JP4945895B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4945895B2
JP4945895B2 JP2004338535A JP2004338535A JP4945895B2 JP 4945895 B2 JP4945895 B2 JP 4945895B2 JP 2004338535 A JP2004338535 A JP 2004338535A JP 2004338535 A JP2004338535 A JP 2004338535A JP 4945895 B2 JP4945895 B2 JP 4945895B2
Authority
JP
Japan
Prior art keywords
semiconductor device
metal film
gate wiring
protective metal
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004338535A
Other languages
Japanese (ja)
Other versions
JP2006147979A (en
Inventor
哲 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004338535A priority Critical patent/JP4945895B2/en
Publication of JP2006147979A publication Critical patent/JP2006147979A/en
Application granted granted Critical
Publication of JP4945895B2 publication Critical patent/JP4945895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

本発明は、例えば1GHz以上の高周波で動作する高耐湿且つ高出力の半導体装置に関する。   The present invention relates to a semiconductor device with high moisture resistance and high output that operates at a high frequency of, for example, 1 GHz or more.

超高速光通信用集積回路、或いは、マイクロ波或いはミリ波で使用する集積回路などにおいては、これまで、気密封止パッケージに収容する構造になっていた為、半導体チップについては、耐湿性に関して特に配慮する必要はなかった。   In an integrated circuit for ultra-high-speed optical communication, or an integrated circuit used in microwave or millimeter wave, etc., it has been structured so as to be accommodated in a hermetically sealed package. There was no need to consider.

然しながら、近年、低コスト化が厳しく要求される時代となり、ノンハーメチックにすることで低価格化したパッケージを用いるベアチップ実装が実用化されつつある。   However, in recent years, it has become an era in which cost reduction is severely demanded, and bare chip mounting using a package that is reduced in price by making it non-hermetic is being put into practical use.

半導体チップのベアチップ実装を行う場合、半導体チップの耐湿性を確保する為、モールド樹脂封止をしなければならない。   When mounting a semiconductor chip on a bare chip, it must be sealed with a mold resin in order to ensure moisture resistance of the semiconductor chip.

従来、モールド樹脂封止型の半導体装置は公知であり、そして、そのような半導体装置に於いて、ゲートを保護する為、誘電体膜で被覆することも知られている(例えば、特許文献1、特許文献2を参照。)。   Conventionally, a mold resin-sealed semiconductor device is known, and in such a semiconductor device, it is also known to cover with a dielectric film in order to protect the gate (for example, Patent Document 1). , See Patent Document 2).

また、より高い周波数で半導体チップの性能を維持する為、フリップチップ実装が行われるのであるが、その場合、接続信頼性を確保する為、チップと実装基板間に例えばエポキシ樹脂からなるアンダーフィルを注入且つ固化することが行われている。   In order to maintain the performance of the semiconductor chip at a higher frequency, flip chip mounting is performed. In that case, in order to ensure connection reliability, an underfill made of, for example, epoxy resin is provided between the chip and the mounting substrate. Injection and solidification is performed.

このようなベアチップ実装を行う場合に用いるモールド樹脂やアンダーフィルには、熱膨張係数を調整する為、直径10μm程度のシリカからなるフィラーが混合される。   In order to adjust the coefficient of thermal expansion, a filler made of silica having a diameter of about 10 μm is mixed with the mold resin and underfill used when performing such bare chip mounting.

図9はベアチップ実装される従来の半導体装置を表す要部平面図であり、図に於いて、1は細線状ゲート、2はソース、3はドレイン、10は細線状ゲートを結ぶゲート配線、13Gはゲート配線を導出する配線、13Dはドレインを導出する配線をそれぞれ示している。   FIG. 9 is a plan view of the main part showing a conventional semiconductor device mounted on a bare chip. In FIG. 9, 1 is a thin line gate, 2 is a source, 3 is a drain, 10 is a gate wiring connecting the thin line gates, 13G Represents a wiring for deriving a gate wiring, and 13D represents a wiring for deriving a drain.

図10は図9に示した半導体装置を図中の線X−Xで切断した箇所を表す要部切断側面図であり、図9に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとし、そして、図に於いて、21はSiNからなる保護膜、31は活性領域(トランジスタ領域)、50は半導体基板をそれぞれ示している。   FIG. 10 is a side view of a principal part showing a portion of the semiconductor device shown in FIG. 9 cut along a line XX in the figure. The same reference numerals as those used in FIG. In the figure, reference numeral 21 denotes a protective film made of SiN, 31 denotes an active region (transistor region), and 50 denotes a semiconductor substrate.

図11は図10に示した半導体装置をモールド樹脂で被覆した状態を表す要部切断側面図であり、切断面は図10と同じく線X−Xであって、図9及び図10に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 11 is a cutaway side view of the main part showing a state in which the semiconductor device shown in FIG. 10 is covered with a mold resin, and the cut surface is the same as the line XX in FIG. The same symbols used indicate the same parts or have the same meaning.

図に於いて、51はフィラー、51Dはフィラーでゲート配線が損傷された箇所、52はモールド樹脂をそれぞれ示している。   In the figure, 51 is a filler, 51D is a portion where the gate wiring is damaged by the filler, and 52 is a mold resin.

図11に見られる半導体装置に於いて、モールド樹脂52でモールドするには、モールドすべき部分を型枠に入れ、その型枠内に樹脂を圧入するのであるが、ゲート配線10を覆う保護膜21は、かなり薄く形成されていて、通常、0.2μm程度である為、モールド樹脂52内に混合されたフィラー51が保護膜21に衝突すると損傷される。   In the semiconductor device shown in FIG. 11, in order to mold with the mold resin 52, a portion to be molded is put into a mold, and the resin is press-fitted into the mold, but a protective film covering the gate wiring 10 21 is formed to be quite thin and is usually about 0.2 μm, and is damaged when the filler 51 mixed in the mold resin 52 collides with the protective film 21.

保護膜21が損傷された場合、その部分からの水分の侵入が発生し易くなり、半導体装置の耐湿性は低下する。これを回避する為には、保護膜21を厚くすれば、フィラー51に依る損傷に耐え得ると考えられるであろうが、そのようにした場合、保護膜の膜ストレスが増大し、膜剥がれなどのプロセス障害が発生し、製造歩留りが低下することになる。また、保護膜の堆積時間やパッド窓開きのエッチングプロセス時間が長くなり、従って、製造コストが増加してしまう。更にまた、SiN等の保護膜21は、誘電率が8程度と比較的大きいので、厚くした場合、寄生容量が増加して高周波特性が劣化し、高性能の半導体装置を実現することが困難になる。   When the protective film 21 is damaged, moisture easily enters from that portion, and the moisture resistance of the semiconductor device is lowered. In order to avoid this, if the protective film 21 is made thicker, it will be considered that it can withstand the damage caused by the filler 51. However, in such a case, the film stress of the protective film increases, and the film peels off. As a result, a process failure occurs and the manufacturing yield decreases. In addition, the deposition time of the protective film and the etching process time for opening the pad window become long, and thus the manufacturing cost increases. Furthermore, the protective film 21 made of SiN or the like has a relatively large dielectric constant of about 8. Therefore, when the thickness is increased, the parasitic capacitance increases and the high-frequency characteristics deteriorate, making it difficult to realize a high-performance semiconductor device. Become.

図12は図10に示した半導体装置をフリップチップ実装する場合を表す要部切断側面図であり、半導体装置の切断面は図10と同じく線X−Xであって、図9乃至図11に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   12 is a fragmentary side view showing a case where the semiconductor device shown in FIG. 10 is flip-chip mounted. The cut surface of the semiconductor device is a line XX as in FIG. The same symbols as used in the above description represent the same parts or have the same meaning.

図に於いて、60は実装基板を示し、半導体装置はアップサイドダウンに、従って、半導体装置の表面側を実装基板60と対向させ、その間にアンダーフィル53を注入固化する。   In the figure, reference numeral 60 denotes a mounting substrate, and the semiconductor device is upside down. Therefore, the surface side of the semiconductor device is opposed to the mounting substrate 60, and an underfill 53 is injected and solidified therebetween.

この場合も、実装基板60と半導体装置の表面側との間にアンダーフィル53を注入する際にフィラー51が保護膜21を損傷する事故が起こり、図11について説明したモールド樹脂封止した半導体装置の場合と全く同じ問題が起こる。
特開平7−94642号公報 特開平8−83813号公報
Also in this case, when the underfill 53 is injected between the mounting substrate 60 and the surface side of the semiconductor device, an accident occurs in which the filler 51 damages the protective film 21, and the semiconductor device sealed with the mold resin described with reference to FIG. The exact same problem occurs as in.
JP-A-7-94642 Japanese Patent Laid-Open No. 8-83813

本発明では、従来のベアチップ実装に於ける半導体装置の耐湿性劣化の問題を簡単な構成に依って抑止して高耐湿性を確保し、製造コストが低い高周波高出力の半導体装置を実現できるようにする。   According to the present invention, it is possible to realize a high-frequency and high-power semiconductor device with low manufacturing cost by ensuring the high moisture resistance by suppressing the problem of moisture resistance deterioration of the semiconductor device in the conventional bare chip mounting by a simple configuration. To.

本発明に依る半導体装置に於いては、櫛型ゲートを構成する複数の細線状ゲートを結ぶゲート配線を絶縁膜を介して覆う保護金属膜を備えてなることが基本になっている。   The semiconductor device according to the present invention is basically provided with a protective metal film that covers a gate wiring connecting a plurality of thin line-shaped gates constituting a comb-shaped gate through an insulating film.

前記手段を採ることに依り、ベアチップ実装する半導体装置、或いは、フリップチップ実装する半導体装置に於いて、フィラーを混合して熱膨張係数を調節したモールド樹脂やアンダーフィルを用いても、フィラーに依ってゲート配線などの保護膜が損傷されるおそれは皆無となり、従って、水分の侵入も少なくなり、高耐湿性が確保された高周波高出力の半導体装置を容易に実現することができた。   By adopting the above means, in a semiconductor device to be mounted on a bare chip or a semiconductor device to be mounted on a flip chip, even if a mold resin or underfill in which a thermal expansion coefficient is adjusted by mixing a filler is used, As a result, there is no possibility that the protective film such as the gate wiring is damaged. Therefore, the penetration of moisture is reduced, and a high-frequency and high-power semiconductor device in which high moisture resistance is ensured can be easily realized.

本発明に依る半導体装置は、複数の細線状ゲートを結ぶゲート配線を覆う絶縁体からなる保護膜上に更に保護金属膜を配設し、ゲート保護膜やゲート配線に対して外部から損傷を加えられることを抑止し、その結果、耐湿性が向上した高周波高出力の半導体装置となっている。   In the semiconductor device according to the present invention, a protective metal film is further disposed on a protective film made of an insulator covering a gate wiring connecting a plurality of thin gates, and the gate protective film and the gate wiring are damaged from the outside. As a result, a high-frequency and high-power semiconductor device with improved moisture resistance is obtained.

図1は本発明に依る半導体装置を表す要部平面図であり、また、図2は図1の半導体装置を図中の線X−Xで切断した箇所を表す要部切断側面図であり、図9乃至図12に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 1 is a plan view of a principal part showing a semiconductor device according to the present invention, and FIG. 2 is a side view of a principal part showing a part of the semiconductor device of FIG. 1 cut along a line XX in the figure. The same symbols as those used in FIGS. 9 to 12 represent the same parts or have the same meaning.

図1並びに図2に示した半導体装置が図9乃至図12に見られる半導体装置と相違するところは、複数の細線状ゲート1を結ぶゲート配線10を覆う保護膜21上に保護金属膜41が形成されている点である。このようにすると、保護金属膜41で覆われずに露出されているゲート配線10の領域幅は、フィラーの径(例えば10μm)以下にすることができるので、フィラーに起因するゲート配線10への損傷、延いては、保護膜21への損傷も回避することが可能となり、従って、水分の侵入は抑止されて耐湿性は向上する。また、保護金属膜41を形成するには、レイアウトパターンを変更するのみで、他の配線、例えばドレイン配線13Dなどと同時に作製することができることから、工程の増加は起こらない。   The semiconductor device shown in FIGS. 1 and 2 is different from the semiconductor device shown in FIGS. 9 to 12 in that a protective metal film 41 is formed on the protective film 21 covering the gate wiring 10 connecting the plurality of thin line gates 1. It is a point that is formed. In this case, the region width of the gate wiring 10 exposed without being covered with the protective metal film 41 can be made smaller than the diameter of the filler (for example, 10 μm). It is possible to avoid damage, and further damage to the protective film 21, and therefore moisture penetration is suppressed and moisture resistance is improved. Further, since the protective metal film 41 can be formed by changing the layout pattern only and can be formed simultaneously with other wiring such as the drain wiring 13D, the number of processes does not increase.

図3は図1並びに図2について説明した半導体装置をモールド樹脂で被覆した状態を表す要部切断側面図であり、切断面は図2と同じく線X−Xであって、図1及び図2、図9乃至図12に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   3 is a cutaway side view of the main part showing a state in which the semiconductor device described with reference to FIGS. 1 and 2 is covered with a mold resin, and the cut surface is a line XX as in FIG. The symbols used in FIGS. 9 to 12 represent the same parts or have the same meaning.

本発明に依る半導体装置は図1及び図2について説明した構造になっているので、図3に見られるように、半導体装置の表面を樹脂でモールドしても,フィラー51に依ってゲート配線10を覆う保護膜21が損傷されることはない。従って、水分が侵入するおそれは少なくなり、信頼性は向上する。   Since the semiconductor device according to the present invention has the structure described with reference to FIGS. 1 and 2, even if the surface of the semiconductor device is molded with resin as shown in FIG. The protective film 21 covering the film is not damaged. Therefore, there is less risk of moisture entering and reliability is improved.

図4は図1及び図2について説明した半導体装置をフリップチップ実装した状態を表す要部切断側面図であり、半導体装置の切断面は図2と同じく線X−Xであって、図1乃至図3、図9乃至図12に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   4 is a cutaway side view of a principal part showing a state where the semiconductor device described with reference to FIGS. 1 and 2 is flip-chip mounted. The cut surface of the semiconductor device is a line XX as in FIG. The symbols used in FIGS. 3 and 9 to 12 represent the same parts or have the same meaning.

図4に見られるフリップチップ実装する場合も、本発明に依る半導体装置は図1及び図2について説明した構造になっていることから、実装基板60と半導体装置の表面側との間にアンダーフィル53を注入した際、フィラー51に依ってゲート配線10を覆う保護膜21が損傷されることはない。従って、水分が侵入するおそれは少なくなり、信頼性は向上する。   Also in the case of flip-chip mounting as shown in FIG. 4, since the semiconductor device according to the present invention has the structure described with reference to FIGS. 1 and 2, an underfill is formed between the mounting substrate 60 and the surface side of the semiconductor device. When 53 is injected, the protective film 21 covering the gate wiring 10 is not damaged by the filler 51. Therefore, there is less risk of moisture entering and reliability is improved.

ところで、図2に見られる保護金属膜41は、他の配線等との間隔、例えばドレイン配線13Dとの間隔Lは10μm以下にすることが好ましい。その理由は、現用のフィラー51に於ける直径が最小で10μm程度である為、間隔Lを10μm以下にしておけば、その箇所にフィラー51が侵入することを抑制できることに依る。   By the way, it is preferable that the protective metal film 41 shown in FIG. 2 has an interval L with other wirings, for example, an interval L with the drain wiring 13D of 10 μm or less. The reason is that the diameter of the current filler 51 is about 10 μm at the minimum, and therefore, if the interval L is set to 10 μm or less, the filler 51 can be prevented from entering the portion.

また、保護金属膜41は、何れの端子にも接続せず、いわゆる、浮遊(フロート)状態にしておけば、寄生容量が増加することはなくなるから、高周波で動作させる半導体装置にとっては好ましい。   Further, if the protective metal film 41 is not connected to any terminal and is in a so-called floating state, the parasitic capacitance does not increase, which is preferable for a semiconductor device operating at a high frequency.

保護金属膜41を設けたことに依る寄生容量の増加を抑止する他の手段としては、保護金属膜41の面積を可能な限り縮小して、ゲート配線10との重なりを少なくすることが有効である。   As another means for suppressing an increase in parasitic capacitance due to the provision of the protective metal film 41, it is effective to reduce the area of the protective metal film 41 as much as possible to reduce the overlap with the gate wiring 10. is there.

図5は保護金属膜の面積を縮小した半導体装置を表す要部平面図であり、また、図6は図5の半導体装置を図中の線X−Xで切断した箇所を表す要部切断側面図であり、図1乃至図4、図9乃至図12に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 5 is a plan view of a principal part showing a semiconductor device in which the area of the protective metal film is reduced, and FIG. 6 is a side view of the principal part showing a part of the semiconductor device of FIG. 5 cut along line XX in the figure. The symbols used in FIGS. 1 to 4 and FIGS. 9 to 12 represent the same parts or have the same meaning.

図5及び図6に示した半導体装置が図1乃至図4について説明した半導体装置と相違することろは、保護金属膜41がゲート配線10の全てを覆うことなく、トランジスタが作製されている活性領域31に近い側のみに必要最小限の面積を覆って形成されていることであり、このようにすることで、保護金属膜41を形成したことに依る寄生容量の増加も抑制され、高周波で動作させるのに好適な半導体装置が実現される。   The semiconductor device shown in FIGS. 5 and 6 is different from the semiconductor device described with reference to FIGS. 1 to 4 in that the protective metal film 41 does not cover the entire gate wiring 10 and the transistor is manufactured. This is to cover the minimum necessary area only on the side close to the region 31. By doing so, an increase in parasitic capacitance due to the formation of the protective metal film 41 is also suppressed, and at a high frequency. A semiconductor device suitable for operation is realized.

ところで、保護金属膜41を活性領域に近い側を覆うように形成する理由は、一般に、水分の侵入はエレクトロマイグレーションに起因し、電位差に比例して加速されることに依る。通常、高出力半導体装置の場合、ゲート配線10とドレイン配線13Dとの間の電位差が最も大きく、この部分を強化することがエレクトロマイグレーション耐性向上に有効であることから、保護金属膜41をドレイン配線13D側に残すようにする。   By the way, the reason why the protective metal film 41 is formed so as to cover the side close to the active region is that moisture intrusion is generally caused by electromigration and accelerated in proportion to the potential difference. Usually, in the case of a high-power semiconductor device, the potential difference between the gate wiring 10 and the drain wiring 13D is the largest, and strengthening this portion is effective for improving electromigration resistance. Leave on the 13D side.

図7は保護金属膜をソース配線と接続した半導体装置を表す要部平面図、また、図8は図7の半導体装置を図中の線X−Xで切断した箇所を表す要部切断側面図であり、図1乃至図6、図9乃至図12に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 7 is a plan view of a principal part showing a semiconductor device in which a protective metal film is connected to a source wiring. FIG. 8 is a side view of a principal part showing a part of the semiconductor device in FIG. 7 cut along line XX in the figure. The symbols used in FIGS. 1 to 6 and 9 to 12 represent the same parts or have the same meaning.

図7及び図8に示した半導体装置が図1乃至図6について説明した半導体装置と相違するところは、保護金属膜41をソース配線13Sに接続した点にあり、この場合、対接地寄生容量は増加してしまうが、図5並びに図6について説明した半導体装置に比較した場合、ゲート配線10が保護金属膜41で覆われる面積が広くなるので、フィラーに依るゲート配線10への損傷を少なくすることができるので、耐湿性確保には有効である。   The semiconductor device shown in FIGS. 7 and 8 is different from the semiconductor device described with reference to FIGS. 1 to 6 in that the protective metal film 41 is connected to the source wiring 13S. In this case, the grounding parasitic capacitance is Although it increases, the area covered with the protective metal film 41 becomes wider when compared with the semiconductor device described with reference to FIGS. 5 and 6, so that damage to the gate wiring 10 due to the filler is reduced. Therefore, it is effective for ensuring moisture resistance.

本発明に依る半導体装置を表す要部平面図である。It is a principal part top view showing the semiconductor device by this invention. 図1の半導体装置を図中の線X−Xで切断した箇所を表す要部切断側面図である。FIG. 2 is a cutaway side view of a main part showing a location where the semiconductor device of FIG. 1 is cut along line XX in the drawing. 図1及び図2について説明した半導体装置をモールド樹脂で被覆した状態を表す要部切断側面図である。FIG. 3 is a cut-away side view of an essential part showing a state where the semiconductor device described with reference to FIGS. 1 and 2 is covered with a mold resin. 図1及び図2について説明した半導体装置をフリップチップ実装した状態を表す要部切断側面図である。FIG. 3 is a cutaway side view of a main part showing a state where the semiconductor device described with reference to FIGS. 1 and 2 is flip-chip mounted. 保護金属膜の面積を縮小した半導体装置を表す要部平面図である。It is a principal part top view showing the semiconductor device which reduced the area of the protective metal film. 図5の半導体装置を図中の線X−Xで切断した箇所を表す要部切断側面図である。FIG. 6 is a fragmentary cutaway side view showing a location where the semiconductor device of FIG. 5 is cut along line XX in the drawing. 保護金属膜をソース配線と接続した半導体装置を表す要部平面図である。It is a principal part top view showing the semiconductor device which connected the protective metal film with the source wiring. 図7の半導体装置を図中の線X−Xで切断した箇所を表す要部切断側面図である。FIG. 8 is a fragmentary cutaway side view showing a location where the semiconductor device of FIG. 7 is cut along line XX in the drawing. ベアチップ実装される従来の半導体装置を表す要部平面図である。It is a principal part top view showing the conventional semiconductor device mounted with a bare chip. 図9に示した半導体装置を図中の線X−Xで切断した箇所を表す要部切断側面図である。FIG. 10 is a cutaway side view of a main part showing a location where the semiconductor device shown in FIG. 9 is cut along line XX in the drawing. 図10に示した半導体装置をモールド樹脂で被覆した状態を表す要部切断側面図である。It is a principal part cutting side view showing the state which coat | covered the semiconductor device shown in FIG. 10 with the mold resin. 図10に示した半導体装置をフリップチップ実装する場合を表す要部切断側面図である。FIG. 11 is a cutaway side view of a main part showing a case where the semiconductor device shown in FIG. 10 is flip-chip mounted.

符号の説明Explanation of symbols

1 細線状ゲート
2 ソース
3 ドレイン
10 細線状ゲートを結ぶゲート配線
13G ゲート配線を導出する配線
13D ドレインを導出する配線
13S ソースを導出する配線
21 保護膜
31 活性領域(トランジスタ領域)
41 保護金属膜
50 半導体基板
51 フィラー
51D フィラーでゲート配線が損傷された箇所
52 モールド樹脂
53 アンダーフィル
60 実装基板
DESCRIPTION OF SYMBOLS 1 Fine line gate 2 Source 3 Drain 10 Gate wiring which connects thin line gate 13G Wiring which derives gate wiring 13D Wiring which derives drain 13S Wiring which derives source 21 Protection film 31 Active region (transistor region)
41 Protective metal film 50 Semiconductor substrate 51 Filler 51D Location where gate wiring is damaged by filler 52 Mold resin 53 Underfill 60 Mounting substrate

Claims (4)

櫛型ゲートを構成する活性領域上に形成された複数の細線状ゲートを結ぶ活性領域外に形成されたゲート配線を絶縁膜を介して活性領域外でのみ覆う保護金属膜を備えてなる半導体装置が実装基板にフリップチップ実装され且つ該半導体装置と該実装基板との間にアンダーフィルである樹脂が充填されてなること
を特徴とする半導体装置。
A semiconductor device comprising a protective metal film that covers a gate wiring formed outside an active region connecting a plurality of thin-line gates formed on an active region constituting a comb-shaped gate only outside the active region via an insulating film Is mounted on a mounting substrate by flip chip mounting, and an underfill resin is filled between the semiconductor device and the mounting substrate .
ゲート配線を絶縁膜を介して活性領域外でのみ覆う保護金属膜と他の金属膜との間隔がモールド樹脂或いはアンダーフィルに含まれるフィラーの径未満であること
を特徴とする請求項1記載の半導体装置。
2. The gap between the protective metal film that covers the gate wiring only outside the active region through the insulating film and the other metal film is less than the diameter of the filler contained in the mold resin or underfill. Semiconductor device.
ゲート配線を絶縁膜を介して活性領域外でのみ覆う保護金属膜は何れの端子にも接続されることなく浮遊状態で設けられてなること
を特徴とする請求項1或いは請求項2記載の半導体装置。
3. The semiconductor according to claim 1, wherein the protective metal film that covers the gate wiring only outside the active region through the insulating film is provided in a floating state without being connected to any terminal. apparatus.
ゲート配線を絶縁膜を介して活性領域外でのみ覆う保護金属膜がトランジスタ領域に近い側のみに形成されてなること
を特徴とする請求項1乃至請求項3の何れか1記載の半導体装置。
4. The semiconductor device according to claim 1, wherein a protective metal film that covers the gate wiring only outside the active region via an insulating film is formed only on a side close to the transistor region.
JP2004338535A 2004-11-24 2004-11-24 Semiconductor device Active JP4945895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338535A JP4945895B2 (en) 2004-11-24 2004-11-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338535A JP4945895B2 (en) 2004-11-24 2004-11-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2006147979A JP2006147979A (en) 2006-06-08
JP4945895B2 true JP4945895B2 (en) 2012-06-06

Family

ID=36627287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338535A Active JP4945895B2 (en) 2004-11-24 2004-11-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4945895B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326781B2 (en) * 2013-11-21 2018-05-23 日亜化学工業株式会社 Field effect transistor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252131A (en) * 1996-01-10 1997-09-22 Yamaha Corp Manufacturing method for semiconductor device
JPH11122054A (en) * 1997-10-14 1999-04-30 Toshiba Corp Monolithic microwave amplifier
JPH11330096A (en) * 1998-05-19 1999-11-30 Hitachi Ltd Semiconductor device, manufacture thereof, and telecommunication equipment
JP2000021878A (en) * 1998-07-06 2000-01-21 Hitachi Ltd Semiconductor device and its manufacture
JP2003142491A (en) * 2001-11-08 2003-05-16 Mitsubishi Electric Corp Method for manufacturing semiconductor device
JP2004006816A (en) * 2002-04-17 2004-01-08 Sanyo Electric Co Ltd Semiconductor switch circuit device and its manufacture
JP2004088025A (en) * 2002-08-29 2004-03-18 New Japan Radio Co Ltd Semiconductor device
JP2004281916A (en) * 2003-03-18 2004-10-07 Sanyo Electric Co Ltd Semiconductor device and manufacturing method for the same

Also Published As

Publication number Publication date
JP2006147979A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
KR101897520B1 (en) Semiconductor Package having Reliability and Method of manufacturing the same
EP2342746B1 (en) Integrated circuit with interrupted seal ring
TWI552236B (en) Integrated circuit system with stress redistribution layer and method of manufacture thereof
KR102164047B1 (en) Methods of fabricating semiconductor package
US10910286B2 (en) Wafer-level system-in-package packaging method and package structure thereof
CN110957302A (en) Transistor with shielding structure, packaging device and manufacturing method thereof
US8569169B2 (en) Bottom source power MOSFET with substrateless and manufacturing method thereof
KR100306858B1 (en) Semiconductor device and method for manufacturing the same
JP2003086726A (en) High-power monolithic microwave integrated circuit package
KR980012297A (en) Semiconductor devices
CN107068741B (en) Semiconductor device and method for manufacturing the same
JP4945895B2 (en) Semiconductor device
JP2006344672A (en) Semiconductor chip and semiconductor device using the same
CN113725167B (en) Integrated circuit element and manufacturing method thereof
TW202143432A (en) Seal ring structure
CN110875281B (en) Wafer level system packaging method and packaging structure
US9659888B2 (en) Semiconductor device
US20140319601A1 (en) Bottom source substrateless power mosfet
US20050110151A1 (en) Semiconductor device
JP3933601B2 (en) High frequency integrated circuit package and electronic device
EP4376082A1 (en) Semiconductor package
JP3071773B1 (en) Method for manufacturing semiconductor device
JP2018125473A (en) Semiconductor device
JP2000012591A (en) Semiconductor chip, wiring board, semiconductor device and its manufacture
JP2002261046A (en) Method for manufacturing semiconductor device, semiconductor device and radio communication circuit equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4945895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150