JP4948457B2 - Inspection method of polymer granular material - Google Patents

Inspection method of polymer granular material Download PDF

Info

Publication number
JP4948457B2
JP4948457B2 JP2008062681A JP2008062681A JP4948457B2 JP 4948457 B2 JP4948457 B2 JP 4948457B2 JP 2008062681 A JP2008062681 A JP 2008062681A JP 2008062681 A JP2008062681 A JP 2008062681A JP 4948457 B2 JP4948457 B2 JP 4948457B2
Authority
JP
Japan
Prior art keywords
polymer
load
comparative example
particle material
polymer particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008062681A
Other languages
Japanese (ja)
Other versions
JP2009216642A (en
Inventor
修士 中川
泰丈 工藤
徳 大音
英樹 大森
政義 藤田
真司 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Toyota Motor Corp
Original Assignee
Sanyo Chemical Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd, Toyota Motor Corp filed Critical Sanyo Chemical Industries Ltd
Priority to JP2008062681A priority Critical patent/JP4948457B2/en
Publication of JP2009216642A publication Critical patent/JP2009216642A/en
Application granted granted Critical
Publication of JP4948457B2 publication Critical patent/JP4948457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、複数の高分子粒体を含む高分子粒体材料を検査するための方法に関する。   The present invention relates to a method for inspecting a polymeric particulate material comprising a plurality of polymeric particulates.

粒体状の熱可塑性樹脂や熱可塑性エラストマ(以下、高分子粒体と呼ぶ)は、パウダースラッシュ成形等の材料として用いられる。複数個の高分子粒体を含む高分子粒体材料には、輸送時や保管時、連続成形時に高分子粒体の凝集体が生じる(所謂ブロッキング)場合がある。高分子粒体の凝集体が生じた高分子粒体材料を用いて成形すると、得られた成形品の品質が悪くなる。このため従来は、成形前に高分子粒体材料の検査をおこない、高分子粒体が凝集しているか否かを判別していた。このような高分子粒体材料の検査方法としては、一般に、高分子粒体材料を篩にかけ、篩を通らなかった高分子粒体材料の形状や量を基に高分子粒体の凝集体が生じているか否かを評価する方法がとられていた。しかし、篩がけの作業は作業者毎にばらつくため、この検査方法による判別結果もまた、作業者毎にばらついていた。   Granular thermoplastic resins and thermoplastic elastomers (hereinafter referred to as polymer granules) are used as materials for powder slush molding and the like. In a polymer particle material containing a plurality of polymer particles, aggregates of polymer particles may be formed during transportation, storage, and continuous molding (so-called blocking). If molding is performed using a polymer particle material in which agglomerates of polymer particles are generated, the quality of the obtained molded product is deteriorated. For this reason, conventionally, the polymer particle material is inspected before molding to determine whether or not the polymer particles are aggregated. As a method for inspecting such polymer granular materials, generally, aggregates of polymer granules are obtained based on the shape and amount of the polymer granular material that has passed through the sieve and did not pass through the sieve. A method was used to evaluate whether this occurred. However, since the sieving work varies from worker to worker, the results of discrimination by this inspection method also vary from worker to worker.

特許文献1には、パウダーレオメータを用いて、現像剤(トナーなど)の流動性を評価する技術が紹介されている。この技術を転用すれば、高分子粒体材料の流動性を基に、高分子粒体の凝集体が生じているか否かを精度高く判別できると考えられる。   Patent Document 1 introduces a technique for evaluating the fluidity of a developer (toner or the like) using a powder rheometer. If this technique is diverted, it is considered that it is possible to accurately determine whether or not aggregates of polymer particles are generated based on the fluidity of the polymer particle material.

ところで、パウダースラッシュ成形などでは、高分子粒体は、成形時において高温にさらされる等、凝集し易い環境におかれる。したがって、凝集し易い高分子粒体であれば、検査時には凝集していないと判別されても、実際の成形時(詳しくは成形直前)に凝集する場合がある。特許文献1に紹介されている方法によると、高分子粒体の凝集体が生じているか否かを判別することはできるが、高分子粒体の凝集し易さは評価できない。このため、高分子粒体の凝集し易さを評価できる検査方法の開発が望まれている。
特開2007−114751号公報
By the way, in powder slush molding or the like, the polymer particles are placed in an environment that easily aggregates, such as being exposed to a high temperature during molding. Therefore, if the polymer particles are easy to aggregate, they may be aggregated at the time of actual molding (specifically immediately before molding) even if it is determined that they are not aggregated at the time of inspection. According to the method introduced in Patent Document 1, it is possible to determine whether or not aggregates of polymer particles are generated, but the ease of aggregation of polymer particles cannot be evaluated. For this reason, development of the inspection method which can evaluate the ease of aggregation of a polymer particle is desired.
JP 2007-114751 A

本発明は上記事情に鑑みてなされたものであり、高分子粒体の凝集し易さを評価できる高分子粒体材料の検査方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the inspection method of the polymer particle material which can evaluate the ease of aggregation of a polymer particle.

上記課題を解決する本発明の高分子粒体材料の検査方法は、パウダースラッシュ成形用の高分子粒体材料を検査する方法であって、複数個の高分子粒体を含む高分子粒体材料を測定用容器に入れる準備工程と、測定用容器に入った高分子粒体材料に荷重を加えて高分子粒体材料を圧縮する圧縮工程と、圧縮工程後の高分子粒体材料を、測定用容器に入った状態で測定子を持つ検査装置に取り付け、測定子を回転させつつ高分子粒体材料に差し込んで、測定子に加わる差し込み方向の荷重と測定子に加わる回転方向の荷重との少なくとも一方を測定する測定工程と、を備え、測定工程において、測定前に測定子を逆回転させつつ高分子粒体材料に差し込んで高分子粒体材料の粒度を均一化するコンディショニング処理をおこなわず、測定工程で測定した荷重に基づいて高分子粒体の凝集し易さを評価することを特徴とする。
A method for inspecting a polymer granular material of the present invention that solves the above problems is a method for inspecting a polymer granular material for powder slush molding, the polymer granular material comprising a plurality of polymer particles Measure the preparatory process to put the sample into the measurement container, the compression process to compress the polymer granular material by applying a load to the polymer granular material in the measurement container, and the polymer granular material after the compression process It is attached to an inspection device having a probe in a state where it is contained in a container, and is inserted into the polymer granular material while rotating the probe, so that the load in the insertion direction applied to the probe and the load in the rotation direction applied to the probe are A measuring step for measuring at least one of the measuring particles , and in the measuring step, a conditioning treatment is performed to reverse the rotation of the measuring element before the measurement and to insert the polymer particle material into the polymer particle material so as to equalize the particle size of the polymer particle material. , in the measurement process And evaluating the aggregate ease of polymer granules on the basis of the boss was loads.

本発明の高分子粒体材料の検査方法は、下記の(1)〜(6)の何れかを備えるのが好ましい。(1)〜(6)の複数を備えるのがより好ましい。   The method for inspecting a polymer granular material of the present invention preferably includes any one of the following (1) to (6). More preferably, a plurality of (1) to (6) are provided.

(1)上記測定工程において、少なくとも上記測定子に加わる回転方向の荷重を測定する。   (1) In the measuring step, at least a rotational load applied to the measuring element is measured.

(2)上記測定工程において、上記測定子に加わる差し込み方向の荷重と上記測定子に加わる回転方向の荷重との両方を測定する。   (2) In the measurement step, both a load in the insertion direction applied to the probe and a load in the rotational direction applied to the probe are measured.

(3)上記圧縮工程において、上記高分子粒体材料をその溶融温度に満たない温度で加熱しつつ圧縮する。   (3) In the compression step, the polymer granular material is compressed while being heated at a temperature lower than its melting temperature.

(4)上記圧縮工程において上記高分子粒体材料に加える荷重は、20.4g/cm〜509g/cmである。 (4) load applied to the polymer or granular material in the compression step is 20.4g / cm 2 ~509g / cm 2 .

(5)上記圧縮工程における加熱温度は、前記高分子粒体材料の溶融温度未満50℃以上である。   (5) The heating temperature in the said compression process is 50 degreeC or more below the melting temperature of the said polymer granular material.

(6)上記検査装置はパウダーレオメータである。   (6) The inspection device is a powder rheometer.

複数個の高分子流体を含む高分子粒体材料を圧縮すると、高分子粒体材料中の高分子粒体が互いに圧接する。このため、凝集し易い高分子粒体は凝集する。したがって、本発明の高分子粒体材料の検査方法においては、凝集し易い高分子粒体は圧縮工程によって凝集する。   When a polymer particle material containing a plurality of polymer fluids is compressed, the polymer particles in the polymer particle material are pressed against each other. For this reason, polymer particles that easily aggregate are aggregated. Therefore, in the method for inspecting a polymer particle material according to the present invention, polymer particles that easily aggregate are aggregated by a compression process.

測定工程では、圧縮工程後の高分子粒体材料、すなわち、凝集し易い高分子粒体が凝集した高分子粒体材料に測定子を差し込んで、測定子に加わる差し込み方向の荷重(以下、差し込み荷重と呼ぶ)と、測定子に加わる回転方向の荷重(以下、回転荷重と呼ぶ)との少なくとも一方を測定する。高分子粒体が凝集すると、差し込み荷重および回転荷重が大きくなる。このため、測定工程で測定された差し込み荷重と回転荷重との少なくとも一方を基に、圧縮工程後の高分子粒体材料に高分子粒体の凝集体が生じているか否かを判別でき、高分子粒体が凝集し易いか否かを判別できる。よって、本発明の高分子粒体材料の検査方法によると、高分子粒体の凝集し易さ(以下、凝集性と呼ぶ)を評価できる。以下、凝集し易いことを凝集性が大きいといい、凝集し難いことを凝集性が小さいという。   In the measurement process, the measuring element is inserted into the polymer particle material after the compression process, that is, the polymer particle material in which the polymer particles that easily aggregate are aggregated, and the load in the insertion direction applied to the measuring element (hereinafter referred to as insertion) At least one of a load in the rotation direction applied to the probe (hereinafter referred to as a rotation load). When the polymer particles aggregate, the insertion load and the rotational load increase. For this reason, based on at least one of the insertion load and the rotational load measured in the measurement process, it can be determined whether or not aggregates of polymer particles are generated in the polymer particle material after the compression process. It can be determined whether or not the molecular particles easily aggregate. Therefore, according to the method for inspecting a polymer particle material of the present invention, the ease of aggregation of the polymer particles (hereinafter referred to as aggregation property) can be evaluated. Hereinafter, it is said that it is easy to agglomerate that the cohesion is large, and that it is difficult to coagulate is that the cohesion is small.

本発明の高分子粒体材料の検査方法によると、差し込み荷重と回転荷重との少なくとも一方を機械的に測定することで、高分子粒体の凝集性を精度高く評価できる。   According to the method for inspecting a polymer particle material of the present invention, the aggregation property of the polymer particles can be evaluated with high accuracy by mechanically measuring at least one of the insertion load and the rotational load.

上記(1)〜(2)を備える本発明の高分子粒体材料の検査方法によると、高分子粒体の凝集性をさらに精度高く評価できる。高分子粒体が凝集していない高分子粒体材料の回転荷重と、高分子粒体が凝集している高分子粒体材料の回転荷重と、の差は、高分子粒体が凝集していない高分子粒体材料の差し込み荷重と、高分子粒体が凝集している高分子粒体材料の差し込み荷重と、の差よりも大きいためである。   According to the method for inspecting a polymer particle material of the present invention including the above (1) to (2), the aggregation property of the polymer particles can be evaluated with higher accuracy. The difference between the rotational load of the polymer particle material in which the polymer particles are not aggregated and the rotational load of the polymer particle material in which the polymer particles are aggregated is that the polymer particles are aggregated. This is because the insertion load of the non-polymer particle material is larger than the difference between the insertion load of the polymer particle material in which the polymer particles are aggregated.

上記(3)を備える本発明の高分子粒体材料の検査方法によると、圧縮工程において高分子粒体を加熱しつつ圧縮することで、凝集性の大きな高分子粒体を信頼性高く凝集させ得る。このため、上記(3)を備える本発明の高分子粒体材料の検査方法によると、高分子粒体の凝集性を精度高く評価できる。なお、加熱温度を、高分子粒体材料の溶融温度に満たない温度にすることで、高分子粒体材料の溶融による高分子粒体の固着を避けつつ高分子粒体を信頼性高く凝集させ得る。   According to the method for inspecting a polymer granular material of the present invention comprising the above (3), the polymer particles can be aggregated with high reliability by compressing while heating the polymer particles in the compression step. obtain. For this reason, according to the inspection method of the polymer particle material of the present invention provided with the above (3), the aggregation property of the polymer particles can be evaluated with high accuracy. Note that by setting the heating temperature to a temperature lower than the melting temperature of the polymer particle material, the polymer particles can be aggregated with high reliability while avoiding the fixation of the polymer particles due to melting of the polymer particle material. obtain.

上記(4)を備える本発明の高分子粒体材料の検査方法によると、凝集性の大きな高分子粒体を、圧縮工程において信頼性高く凝集させ得る。このため、上記(4)を備える本発明の高分子粒体材料の検査方法によると、高分子粒体の凝集性をさらに精度高く評価できる。   According to the method for inspecting a polymer particle material of the present invention having the above (4), polymer particles having high cohesiveness can be aggregated with high reliability in the compression step. For this reason, according to the inspection method of the polymer particle material of the present invention having the above (4), the cohesiveness of the polymer particles can be evaluated with higher accuracy.

上記(5)を備える本発明の高分子粒体材料の検査方法によると、凝集性の大きな高分子粒体を、圧縮工程においてさらに信頼性高く凝集させ得る。このため、上記(5)を備える本発明の高分子粒体材料の検査方法によると、高分子粒体の凝集性をさらに精度高く評価できる。   According to the method for inspecting a polymer particle material of the present invention having the above (5), the polymer particles having high cohesiveness can be aggregated more reliably in the compression step. For this reason, according to the inspection method of the polymer particle material of the present invention having the above (5), the cohesiveness of the polymer particles can be evaluated with higher accuracy.

上記(6)を備える本発明の高分子粒体材料の検査方法によると、高分子粒体の凝集性を安価かつ信頼性高く評価できる。一般的な検査装置であるパウダーレオメータを用いるためである。   According to the polymer particle material inspection method of the present invention having the above (6), the aggregation property of the polymer particles can be evaluated inexpensively and with high reliability. This is because a powder rheometer which is a general inspection device is used.

本発明の高分子粒体材料の検査方法に供する高分子粒体材料は、複数個の高分子粒体のみからなっても良いし、高分子粒体以外の副材料を含んでも良い。例えば、高分子粒体よりも凝集性の小さい樹脂材料からなり高分子粒体よりも小径の副材料を高分子粒体の表面に付着させる場合には、高分子粒体同士の間隙に副材料が介在する。このため、高分子粒体同士が圧接し難くなり、高分子粒体の凝集が抑制される。   The polymer particle material used in the method for inspecting a polymer particle material of the present invention may consist of only a plurality of polymer particles, or may contain sub-materials other than the polymer particles. For example, when a sub-material made of a resin material that is less cohesive than the polymer particles and having a smaller diameter than the polymer particles is attached to the surface of the polymer particles, the sub-material is placed in the gap between the polymer particles. Intervenes. For this reason, it becomes difficult for the polymer particles to come into pressure contact with each other, and aggregation of the polymer particles is suppressed.

本発明の高分子粒体材料の検査方法で用いる検査装置は、測定子を持つ。測定子は、少なくとも回転運動できるものであればよい。すなわち、測定子を高分子粒体材料に差し込む作業は測定者が手作業でおこなっても良い。例えば測定子を回転させ、作業者が測定子に向けて測定用容器および高分子粒体材料を近づければ、回転している測定子を高分子粒体材料に差し込むことができる。しかし、評価のバラツキをなくし、評価の信頼性を高めるためには、測定子自体が回転しつつ測定用容器および高分子粒体材料に向けて移動することが好ましい。   The inspection device used in the method for inspecting a polymer granular material of the present invention has a measuring element. The measuring element only needs to be capable of rotating at least. That is, the work of inserting the measuring element into the polymer granular material may be performed manually by the measurer. For example, when the measuring element is rotated and the operator brings the measuring container and the polymer granular material close to the measuring element, the rotating measuring element can be inserted into the polymer granular material. However, in order to eliminate variations in evaluation and increase the reliability of evaluation, it is preferable that the probe itself moves toward the measurement container and the polymer granular material while rotating.

また、本発明の高分子粒体材料の検査方法で用いる検査装置は、差し込み荷重を検知するセンサと、回転荷重を検知するセンサとを持つ。これらのセンサとしては、既知の荷重センサや加速度センサ、角速度センサ等を用いればよい。測定子の回転速度や測定子の差し込み速度は、使用する高分子粒体の種類や粒径、測定用容器の形状等に応じて適宜設定すればよい。なお、高分子粒体としてスラッシュ成形用エラストマパウダーを用いる場合には、測定子の差し込み速度は26.4mm/分〜1575.2mm/分程度であるのが好ましい。また、高分子粒体としてスラッシュ成形用エラストマパウダーを用いる場合には、測定子の回転速度は2.0rpm〜119.4rpm程度であるのが好ましい。   The inspection apparatus used in the method for inspecting a polymer granular material according to the present invention includes a sensor for detecting insertion load and a sensor for detecting rotational load. As these sensors, a known load sensor, acceleration sensor, angular velocity sensor, or the like may be used. The rotational speed of the probe or the insertion speed of the probe may be appropriately set according to the type and particle size of the polymer particles used, the shape of the measurement container, and the like. In addition, when using the elastomer powder for slush molding as a polymer particle, it is preferable that the insertion speed of the measuring element is about 26.4 mm / min to 1575.2 mm / min. Moreover, when using the elastomer powder for slush shaping | molding as a polymer granule, it is preferable that the rotational speed of a measuring element is about 2.0 rpm-119.4 rpm.

本発明の高分子粒体材料の検査方法によると、種々の大きさの高分子粒体の凝集性を評価できるが、平均粒子径0.01mm〜1.0mm程度の高分子粒体の凝集性を評価するのに特に好ましく用いられる。また、本発明の高分子粒体材料の検査方法によると、種々の材料からなる高分子粒体の凝集性を評価できるが、熱可塑性ポリウレタンエラストマ、熱可塑性オレフィンエラストマ、スチレン系熱可塑性エラストマ、塩化ビニル系熱可塑性エラストマ、熱可塑性ポリエステルエラストマ、熱可塑性ポリアミドエラストマ等からなる高分子粒体の凝集性を評価するのに特に好ましく用いられる。   According to the method for inspecting a polymer particle material of the present invention, the agglomeration property of polymer particles of various sizes can be evaluated, but the agglomeration property of polymer particles having an average particle diameter of about 0.01 mm to 1.0 mm. It is particularly preferably used for evaluating. Further, according to the method for inspecting polymer granular material of the present invention, the cohesiveness of polymer particles made of various materials can be evaluated, but thermoplastic polyurethane elastomer, thermoplastic olefin elastomer, styrene thermoplastic elastomer, chloride It is particularly preferably used for evaluating the cohesiveness of polymer particles composed of vinyl-based thermoplastic elastomers, thermoplastic polyester elastomers, thermoplastic polyamide elastomers and the like.

本発明の高分子粒体材料の検査方法の圧縮工程では、高分子粒体材料に加える荷重が大きいほど、凝集性の小さな高分子粒体を凝集させることができる。一方、凝集性の大きな高分子粒体を凝集させるためには、圧縮工程において高分子粒体に加える荷重は小さくて良い。このため、圧縮工程において高分子粒体に加える荷重は、評価すべき凝集性の大きさに応じて適宜設定すればよい。圧縮工程において高分子粒体に加える荷重が高分子粒体160mlあたり20.4g/cm〜509g/cmであれば、比較的凝集性の小さな高分子粒体材料を凝集させることなく、凝集性の大きな高分子粒体を信頼性高く凝集させることができる。 In the compression step of the method for inspecting a polymer particle material of the present invention, the larger the load applied to the polymer particle material, the more the polymer particles having a smaller cohesiveness can be aggregated. On the other hand, in order to agglomerate polymer particles having high cohesiveness, the load applied to the polymer particles in the compression step may be small. For this reason, what is necessary is just to set suitably the load added to a polymer particle in a compression process according to the magnitude | size of the cohesiveness which should be evaluated. If the polymer granules polymer granules 160ml per 20.4g / cm 2 ~509g / cm 2 load applied to the compression process, without aggregating the relatively cohesive small polymeric granular material, aggregation Highly reliable polymer particles can be aggregated with high reliability.

圧縮工程において高分子粒体材料を加熱する温度は、高分子粒体材料の溶融温度に満たない温度であれば良く、高分子粒体材料の種類毎に適宜設定できる。なお、この加熱温度が高温である程、凝集性の大きな高分子粒体を信頼性高く凝集させ得る。   The temperature at which the polymer particle material is heated in the compression step may be any temperature that is less than the melting temperature of the polymer particle material, and can be set as appropriate for each type of polymer particle material. Note that the higher the heating temperature, the more highly agglomerated polymer particles can be aggregated with higher reliability.

以下、本発明の高分子粒体材料の検査方法を例を挙げて説明する。   Hereinafter, the method for inspecting a polymer granular material of the present invention will be described by way of example.

(実施例1)
実施例1の高分子粒体材料の検査方法に供する高分子粒体材料としては、三洋化成工業株式会社製のGS200を用いた。この高分子粒体材料は、熱可塑性ポリウレタンエラストマの粒体である。また、この高分子粒体材料の溶融温度は180℃である。
Example 1
GS200 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer particle material used in the method for inspecting the polymer particle material of Example 1. The polymer granular material is a thermoplastic polyurethane elastomer particle. Further, the melting temperature of the polymer granular material is 180 ° C.

(予備工程)
高分子粒体材料を50℃に設定した乾燥機に入れて、16時間〜20時間乾燥させた。乾燥した高分子粒体材料300〜400mlを500ml容PEチューブに入れたものを5つ作製し(試料1〜5)、試料1〜5の高分子粒体材料の重量をそれぞれ測定した。その後、試料1〜5の高分子粒体材料に、それぞれ、測定した重量に基づいて水を添加した。なお、ここで添加した水は、イオン交換処理後の純水であった。また、水は各試料の高分子粒体材料を撹拌しつつ添加した。
(Preliminary process)
The polymer granular material was placed in a dryer set at 50 ° C. and dried for 16 to 20 hours. Five samples of 300 to 400 ml of the dried polymer particle material placed in a 500 ml PE tube were prepared (Samples 1 to 5), and the weights of the polymer particle materials of Samples 1 to 5 were measured. Thereafter, water was added to each of the polymer granular materials of Samples 1 to 5 based on the measured weight. The water added here was pure water after the ion exchange treatment. Water was added while stirring the polymer granular material of each sample.

詳しくは、試料1の高分子粒体材料には水を加えなかった。試料2の高分子粒体材料には、水添加後の高分子粒体材料の質量(100質量%)に対して0.3質量%となる量の水を加えた。試料3の高分子粒体材料には、水添加後の高分子粒体材料の質量(100質量%)に対して0.8質量%となる量の水を加えた。試料4の高分子粒体材料には、水添加後の高分子粒体材料の質量(100質量%)に対して1.3質量%となる量の水を加えた。試料5の高分子粒体材料には、水添加後の高分子粒体材料の質量(100質量%)に対して1.8質量%となる量の水を加えた。   Specifically, water was not added to the polymer granular material of Sample 1. The polymer particle material of Sample 2 was added with an amount of water of 0.3% by mass with respect to the mass (100% by mass) of the polymer particle material after addition of water. The polymer particle material of Sample 3 was added with water in an amount of 0.8% by mass relative to the mass (100% by mass) of the polymer particle material after addition of water. The polymer particle material of Sample 4 was added with water in an amount of 1.3% by mass with respect to the mass (100% by mass) of the polymer particle material after addition of water. The polymer particle material of Sample 5 was added with an amount of water of 1.8% by mass with respect to the mass (100% by mass) of the polymer particle material after addition of water.

乾燥した高分子粒体材料には約0.2質量%の水が含まれている。このため、水添加後の試料1の高分子粒体材料には約0.2質量%の水が含まれ、水添加後の試料2の高分子粒体材料には約0.5質量%の水が含まれ、水添加後の試料3の高分子粒体材料には約1.0質量%の水が含まれ、水添加後の試料4の高分子粒体材料には約1.5質量%の水が含まれ、水添加後の試料5の高分子粒体材料には約2.0質量%の水が含まれる。水添加後、高分子粒体材料全体に水を分散させるため、試料1〜5のPEチューブにキャップをし、さらにポリビニルテープで封をした上で、20〜70時間程度室温で放置した。   The dried polymeric particulate material contains about 0.2% by weight water. For this reason, the polymer granule material of Sample 1 after water addition contains about 0.2% by mass of water, and the polymer granule material of Sample 2 after water addition contains about 0.5% by mass. Sample 3 after addition of water contains about 1.0% by mass of water, and sample 4 after addition of water contains about 1.5% by mass. % Of water is contained, and the polymer granular material of Sample 5 after the addition of water contains about 2.0 mass% of water. After the addition of water, in order to disperse the water throughout the polymer granular material, the PE tubes of Samples 1 to 5 were capped, further sealed with polyvinyl tape, and left at room temperature for about 20 to 70 hours.

各試料の高分子粒体材料にそれぞれ異なる量の水を加えることで、高分子粒体の凝集性の異なる試料1〜5を得た。この試料1〜5を以下の準備工程〜測定工程に供することで、各試料の凝集性を評価した。   By adding different amounts of water to the polymer particle material of each sample, samples 1 to 5 having different aggregation properties of the polymer particles were obtained. The samples 1 to 5 were subjected to the following preparation step to measurement step, thereby evaluating the cohesiveness of each sample.

(準備工程)
実施例1における準備工程は、予備工程後の高分子粒体材料を測定用容器に入れる工程である。
(Preparation process)
The preparatory step in Example 1 is a step of putting the polymer granular material after the preliminary step into a measurement container.

測定用容器1としては、後述するパウダーレオメータFT4用のベッセルキット(スプリットベッセルキット C203 50X160ML)を用いた。このベッセルキットは、図1に示すように、上筒体11と下筒体12とを持つ。上筒体11および下筒体12の内径はともに50mmである。下筒体12の上端外周部には、略リング状の下側リング枠13が固着されている。上筒体11の下端外周部には略リング状の上側リング枠14が固着されている。上側リング枠14は下側リング枠13に枢支されている。このため上側リング枠14および上筒体11は、図1に示す第1位置と図2に示す第2位置との間を回動可能である。第1位置においては、上筒体11および上側リング枠14と、下筒体12および下側リング枠13とは同軸的に固定され、上側リング枠14の下面は下側リング枠13の上面に当接し、上筒体11の内部と下筒体12の内部とは連通する。第2位置においては、下筒体12の内部は露出する。   As the measurement container 1, a vessel kit (split vessel kit C203 50X160ML) for a powder rheometer FT4 described later was used. As shown in FIG. 1, the vessel kit has an upper cylinder body 11 and a lower cylinder body 12. Both the inner diameters of the upper cylinder body 11 and the lower cylinder body 12 are 50 mm. A substantially ring-shaped lower ring frame 13 is fixed to the outer periphery of the upper end of the lower cylinder 12. A substantially ring-shaped upper ring frame 14 is fixed to the outer periphery of the lower end of the upper cylinder 11. The upper ring frame 14 is pivotally supported by the lower ring frame 13. Therefore, the upper ring frame 14 and the upper cylindrical body 11 are rotatable between the first position shown in FIG. 1 and the second position shown in FIG. In the first position, the upper cylindrical body 11 and the upper ring frame 14 are fixed coaxially with the lower cylindrical body 12 and the lower ring frame 13, and the lower surface of the upper ring frame 14 is on the upper surface of the lower ring frame 13. The inside of the upper cylinder 11 and the inside of the lower cylinder 12 communicate with each other. In the second position, the inside of the lower cylinder 12 is exposed.

先ず、測定用容器1を組み立て、上筒体11および上側リング枠14を図1に示す第1位置に配置した。次いで、予備工程後の高分子粒体材料160ml強を上筒体11の上方から上筒体11および下筒体12に入れた。そして高分子粒体材料が入った測定用容器1を実験台に20〜30回軽くたたきつけた(所謂タッピング)。このタッピング処理で、下筒体12の全体と上筒体11の一部とに高分子粒体材料が充填された。このとき、高分子粒体材料の体積が160ml以下になった場合には、高分子粒体材料を追加して軽くタッピング処理を行った。タッピング処理後、図2に示すように、上筒体11および上側リング枠14を第2位置に回動させて、下筒体12に充填されている高分子粒体材料をすり切った。この操作によって、下筒体12には160mlの高分子粒体材料が充填された。   First, the measurement container 1 was assembled, and the upper cylindrical body 11 and the upper ring frame 14 were arranged at the first position shown in FIG. Next, a little over 160 ml of the polymer granular material after the preliminary process was put into the upper cylinder 11 and the lower cylinder 12 from above the upper cylinder 11. Then, the measurement container 1 containing the polymer granular material was lightly struck 20-30 times on a test bench (so-called tapping). By this tapping process, the entire lower cylinder 12 and a part of the upper cylinder 11 were filled with the polymer granular material. At this time, when the volume of the polymer granule material became 160 ml or less, the polymer granule material was added and lightly tapped. After the tapping process, as shown in FIG. 2, the upper cylinder 11 and the upper ring frame 14 were rotated to the second position, and the polymer granular material filled in the lower cylinder 12 was worn. By this operation, the lower cylinder 12 was filled with 160 ml of the polymer granular material.

(圧縮工程)
実施例1における圧縮工程は、測定用容器1に入った高分子粒体材料に荷重を加えつつ加熱して、高分子粒体材料を圧縮する工程である。
(Compression process)
The compression step in Example 1 is a step of compressing the polymer particle material by heating the polymer particle material contained in the measurement container 1 while applying a load.

先ず、180ml容平底ジャー(サンプラテック製PFA平底ジャー No.15283E 0103L 外径49mm)の外表面に出ている凸状突起をカッターナイフで削り取り、平底ジャーの外径を均一(49mm)にした。この平底ジャーに鉄粉(ナカライテスク製 No.19416−45 CP80メッシュ)を入れ、平底ジャーの蓋も合わせた質量が500.0gになるようにした。鉄粉を入れた平底ジャーの蓋をしっかりと閉めたものを、圧縮用の荷重体2として用いた。   First, the convex protrusions on the outer surface of a 180 ml flat bottom jar (PFA flat bottom jar No. 15283E 0103L, outer diameter 49 mm, manufactured by Sampla Tech) were scraped off with a cutter knife to make the outer diameter of the flat bottom jar uniform (49 mm). Iron powder (No. 19416-45 CP80 mesh manufactured by Nacalai Tesque) was placed in this flat bottom jar so that the mass of the flat bottom jar combined with the lid was 500.0 g. What closed the lid | cover of the flat bottom jar which put iron powder firmly was used as the load body 2 for compression.

準備工程後、上筒体11および上側リング枠14を第1位置に回動させた。そして、図3に示すように、上筒体11に荷重体2を挿入して、下筒体12に充填された高分子粒体材料に荷重を加えた。この状態で測定用容器1、高分子粒体材料および荷重体2を図略の環境試験装置(エスペック株式会社製 各種汎用環境試験装置)に入れ、高分子粒体材料を50℃で3時間圧縮した。なお、高分子粒体材料の溶融温度(180℃)は50℃を超えるため、この工程によって高分子粒体材料が溶融することはない。   After the preparation step, the upper cylindrical body 11 and the upper ring frame 14 were rotated to the first position. And as shown in FIG. 3, the load body 2 was inserted in the upper cylinder 11, and the load was applied to the polymer granular material with which the lower cylinder 12 was filled. In this state, the measurement container 1, the polymer granular material, and the load body 2 are placed in an unillustrated environmental test apparatus (various general-purpose environmental test apparatuses manufactured by Espec Corporation), and the polymer granular material is compressed at 50 ° C. for 3 hours. did. Since the melting temperature (180 ° C.) of the polymer granular material exceeds 50 ° C., the polymer granular material is not melted by this step.

(測定工程)
実施例1における測定工程は、圧縮工程後の高分子粒体材料を測定用容器1に入った状態で検査装置に取り付け、検査装置の測定子を回転させつつ高分子粒体材料に差し込んで、差し込み荷重と回転荷重とを測定する工程である。
(Measurement process)
In the measurement process in Example 1, the polymer granular material after the compression process is attached to the inspection device in a state of entering the measurement container 1, and inserted into the polymer granular material while rotating the probe of the inspection device. This is a step of measuring the insertion load and the rotational load.

実施例1における測定工程では、検査装置として、パウダーレオメータ(フリーマンテクノロジー社製 パウダーレオメータFT4)を用いた。なお、一般的なパウダーレオメータには、測定前にコンディショニング処理(測定子を逆回転させつつ検体に差し込んで、検体の粒度を均一化する処理)をおこなう機能がある。しかし、コンディショニング処理をおこなうと、圧縮工程で凝集した高分子粒体が再度分離する可能性が大きい。このため実施例1では、コンディショニング処理をおこなわず、圧縮工程後そのままの高分子粒体材料の差し込み荷重と回転荷重とを測定した。   In the measurement process in Example 1, a powder rheometer (Powder Rheometer FT4 manufactured by Freeman Technology) was used as an inspection device. A general powder rheometer has a function of performing a conditioning process (a process of making the particle size of the sample uniform by inserting the probe into the sample while rotating the probe backward) before measurement. However, when the conditioning treatment is performed, there is a high possibility that the polymer particles aggregated in the compression process are separated again. For this reason, in Example 1, the conditioning process was not performed, but the insertion load and rotational load of the polymer granular material as it was after the compression process were measured.

詳しくは、測定用容器1を検査装置に取り付け、圧縮されている高分子粒体材料に測定子(パウダーレオメータブレード)を回転させつつ差し込んだ。このときの測定子の回転速度は39.8rpmであり、差し込み速度は525.1mm/分であった。なお、測定子としては上述した装置(FT4)の付属品である48mm径ブレードを用いた。   Specifically, the measuring container 1 was attached to an inspection apparatus, and a measuring piece (powder rheometer blade) was inserted into the compressed polymer granular material while rotating. The rotational speed of the probe at this time was 39.8 rpm, and the insertion speed was 525.1 mm / min. A 48 mm-diameter blade that is an accessory of the above-described device (FT4) was used as the measuring element.

測定工程で測定した試料1〜5の差し込み荷重を表すグラフを図4に示し、試料1〜5の回転荷重を表すグラフを図5に示し、試料1〜5の差し込み荷重と回転荷重との和(以下、合計荷重と呼ぶ)を表すグラフを図6に示す。   The graph showing the insertion load of samples 1 to 5 measured in the measurement process is shown in FIG. 4, the graph showing the rotation load of samples 1 to 5 is shown in FIG. 5, and the sum of the insertion load and rotation load of samples 1 to 5 is shown. A graph showing (hereinafter referred to as total load) is shown in FIG.

(比較例1)
比較例1の高分子粒体材料の検査方法では、実施例1の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。換言すると、比較例1の高分子粒体材料の検査方法では、圧縮されていない状態の高分子粒体材料の差し込み荷重と回転荷重とを測定する。
(Comparative Example 1)
In the inspection method for the polymer particle material of Comparative Example 1, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Example 1. In other words, in the method for inspecting the polymer particle material of Comparative Example 1, the insertion load and the rotational load of the polymer particle material in an uncompressed state are measured.

(測定工程)
実施例1の高分子粒体材料の検査方法における測定工程後に、測定用容器1を検査装置に取り付け、実施例1の高分子粒体材料の検査方法において測定子で一回撹拌した高分子粒体材料に、測定子を再度回転させつつ差し込んだ。検査装置は実施例1で用いた検査装置と同じものであり、測定子の回転速度および差し込み速度もまた実施例1と同じである。
(Measurement process)
After the measurement step in the method for inspecting a polymer granular material of Example 1, the measurement container 1 is attached to an inspection apparatus, and the polymer particles stirred once with a measuring element in the method for inspecting a polymer granular material in Example 1 The probe was inserted into the body material while rotating the probe again. The inspection apparatus is the same as the inspection apparatus used in Example 1, and the rotational speed and insertion speed of the measuring element are also the same as in Example 1.

比較例1の測定工程で測定した試料1〜5の差し込み荷重を表すグラフを図4に示し、試料1〜5の回転荷重を表すグラフを図5に示し、試料1〜5の合計荷重を表すグラフを図6に示す。   The graph showing the insertion load of samples 1 to 5 measured in the measurement process of Comparative Example 1 is shown in FIG. 4, the graph showing the rotational load of samples 1 to 5 is shown in FIG. 5, and the total load of samples 1 to 5 is shown. A graph is shown in FIG.

(比較例2)
比較例2の高分子粒体材料の検査方法では、比較例1の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。換言すると、比較例2の高分子粒体材料の検査方法では、比較例1よりもさらに圧縮されていない状態の高分子粒体材料の差し込み荷重と回転荷重とを測定する。
(Comparative Example 2)
In the method for inspecting the polymer particle material in Comparative Example 2, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the method for inspecting the polymer particle material in Comparative Example 1. In other words, in the method for inspecting the polymer granular material of Comparative Example 2, the insertion load and the rotational load of the polymer granular material in a state where it is not further compressed than Comparative Example 1 are measured.

(測定工程)
比較例1の高分子粒体材料の検査方法における測定工程後に、測定用容器1を検査装置に取り付け、実施例1および比較例1の高分子粒体材料の検査方法において測定子で合計二回撹拌した高分子粒体材料に、測定子を再度回転させつつ差し込んだ。検査装置は実施例1で用いた検査装置と同じものであり、測定子の回転速度および差し込み速度もまた実施例1と同じである。
(Measurement process)
After the measurement step in the method for inspecting the polymer granular material of Comparative Example 1, the measuring container 1 is attached to the inspection apparatus, and the method for inspecting the polymer granular material in Example 1 and Comparative Example 1 is used twice with a measuring element. The measuring element was inserted into the stirred polymer particle material while rotating again. The inspection apparatus is the same as the inspection apparatus used in Example 1, and the rotational speed and insertion speed of the measuring element are also the same as in Example 1.

比較例2の測定工程で測定した試料1〜5の差し込み荷重を表すグラフを図4に示し、試料1〜5の回転荷重を表すグラフを図5に示し、試料1〜5の合計荷重を表すグラフを図6に示す。   The graph showing the insertion load of samples 1 to 5 measured in the measurement process of Comparative Example 2 is shown in FIG. 4, the graph showing the rotational load of samples 1 to 5 is shown in FIG. 5, and the total load of samples 1 to 5 is shown. A graph is shown in FIG.

(比較例3)
比較例3の高分子粒体材料の検査方法では、比較例2の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。換言すると、比較例3の高分子粒体材料の検査方法では、比較例2よりもさらに圧縮されていない状態の高分子粒体材料の差し込み荷重と回転荷重とを測定する。
(Comparative Example 3)
In the method for inspecting the polymer particle material of Comparative Example 3, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the method for inspecting the polymer particle material in Comparative Example 2. In other words, in the method for inspecting the polymer granular material of Comparative Example 3, the insertion load and the rotational load of the polymer granular material in a state where it is not further compressed than Comparative Example 2 are measured.

(測定工程)
比較例2の高分子粒体材料の検査方法における測定工程後に、測定用容器1を検査装置に取り付け、実施例1および比較例1〜2の高分子粒体材料の検査方法において測定子で合計三回撹拌した高分子粒体材料に、測定子を再度回転させつつ差し込んだ。検査装置は実施例1で用いた検査装置と同じものであり、測定子の回転速度および差し込み速度もまた実施例1と同じである。
(Measurement process)
After the measurement step in the method for inspecting the polymer granular material of Comparative Example 2, the measuring container 1 is attached to the inspection apparatus, and the total is measured with a measuring element in the method for inspecting the polymer granular material in Example 1 and Comparative Examples 1-2. The measuring element was inserted into the polymer particle material stirred three times while rotating again. The inspection apparatus is the same as the inspection apparatus used in Example 1, and the rotational speed and insertion speed of the measuring element are also the same as in Example 1.

比較例3の測定工程で測定した試料1〜5の差し込み荷重を表すグラフを図4に示し、試料1〜5の回転荷重を表すグラフを図5に示し、試料1〜5の合計荷重を表すグラフを図6に示す。   A graph showing the insertion load of samples 1 to 5 measured in the measurement process of Comparative Example 3 is shown in FIG. 4, a graph showing the rotational load of samples 1 to 5 is shown in FIG. 5, and the total load of samples 1 to 5 is shown. A graph is shown in FIG.

(凝集性の評価1)
図4に示すように、実施例1の検査方法で測定した試料1〜5の差し込み荷重は、比較例1〜3の検査方法で測定した試料1〜5の差し込み荷重よりも遙かに大きい。また、実施例1の検査方法によると、比較例1〜3の検査方法よりも、各試料間の差し込み荷重の差が遙かに大きくなる。この結果から、実施例1の高分子材料の検査方法によると、水含有率の大きい高分子粒体材料(高分子粒体の凝集性の大きい高分子粒体材料)と、水含有率の小さい高分子粒体材料(高分子粒体の凝集性の小さい高分子粒体材料)とを精度高く判別でき、高分子粒体の凝集性を精度高く評価できることがわかる。なお、実施例1の測定工程で測定した試料1〜5の差し込み荷重は、試料1<試料2<試料3<試料4<試料5となっている。これは、試料1〜5の水含有率が、試料1<試料2<試料3<試料4<試料5となっているためである。
(Evaluation of cohesiveness 1)
As shown in FIG. 4, the insertion load of samples 1 to 5 measured by the inspection method of Example 1 is much larger than the insertion load of samples 1 to 5 measured by the inspection method of Comparative Examples 1 to 3. Moreover, according to the inspection method of Example 1, the difference in insertion load between the samples is much larger than that of Comparative Examples 1 to 3. From this result, according to the inspection method of the polymer material of Example 1, the polymer particle material having a large water content (the polymer particle material having a high cohesiveness of the polymer particles) and the water content being small. It can be seen that the polymer particle material (the polymer particle material having a small aggregation property of the polymer particles) can be distinguished with high accuracy, and the aggregation property of the polymer particles can be evaluated with high accuracy. Note that the insertion loads of Samples 1 to 5 measured in the measurement process of Example 1 are Sample 1 <Sample 2 <Sample 3 <Sample 4 <Sample 5. This is because the water contents of Samples 1 to 5 are Sample 1 <Sample 2 <Sample 3 <Sample 4 <Sample 5.

また、実施例1の検査方法で測定した試料1〜5の回転荷重と比較例1〜3の検査方法で測定した試料1〜5の回転荷重との差(図5)は、実施例1の検査方法で測定した試料1〜5の差し込み荷重と比較例1〜3の検査方法で測定した試料1〜5の差し込み荷重との差(図4)よりも遙かに大きい。この結果から、回転荷重を基に高分子粒体の凝集性を評価する場合には、差し込み荷重を基に高分子粒体の凝集性を評価する場合に比べて、高分子粒体の凝集性をさらに精度高く評価できることがわかる。   Moreover, the difference (FIG. 5) between the rotational load of the samples 1 to 5 measured by the inspection method of Example 1 and the rotational load of the samples 1 to 5 measured by the inspection method of Comparative Examples 1 to 3 is the same as that of Example 1. It is much larger than the difference (FIG. 4) between the insertion load of samples 1 to 5 measured by the inspection method and the insertion load of samples 1 to 5 measured by the inspection methods of Comparative Examples 1 to 3. From this result, when evaluating the cohesiveness of the polymer particles based on the rotational load, the cohesiveness of the polymer particles is compared to when evaluating the cohesiveness of the polymer particles based on the insertion load. It can be seen that can be evaluated with higher accuracy.

さらに、図6に示すように、合計荷重を基に高分子粒体材料の凝集性を評価する場合には、実施例1の検査方法による測定値と比較例1〜3の測定方法による測定値との差がさらに大きくなる。この結果から、合計荷重(すなわち、差し込み荷重と回転荷重との和)を基に高分子粒体の凝集性を評価する場合には、高分子粒体の凝集性をさらに精度高く評価できることがわかる。   Furthermore, as shown in FIG. 6, when evaluating the cohesiveness of the polymer granular material based on the total load, the measurement value by the inspection method of Example 1 and the measurement value by the measurement methods of Comparative Examples 1 to 3 And the difference is even greater. From this result, it can be seen that when the aggregation property of the polymer particles is evaluated based on the total load (that is, the sum of the insertion load and the rotational load), the aggregation property of the polymer particles can be evaluated with higher accuracy. .

実施例1の高分子粒体材料の検査方法と比較例1〜3の高分子粒体材料の検査方法との違いは圧縮工程の有無である。このため、本発明の高分子粒体材料の検査方法は、圧縮工程を備えることで、高分子粒体の凝集性を精度高く評価できるといえる。   The difference between the inspection method for the polymer particle material of Example 1 and the inspection method for the polymer particle material of Comparative Examples 1 to 3 is the presence or absence of the compression step. For this reason, it can be said that the inspection method of the polymer particle material of the present invention can accurately evaluate the cohesiveness of the polymer particles by including a compression step.

なお、水分含有率0.5質量%以下の熱可塑性ポリウレタンエラストマ(GS200)を用いてパウダースラッシュ成形をおこなうと、品質に優れた成形品を得ることができる。換言すると、試料1および試料2の高分子粒体材料を用いてパウダースラッシュ成形をおこなうと、品質に優れた成形品を得ることができる。   In addition, when powder slush molding is performed using a thermoplastic polyurethane elastomer (GS200) having a moisture content of 0.5% by mass or less, a molded product having excellent quality can be obtained. In other words, when powder slush molding is performed using the polymer granular materials of Sample 1 and Sample 2, a molded product with excellent quality can be obtained.

このため、差し込み荷重を基に高分子粒体材料の凝集性を評価する場合には、差し込み荷重が300mJ以下であれば、その高分子粒体材料の凝集性は十分に小さくパウダースラッシュ成形に適している、と評価することができる。   For this reason, when evaluating the cohesiveness of the polymer particle material based on the insertion load, if the insertion load is 300 mJ or less, the aggregation property of the polymer particle material is sufficiently small and suitable for powder slush molding. Can be evaluated.

また、回転荷重を基に高分子粒体の凝集性を評価する場合には、回転荷重が1350mJ以下であれば、その高分子粒体材料の凝集性は十分に小さくパウダースラッシュ成形に適している、と評価することができる。   Also, when evaluating the cohesiveness of polymer particles based on rotational load, the coagulability of the polymer particle material is sufficiently small and suitable for powder slush molding if the rotational load is 1350 mJ or less. , And can be evaluated.

また、合計荷重を基に高分子粒体の凝集性を評価する場合には、合計荷重が1650mJ以下であれば、その高分子粒体材料の凝集性は十分に小さくパウダースラッシュ成形に適している、と評価することができる。   Further, when evaluating the aggregation property of the polymer particles based on the total load, the aggregation property of the polymer particle material is sufficiently small and suitable for powder slush molding if the total load is 1650 mJ or less. , And can be evaluated.

(実施例2)
実施例2の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、高分子粒体材料として、三洋化成工業株式会社製のGS500を用いたこと以外は、実施例1における試料1〜4と同じものである。実施例2における予備工程、準備工程、測定工程は実施例1における予備工程、準備工程、測定工程と同じである。実施例2における圧縮工程は、加熱温度が23℃であること以外は実施例1における圧縮工程と同じである。
(Example 2)
Samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting polymer granular material of Example 2 were used except that GS500 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer granular material. The same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the measurement process in Example 2 are the same as the preliminary process, the preparation process, and the measurement process in Example 1. The compression step in Example 2 is the same as the compression step in Example 1 except that the heating temperature is 23 ° C.

実施例2の予備工程で作製した試料1には約0.2質量%の水が含まれ、試料2には約0.5質量%の水が含まれ、試料3には約1.0質量%の水が含まれ、試料4には約1.5質量%の水が含まれる。なお、後述する実施例3〜10に関しても、予備工程で作製した試料1〜4の水含有率は実施例2と同じである。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例2の測定工程で測定した試料1〜4の合計荷重を表すグラフを図7に示す。   Sample 1 prepared in the preliminary process of Example 2 contains about 0.2% by mass of water, Sample 2 contains about 0.5% by mass of water, and Sample 3 contains about 1.0% by mass. % Water is contained, and sample 4 contains about 1.5% by weight water. In addition, regarding Examples 3 to 10 described later, the water content of Samples 1 to 4 prepared in the preliminary process is the same as that of Example 2. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Example 2 is shown in FIG.

(比較例4)
比較例4の高分子粒体材料の検査方法では、実施例2の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例4の測定工程は、比較例1の測定工程と同様におこなった。比較例4の測定工程で測定した試料1〜4の合計荷重を表すグラフを図7に示す。
(Comparative Example 4)
In the inspection method for the polymer particle material of Comparative Example 4, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Example 2. The measurement process of Comparative Example 4 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 4 is shown in FIG.

(比較例5)
比較例5の高分子粒体材料の検査方法では、比較例4の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例5の測定工程は、比較例2の測定工程と同様におこなった。比較例5の測定工程で測定した試料1〜4の合計荷重を表すグラフを図7に示す。
(Comparative Example 5)
In the inspection method for the polymer particle material of Comparative Example 5, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 4. The measurement process of Comparative Example 5 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 5 is shown in FIG.

(比較例6)
比較例6の高分子粒体材料の検査方法では、比較例5の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例6の測定工程は、比較例3の測定工程と同様におこなった。比較例6の測定工程で測定した試料1〜4の合計荷重を表すグラフを図7に示す。
(Comparative Example 6)
In the method for inspecting the polymer particle material in Comparative Example 6, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the method for inspecting the polymer particle material in Comparative Example 5. The measurement process of Comparative Example 6 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 6 is shown in FIG.

(実施例3)
実施例3の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、高分子粒体材料として、三洋化成工業株式会社製のGS500を用いたこと以外は、実施例1における試料1〜4と同じものである。実施例3における予備工程、準備工程、測定工程は実施例1における予備工程、準備工程、測定工程と同じである。実施例3における圧縮工程は、加熱温度が40℃であること以外は実施例1における圧縮工程と同じである。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例3の測定工程で測定した試料1〜4の合計荷重を表すグラフを図8に示す。
(Example 3)
Samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting polymer granular material of Example 3 were used except that GS500 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer granular material. The same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the measurement process in Example 3 are the same as the preliminary process, the preparation process, and the measurement process in Example 1. The compression step in Example 3 is the same as the compression step in Example 1 except that the heating temperature is 40 ° C. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of samples 1 to 4 measured in the measurement process of Example 3 is shown in FIG.

(比較例7)
比較例7の高分子粒体材料の検査方法では、実施例3の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例7の測定工程は、比較例1の測定工程と同様におこなった。比較例7の測定工程で測定した試料1〜4の合計荷重を表すグラフを図8に示す。
(Comparative Example 7)
In the inspection method for the polymer particle material of Comparative Example 7, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Example 3. The measurement process of Comparative Example 7 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 7 is shown in FIG.

(比較例8)
比較例8の高分子粒体材料の検査方法では、比較例7の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例8の測定工程は、比較例2の測定工程と同様におこなった。比較例7の測定工程で測定した試料1〜4の合計荷重を表すグラフを図8に示す。
(Comparative Example 8)
In the inspection method for the polymer particle material of Comparative Example 8, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 7. The measurement process of Comparative Example 8 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 7 is shown in FIG.

(比較例9)
比較例9の高分子粒体材料の検査方法では、比較例8の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例9の測定工程は、比較例3の測定工程と同様におこなった。比較例9の測定工程で測定した試料1〜4の合計荷重を表すグラフを図8に示す。
(Comparative Example 9)
In the inspection method for the polymer particle material of Comparative Example 9, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 8. The measurement process of Comparative Example 9 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 9 is shown in FIG.

(実施例4)
実施例4の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、高分子粒体材料として、三洋化成工業株式会社製のGS500を用いたこと以外は、実施例1における試料1〜4と同じものである。実施例4における予備工程、準備工程、測定工程は実施例1における予備工程、準備工程、測定工程と同じである。実施例4における圧縮工程は実施例1における圧縮工程と同じである。なお、実施例4の圧縮工程における加熱温度は50℃である。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例4の測定工程で測定した試料1〜4の合計荷重を表すグラフを図9に示す。
Example 4
Samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting polymer granular material in Example 4 were used except that GS500 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer granular material. The same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the measurement process in Example 4 are the same as the preliminary process, the preparation process, and the measurement process in Example 1. The compression process in Example 4 is the same as the compression process in Example 1. In addition, the heating temperature in the compression process of Example 4 is 50 degreeC. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Example 4 is shown in FIG.

(比較例10)
比較例10の高分子粒体材料の検査方法では、実施例4の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例10の測定工程は、比較例1の測定工程と同様におこなった。比較例10の測定工程で測定した試料1〜4の合計荷重を表すグラフを図9に示す。
(Comparative Example 10)
In the method for inspecting the polymer particle material of Comparative Example 10, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the method for inspecting the polymer particle material in Example 4. The measurement process of Comparative Example 10 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 10 is shown in FIG.

(比較例11)
比較例11の高分子粒体材料の検査方法では、比較例10の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例11の測定工程は、比較例2の測定工程と同様におこなった。比較例11の測定工程で測定した試料1〜4の合計荷重を表すグラフを図9に示す。
(Comparative Example 11)
In the inspection method for the polymer particle material of Comparative Example 11, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 10. The measurement process of Comparative Example 11 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 11 is shown in FIG.

(比較例12)
比較例12の高分子粒体材料の検査方法では、比較例11の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例12の測定工程は、比較例3の測定工程と同様におこなった。比較例12の測定工程で測定した試料1〜4の合計荷重を表すグラフを図9に示す。
(Comparative Example 12)
In the inspection method for the polymer particle material of Comparative Example 12, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 11. The measurement process of Comparative Example 12 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 12 is shown in FIG.

(実施例5)
実施例5の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、高分子粒体材料として、三洋化成工業株式会社製のGS500を用いたこと以外は、実施例1における試料1〜4と同じものである。実施例5における予備工程、準備工程、測定工程は実施例1における予備工程、準備工程、測定工程と同じである。実施例5における圧縮工程は、加熱温度が65℃であること以外は実施例1における圧縮工程と同じである。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例5の測定工程で測定した試料1〜4の合計荷重を表すグラフを図10に示す。
(Example 5)
Samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting polymer granular material of Example 5 were used except that GS500 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer granular material. The same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the measurement process in Example 5 are the same as the preliminary process, the preparation process, and the measurement process in Example 1. The compression step in Example 5 is the same as the compression step in Example 1 except that the heating temperature is 65 ° C. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of samples 1 to 4 measured in the measurement process of Example 5 is shown in FIG.

(比較例13)
比較例13の高分子粒体材料の検査方法では、実施例5の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例13の測定工程は、比較例1の測定工程と同様におこなった。比較例13の測定工程で測定した試料1〜4の合計荷重を表すグラフを図10に示す。
(Comparative Example 13)
In the method for inspecting the polymer particle material of Comparative Example 13, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the method for inspecting the polymer particle material in Example 5. The measurement process of Comparative Example 13 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 13 is shown in FIG.

(比較例14)
比較例14の高分子粒体材料の検査方法では、比較例13の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例14の測定工程は、比較例2の測定工程と同様におこなった。比較例14の測定工程で測定した試料1〜4の合計荷重を表すグラフを図10に示す。
(Comparative Example 14)
In the inspection method for the polymer particle material of Comparative Example 14, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 13. The measurement process of Comparative Example 14 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 14 is shown in FIG.

(比較例15)
比較例15の高分子粒体材料の検査方法では、比較例14の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例15の測定工程は、比較例3の測定工程と同様におこなった。比較例15の測定工程で測定した試料1〜4の合計荷重を表すグラフを図10に示す。
(Comparative Example 15)
In the inspection method for the polymer particle material of Comparative Example 15, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 14. The measurement process of Comparative Example 15 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 15 is shown in FIG.

(凝集性の評価2)
実施例2〜5の高分子粒体材料の検査方法は、圧縮工程における加熱温度(以下、圧縮温度と略する)が異なる。詳しくは、各実施例における圧縮温度は、実施例2<実施例3<実施例4<実施例5である。また、図7〜10に示すように、実施例2〜5の高分子粒体材料の検査方法で測定した合計荷重は、実施例2<実施例3<実施例4<実施例5である。さらに、図7〜10に示すように、圧縮温度が高いほど、実施例の方法で測定した合計荷重と比較例の方法で測定した合計荷重との差は大きくなる。これらの結果から、本発明の高分子粒体材料の検査方法は、圧縮温度が高いほど検出感度が高くなり、高分子粒体の凝集性を精度高く評価できることがわかる。なお、圧縮温度を50℃以上にする場合(図9〜10)には、圧縮温度を50℃未満にする場合(図7〜8)に比べて、実施例で測定した合計荷重が大きく、かつ、実施例で測定した合計荷重と比較例で測定した合計荷重との差が非常に大きくなる。さらに、上述したように、圧縮温度を高分子粒体材料の溶融温度に満たない温度にすることで、高分子粒体材料の溶融による高分子粒体の固着を避けつつ高分子粒体を信頼性高く凝集させ得る。したがって、本発明の高分子粒体材料の検査方法における好ましい圧縮温度は、高分子粒体材料の溶融温度未満50℃以上である、と言える。
(Evaluation of cohesiveness 2)
The heating method in the compression process (hereinafter abbreviated as the compression temperature) differs in the method for inspecting the polymer granular materials of Examples 2 to 5. Specifically, the compression temperature in each example is Example 2 <Example 3 <Example 4 <Example 5. Moreover, as shown to FIGS. 7-10, the total load measured with the inspection method of the polymer granular material of Examples 2-5 is Example 2 <Example 3 <Example 4 <Example 5. Furthermore, as shown to FIGS. 7-10, the difference of the total load measured with the method of the Example and the total load measured with the method of the comparative example becomes large, so that compression temperature is high. From these results, it can be seen that the detection method of the polymer particle material of the present invention has higher detection sensitivity as the compression temperature is higher, and can evaluate the aggregation property of the polymer particles with high accuracy. In addition, when making compression temperature 50 degreeC or more (FIGS. 9-10), the total load measured in the Example is large compared with the case where compression temperature is made less than 50 degreeC (FIGS. 7-8), and The difference between the total load measured in the example and the total load measured in the comparative example becomes very large. Furthermore, as described above, by setting the compression temperature to a temperature lower than the melting temperature of the polymer particle material, the polymer particles can be trusted while avoiding the fixation of the polymer particles due to melting of the polymer particle material. It can be agglomerated highly. Therefore, it can be said that a preferable compression temperature in the method for inspecting a polymer granular material of the present invention is 50 ° C. or more below the melting temperature of the polymer granular material.

なお、図示しないが、回転荷重のみを基に高分子粒体の凝集性を評価する場合、および、差し込み荷重のみを基に高分子粒体の凝集性を評価する場合にも同様に、圧縮温度が高分子粒体材料の溶融温度未満50℃以上であれば、高分子粒体の凝集性を精度高く評価できる。   Although not shown in the figure, the compression temperature is similarly applied to the case where the aggregation property of the polymer particles is evaluated based only on the rotational load and the case where the aggregation property of the polymer particles is evaluated based only on the insertion load. Is less than the melting temperature of the polymer particle material and 50 ° C. or more, the cohesiveness of the polymer particles can be evaluated with high accuracy.

(実施例6)
実施例6の高分子粒体材料の検査方法に供する高分子粒体材料としては、実施例1と同じものを用いた。実施例6の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、実施例1における試料1〜4と同じものである。実施例6における予備工程、準備工程、測定工程は実施例1における予備工程、準備工程、測定工程と同じである。実施例6における圧縮工程は、各試料に加えた荷重が15.3g/cm(荷重体2の質量が300g)であること以外は実施例1における圧縮工程と同じである。なお、実施例6の圧縮工程における加熱温度は50℃である。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例6の測定工程で測定した試料1〜4の合計荷重を表すグラフを図11に示す。
(Example 6)
The same polymer particle material as that used in Example 1 was used as the polymer particle material used in the method for inspecting polymer particle material in Example 6. The samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting the polymer granular material of Example 6 are the same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the measurement process in Example 6 are the same as the preliminary process, the preparation process, and the measurement process in Example 1. The compression process in Example 6 is the same as the compression process in Example 1 except that the load applied to each sample is 15.3 g / cm 2 (the mass of the load body 2 is 300 g). In addition, the heating temperature in the compression process of Example 6 is 50 degreeC. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Example 6 is shown in FIG.

(比較例16)
比較例16の高分子粒体材料の検査方法では、実施例6の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例16の測定工程は、比較例1の測定工程と同様におこなった。比較例16の測定工程で測定した試料1〜4の合計荷重を表すグラフを図11に示す。
(Comparative Example 16)
In the inspection method for the polymer particle material of Comparative Example 16, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Example 6. The measurement process of Comparative Example 16 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 16 is shown in FIG.

(比較例17)
比較例17の高分子粒体材料の検査方法では、比較例16の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例17の測定工程は、比較例2の測定工程と同様におこなった。比較例17の測定工程で測定した試料1〜4の合計荷重を表すグラフを図11に示す。
(Comparative Example 17)
In the inspection method for the polymer particle material of Comparative Example 17, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 16. The measurement process of Comparative Example 17 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 17 is shown in FIG.

(比較例18)
比較例18の高分子粒体材料の検査方法では、比較例17の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例18の測定工程は、比較例3の測定工程と同様におこなった。比較例18の測定工程で測定した試料1〜4の合計荷重を表すグラフを図11に示す。
(Comparative Example 18)
In the method for inspecting the polymer particle material in Comparative Example 18, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the method for inspecting the polymer particle material in Comparative Example 17. The measurement process of Comparative Example 18 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 18 is shown in FIG.

(実施例7)
実施例7の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、高分子粒体材料として、三洋化成工業株式会社製のGS500を用いたこと以外は、実施例1における試料1〜4と同じものである。実施例7における予備工程、準備工程、測定工程は実施例1における予備工程、準備工程、測定工程と同じである。実施例7における圧縮工程は、各試料に加えた荷重が20.4g/cm(荷重体2の質量が400g)であること以外は実施例1における圧縮工程と同じである。なお、実施例7の圧縮工程における加熱温度は50℃である。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例7の測定工程で測定した試料1〜4の合計荷重を表すグラフを図12に示す。
(Example 7)
Samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting polymer granular material of Example 7 were used except that GS500 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer granular material. The same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the measurement process in Example 7 are the same as the preliminary process, the preparation process, and the measurement process in Example 1. The compression step in Example 7 is the same as the compression step in Example 1 except that the load applied to each sample is 20.4 g / cm 2 (the mass of the load body 2 is 400 g). In addition, the heating temperature in the compression process of Example 7 is 50 degreeC. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Example 7 is shown in FIG.

(比較例19)
比較例19の高分子粒体材料の検査方法では、実施例7の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例19の測定工程は、比較例1の測定工程と同様におこなった。比較例19の測定工程で測定した試料1〜4の合計荷重を表すグラフを図12に示す。
(Comparative Example 19)
In the inspection method for the polymer particle material of Comparative Example 19, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Example 7. The measurement process of Comparative Example 19 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 19 is shown in FIG.

(比較例20)
比較例20の高分子粒体材料の検査方法では、比較例19の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例20の測定工程は、比較例2の測定工程と同様におこなった。比較例20の測定工程で測定した試料1〜4の合計荷重を表すグラフを図12に示す。
(Comparative Example 20)
In the method for inspecting the polymer particle material of Comparative Example 20, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the method for inspecting the polymer particle material in Comparative Example 19. The measurement process of Comparative Example 20 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 20 is shown in FIG.

(比較例21)
比較例21の高分子粒体材料の検査方法では、比較例20の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例21の測定工程は、比較例3の測定工程と同様におこなった。比較例21の測定工程で測定した試料1〜4の合計荷重を表すグラフを図12に示す。
(Comparative Example 21)
In the inspection method for the polymer particle material of Comparative Example 21, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 20. The measurement process of Comparative Example 21 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 21 is shown in FIG.

(実施例8)
実施例8の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、高分子粒体材料として、三洋化成工業株式会社製のGS500を用いたこと以外は、実施例1における試料1〜4と同じものである。実施例8における予備工程、準備工程、測定工程は実施例1における予備工程、準備工程、測定工程と同じである。実施例8における圧縮工程は、各試料に加えた荷重が50.9g(荷重体2の質量が1000g)であること以外は実施例1における圧縮工程と同じである。なお、実施例8の圧縮工程における加熱温度は50℃である。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例8の測定工程で測定した試料1〜4の合計荷重を表すグラフを図13に示す。
(Example 8)
Samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting polymer granular material in Example 8 were used except that GS500 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer granular material. The same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the measurement process in Example 8 are the same as the preliminary process, the preparation process, and the measurement process in Example 1. The compression process in Example 8 is the same as the compression process in Example 1 except that the load applied to each sample is 50.9 g (the mass of the load body 2 is 1000 g). In addition, the heating temperature in the compression process of Example 8 is 50 degreeC. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of samples 1 to 4 measured in the measurement process of Example 8 is shown in FIG.

(比較例22)
比較例22の高分子粒体材料の検査方法では、実施例8の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例22の測定工程は、比較例1の測定工程と同様におこなった。比較例22の測定工程で測定した試料1〜4の合計荷重を表すグラフを図13に示す。
(Comparative Example 22)
In the method for inspecting the polymer particle material of Comparative Example 22, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the method for inspecting the polymer particle material in Example 8. The measurement process of Comparative Example 22 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 22 is shown in FIG.

(比較例23)
比較例23の高分子粒体材料の検査方法では、比較例22の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例23の測定工程は、比較例2の測定工程と同様におこなった。比較例23の測定工程で測定した試料1〜4の合計荷重を表すグラフを図13に示す。
(Comparative Example 23)
In the inspection method for the polymer particle material of Comparative Example 23, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 22. The measurement process of Comparative Example 23 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 23 is shown in FIG.

(比較例24)
比較例24の高分子粒体材料の検査方法では、比較例24の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例24の測定工程は、比較例3の測定工程と同様におこなった。比較例24の測定工程で測定した試料1〜4の合計荷重を表すグラフを図13に示す。
(Comparative Example 24)
In the inspection method for the polymer particle material of Comparative Example 24, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 24. The measurement process of Comparative Example 24 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 24 is shown in FIG.

(凝集性の評価3)
実施例6〜8の高分子粒体材料の検査方法は、圧縮工程における荷重(以下、圧縮荷重と略する)が異なる。詳しくは、各実施例における圧縮荷重は、実施例6<実施例7<実施例8である。また、図11〜13に示すように、実施例6〜8の高分子粒体材料の検査方法で測定した合計荷重は、実施例6<実施例7<実施例8である。さらに、図11〜13に示すように、圧縮荷重が大きいほど、実施例の方法で測定した合計荷重と比較例の方法で測定した合計荷重との差は大きくなる。これらの結果から、本発明の高分子粒体材料の検査方法は、圧縮荷重が大きいほど検出感度が高くなり、高分子粒体の凝集性を精度高く評価できることがわかる。なお、圧縮荷重を400g以上にする場合(図12〜13)には、圧縮荷重を400g未満にする場合(図11)に比べて、実施例で測定した合計荷重が大きく、かつ、実施例で測定した合計荷重と比較例で測定した合計荷重との差が非常に大きくなる。したがって、本発明の高分子粒体材料の検査方法における好ましい圧縮荷重は400g以上(20.4g/cm以上)である、といえる。さらに、圧縮荷重が509g/cm未満(荷重体2の質量が10kg未満)であれば、高分子粒体材料は凝着しない。このため、圧縮荷重が20.4g/cm〜509g/cmであれば、高分子粒体の凝集性を精度高く評価できる。
(Evaluation of cohesiveness 3)
The methods for inspecting the polymer granular materials of Examples 6 to 8 differ in the load in the compression step (hereinafter abbreviated as the compression load). Specifically, the compressive load in each example is Example 6 <Example 7 <Example 8. Moreover, as shown to FIGS. 11-13, the total load measured with the test | inspection method of the polymeric granular material of Examples 6-8 is Example 6 <Example 7 <Example 8. FIG. Furthermore, as shown in FIGS. 11-13, the difference between the total load measured by the method of the example and the total load measured by the method of the comparative example increases as the compressive load increases. From these results, it can be seen that the detection method of the polymer particle material of the present invention increases the detection sensitivity as the compressive load increases, and can evaluate the aggregation property of the polymer particles with high accuracy. When the compressive load is set to 400 g or more (FIGS. 12 to 13), the total load measured in the example is larger than in the case where the compressive load is set to less than 400 g (FIG. 11). The difference between the measured total load and the total load measured in the comparative example becomes very large. Therefore, it can be said that a preferable compressive load in the method for inspecting a polymer granular material of the present invention is 400 g or more (20.4 g / cm 2 or more). Furthermore, if the compressive load is less than 509 g / cm 2 (the mass of the load body 2 is less than 10 kg), the polymer particle material does not adhere. Thus, compressive load if 20.4g / cm 2 ~509g / cm 2 , it can accurately evaluate the cohesiveness of the polymer granules.

なお、図示しないが、回転荷重のみを基に高分子粒体の凝集性を評価する場合、および、差し込み荷重のみを基に高分子粒体の凝集性を評価する場合にも同様に、圧縮荷重が20.4g/cm〜509g/cmであれば、高分子粒体の凝集性を精度高く評価できる。 Although not shown in the figure, the compression load is similarly applied to the case where the aggregation property of the polymer particles is evaluated based only on the rotational load and the case where the aggregation property of the polymer particles is evaluated based only on the insertion load. There if 20.4g / cm 2 ~509g / cm 2 , can accurately evaluate the cohesiveness of the polymer granules.

(実施例9)
実施例9の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、高分子粒体材料として、三洋化成工業株式会社製のGS500を用いたこと以外は、実施例1における試料1〜4と同じものである。実施例9における予備工程、準備工程、圧縮工程は実施例1における予備工程、準備工程、圧縮工程と同じである。実施例9における測定工程は、測定子の回転速度が2.0rpmであり、差し込み速度が26.4mm/分であること以外は実施例1における測定工程と同じである。なお、実施例9の圧縮工程における加熱温度は50℃であり、各試料に加えた荷重(荷重体2の質量)は500gである。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例9の測定工程で測定した試料1〜4の合計荷重を表すグラフを図14に示す。
Example 9
Samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting polymer granular material in Example 9 were used except that GS500 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer granular material. The same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the compression process in the ninth embodiment are the same as the preliminary process, the preparation process, and the compression process in the first embodiment. The measurement process in Example 9 is the same as the measurement process in Example 1 except that the rotational speed of the probe is 2.0 rpm and the insertion speed is 26.4 mm / min. In addition, the heating temperature in the compression process of Example 9 is 50 degreeC, and the load (mass of the load body 2) added to each sample is 500 g. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Example 9 is shown in FIG.

(比較例25)
比較例25の高分子粒体材料の検査方法では、実施例9の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例25の測定工程は、比較例1の測定工程と同様におこなった。比較例25の測定工程で測定した試料1〜4の合計荷重を表すグラフを図14に示す。
(Comparative Example 25)
In the inspection method for the polymer particle material of Comparative Example 25, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Example 9. The measurement process of Comparative Example 25 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 25 is shown in FIG.

(比較例26)
比較例26の高分子粒体材料の検査方法では、比較例25の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例26の測定工程は、比較例2の測定工程と同様におこなった。比較例26の測定工程で測定した試料1〜4の合計荷重を表すグラフを図14に示す。
(Comparative Example 26)
In the method for inspecting the polymer particle material of Comparative Example 26, the insertion load and the rotational load of the polymer particle material are again measured after the measurement step in the method for inspecting the polymer particle material in Comparative Example 25. The measurement process of Comparative Example 26 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 26 is shown in FIG.

(比較例27)
比較例27の高分子粒体材料の検査方法では、比較例26の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例27の測定工程は、比較例3の測定工程と同様におこなった。比較例27の測定工程で測定した試料1〜4の合計荷重を表すグラフを図14に示す。
(Comparative Example 27)
In the inspection method for the polymer particle material of Comparative Example 27, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 26. The measurement process of Comparative Example 27 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 27 is shown in FIG.

(実施例10)
実施例10の高分子粒体材料の検査方法で凝集性を評価した試料(試料1〜4)は、高分子粒体材料として、三洋化成工業株式会社製のGS500を用いたこと以外は、実施例1における試料1〜4と同じものである。実施例10における予備工程、準備工程、圧縮工程は実施例1における予備工程、準備工程、圧縮工程と同じである。実施例10における測定工程は、測定子の回転速度が119.4rpmであり、差し込み速度が1575.2mm/分であること以外は実施例1における測定工程と同じである。なお、実施例10の圧縮工程における加熱温度は50℃であり、各試料に加えた荷重(荷重体2の質量)は500gである。予備工程後の試料1〜4を準備工程〜測定工程に供して、その凝集性を評価した。実施例10の測定工程で測定した試料1〜4の合計荷重を表すグラフを図15に示す。
(Example 10)
Samples (samples 1 to 4) whose cohesiveness was evaluated by the method for inspecting polymer granular material of Example 10 were used except that GS500 manufactured by Sanyo Chemical Industries, Ltd. was used as the polymer granular material. The same as Samples 1 to 4 in Example 1. The preliminary process, the preparation process, and the compression process in Example 10 are the same as the preliminary process, the preparation process, and the compression process in Example 1. The measurement process in Example 10 is the same as the measurement process in Example 1 except that the rotational speed of the probe is 119.4 rpm and the insertion speed is 1575.2 mm / min. In addition, the heating temperature in the compression process of Example 10 is 50 degreeC, and the load (mass of the load body 2) added to each sample is 500 g. Samples 1 to 4 after the preliminary process were subjected to a preparation process to a measurement process, and the cohesiveness was evaluated. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Example 10 is shown in FIG.

(比較例28)
比較例28の高分子粒体材料の検査方法では、実施例10の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例28の測定工程は、比較例1の測定工程と同様におこなった。比較例28の測定工程で測定した試料1〜4の合計荷重を表すグラフを図15に示す。
(Comparative Example 28)
In the inspection method for the polymer particle material of Comparative Example 28, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Example 10. The measurement process of Comparative Example 28 was performed in the same manner as the measurement process of Comparative Example 1. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 28 is shown in FIG.

(比較例29)
比較例29の高分子粒体材料の検査方法では、比較例28の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例29の測定工程は、比較例2の測定工程と同様におこなった。比較例29の測定工程で測定した試料1〜4の合計荷重を表すグラフを図15に示す。
(Comparative Example 29)
In the polymer particle material inspection method of Comparative Example 29, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the polymer particle material inspection method of Comparative Example 28. The measurement process of Comparative Example 29 was performed in the same manner as the measurement process of Comparative Example 2. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 29 is shown in FIG.

(比較例30)
比較例30の高分子粒体材料の検査方法では、比較例29の高分子粒体材料の検査方法における測定工程後に、再度、高分子粒体材料の差し込み荷重と回転荷重とを測定する。比較例30の測定工程は、比較例3の測定工程と同様におこなった。比較例30の測定工程で測定した試料1〜4の合計荷重を表すグラフを図15に示す。
(Comparative Example 30)
In the inspection method for the polymer particle material of Comparative Example 30, the insertion load and the rotational load of the polymer particle material are measured again after the measurement step in the inspection method for the polymer particle material of Comparative Example 29. The measurement process of Comparative Example 30 was performed in the same manner as the measurement process of Comparative Example 3. A graph showing the total load of Samples 1 to 4 measured in the measurement process of Comparative Example 30 is shown in FIG.

(凝集性の評価4)
実施例9〜10の高分子粒体材料の検査方法は、測定子の回転速度および差し込み速度が異なる。しかし、図14〜15に示すように、実施例9〜10の高分子粒体材料の検査方法で測定した合計荷重は十分に大きく、実施例9〜10の方法で測定した合計荷重と、それに対応する比較例の方法で測定した合計荷重との差もまた十分に大きい。これらの結果から、本発明の高分子粒体材料の検査方法では、測定子の回転速度が2.0〜119.4rpm、差し込み速度が26.4〜1575.4mm/分の範囲であれば、検出感度が十分に高くなり、高分子粒体の凝集性を精度高く評価できることがわかる。なお、図示しないが、回転荷重のみを基に高分子粒体の凝集性を評価する場合、および、差し込み荷重のみを基に高分子粒体の凝集性を評価する場合にも同様に、測定子の回転速度が2.0〜119.4rpm、差し込み速度が26.4〜1575.4mm/分の範囲であれば、高分子粒体の凝集性を精度高く評価できる。
(Evaluation of cohesiveness 4)
In the method for inspecting the polymer granular material of Examples 9 to 10, the rotational speed and insertion speed of the measuring element are different. However, as shown in FIGS. 14 to 15, the total load measured by the method for inspecting the polymer granular material of Examples 9 to 10 is sufficiently large, and the total load measured by the method of Examples 9 to 10 and The difference from the total load measured by the method of the corresponding comparative example is also sufficiently large. From these results, in the method for inspecting a polymer granular material of the present invention, if the rotational speed of the probe is 2.0 to 119.4 rpm and the insertion speed is in the range of 26.4 to 1575.4 mm / min, It can be seen that the detection sensitivity is sufficiently high, and the aggregation property of the polymer particles can be evaluated with high accuracy. In addition, although not shown in the drawing, when measuring the cohesiveness of the polymer particles based only on the rotational load and when evaluating the cohesiveness of the polymer particles based only on the insertion load, the measuring element is similarly applied. Can be evaluated with high accuracy if the rotational speed is 2.0 to 119.4 rpm and the insertion speed is 26.4 to 1575.4 mm / min.

実施例1で用いた測定用容器を模式的に表す斜視図である。2 is a perspective view schematically showing a measurement container used in Example 1. FIG. 実施例1で用いた測定用容器を模式的に表す斜視図である。2 is a perspective view schematically showing a measurement container used in Example 1. FIG. 実施例1における圧縮工程を模式的に表す斜視図である。FIG. 3 is a perspective view schematically illustrating a compression process in Example 1. 実施例1および比較例1〜3の測定工程で測定した試料1〜5の差し込み荷重を表すグラフである。It is a graph showing the insertion load of the samples 1-5 measured at the measurement process of Example 1 and Comparative Examples 1-3. 実施例1および比較例1〜3の測定工程で測定した試料1〜5の回転荷重を表すグラフである。It is a graph showing the rotational load of the samples 1-5 measured at the measurement process of Example 1 and Comparative Examples 1-3. 実施例1および比較例1〜3の測定工程で測定した試料1〜5の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of the samples 1-5 measured at the measurement process of Example 1 and Comparative Examples 1-3. 実施例2および比較例4〜6の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of samples 1-4 measured at the measurement process of Example 2 and Comparative Examples 4-6. 実施例3および比較例7〜9の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of samples 1-4 measured in the measurement process of Example 3 and Comparative Examples 7-9. 実施例4および比較例10〜12の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of the samples 1-4 measured at the measurement process of Example 4 and Comparative Examples 10-12. 実施例5および比較例13〜15の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of samples 1-4 measured in the measurement process of Example 5 and Comparative Examples 13-15. 実施例6および比較例16〜18の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of samples 1-4 measured in the measurement process of Example 6 and Comparative Examples 16-18. 実施例7および比較例19〜21の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of the samples 1-4 measured at the measurement process of Example 7 and Comparative Examples 19-21. 実施例8および比較例22〜24の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of the samples 1-4 measured at the measurement process of Example 8 and Comparative Examples 22-24. 実施例9および比較例25〜27の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of samples 1-4 measured at the measurement process of Example 9 and Comparative Examples 25-27. 実施例10および比較例28〜30の測定工程で測定した試料1〜4の差し込み荷重と回転荷重との和を表すグラフである。It is a graph showing the sum of the insertion load and rotation load of samples 1-4 measured in the measurement process of Example 10 and Comparative Examples 28-30.

符号の説明Explanation of symbols

1:測定用容器 2:荷重体 1: Measuring container 2: Load body

Claims (7)

パウダースラッシュ成形用の高分子粒体材料を検査する方法であって、
複数個の高分子粒体を含む高分子粒体材料を測定用容器に入れる準備工程と、
該測定用容器に入った該高分子粒体材料に荷重を加えて該高分子粒体材料を圧縮する圧縮工程と、
該圧縮工程後の該高分子粒体材料を、該測定用容器に入った状態で測定子を持つ検査装置に取り付け、該測定子を回転させつつ該高分子粒体材料に差し込んで、該測定子に加わる差し込み方向の荷重と該測定子に加わる回転方向の荷重との少なくとも一方を測定する測定工程と、を備え、
該測定工程において、測定前に該測定子を逆回転させつつ該高分子粒体材料に差し込んで該高分子粒体材料の粒度を均一化するコンディショニング処理をおこなわず、
該測定工程で測定した荷重に基づいて該高分子粒体の凝集し易さを評価することを特徴とする高分子粒体材料の検査方法。
A method for inspecting polymer granular material for powder slush molding,
A preparation step of placing the polymeric granular material comprising a plurality of polymer granules into the measuring container,
A compression step of compressing the polymer particle material by applying a load to the polymer particle material contained in the measurement container;
The polymer granular material after the compression step is attached to an inspection device having a measuring element in the state of the measurement container, and the measuring element is inserted into the polymer granular material while rotating the measuring element. A measuring step of measuring at least one of a load in the insertion direction applied to the child and a load in the rotational direction applied to the measuring member,
In the measurement step, without performing a conditioning process to make the particle size of the polymer particle material uniform by inserting it into the polymer particle material while rotating the probe backward before measurement,
A method for inspecting a polymer particle material, wherein the ease of aggregation of the polymer particles is evaluated based on the load measured in the measurement step.
前記測定工程において、少なくとも前記測定子に加わる回転方向の荷重を測定する請求項1に記載の高分子粒体材料の検査方法。   The method for inspecting a polymer granular material according to claim 1, wherein in the measuring step, at least a load in a rotational direction applied to the measuring element is measured. 前記測定工程において、前記測定子に加わる差し込み方向の荷重と前記測定子に加わる回転方向の荷重との両方を測定する請求項1または請求項2に記載の高分子粒体材料の検査方法。   3. The method for inspecting a polymer granular material according to claim 1, wherein in the measuring step, both a load in a plugging direction applied to the measuring element and a load in a rotating direction applied to the measuring element are measured. 前記圧縮工程において、前記高分子粒体材料をその溶融温度に満たない温度で加熱しつつ圧縮する請求項1〜請求項3の何れか一つに記載の高分子粒体材料の検査方法。   The method for inspecting a polymer particle material according to any one of claims 1 to 3, wherein, in the compression step, the polymer particle material is compressed while being heated at a temperature lower than a melting temperature thereof. 前記圧縮工程において前記高分子粒体材料に加える荷重は、20.4g/cm2〜509g/cm2である請求項1〜請求項4の何れか一つに記載の高分子粒体材料の検査方法。 The load applied to the polymeric granular material in the compression step, the inspection of the polymeric granular material according to any one of claims 1 to 4 is 20.4g / cm 2 ~509g / cm 2 Method. 前記圧縮工程における加熱温度は、前記高分子粒体材料の溶融温度未満50℃以上である請求項1〜請求項5の何れか一つに記載の高分子粒体材料の検査方法。   The method for inspecting a polymer particle material according to any one of claims 1 to 5, wherein a heating temperature in the compression step is 50 ° C or more below a melting temperature of the polymer particle material. 前記検査装置はパウダーレオメータである請求項1〜請求項6の何れか一つに記載の高分子粒体材料の検査方法。   The method for inspecting a polymer granular material according to any one of claims 1 to 6, wherein the inspection device is a powder rheometer.
JP2008062681A 2008-03-12 2008-03-12 Inspection method of polymer granular material Expired - Fee Related JP4948457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062681A JP4948457B2 (en) 2008-03-12 2008-03-12 Inspection method of polymer granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062681A JP4948457B2 (en) 2008-03-12 2008-03-12 Inspection method of polymer granular material

Publications (2)

Publication Number Publication Date
JP2009216642A JP2009216642A (en) 2009-09-24
JP4948457B2 true JP4948457B2 (en) 2012-06-06

Family

ID=41188642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062681A Expired - Fee Related JP4948457B2 (en) 2008-03-12 2008-03-12 Inspection method of polymer granular material

Country Status (1)

Country Link
JP (1) JP4948457B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4090024B2 (en) * 2002-09-24 2008-05-28 株式会社リコー Toner fluidity evaluation method, toner, toner production method, one-component development method, two-component development method, toner cartridge, and toner fluidity evaluation device
JP2005257600A (en) * 2004-03-15 2005-09-22 Bridgestone Corp Method and apparatus for measuring viscoelasticity of powder
JP2005292072A (en) * 2004-04-05 2005-10-20 Ricoh Co Ltd Flowability evaluation apparatus for powder, toner for electrostatic charge image development and its manufacturing method, development method therefor, toner cartridge, and process cartridge
JP4634948B2 (en) * 2006-03-16 2011-02-16 株式会社リコー Non-magnetic one-component developer, image forming apparatus, image forming method, and process cartridge

Also Published As

Publication number Publication date
JP2009216642A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
Feng et al. Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods
Bott et al. A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact
CN103635424A (en) Expandable graphite particles and methods of making same
JP4948457B2 (en) Inspection method of polymer granular material
Suquila et al. Performance of restricted access copper-imprinted poly (allylthiourea) in an on-line preconcentration and sample clean-up FIA-FAAS system for copper determination in milk samples
WO2008061244A2 (en) Clean, compressed sorbent tablets
Duan et al. An efficient Horseradish peroxidase chemiluminescence biosensor with surface imprinting based on phenylboronic acid functionalized ionic liquid@ magnetic graphene oxide
Freeman et al. Measurement and quantification of caking in powders
WO2006095657A1 (en) Process for producing filler-containing polytetrafluoroethylene granule
CN103257133B (en) Detect the preparation method and its usage of mercury ion probe
Lorwongtragool et al. Portable e-nose based on polymer/CNT sensor array for protein-based detection
Ghasemi et al. The effect of rotational speed of the drum on physical properties of granulated compost fertilizer
CN113960244A (en) Method for measuring content of montmorillonite in metallurgical pellets
WO2012154928A1 (en) Flat bag containing functional material
CN104406898A (en) Method for measuring specific surface area of nano-micron charged particles
Valaei et al. Investigation of avalanche time and carr’s index of poultry litter powder as flowability indices
JP6662524B1 (en) Detecting material and method for manufacturing the same, and detection tool and method for manufacturing the same
CN111735732A (en) Method for testing copper content of plastic particles of dry copper rice mill
CN106442232B (en) Granule materials sorter and method based on dynamic weighing
CN107942071B (en) Preparation of surface-oriented imprinted polymer modified quartz crystal microbalance sensor
CN107782772A (en) A kind of additive detection means for manufacture of cement
WO2006004004A1 (en) Method of estimating caking tendency of sodium hydrogen carbonate crystal grain
JP6566383B2 (en) Rapid evaluation method for desorption rate of adsorption target substances
Schlick‐Hasper et al. How to measure the angle of repose of hazardous substances in the test centres for dangerous goods packagings
Ebarvia et al. Molecularly Imprinted Polymer Sensing Layer for Tetracycline Chemical Sensor Based on Piezoelectric Quartz Crystal Transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees