気的状態をフローティング(浮遊)状態と導通状態のいずれかに設定することができる。例えばウエハWがサセプタ111の上面に載置されていないとき,スイッチ151は,サセプタ111を電気的フローティング状態とする。
サセプタ111の内部の上方には,ウエハWを静電吸着するための導電膜からなる円板状の電極板120が設けられている。電極板120には直流電源122が電気的に接続されている。ウエハWは,直流電源122から電極板120に印加される直流電圧に応じて発生するクーロン力またはジョンソン・ラーベク(Johnsen−Rahbek)力によってサセプタ111の上面に吸着保持される。円環状のフォーカスリング124は,シリコン等からなり,サセプタ111の上方に発生したプラズマをウエハWに向けて収束させるものである。
サセプタ111の内部には,冷媒室125が配置されている。この冷媒室125には,チラーユニット(図示せず)から配管126を介して所定温度の冷媒(例えば冷却水)が循環供給される。サセプタ111に載置されたウエハWの処理温度は,冷媒室125によって温度制御される。
サセプタ111の上面においてウエハWが吸着する部分(以下,「吸着面」という)には,複数の伝熱ガス供給孔127と伝熱ガス供給溝(図示せず)が配されている。これら伝熱ガス供給孔127と伝熱ガス供給溝は,サセプタ111内部に備えられた伝熱ガス供給ライン128とバルブV3を有する伝熱ガス供給管129を経由して伝熱ガス供給部(図示せず)に繋がっており,ここからの伝熱ガス(例えばHeガス)を吸着面とウエハWの裏面との隙間に供給する。これによってウエハWとサセプタ111との熱伝導性が向上する。なお,伝熱ガス供給孔127と伝熱ガス供給溝に対する伝熱ガスの供給量は,バルブV3によって調整される。
なお,吸着面には図示はしないが,サセプタ111の上面から突没自在なリフトピンが設けられている。リフトピンは,ウエハWが吸着面に吸着保持されているときにはサセプタ111内に収容されており,所定の処理(例えば,エッチング処理)が終了したウエハWを処理室110から搬出するときにはサセプタ111の上面から突出してウエハWをサセプタ111から上方へ持ち上げる。
処理室110の天井部には,上部電極133が配設されている。上部電極133には高周波電源152が接続されており,所定の高周波電力が印加される。上部電極133は,処理室内にガスを導入するためのシャワーヘッドの機能も兼ねている。上部電極133は,多数のガス通気孔134を有する電極板135と,この電極板135を着脱可能に支持する電極支持体136とから構成される。電極支持体136の内部には,バッファ室137が設けられており,このバッファ室137には処理ガス供給部(図示せず)から延びている処理ガス導入管138が接続されている。この処理ガス導入管138の途中にはバルブV1が備えられており,このバルブV1によってバッファ室137に対するガス供給量が調整される。
処理室110の側壁には,ウエハWの搬入出口を開閉するゲートバルブ132が取り付けられている。このプラズマ処理装置100の処理室110内に処理ガスが供給され,上部電極133に高周波電力が印加されると,上部電極133と下部電極であるサセプタ111との間に形成されるプラズマ生成空間Sに高密度のプラズマが発生し,イオンやラジカルが生成される。
ここで,プラズマ生成空間Sは,サセプタ111と上部電極133の外周端より半径方向内側の空間に限定されるものではなく,それよりも半径方向外側の空間に広がって処理室110の内壁または側壁まで延在するものである。本発明では,プラズマ生成空間Sのうち,サセプタ111上に載置されているウエハWの外周端より半径方向内側の領域を「主プラズマ領域」と称し,「主プラズマ領域」の外側つまりウエハWの外周端より半径方向外側の領域を「周辺プラズマ領域」と称する。
処理室110の天井部において,上部電極133の周囲を囲むように環状(例えば同心状)に延在する移動磁場形成部300が固定して設けられている。移動磁場形成部300は,磁場形成用電源302からの交流電流の供給により周辺プラズマ領域で回転する移動磁場を形成し,プラズマ密度をコントロールすることで,ウエハの処理の均一性を制御するために機能する。これら移動磁場形成部300と磁場形成用電源302とは移動磁場形成手段を構成する。このような移動磁場形成部300の詳細については後述する。
プラズマ処理装置100には,装置全体の動作を制御する制御部200が設けられている。制御部200は,所定のプログラムにより所定の処理条件に基づいて各部を制御することにより,例えばエッチングなどの処理室内での所定の処理を行うようになっている。
(制御部の構成例)
このような制御部200の具体的な構成例について図面を参照しながら説明する。制御部200は,図2に示すように,制御部本体を構成するCPU(中央処理装置)210,CPU210が各部を制御するデータなどを格納するROM(リード・オンリ・メモリ)220,CPU210が行う各種データ処理のために使用されるメモリエリア等を設けたRAM(ランダム・アクセス・メモリ)230,操作画面や選択画面などを表示する液晶ディスプレイなどで構成される表示部240,オペレータによる各種の操作や情報の入力などを行うことができる操作パネル250,例えばブザーのような警報器等で構成される報知部260を備える。
また,制御部200は,プラズマ処理装置100の各部を制御するための各種コントローラ270を備える。各種コントローラ270には,例えばバルブV1,V2,V3,APCバルブ114,TMP115,DP116,高周波電源118,152,直流電源122,スイッチ151,磁場形成用電源302などを制御するコントローラが含まれる。
さらに,制御部200は,プラズマ処理装置100の処理を行うプログラムデータを格納するプログラムデータ記憶部280,およびプログラムデータに基づく処理を実行するときに使用するレシピデータなどの各種処理条件を記憶する処理条件記憶部290を備える。ここでいう処理条件としては,例えば処理ガスの種類,処理ガスの流量,高周波電力,処理室内圧力などが含まれる。プログラムデータ記憶部280と処理条件記憶部290は,例えばフラッシュメモリ,ハードディスク,CD−ROMなどの記録媒体で構成され,必要に応じてCPU210によってデータが読み出される。
これらCPU210と,ROM220,RAM230,表示部240,操作パネル250,報知部260,各種コントローラ270,プログラムデータ記憶部280,処理条件記憶部290とは,制御バス,システムバス,データバス等のバスラインによって電気的に接続されている。
このようなプラズマ処理装置100において,処理室110内でウエハの処理を行う際には,先ずゲートバルブ132を開状態にしてエッチング処理対象であるウエハWを処理室110内に搬入してサセプタ111の上に載置する。ここで,直流電源122から直流電圧を電極板120に印加してウエハWをサセプタ111に吸着させる。
次に,上部電極133から処理ガス(例えば酸化膜のエッチングでは,Cガス,Oガス,およびArガスを含む混合ガス)を所定の流量および流量比で処理室110内に導入し,APCバルブ114等を用いて処理室110内の圧力を制御する。さらに,高周波電源118から高周波電力をサセプタ111に印加すると共に,高周波電源152から高周波電力を上部電極133に印加する。これによって,上部電極133から吐出された処理ガスがプラズマ生成空間Sにおいてプラズマ化される。このプラズマによって生成されるラジカルやイオンは,フォーカスリング124によってウエハWの表面に収束され,それによりウエハWの表面は物理的または化学的にエッチングされる。
このようなエッチング処理が完了すると,その処理済みのウエハWを処理室110から搬出する。こうして,1ロット(例えば25枚)のウエハWに対するエッチング処理を一枚ずつ連続して行った後,一連の処理を完了する。
ところで,本実施形態にかかるプラズマ処理装置100では,処理室110の天井部の移動磁場形成部300が,プラズマ生成空間Sのうち周辺プラズマ領域に回転する移動磁場を形成する。このような移動磁場を形成することにより,高周波電界の下でドリフト運動する電荷(主に電子)が周辺プラズマ領域において上記移動磁場によって力(ローレンツ力)を受けることで,サイクロトロン共鳴効果により処理室110の側壁近傍においてプラズマの拡散や消滅による急激なプラズマ密度の低下を防止できる。しかも,周方向に回転するローレンツ力を発生させることができるので,周辺プラズマ領域の分布を制御することができ,ひいてはプラズマの全体領域の分布の均一性を高めることができる。
なお,移動磁場形成部300による磁場は,プラズマ生成空間Sの周囲のみに作用し,その内側には作用せず無磁場状態となる。これにより,サセプタ111上のウエハWに磁界が作用してウエハW上のデバイスにダメージやストレスを与える可能性を回避または低減することができる。ここで,ウエハW上のデバイスにダメージやストレスを与えないような無磁場状態は,磁界強度の面で好ましくは地磁気レベル(たとえば0.5G)以下の状態であるが,5G程度でも支障ない(実質的な無磁場状態といえる)場合がある。
(移動磁場形成部の構成例)
ここで,移動磁場形成部300の構成例について図面を参照しながら説明する。図3は,移動磁場形成部300の外観を示す図であり,図4は,移動磁場形成部300の内部構成の一部を示す図である。なお,説明を簡単にするために,図3ではコイルを省略しており,図4ではコイルを環状コアの内周面で切断している。
図3,図4に示すように,移動磁場形成部300は,コイル320を巻回した環状コア310をケーシング330で覆って構成される。環状コア310は金属系,フェライト系,セラミック系などの磁性体で構成される。ここでは,環状コア310を環状鉄芯で構成した場合を例に挙げる。ケーシング330は,環状コア310の下面に発生する磁力線が透過するように,例えばセラミックスや石英で構成される。また,ケーシング330の材質は上記のものに限られるものではなく,例えばケーシング330の下面だけをセラミックスや石英で構成し,その他の部分はステンレスで構成してもよい。ケーシング330の下面は周方向に渡って開口していてもよい。この場合には,環状コア310がプラズマによる影響を受けないように,処理室110の天井における上部電極133の周囲にケーシング330の下面を覆うように石英やセラミックで構成された保護板を設けるようにしてもよい。
環状コア310は,その下面に周方向に一定の間隔を置いて複数のティース部312が形成されている。各ティース部312の間は溝部314が形成されており,コイル320は溝部314に挿通して各ティース部312に巻き付けられる。コイル320は,例えば図4に示すように複数のティース部312間にこれらの下面から下方に向かって上方に戻る経路を形成するU字状の磁力線が環状コア310の周方向全周に亘って複数発生するように巻回される。このようなコイル320の巻回状態の具体例を図5,図6に示す。図5は,環状コア310を下方から見た図であり,説明を簡単にするためにコイル320は直線で模式的に示している。図5は,コイルの巻回状態の全体を示す結線図であり,図6は,コイルの巻回状態の一部を示す結線図である。図6では下方が環状コア310の内側であり,上方が環状コア310の外側である。
図5に示すように,コイル320は,3つの巻線320A,320B,320Cからなる。環状コア310の溝部314には巻線320A,320B,320Cのうちのいずれかがそれぞれ1本ずつ挿通され,各溝部314に巻線320A,320C,320Bの順に環状コア310の内側から外側,外側から内側というように方向を変えて巻回されている。すなわち,図6に示すように環状コア310の溝部314を左から順に第1番目〜第6番目とすると,巻線320Aは第1番目,第4番目の溝部314にそれぞれ内側から外側,外側から内側に挿通するように巻かれている。巻線320Bは第3番目,第6番目の溝部314にそれぞれ内側から外側,外側から内側に挿通するように巻かれている。巻線320Cは第2番目,第5番目の溝部314にそれぞれ外側から内側,内側から外側に挿通するように巻かれている。
コイル320の各巻線320A,320B,320Cはそれぞれが閉ループになっている。このような各巻線320A,320B,320Cにそれぞれ,磁場形成用電源302から例えば図7に示すように120度ずつ位相をずらした三相交流電流A,B,Cを図5,図6に示す矢印のように流すことにより,ティース部312に合成磁界を発生させることができる。
例えば三相交流電流A,B,Cをそれぞれ,Icosωt,Icos(ωt−2/3π),Icos(ωt−4/3π)とする。このとき,各溝部314に挿通された各巻線320A,320B,320Cにおいて,図6に示すように環状コア310の内側から外側に向かって流れる電流をa,b,cとし,外側から内側に向かって流れる電流を−a,−b,−cとすれば,電流a,b,cはそれぞれ,Icosωt,Icos(ωt−2/3π),Icos(ωt−4/3π)となり,電流−a,−b,−cはそれぞれ,−Icosωt,−Icos(ωt−2/3π),−Icos(ωt−4/3π)となる。
この場合,図6に示す環状コア310を外側から見ると,各溝部314に挿通された各巻線320A,320B,320Cに流れる電流は図8に示すように左から順にa,−c,b,−a,c,−bとなる。このとき,流れる電流の方向と大きさに応じて各巻線320A,320B,320Cの周り(溝部314周り)に磁界が発生するため,例えばある瞬間においては図8に矢印で示すような磁界が発生すると,各ティース部312には図9に示すような合成磁界が発生する。このため,全体としては図10に示すように,あるティース部312の下面から下方に向かい,Uターンして別のティース部312の下面に戻る経路を形成するU字状の磁力線が周方向に沿って複数発生する。
三相交流電流A,B,Cは図7に示すように時間経過に連れてそれぞれ大きさが連続して変わるため,環状コア310の下面に発生する磁力線の強さも連続して変わることになる。これにより,環状コア310の下面には周方向に回転する移動磁場が形成される。こうして,図11に模式的に示すように移動磁場形成部300の下方には,周方向に回転する移動磁場Gが形成される。
このように,図11に示すように移動磁場形成部300の直下の周辺プラズマ領域内に降りてから上方へUターンする磁力線が周方向に複数発生し,これらの磁力線の強さが大きくなったり小さくなったりしながら,全体的には周方向の一方向に回転する移動磁場Gが形成される。このように,プラズマ生成空間Sのうち,ウエハWよりも半径方向外側に,周方向に回転する移動磁場Gが形成される。すなわち,主プラズマ領域の周囲をカーテンのように回転しながら取り囲む鉛直型の磁場(プラズマの拡散方向に直交する磁場)を形成することができる。これにより,処理室110の側壁近傍においてプラズマの拡散や消滅による急激なプラズマ密度の低下を防止することができる。従って,周辺プラズマ領域の分布を制御することができ,ひいてはプラズマの全体領域の分布の均一性を高めることができる。
しかも,本実施形態にかかる移動磁場形成部300では,制御部200によって磁場形成用電源302を制御して,コイル320に流す三相交流電流A,B,Cの大きさ(I),周波数,位相などを変えることにより,容易に移動磁場の強さや回転速度を変えることができる。例えば移動磁場の強さは,三相交流電流A,B,Cの大きさ,周波数などを変えることにより可変可能である。また,移動磁場の回転速度は,三相交流電流A,B,Cの周波数などを変えることにより可変可能である。このため,例えば磁場の強さなどを変える際に,従来のようにセグメント磁石などを用いる場合のような磁石の交換を不要にできるとともに,またセグメント磁石を回転させるときに発生し易い振動もなくすことができる。
なお,移動磁場の強さや回転速度は,各ティース部312間のピッチやティース部312の数によっても変わるので,例えばプラズマ処理装置100ごとに各ティース部312間のピッチやティース部312の数を妥当に設計した上で取り付け,その後は制御部200によって磁場形成用電源302を制御することで容易に移動磁場の強さや回転速度を調整できる。
また,制御部200によって磁場形成用電源302を制御することで容易に移動磁場の強さや回転速度を変えることができるので,ウエハWの処理条件(例えば処理ガスの種類や流量,処理室内圧力など)に応じて移動磁場の強さや回転速度をコントロールすることができる。例えば処理ガスの種類,処理室110内の圧力,処理ガスの流量,高周波電力,のうちのいずれか1つ又は2つ以上の任意の組合せに着目し,着目した項目の値が変わる処理条件の場合にはその処理条件に応じて移動磁場の強さや回転速度を微調整する。これらの処理条件が変わることでプラズマ分布が変化したとしても,磁場形成用電源302からコイル320に流す交流電流を制御することにより,常に最適なプラズマ分布になるように制御することができる。
なお,上述した処理条件の中で,ウエハ中心側とウエハエッジ側とのプラズマ分布に影響を与え易いのは,処理ガスの種類,処理室110内の圧力,処理ガスの流量,高周波電力の順であり,高周波電力については周波数が高いほど影響を与え易い傾向にある。このため,ウエハ中心側とウエハエッジ側とのプラズマ分布を調整する場合には,少なくとも処理ガスの種類に応じて制御部200によって磁場形成用電源302を制御することが好ましい。また,プラズマ分布に影響を与え易い処理ガスの種類,処理室110内の圧力,処理ガスの流量のいずれかが変わればそれに応じて制御部200によって磁場形成用電源302を制御することで,より細かくプラズマ分布を制御することができる。
ここで,ウエハWの処理の具体例を挙げて説明すると,例えば周辺プラズマ領域に移動磁場を形成しない場合には,酸化膜系プロセス(たとえばシリコン酸化膜のエッチング)では,図12Aに示すようにウエハ中心側に対してウエハエッジ側で相対的にエッチング速度が落ち込む傾向があり,ポリ系プロセス(たとえばポリシリコンのエッチング)では図12Bに示すようにウエハエッジ側に対してウエハ中心側で相対的にエッチング速度が落ち込む傾向がある。この場合,本実施形態にかかる移動磁場形成部300によって周辺プラズマ領域に移動磁場を形成し,図12A,図12Bそれぞれの処理条件に応じて制御部200によって磁場形成用電源302を制御して移動磁場の強さや回転速度を調整することにより,図12Cに示すようにウエハ中心側とウエハエッジ側のエッチング速度を均一にすることができる。
また,ウエハWの処理を複数の異なる処理条件で連続して実行する際に,処理条件での処理を行うごとに磁場形成用電源302からの交流電流を切り換えて移動磁場の強さや回転速度を変えるようにしてもよい。例えばメインエッチング,オーバーエッチングなどのように複数ステップで処理ガスの流量や種類など処理条件が異なるステップの処理を連続して実行する場合,各ステップの処理条件での処理を行うごとに磁場形成用電源302からの交流電流を切り換えるようにしてもよい。これによれば,例えば各ステップの処理条件が変わっても常にプラズマ分布を最適に保持することができる。
上述したように複数の処理条件でウエハWの処理を行う場合には,例えば処理条件記憶部290に複数の処理条件を記憶するとともに,各処理条件ごとにその処理条件でウエハWの処理を行う際にコイル320に流す交流電流を制御するのに必要な情報を関連づけて処理条件記憶部290に予め記憶しておき,制御部200により処理条件記憶部290から処理条件を読み出すとともに,それに関連づけられた交流電流の制御情報を読み出して,その交流電流の制御情報に基づいて磁場形成用電源302を制御するようにしてもよい。これによれば,ウエハWの処理条件を行うごとに自動的に処理条件に応じた移動磁場が形成されることにより,処理条件に応じたプラズマ分布を自動的に形成することができる。
ところで,上部電極133や下部電極であるサセプタ111の取付誤差などによりこれらの電極間の平行度の精度が低い場合などには図13Aに示すように周方向に不均一なプラズマが形成される場合がある。このような場合でも,本実施形態にかかる移動磁場形成部300によれば,周方向に回転する移動磁場を形成することにより,図13A,図13B,図13Cに示すようにプラズマを矢印方向に回転させることができるので,ウエハエッジ側の周方向の処理の均一性も高めることができる。
また,操作パネル250からのオペレータの操作により磁場形成用電源302からの交流電流を制御可能としてもよい。これによれば,オペレータの操作により,磁場形成用電源からの交流電流を制御することによって移動磁場を微調整することによって,プラズマ分布を容易に微調整することができる。
なお,本実施形態にかかる移動磁場形成部300によれば,各ティース部312間のピッチが狭く,ティース部312の数が多いほど各ティース部312間に発生する磁力線も細かくすることができる。このため,例えば各ティース部312間に発生する各磁力線が周辺プラズマ領域よりも内側の主プラズマ領域側に入り込まない程度に各ティース部312間のピッチやティース部312の数を調整することが好ましい。このような移動磁場形成部300によれば,プラズマ生成空間のうちのウエハWよりも半径方向外側に周方向に回転する移動磁場を形成するので,それよりも内側の主プラズマ領域側への磁力線の流入を効果的に防止することができることから,主プラズマ領域を実質的に無磁場状態とすることができるので,サセプタ111上のウエハW上に磁場が作用してダメージやストレスを与える可能性を回避または低減することができる。
また,移動磁場形成部300の環状コア310へのコイル320の巻回方法は上述したものに限られるものではない。コイル320に位相の異なる交流電流を流すことによって,複数のティース部312間にこれらの下面から下方に向かって上方に戻る経路を形成するU字状の磁力線が環状コア310の周方向全周に亘って複数発生し,周方向に回転する移動磁場が発生するようなものであればどのように巻回してもよい。上記実施形態では各ティース部312の間の溝部314にコイル320の巻線320A,320B,320Cが1本ずつ挿通するようにコイル320を巻回した場合について説明したが,これに限られることはなく,例えば溝部314にコイル320の巻線320A,320B,320Cが複数本(例えば2本)ずつ挿通するようにコイル320を巻回してもよい。
また,上記実施形態では本発明を平行平板型のプラズマ処理装置であって,上部電極133とサセプタ111にそれぞれ周波数の異なる第1および第2の高周波電力をそれぞれ印加する方式(上下高周波印加タイプ)のものに適用した場合について説明したが,必ずしもこれに限定されるものではなく,プラズマ生成用の1つの高周波電力をサセプタ111側又は上部電極133側のいずれか一方に印加する方式のものや,サセプタ111に周波数の異なる第1および第2の高周波電力を重畳して印加する方式(下部2周波重畳印加タイプ)のものに適用してもよい。減圧可能な処理容器内に少なくとも1つの電極を有するプラズマ処理装置に適用可能である。また,本発明とイグニションプラズマ方式を併用することももちろん可能である。
また,本発明の適用可能なプラズマ源は平行平板型による方式のものに限られるものではなく、他の任意の高周波放電方式たとえばヘリコン波プラズマ方式,マイクロ波放電プラズマ方式,誘導結合プラズマ方式のものであってもよい。さらに,本発明はプラズマCVD,プラズマ酸化,プラズマ窒化,スパッタリングなどの他のプラズマ処理装置にも適用可能である。また,本発明における被処理基板は半導体ウエハに限られるものではなく,フラットパネルディスプレイ用の各種基板やフォトマスク,CD基板,プリント基板等であってもよい。
上記実施形態により詳述した本発明については,複数の機器から構成されるシステムに適用しても,1つの機器からなる装置に適用してもよい。上述した実施形態の機能を実現するソフトウェアのプログラムを記憶した記憶媒体等の媒体をシステムあるいは装置に供給し,そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体等の媒体に格納されたプログラムを読み出して実行することによっても,本発明が達成され得る。
この場合,記憶媒体等の媒体から読み出されたプログラム自体が上述した実施形態の機能を実現することになり,そのプログラムを記憶した記憶媒体等の媒体は本発明を構成することになる。プログラムを供給するための記憶媒体等の媒体としては,例えば,フロッピー(登録商標)ディスク,ハードディスク,光ディスク,光磁気ディスク,CD−ROM,CD−R,CD−RW,DVD−ROM,DVD−RAM,DVD−RW,DVD+RW,磁気テープ,不揮発性のメモリカード,ROMなどが挙げられる。また,媒体に対してプログラムを,ネットワークを介してダウンロードして提供することも可能である。
なお,コンピュータが読み出したプログラムを実行することにより,上述した実施形態の機能が実現されるだけでなく,そのプログラムの指示に基づき,コンピュータ上で稼動しているOSなどが実際の処理の一部または全部を行い,その処理によって上述した実施形態の機能が実現される場合も,本発明に含まれる。
さらに,記憶媒体等の媒体から読み出されたプログラムが,コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後,そのプログラムの指示に基づき,その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い,その処理によって上述した実施形態の機能が実現される場合も,本発明に含まれる。
以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明は,処理ガスのプラズマを形成して被処理基板に所定の処理を施すプラズマ処理装置及びプラズマ処理方法に適用可能である。
本発明の実施形態にかかるプラズマ処理装置の構成例を示す断面図である。 図1に示す制御部の構成例を示すブロック図である。 同実施形態における移動磁場形成部の概略外観構成を示す斜視図である。 同実施形態における移動磁場形成部の概略内部構成の一部を示す斜視図である。 同実施形態におけるコイルの巻回状態の全体を示す結線図である。 同実施形態におけるコイルの巻回状態の一部を示す結線図である。 同実施形態におけるコイルに流す三相交流電流を示す波形図である。 同実施形態におけるコイルの周りに発生する磁界を模式的に示す図である。 同実施形態におけるティース部の表面に発生する磁界の向きを模式的に示す図である。 同実施形態におけるティース部の表面に発生する磁力線を模式的に示す図である。 同実施形態における移動磁場による作用を説明するための図である。 同実施形態における移動磁場を発生させない場合におけるエッチングレートの具体例を示す図である。 同実施形態における移動磁場を発生させない場合におけるエッチングレートの他の具体例を示す図である。 同実施形態における移動磁場を発生させてプラズマ分布を調整した場合のエッチングレートを示す図である。 同実施形態における周方向に回転する移動磁場による効果を説明するための図である。 同実施形態における周方向に回転する移動磁場による効果を説明するための図である。 同実施形態における周方向に回転する移動磁場による効果を説明するための図である。
符号の説明
100 プラズマ処理装置
110 処理室
111 サセプタ
112 排気路
113 バッフル板
114 自動圧力制御弁(APCバルブ)
115 ターボ分子ポンプ
116 ドライポンプ
117 排気管
118 高周波電源
119 整合器
120 電極板
122 直流電源
124 フォーカスリング
125 冷媒室
126 配管
127 伝熱ガス供給孔
128 伝熱ガス供給ライン
129 伝熱ガス供給管
132 ゲートバルブ
133 上部電極
134 ガス通気孔
135 電極板
136 電極支持体
137 バッファ室
138 処理ガス導入管
150 導線
151 スイッチ
152 高周波電源
200 制御部
210 CPU
220 ROM
230 RAM
240 表示部
250 操作パネル
260 報知部
270 各種コントローラ
280 プログラムデータ記憶部
290 処理条件記憶部
300 移動磁場形成部
302 磁場形成用電源
310 環状コア
312 ティース部
314 溝部
320 コイル
320A,320B,320C 巻線
330 ケーシング
A,B,C 三相交流電流
W ウエハ
S プラズマ生成空間
P プラズマ
G 移動磁場

Claims (7)

  1. 減圧可能な処理室内に互いに対向する上部電極及び下部電極を設け,所定の処理条件に基づいて前記電極間に処理ガスを供給するとともに高周波電力を印加してプラズマを生成することによって,前記下部電極上に配置された被処理基板の表面に所定のプラズマ処理を施すプラズマ処理装置であって,
    前記電極間に生成されるプラズマ生成空間のうち,前記被処理基板よりも半径方向外側に,周方向に回転する移動磁場を形成する移動磁場形成手段と,
    前記処理条件に応じて前記移動磁場を制御する制御部と,を備え,
    前記移動磁場形成手段は,前記上部電極の周囲を囲むように固定して設けられた環状コアと,前記環状コアの下面に突出して形成され,前記環状コアの内側から外側に放射状に延びるように周方向に配列した複数のティース部と,前記ティース部の下側に下方に向かって上方に戻る経路を形成する磁力線が前記環状コアの周方向全周に亘って複数発生するように前記ティース部間の溝部に順に挿通されて前記環状コアに巻き付けられた複数の巻線からなるコイルと,前記コイルの各巻線にそれぞれ位相の異なる交流電流を流して前記磁力線を時間的に変化させることで周方向に回転する移動磁場を形成するための磁場形成用電源とを有し,
    前記制御部は,前記処理条件に応じて前記磁場形成用電源からの交流電流を制御することにより前記移動磁場を制御することを特徴とするプラズマ処理装置。
  2. 前記処理条件は,前記処理ガスの種類,前記処理室内の圧力,前記処理ガスの流量,前記高周波電力のうちのいずれか1つ又は2つ以上の任意の組合せであることを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記制御部は,前記被処理基板の処理を複数の異なる処理条件で連続して実行する際に,前記処理条件での処理を行うごとに前記磁場形成用電源からの交流電流を切り換えることを特徴とする請求項1に記載のプラズマ処理装置。
  4. 前記処理条件を複数記憶するとともに,前記各処理条件ごとにその処理条件で前記被処理基板の処理を行う際に前記コイルに流す交流電流を制御するのに必要な情報を関連づけて予め記憶部に記憶しておき,
    前記制御部は,前記処理条件を前記記憶部から読み出すとともに,それに関連づけられた前記交流電流の制御情報を読み出して,その交流電流の制御情報に基づいて前記磁場形成用電源を制御することにより前記処理条件に応じた移動磁場を形成しつつ,前記処理条件に基づいて前記被処理基板の処理を行うことを特徴とする請求項1に記載のプラズマ処理装置。
  5. 前記制御部は,操作パネルからのオペレータの操作に基づいて前記磁場形成用電源からの交流電流を制御可能としたことを特徴とする請求項1に記載のプラズマ処理装置。
  6. 前記コイルは3組の巻線からなり,前記各巻線にそれぞれ前記磁場形成用電源から三相交流電流を供給することを特徴とする請求項1に記載のプラズマ処理装置。
  7. 減圧可能な処理室内に互いに対向する上部電極及び下部電極を設け,所定の処理条件に基づいて前記電極間に処理ガスを供給するとともに高周波電力を印加してプラズマを生成することによって,前記下部電極上に配置された被処理基板の表面に所定の処理を施すプラズマ処理方法であって,
    前記電極間に生成されるプラズマ生成空間のうち,前記被処理基板よりも半径方向外側に,周方向に回転する移動磁場を形成する移動磁場形成手段を備え,
    前記移動磁場形成手段は,前記上部電極の周囲を囲むように固定して設けられた環状コアと,前記環状コアの下面に突出して形成され,前記環状コアの内側から外側に放射状に延びるように周方向に配列した複数のティース部と,前記ティース部の下側に下方に向かって上方に戻る経路を形成する磁力線が前記環状コアの周方向全周に亘って複数発生するように前記ティース部間の溝部に順に挿通されて前記環状コアに巻き付けられた複数の巻線からなるコイルと,前記コイルの各巻線にそれぞれ位相の異なる交流電流を流して前記磁力線を時間的に変化させることで周方向に回転する移動磁場を形成するための磁場形成用電源とを有してなり,
    前記処理条件に基づいて前記被処理基板の処理を行う際に,前記処理条件に応じて前記磁場形成用電源からの交流電流を制御することにより前記移動磁場を制御することを特徴とするプラズマ処理方法。
JP2007290481A 2007-11-08 2007-11-08 プラズマ処理装置及びプラズマ処理方法 Expired - Fee Related JP4950002B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290481A JP4950002B2 (ja) 2007-11-08 2007-11-08 プラズマ処理装置及びプラズマ処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290481A JP4950002B2 (ja) 2007-11-08 2007-11-08 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2009117690A JP2009117690A (ja) 2009-05-28
JP4950002B2 true JP4950002B2 (ja) 2012-06-13

Family

ID=40784462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290481A Expired - Fee Related JP4950002B2 (ja) 2007-11-08 2007-11-08 プラズマ処理装置及びプラズマ処理方法

Country Status (1)

Country Link
JP (1) JP4950002B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129128A (ja) * 1984-07-19 1986-02-10 Toshiba Corp プラズマ処理装置
JPS6182434A (ja) * 1984-09-29 1986-04-26 Toshiba Corp プラズマ処理装置
WO2003025971A2 (en) * 2001-09-14 2003-03-27 Tokyo Electron Limited Plasma processing apparatus with coil magnet system

Also Published As

Publication number Publication date
JP2009117690A (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
KR102361240B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
TWI553729B (zh) Plasma processing method
JP6100672B2 (ja) 温度制御機構、温度制御方法及び基板処理装置
JP6556046B2 (ja) プラズマ処理方法およびプラズマ処理装置
JP5893516B2 (ja) 被処理体の処理装置及び被処理体の載置台
KR102542777B1 (ko) 냉매용의 유로를 가지는 부재, 냉매용의 유로를 가지는 부재의 제어 방법 및 기판 처리 장치
JP2018186179A (ja) 基板処理装置及び基板取り外し方法
JP2011060885A (ja) プラズマ処理装置及びプラズマ処理方法
JPH08264515A (ja) プラズマ処理装置、処理装置及びエッチング処理装置
EP3104393A1 (en) Temperature control method and plasma processing apparatus
KR20170132096A (ko) 플라즈마 처리 방법
JP5332362B2 (ja) プラズマ処理装置、プラズマ処理方法及び記憶媒体
US20190355598A1 (en) Processing apparatus, member, and temperature control method
KR20150055580A (ko) 배치대 및 플라즈마 처리 장치
JP2019102521A (ja) 半導体製造装置用の部品及び半導体製造装置
JP5097074B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP4950002B2 (ja) プラズマ処理装置及びプラズマ処理方法
TW202139252A (zh) 載置台、基板處理裝置及傳熱氣體供給方法
WO2020059596A1 (ja) 載置台及び基板処理装置
JP2010161156A (ja) プラズマエッチング方法
JP4135173B2 (ja) プラズマ処理装置及びプラズマ処理方法
TW202345229A (zh) 電漿處理裝置
JP2010238819A (ja) プラズマ処理装置及びプラズマ処理方法
JP2008181996A (ja) 半導体装置の製造方法、半導体装置の製造装置、制御プログラム及びコンピュータ記憶媒体
JP2004079915A (ja) プラズマ処理装置及びプラズマ処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees