JP4943795B2 - Joint between steel pipe column and flat slab - Google Patents

Joint between steel pipe column and flat slab Download PDF

Info

Publication number
JP4943795B2
JP4943795B2 JP2006267158A JP2006267158A JP4943795B2 JP 4943795 B2 JP4943795 B2 JP 4943795B2 JP 2006267158 A JP2006267158 A JP 2006267158A JP 2006267158 A JP2006267158 A JP 2006267158A JP 4943795 B2 JP4943795 B2 JP 4943795B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe column
perforated
slab
flat slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006267158A
Other languages
Japanese (ja)
Other versions
JP2008088639A (en
Inventor
直樹 田中
行正 荻原
淳 久保田
敏之 福元
佳和 澤本
俊平 田中
幸次郎 武居
博 藤村
滋 吉貝
正哉 瀧
清 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2006267158A priority Critical patent/JP4943795B2/en
Publication of JP2008088639A publication Critical patent/JP2008088639A/en
Application granted granted Critical
Publication of JP4943795B2 publication Critical patent/JP4943795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本発明は全面に亘ってほぼ一様な厚さのフラットスラブを鋼管柱が貫通する形式の鋼管柱とフラットスラブの接合部に関するものである。   The present invention relates to a joint between a steel pipe column and a flat slab in which the steel pipe column penetrates a flat slab having a substantially uniform thickness over the entire surface.

フラットスラブ構造は梁が不在であることで、階高が抑えられる利点を有する反面、パンチングシア破壊に対する安全性を確保するために、原則的には鋼管柱周囲の、フラットスラブの下面側に支板、またはキャピタルが形成されることが多い。しかしながら、支板等の形成は階高低減の効果が失われ、施工が煩雑になる不利益を伴うため、階高低減と施工性の面からは支板等を形成しないことが望ましい。
The flat slab structure has the advantage that the floor height is suppressed due to the absence of beams, but on the other hand , in order to ensure the safety against punching shear failure, in principle, it is supported on the lower surface side of the flat slab around the steel pipe column. Plates or capital are often formed. However, the formation of the support plate and the like loses the effect of reducing the floor height and is disadvantageous in that the construction becomes complicated. Therefore, it is desirable not to form the support plate or the like from the viewpoint of floor height reduction and workability.

また鋼管柱がフラットスラブを挟んで上下に分断される形式にすることは接合部における水平せん断力に対する処理が難しくなり、鋼管柱の内部と外部に跨る補強は施工が著しく困難になる上、鋼管柱の断面欠損を考慮しなければならず、いずれにも問題がある。   In addition, when the steel pipe column is divided into upper and lower parts with a flat slab sandwiched, it becomes difficult to treat the horizontal shearing force at the joint, and the reinforcement across the inside and outside of the steel pipe column becomes extremely difficult, and the construction of the steel pipe column is extremely difficult. Column cross-sectional defects must be taken into account, both of which have problems.

以上のことから、接合部は全面に亘ってほぼ一様な厚さのフラットスラブを鋼管柱が貫通する形式で、且つ鋼管柱回りへの補強により完成する形式であることが適切である。   From the above, it is appropriate that the joining portion is of a type in which the steel pipe column penetrates a flat slab having a substantially uniform thickness over the entire surface and completed by reinforcement around the steel pipe column.

これらの条件を満たしつつ、接合部においてフラットスラブからの曲げモーメントとせん断力が鋼管柱に伝達されるようにする上では、通常は鋼管柱の回りにブラケットを突設することが行われる(特許文献1、2参照)。ブラケットの内、水平な板はフラットスラブの上下面、もしくはその近傍に揃えられ、フラットスラブからの曲げモーメントと水平せん断力を鋼管柱に伝達する役目を持つ。   In order to ensure that the bending moment and shear force from the flat slab are transmitted to the steel pipe column at the joint while satisfying these conditions, a bracket is usually provided around the steel pipe column (patented). References 1 and 2). Among the brackets, horizontal plates are aligned on the upper and lower surfaces of the flat slab or in the vicinity thereof, and have the role of transmitting the bending moment and horizontal shearing force from the flat slab to the steel pipe column.

ところが、鋼管柱の回りにブラケットを突設することは多量の鋼材を使用することになるため、鋼管柱の製作コストが上昇する。またブラケットがフラットスラブ側へ張り出すことで、スラブ筋との取合いが制限されるため、現場でのスラブ筋の配筋作業が複雑になる等、施工性が低下する可能性が高い。   However, projecting the bracket around the steel pipe column requires a large amount of steel material, which increases the manufacturing cost of the steel pipe column. Further, since the bracket extends to the flat slab side, the connection with the slab bar is limited, so that the workability of the slab bar at the site is complicated, and the workability is likely to deteriorate.

これに対し、鋼管柱の外周面に上下に並列するフランジ(鍔)を突設し、各フランジから放射状に鉄筋(連結筋等)を突設することによりスラブ筋との干渉を少なくし、スラブ筋の配筋作業への阻害を軽減する方法がある(特許文献3参照)。   On the other hand, flanges (鍔) that are vertically aligned on the outer peripheral surface of the steel pipe column are projected, and reinforcing bars (connecting bars, etc.) are projected radially from each flange to reduce interference with the slab bars. There is a method for reducing the inhibition of muscle placement work (see Patent Document 3).

特開2000−160685号公報(請求項1、段落0021〜0022、図1、図2)JP 2000-160685 A (Claim 1, paragraphs 0021 to 0022, FIGS. 1 and 2) 特開2003−90097号公報(請求項1、段落0008〜0009、図1〜図5)JP 2003-90097 (Claim 1, paragraphs 0008 to 0009, FIGS. 1 to 5) 特開2002−70164号公報(請求項1、段落0009〜0013、図1〜図8)JP 2002-70164 A (Claim 1, paragraphs 0009 to 0013, FIGS. 1 to 8)

特許文献3では鋼管柱の外周面に突設される鍔にループ状の連結筋が溶接され、連結筋内にスラブ筋が差し込まれることにより、鋼管柱とフラットスラブの接合部がフラットスラブからの鉛直せん断力に対する耐力を確保している(段落0006、0009〜0011)。   In Patent Document 3, a loop-shaped connecting bar is welded to a flange protruding from the outer peripheral surface of a steel pipe column, and a slab bar is inserted into the connecting bar, so that the joint between the steel pipe column and the flat slab is removed from the flat slab. Yield strength against vertical shearing force is secured (paragraphs 0006, 0009 to 0011).

しかしながら、フラットスラブからの鉛直せん断力を鋼管柱に伝達する上で、スラブ筋を連結筋内に挿通させることによりスラブ筋を連結筋に係合させ、連結筋から鍔に伝達しているため、鋼管柱回りに連結筋を密に配筋する形になり、鉄筋を混在させている。結果的に、鋼管柱回りのコンクリートの充填性が低下し、コンクリート中に空隙を形成する可能性がある。   However, in transmitting the vertical shear force from the flat slab to the steel pipe column, the slab muscle is engaged with the connecting muscle by inserting the slab muscle into the connecting muscle, and transmitted from the connecting muscle to the heel. The connecting bars are densely arranged around the steel pipe column, and the reinforcing bars are mixed. As a result, the filling property of the concrete around the steel pipe column is lowered, and there is a possibility that voids are formed in the concrete.

また特許文献3の鍔は鉛直せん断力を支圧力として負担するが、フラットスラブのコンクリートからの鉛直せん断力は直接的には鍔に突設された連結筋に付着力として伝達されるため、十分な付着力を確保する目的からも、多くの連結筋を配筋することが必要になっている。   In addition, the heel of Patent Document 3 bears the vertical shearing force as a supporting pressure, but the vertical shearing force from the concrete of the flat slab is directly transmitted as an adhesive force to the connecting bars protruding from the heel. In order to secure a good adhesion, it is necessary to arrange many connecting bars.

本発明は上記背景より、使用鋼材量が少なく、鋼管柱回りにおける配筋作業性のよい鋼管柱とフラットスラブの接合部を提案するものである。   In view of the above background, the present invention proposes a joint between a steel pipe column and a flat slab that has a small amount of steel material to be used and has good barbing workability around the steel pipe column.

請求項1に記載の鋼管柱とフラットスラブの接合部は、鋼管柱に接合されるフラットスラブの厚さの範囲において、孔あきジベルが前記鋼管柱の外周面に対し、少なくとも2方向を向き、固定状態を維持して配置され、この孔あきジベルの挿通孔を貫通して前記フラットスラブ中に貫通鉄筋が配筋され、前記孔あきジベルが複数枚組み合わせられて前記鋼管柱を包囲していることを構成要件とする。請求項1は全面に亘って実質的に一様な厚さを有し、支板やキャピタルのないフラットスラブを対象とする。
請求項3に記載の鋼管柱とフラットスラブの接合部は、前記孔あきジベルが前記フラットスラブ中に配筋されるスラブ筋である上端主筋と下端主筋との間に納まるように配置されていることを構成要件とする。
The joint part of the steel pipe column and the flat slab according to claim 1, in the range of the thickness of the flat slab to be joined to the steel pipe column, the perforated divel faces at least two directions with respect to the outer peripheral surface of the steel pipe column , It is arranged while maintaining a fixed state, penetrating rebars are arranged in the flat slab through the through hole of the perforated dowel, and a plurality of the perforated dowels are combined to surround the steel pipe column. This is a component requirement. Claim 1 is directed to a flat slab having a substantially uniform thickness over the entire surface and having no support plate or capital.
The joint between the steel pipe column and the flat slab according to claim 3 is arranged so that the perforated gibber is placed between an upper main bar and a lower main bar that are slab bars arranged in the flat slab. This is a component requirement.

孔あきジベルはフラットスラブからの鉛直せん断力を負担できる程度に鋼管柱の外周面に固定された状態を維持できればよく、溶接やボルトにより直接的に固定される場合の他、摩擦力により固定状態を維持できる場合を含む。孔あきジベルが少なくとも2方向を向くことで、貫通鉄筋も少なくとも2方向を向いてフラットスラブ中に配筋される。2方向は水平の2方向を指す。   The perforated gibber need only be able to maintain the state fixed to the outer peripheral surface of the steel pipe column to the extent that it can bear the vertical shearing force from the flat slab. Including the case where When the perforated diver faces in at least two directions, the penetrating rebar is also arranged in the flat slab in at least two directions. Two directions refer to two horizontal directions.

鋼管柱の外周面に突設された孔あきジベルに貫通鉄筋が挿通し、貫通鉄筋が鋼管柱回りのフラットスラブ中に配筋されることで、フラットスラブからの鉛直せん断力は貫通鉄筋が負担し、貫通鉄筋から孔あきジベルに伝達され、孔あきジベルから鋼管柱に伝達される。また孔あきジベルがフラットスラブのコンクリート中に埋設されることで、孔あきジベルが直接、コンクリートからのせん断力を負担しながら鋼管柱に伝達する働きもする。   The penetrating rebar is inserted into the perforated gibber projecting from the outer peripheral surface of the steel pipe column, and the penetrating rebar is placed in the flat slab around the steel pipe column. Then, it is transmitted from the penetrating rebar to the perforated gibber and from the perforated gibber to the steel pipe column. In addition, since the perforated gibber is embedded in the concrete of the flat slab, the perforated gibber directly acts to transmit the shearing force from the concrete to the steel pipe column.

貫通鉄筋が貫通する孔あきジベルの挿通孔は貫通鉄筋の径より大き目に形成される。孔あきジベルはフラットスラブのコンクリート中に埋設されることで、孔あきジベルの表面における付着力と、挿通孔の水平投影面積分の支圧力をせん断力に対する抵抗力として発揮する。加えて、挿通孔内に存在するコンクリートの、孔あきジベル表面と同一面上のせん断耐力と、挿通孔を貫通している貫通鉄筋のせん断耐力がせん断抵抗力として付加されるため、鉄筋の付着力のみに依存する場合より鉛直せん断力に対する抵抗力が大きい。   The insertion hole of the perforated diver through which the penetration rebar penetrates is formed larger than the diameter of the penetration rebar. The perforated gibber is buried in the concrete of the flat slab, so that the adhesion force on the surface of the perforated gibber and the supporting pressure corresponding to the horizontal projected area of the insertion hole are exerted as resistance to the shearing force. In addition, the shear strength of the concrete existing in the insertion hole on the same plane as the surface of the perforated gibber and the shear strength of the penetrating rebar that penetrates the insertion hole are added as shear resistance. The resistance to vertical shearing force is greater than when relying solely on the applied force.

スラブ筋からの引張力はそのスラブ筋に平行な、または直交等、交差する方向の貫通鉄筋にコンクリートとの間の付着力を介して伝達され、その貫通鉄筋から孔あきジベルを通じて鋼管柱に伝達される。貫通鉄筋が複数本集合して鋼管柱の回りを包囲する場合には、引張力の作用側に位置する貫通鉄筋と、鋼管柱を挟んだ反対側に位置する貫通鉄筋と孔あきジベルを介して引張力が鋼管柱に伝達される。   Tensile force from the slab bar is transmitted to the penetrating rebar in the crossing direction parallel to or perpendicular to the slab bar via the adhesive force between the concrete and the steel bar through the perforated gibber. Is done. When multiple penetrating rebars are gathered to surround the steel pipe column, the penetrating rebar located on the working side of the tensile force, the penetrating rebar located on the opposite side of the steel pipe column, and the perforated gibber Tensile force is transmitted to the steel pipe column.

鋼管柱回りを補強する上では、鋼管柱回りに孔あきジベルを突設し、孔あきジベルを貫通させて貫通鉄筋を配筋するのみであるから、鋼管柱寄りでせん断力伝達部材が密集することがないため、コンクリートの充填性を阻害することがない。併せてスラブ筋との干渉を生じないように孔あきジベルと貫通鉄筋を配置することができるため、フラットスラブのコンクリートを密実に充填することが可能である。   In order to reinforce around the steel pipe column, a perforated gibber is protruded around the steel pipe column, and only the penetrating rebar is placed through the perforated gibber, so the shear force transmission members close to the steel pipe column. Therefore, it does not hinder the filling of concrete. In addition, since the perforated gibber and the penetrating rebar can be arranged so as not to cause interference with the slab reinforcement, it is possible to fill the flat slab concrete densely.

加えて鋼管柱回りへの補強が孔あきジベルと貫通鉄筋の配置のみで済むことで、鋼管柱回りにブラケット等を突設する場合より使用鋼材量を低減することができるため、鋼管柱の製作コストが低減される。孔あきジベルは予め、現場への搬入前に鋼管柱に溶接されることが合理的であるが、予め溶接されても鋼管柱の外周面からの突出幅を抑えることができるため、現場での配筋やコンクリート充填等の作業性を阻害することは回避される。   In addition, since the reinforcement around the steel pipe column only requires the arrangement of perforated gibbles and penetrating reinforcing bars, the amount of steel used can be reduced compared to the case where a bracket or the like is protruded around the steel pipe column, so the production of the steel pipe column Cost is reduced. It is reasonable to weld the perforated gibel in advance to the steel pipe column before carrying it to the site, but even if it is pre-welded, the projecting width from the outer peripheral surface of the steel pipe column can be suppressed. Obstructing workability such as reinforcement and concrete filling is avoided.

孔あきジベルは前記のように溶接やボルトにより、または摩擦力を利用して鋼管柱の外周に接合されるが、主に摩擦力を利用する場合に複数枚組み合わせられて鋼管柱を包囲することにより、鋼管柱に固定された状態を維持する。
As described above, the perforated gibber is joined to the outer periphery of the steel pipe column by welding, bolts, or using frictional force. When mainly using the frictional force , a plurality of pieces are combined to surround the steel pipe column. By this, the state fixed to the steel pipe column is maintained.

摩擦力を利用する場合、孔あきジベルはそれと鋼管柱との間に楔等が打ち込まれることにより、鋼管柱を挟んだ側に位置する孔あきジベルが鋼管柱に密着しようとし、その圧力に応じた摩擦力により固定状態を維持する。この場合、孔あきジベルの固定に溶接もボルトも使用しないため、溶接熱による鋼管柱への残留応力の発生、ボルト挿通孔の形成による断面欠損の問題は一切生じない。
When using the frictional force , the perforated gibber is driven by a wedge or the like between it and the steel pipe column. The fixed state is maintained by the friction force. In this case , since neither welding nor bolts are used for fixing the perforated gibber, there is no problem of occurrence of residual stress in the steel pipe column due to welding heat and cross-sectional defects due to the formation of bolt insertion holes.

鋼管柱回りへの孔あきジベルの固定と貫通鉄筋の配筋では鋼管柱回りにおける補強が十分でない場合には、請求項に記載のように孔あきジベルがフラットスラブ中に配筋されるスラブ筋に交差する方向を向き、貫通鉄筋がスラブ筋に交差する方向を向いて配筋される。
The slab in which the perforated dive bar is arranged in the flat slab as described in claim 2 , when the perforated dive bar is fixed around the steel pipe column and the reinforcement of the penetrating rebar is not sufficient for reinforcement around the steel pipe column. The reinforcing bars are arranged in the direction that intersects the bars and the direction that the penetrating reinforcing bars cross the slab bars.

水平せん断力等によるフラットスラブにおけるコンクリートのひび割れは平面上、4本の鋼管柱で区画された四辺形の対角線方向に生ずる傾向がある。この対角線方向のひび割れの発生を抑制する上では、ひび割れを発生させる引張力に抵抗するように貫通鉄筋を配置することが適切であり、請求項の貫通鉄筋はスラブ筋に交差することで、引張力に抵抗し、ひび割れの発生を抑制する働きをする。
Cracks in concrete in a flat slab due to horizontal shearing force tend to occur in the diagonal direction of a quadrilateral defined by four steel pipe columns on a plane. In order to suppress the occurrence of cracks in the diagonal direction, it is appropriate to dispose the penetrating rebar so as to resist the tensile force that generates the crack, and the penetrating rebar of claim 2 crosses the slab bar, Resistes tensile force and acts to suppress cracking.

請求項において、孔あきジベルの鋼管柱からの突出幅を大きくし、貫通鉄筋を水平方向に並列させて配筋することができれば、鋼管柱回りに多数の貫通鉄筋が配筋されることになる。このため、貫通鉄筋をスラブ筋に交差させることをしなくても、鋼管柱回りにおいてひび割れを発生させる引張力に抵抗できるだけの補強を施すことが可能である。
Also in Claim 1 , if the protruding width of the perforated gibel from the steel pipe column can be increased and the penetration reinforcing bars can be arranged in parallel in the horizontal direction, a large number of penetration reinforcing bars can be arranged around the steel pipe column. become. For this reason, even if it does not cross a penetration reinforcement to a slab reinforcement, it is possible to give reinforcement which can resist the tensile force which generates a crack around a steel pipe pillar.

鋼管柱の外周面に突設された孔あきジベルに貫通鉄筋を貫通させ、貫通鉄筋を鋼管柱回りのフラットスラブ中に配筋することで、フラットスラブからの鉛直せん断力を貫通鉄筋から孔あきジベルを経て鋼管柱に伝達すると共に、孔あきジベルが直接、鉛直せん断力を負担しながら鋼管柱に伝達することができる。   By penetrating through a rebar through a perforated gibber projecting on the outer peripheral surface of a steel pipe column and arranging the through rebar in the flat slab around the steel pipe column, the vertical shear force from the flat slab is perforated from the through rebar. While transmitting to the steel pipe column through the gibber, the perforated gibber can directly transmit to the steel pipe column while bearing the vertical shearing force.

鋼管柱回りには孔あきジベルを突設し、孔あきジベルを貫通させて貫通鉄筋を配筋するのみであるため、鋼管柱寄りでせん断補強材が密集することがなく、コンクリートの充填性を阻害することがない。また鋼管柱回りにブラケット等を突設する場合より使用鋼材量が低減されるため、鋼管柱の製作コストを低減することができる。   A perforated gibber protrudes around the steel pipe column and only penetrates through the perforated gibber so that the penetrating rebar is placed. There is no hindrance. Further, since the amount of steel used is reduced compared to the case where a bracket or the like is provided around the steel pipe column, the manufacturing cost of the steel pipe column can be reduced.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は鋼管柱1に接合されるフラットスラブ4の厚さの範囲において、孔あきジベル2が鋼管柱1の外周面に対し、少なくとも2方向を向いて固定状態を維持し、この孔あきジベル2の挿通孔2aを貫通してフラットスラブ4中に貫通鉄筋3が配筋されている鋼管柱とフラットスラブの接合部の具体例を示す。(a)は平面を、(b)は(a)のA−A線の断面を示す。   FIG. 1 shows that in the range of the thickness of a flat slab 4 to be joined to a steel pipe column 1, the perforated gibel 2 is kept fixed in at least two directions with respect to the outer peripheral surface of the steel pipe column 1. 2 shows a specific example of a joint between a steel pipe column and a flat slab in which a penetrating rebar 3 is arranged in the flat slab 4 through the two insertion holes 2a. (A) shows a plane, (b) shows a cross section taken along line AA of (a).

図面では鋼管柱1に角形鋼管を使用した場合を示しているが、鋼管柱1は円形鋼管の場合もあり、その場合も孔あきジベル2は平面上、少なくとも2方向を向いて固定される。鋼管柱1内にはコンクリートやモルタル等が充填され、鋼管柱1はCFT柱を構成することもある。孔あきジベル2には図示するような鋼板(プレート)の他、H形鋼やT形鋼等が使用され、形鋼の場合にはウェブが鉛直面をなして配置される。例えばT形鋼はフランジによるコンクリート支持の効果を得る意味から、フランジがウェブの下側に位置した形で使用される。   In the drawing, a case where a square steel pipe is used as the steel pipe column 1 is shown. However, the steel pipe column 1 may be a circular steel pipe, and in this case, the perforated gibber 2 is fixed in at least two directions on the plane. The steel pipe column 1 is filled with concrete, mortar, or the like, and the steel pipe column 1 may constitute a CFT column. In addition to a steel plate (plate) as shown in the figure, an H-shaped steel, a T-shaped steel, or the like is used for the perforated gibber 2, and in the case of a shaped steel, the web is arranged in a vertical plane. For example, T-shaped steel is used in a form in which the flange is located on the lower side of the web in order to obtain the effect of concrete support by the flange.

スラブ筋5は図1−(a)に示すように2方向に格子状に配筋され、孔あきジベル2は(b)に示すように縦断面上、スラブ筋5である上端主筋51と下端主筋52との間に納まるように配置される。孔あきジベル2が上端主筋51と下端主筋52との間に納まることで、貫通鉄筋3とスラブ筋5との干渉が生じないため、平面上、貫通鉄筋3をスラブ筋5と重ねて配筋することができる。鋼管柱1が円形鋼管の場合、貫通鉄筋3はスラブ筋5と交差する方向に、例えば45度の角度をなして配筋される。この関係で、円形鋼管の場合には、孔あきジベル2は2方向の貫通鉄筋3に平行な、円形鋼管の中心線の両側に、互いに平行に配置される。   As shown in FIG. 1- (a), the slab bar 5 is laid out in a lattice pattern in two directions, and the perforated gibber 2 has an upper end main bar 51 which is a slab bar 5 and a lower end on the longitudinal section as shown in FIG. It arrange | positions so that it may fit between the main muscles 52. Since the perforated gibber 2 is placed between the upper main bar 51 and the lower main bar 52, there is no interference between the penetrating rebar 3 and the slab bar 5. Therefore, the penetrating bar 3 is overlapped with the slab bar 5 on the plane. can do. When the steel pipe column 1 is a circular steel pipe, the penetrating rebar 3 is arranged at an angle of 45 degrees, for example, in a direction intersecting the slab bar 5. In this relation, in the case of a circular steel pipe, the perforated divel 2 is arranged in parallel to each other on both sides of the center line of the circular steel pipe, which is parallel to the two-way penetration rebar 3.

図1は高さ方向に複数個形成した挿通孔2aを一列に配列させた孔あきジベル2を鋼管柱1(角形鋼管)の各隅角部に付き、水平2方向に向けて配置した場合である。鋼管柱1の各方向の表面(フランジ)に対しては貫通鉄筋3を支持するために、孔あきジベル2は少なくとも2枚、突設される。図1では挿通孔2aを高さ方向に3個形成しているが、挿通孔2aの個数、及び横方向(水平方向)の配列数は任意である。図1は最も簡潔な構造の例を示す。   FIG. 1 shows a case in which a plurality of through holes 2a formed in the height direction are arranged in a row with a perforated dive 2 attached to each corner of a steel pipe column 1 (square steel pipe) and oriented in two horizontal directions. is there. In order to support the penetrating rebar 3 with respect to the surface (flange) of each direction of the steel pipe column 1, at least two perforated gibels 2 are projected. Although three insertion holes 2a are formed in the height direction in FIG. 1, the number of insertion holes 2a and the number of arrangements in the horizontal direction (horizontal direction) are arbitrary. FIG. 1 shows an example of the simplest structure.

孔あきジベル2が少なくとも水平の2方向を向いて配置されることで、貫通鉄筋3も平面上、少なくとも2方向に配筋され、2方向の貫通鉄筋3、3は鋼管柱1の隅角部の延長線上で交差する。このため、2方向の貫通鉄筋3、3は互いに段差が付いて配筋される。2方向の貫通鉄筋3、3が交差した点から先端までの区間はフラットスラブ4からの鉛直せん断力に対してアンカーとして機能するが、各貫通鉄筋3の交点から先端までの距離は任意に設定される。   By arranging the perforated gibel 2 so as to face at least two horizontal directions, the penetrating rebar 3 is also arranged in at least two directions on the plane, and the two-way penetrating rebars 3 and 3 are the corners of the steel pipe column 1. Cross on the extension line. For this reason, the penetration reinforcing bars 3 and 3 of two directions are arranged with a level | step difference mutually. The section from the point where the two-way penetrating rebars 3 and 3 intersect to the tip functions as an anchor for the vertical shearing force from the flat slab 4, but the distance from the point of intersection of each penetrating rebar 3 to the tip is arbitrarily set Is done.

図示しないが、例えば孔あきジベル2を鋼管柱1の隅角部に、角形鋼管である鋼管柱1の対角線方向に突設すると共に、鋼管柱1の表面(フランジ)の中間部にその面に垂直に突設すれば、貫通鉄筋3を鋼管柱1の表面に平行な方向と対角線方向に配筋することができる。その場合も、鋼管柱1の表面に平行な方向と対角線方向の2方向の貫通鉄筋3、3は高さ方向に互いに干渉しないように配筋される。   Although not shown, for example, a perforated diver 2 is provided at the corner of the steel pipe column 1 so as to protrude in the diagonal direction of the steel pipe column 1 which is a square steel pipe, and at the intermediate portion of the surface (flange) of the steel pipe column 1 on its surface. If projecting vertically, the penetrating reinforcing bars 3 can be arranged in a direction parallel to the surface of the steel pipe column 1 and in a diagonal direction. Also in that case, the penetration reinforcing bars 3 and 3 in the two directions, the direction parallel to the surface of the steel pipe column 1 and the diagonal direction, are arranged so as not to interfere with each other in the height direction.

この場合、鋼管柱1の対角線方向を向く貫通鉄筋3は水平せん断力等によるフラットスラブ4におけるコンクリートのひび割れに対して有効になる。コンクリートのひび割れは平面上、4本の鋼管柱で区画された四辺形の対角線方向、あるいは隣接する鋼管柱の中心を結ぶ直線に対して45度、傾斜した方向に生ずる傾向がある。このことから、鋼管柱1の対角線方向を向く貫通鉄筋3が四辺形の対角線方向、もしくは45度の方向のひび割れを発生させる引張力に抵抗するように配置されれば、貫通鉄筋3はこの引張力に抵抗することによりひび割れの発生を抑制する働きをすることになる。   In this case, the penetrating rebar 3 that faces the diagonal direction of the steel pipe column 1 is effective for cracking of the concrete in the flat slab 4 due to a horizontal shearing force or the like. Cracks in concrete tend to occur on a plane in a diagonal direction of a quadrangle defined by four steel pipe columns, or in a direction inclined by 45 degrees with respect to a straight line connecting the centers of adjacent steel pipe columns. From this, if the penetrating rebar 3 facing the diagonal direction of the steel pipe column 1 is arranged so as to resist the tensile force that generates cracks in the diagonal direction of the quadrilateral or 45 degrees, the penetrating rebar 3 will be Resisting the force acts to suppress the occurrence of cracks.

図1−(a)では鋼管柱1の対角線方向を向く貫通鉄筋3を二点鎖線で示している。この二点鎖線で示す貫通鉄筋3は正負の繰り返しのせん断力に抵抗するために、上下で対になった形で配筋される。対になる貫通鉄筋3、3は両者間に跨り、双方に溶接されるラチス筋、または両端にフックを有するフック筋等によって互いに連結され、拘束される。   In FIG. 1- (a), the penetration reinforcement 3 which faces the diagonal direction of the steel pipe column 1 is shown with the dashed-two dotted line. The penetrating rebar 3 indicated by the two-dot chain line is arranged in a pair in the vertical direction in order to resist the positive and negative shearing forces. The pair of penetrating rebars 3 and 3 straddle between the two, and are connected to each other and restrained by lattice bars welded to both or hook bars having hooks at both ends.

図2は高さ方向に複数個形成した挿通孔2aを横方向に複数列、配列させた孔あきジベル2を鋼管柱1の各隅角部に付き、2方向に向けて配置し、各方向に付き、貫通鉄筋3を横方向に複数列、配列させた場合である。図1、図2に示す孔あきジベル2は例えば端面において鋼管柱1の表面に溶接されるが、孔あきジベル2は鋼管柱1を貫通することもある。   FIG. 2 shows a plurality of insertion holes 2a formed in the height direction in a plurality of rows in the horizontal direction, and perforated divels 2 arranged on each corner of the steel pipe column 1 and arranged in two directions. This is a case where the penetrating rebars 3 are arranged in a plurality of rows in the horizontal direction. 1 and 2 is welded to the surface of the steel pipe column 1 at the end face, for example, but the perforated divel 2 may penetrate the steel pipe column 1.

図2の場合、高さ方向に複数段配置され、水平方向に配列する複数本の貫通鉄筋3がフラットスラブ4からの鉛直せん断力を分担することから、全貫通鉄筋3による鉛直せん断力の負担能力が上昇するため、フラットスラブ4から鋼管柱1への鉛直せん断力の伝達効率が向上する。貫通鉄筋3の本数の増加によりスラブ筋5からの引張力の貫通鉄筋3への伝達効率も向上する。   In the case of FIG. 2, a plurality of penetrating rebars 3 arranged in a plurality of stages in the height direction and arranged in the horizontal direction share the vertical shearing force from the flat slab 4. Since the capacity increases, the transmission efficiency of the vertical shear force from the flat slab 4 to the steel pipe column 1 is improved. By increasing the number of penetration reinforcing bars 3, the transmission efficiency of the tensile force from the slab reinforcement 5 to the penetration reinforcing bars 3 is also improved.

図2の場合にはまた、水平方向に挿通孔2aが複数列、配列することで、孔あきジベル2の鋼管柱1からの突出幅が大きくなるが、鋼管柱1に予め溶接される場合には、現場での作業性に影響しない程度に突出幅を抑えることができる。   In the case of FIG. 2, a plurality of rows of through holes 2 a are arranged in the horizontal direction, so that the protruding width of the perforated gibel 2 from the steel pipe column 1 is increased. Can suppress the protrusion width to such an extent that it does not affect the workability on site.

図3は孔あきジベル2が複数枚、具体的には4枚組み合わせられて鋼管柱1を包囲する場合の接合部を示す。この場合、複数枚の孔あきジベル2が互いに連結されることにより鋼管柱1の外周に固定された状態になることから、鋼管柱1には角形鋼管の使用が適するが、孔あきジベル2を湾曲させることで、円形鋼管にも使用は可能である。   FIG. 3 shows a joint portion when a plurality of perforated gibels 2, specifically four, are combined to surround the steel pipe column 1. In this case, since a plurality of perforated gibels 2 are connected to each other and fixed to the outer periphery of the steel pipe column 1, a square steel pipe is suitable for the steel pipe column 1. It can be used for circular steel pipes by bending.

図3に示す孔あきジベル2は挿通孔2aが形成される支持部21と、鋼管柱1に固定される固定部22とに長さ方向に区分される。鋼管柱1が角形鋼管の場合、孔あきジベル2は鋼管柱1の各面(フランジ)の幅に、その両側から突出し得る長さを加えた程度の大きさの長さを持ち、鋼管柱1回りに配置されたときに鋼管柱1から幅方向に突出する部分に挿通孔2aが形成される。孔あきジベル2の、鋼管柱1の表面に重なる区間が固定部22になり、鋼管柱1から突出する部分が支持部21になる。   The perforated diver 2 shown in FIG. 3 is divided in the length direction into a support portion 21 in which the insertion hole 2 a is formed and a fixing portion 22 fixed to the steel pipe column 1. When the steel pipe column 1 is a square steel pipe, the perforated gibber 2 has a length that is the size of the width of each surface (flange) of the steel pipe column 1 plus a length that can protrude from both sides. An insertion hole 2a is formed in a portion protruding in the width direction from the steel pipe column 1 when arranged around. The section of the perforated gibel 2 that overlaps the surface of the steel pipe column 1 becomes the fixed portion 22, and the portion that protrudes from the steel pipe column 1 becomes the support portion 21.

直交等、交差する2方向の孔あきジベル2、2の、互いに連結される側には例えば図4に示すように切欠き2bが形成されており、双方の切欠き2b、2bが互いに対向した状態で、相手側に嵌合することにより2方向に係合し、交差する孔あきジベル2、2が連結される。この場合も、鋼管柱1から突出する部分の突出幅は任意に設定される。切欠き2bの深さは孔あきジベル2の幅(高さ)の半分程度の大きさになる。孔あきジベル2は切欠き2bの位置を挟んで支持部21と固定部22とに区分される。   For example, as shown in FIG. 4, a notch 2 b is formed on the side where two mutually intersecting perforated dowels 2, 2 orthogonal to each other are connected to each other, and both notches 2 b, 2 b face each other. In this state, the perforated dowels 2 and 2 that are engaged in two directions by being engaged with each other and are intersected are connected. Also in this case, the protruding width of the portion protruding from the steel pipe column 1 is arbitrarily set. The depth of the notch 2b is about half the width (height) of the perforated dowel 2. The perforated diver 2 is divided into a support portion 21 and a fixing portion 22 with the position of the notch 2b interposed therebetween.

互いに連結された2方向の孔あきジベル2、2は鋼管柱1の表面との間に楔6が打ち込まれることにより鋼管柱1に固定された状態を維持する。楔6は孔あきジベル2の固定部22と鋼管柱1との間に打ち込まれる。   The bi-directional perforated divels 2 and 2 connected to each other maintain a state where they are fixed to the steel pipe column 1 by driving a wedge 6 between the surface of the steel pipe column 1. The wedge 6 is driven between the fixed portion 22 of the perforated diver 2 and the steel pipe column 1.

楔6が打ち込まれることで、鋼管柱1を挟んで楔6に対向する側に位置する孔あきジベル2が鋼管柱1の表面側へ引き寄せられるため、対向する両孔あきジベル2、2がそれぞれ楔6によって鋼管柱1側へ引き寄せられることにより、両孔あきジベル2、2が鋼管柱1に固定された状態になる。孔あきジベル2は楔6の両面と鋼管柱1の表面との間、及び孔あきジベル2の鋼管柱1側の面との間の摩擦力により固定状態を維持する。   When the wedge 6 is driven, the perforated gibber 2 located on the side facing the wedge 6 across the steel pipe column 1 is drawn toward the surface side of the steel pipe column 1, so By being pulled toward the steel tube column 1 by the wedge 6, the two-hole perforated gibels 2, 2 are fixed to the steel tube column 1. The perforated gibel 2 is maintained in a fixed state by frictional forces between both surfaces of the wedge 6 and the surface of the steel pipe column 1 and between the surface of the perforated gibel 2 on the steel pipe column 1 side.

図3の例においても、鋼管柱1から幅方向に突出する部分(支持部21)に挿通孔2aを水平方向に複数列、配列させ、その端部寄りの挿通孔2aを孔あきジベル2の板厚方向に対して傾斜させることで、貫通鉄筋3を鋼管柱1の表面に平行な方向と対角線方向に配筋することができる。図3−(a)でも鋼管柱1の対角線方向を向く貫通鉄筋3を二点鎖線で示しているが、二点鎖線で示す貫通鉄筋3が配筋されることで、フラットスラブ4におけるコンクリートのひび割れに対して有効になる。   Also in the example of FIG. 3, a plurality of rows of insertion holes 2 a are arranged in the horizontal direction in the portion (support portion 21) that protrudes in the width direction from the steel pipe column 1, and the insertion holes 2 a closer to the end of the hole 2 By inclining with respect to the plate thickness direction, the penetrating rebar 3 can be arranged in a diagonal direction and a direction parallel to the surface of the steel pipe column 1. Although the penetration rebar 3 which faces the diagonal direction of the steel pipe pillar 1 is also shown in FIG. 3- (a) with the dashed-two dotted line, the penetration of the penetration reinforcing bar 3 shown with a two-dot chain line is arranged, and the concrete in the flat slab 4 is shown. Effective against cracks.

図5は孔あきジベル2の面、または挿通孔2aがフラットスラブ4中に配筋されるスラブ筋5に交差する方向を向き、貫通鉄筋3がスラブ筋5に交差する方向を向いて配筋される場合の接合部を示す。図5は貫通鉄筋3が鋼管柱1の対角線方向に配筋されることで、フラットスラブ4におけるコンクリートのひび割れに対して有効な接合部になる。   FIG. 5 shows the direction of the perforated gibber 2 or the direction in which the insertion hole 2a intersects the slab bar 5 arranged in the flat slab 4 and the penetration bar 3 in the direction crossing the slab bar 5 The joint part is shown. In FIG. 5, the penetrating rebar 3 is arranged in the diagonal direction of the steel pipe column 1, so that it becomes an effective joint for concrete cracking in the flat slab 4.

図5では屈曲、もしくは湾曲した孔あきジベル2、2を重ねた状態で、鋼管柱1の隅角部に溶接等により接合することで、孔あきジベル2を鋼管柱1の対角線方向に突設している。ここでも孔あきジベル2は挿通孔2aが形成される支持部21と、鋼管柱1に固定される固定部22とに長さ方向中間部で区分され、支持部21は固定部22に対して例えば約45度、傾斜する。図5に示す孔あきジベル2は鋼管柱1に対し、固定部22においてボルトにより接合されることもある。   In FIG. 5, the perforated diver 2 is protruded in the diagonal direction of the steel pipe column 1 by welding or the like to the corner of the steel pipe column 1 with the bent or curved perforated perimeters 2 and 2 being overlapped. is doing. Here again, the perforated gibber 2 is divided into a support portion 21 in which the insertion hole 2 a is formed and a fixing portion 22 fixed to the steel pipe column 1 at the intermediate portion in the longitudinal direction. For example, it is inclined about 45 degrees. 5 may be joined to the steel pipe column 1 by a bolt at the fixing portion 22.

図1〜図5に示す例では挿通孔2aを孔あきジベル2の板厚方向に形成し、貫通鉄筋3を孔あきジベル2の板厚方向に配筋しているが、挿通孔2aの形成の方向によって貫通鉄筋3の配筋方向を調整することができる。例えば図1〜図3の例において、板厚方向に対し、45度、傾斜させて挿通孔2aを形成すると共に、孔あきジベル2を鋼管柱1の隅角部に寄せて接合することで、図5のように貫通鉄筋3をスラブ筋5に対し、交差させて配筋することもできる。その場合、図1〜図3に示す孔あきジベル2を図5に示すように屈曲等させる必要がない。   In the example shown in FIGS. 1 to 5, the insertion hole 2 a is formed in the plate thickness direction of the perforated diver 2, and the penetrating rebar 3 is arranged in the plate thickness direction of the perforated divel 2, but the insertion hole 2 a is formed. The bar arrangement direction of the penetrating rebar 3 can be adjusted according to the direction. For example, in the example of FIGS. 1 to 3, the insertion hole 2 a is inclined by 45 degrees with respect to the plate thickness direction, and the perforated diver 2 is brought close to the corner portion of the steel pipe column 1 and joined. As shown in FIG. 5, the penetrating reinforcing bars 3 can be arranged so as to intersect the slab reinforcing bars 5. In that case, there is no need to bend the perforated gibber 2 shown in FIGS. 1 to 3 as shown in FIG.

また図5の例において、挿通孔2aを孔あきジベル2の板厚方向に対し、45度の2方向に形成しておけば、貫通鉄筋3を鋼管柱1の表面に平行に配筋することもできる。更にそれに加えて挿通孔2aを板厚方向にも形成しておけば、貫通鉄筋3を鋼管柱1の表面に平行な方向と対角線方向に配筋することができるため、コンクリートのひび割れに対して有効になる。   In the example of FIG. 5, if the insertion hole 2 a is formed in two directions of 45 degrees with respect to the plate thickness direction of the perforated diver 2, the penetrating rebar 3 is arranged parallel to the surface of the steel pipe column 1. You can also. In addition, if the insertion hole 2a is also formed in the plate thickness direction, the penetrating rebar 3 can be arranged in a direction parallel to the surface of the steel pipe column 1 and in a diagonal direction. validate.

(a)は孔あきジベルを鋼管柱の隅角部に2方向に向けて接合し、貫通鉄筋を一列に配筋した場合の接合部の配筋状態を示した平面図、(b)は(a)のA−A線断面図である。(A) is a plan view showing a bar arrangement state of a joint portion when a perforated diver is joined to a corner portion of a steel pipe column in two directions and through-bars are arranged in a row, (b) is ( It is AA sectional view taken on the line of a). (a)は孔あきジベルを鋼管柱の隅角部に2方向に向けて接合し、貫通鉄筋を複数列に配筋した場合の接合部の配筋状態を示した平面図、(b)は(a)のB−B線断面図である。(A) is a plan view showing a bar arrangement state of a joint portion when a perforated dive is joined to a corner portion of a steel pipe column in two directions and through-bars are arranged in a plurality of rows, (b) It is BB sectional drawing of (a). (a)は4枚の孔あきジベルを組み合わせて鋼管柱を包囲させた場合の接合部の配筋状態を示した平面図、(b)は(a)のC−C線断面図である。(A) is the top view which showed the reinforcement arrangement | positioning state of the junction part at the time of enclosing a steel pipe pillar combining 4 perforated | drilled dowels, (b) is CC sectional view taken on the line of (a). 図3に示す孔あきジベルの組み合わせ例を示した斜視図である。It is the perspective view which showed the example of a combination of the perforated | grilled bell shown in FIG. (a)は2枚の孔あきジベル2を組み合わせて鋼管柱に接合し、貫通鉄筋をスラブ筋に交差させて配筋した場合の接合部の配筋状態を示した平面図、(b)は(a)のD−D線断面図である。(A) is a plan view showing the bar arrangement state of the joint when two perforated gibels 2 are combined and bonded to a steel pipe column and the penetration reinforcing bar is crossed with the slab bar, and (b) is It is the DD sectional view taken on the line of (a).

符号の説明Explanation of symbols

1………鋼管柱
2………孔あきジベル
2a……挿通孔
2b……切欠き
21……支持部
22……固定部
3………貫通鉄筋
4………フラットスラブ
5………スラブ筋
51……上端主筋
52……下端主筋
6………楔

1 ……… Steel pipe column 2 ……… Perforated gibber 2a …… Insertion hole 2b …… Notch 21 …… Supporting part 22 …… Fixing part 3 ……… Thinning reinforcing bar 4 ……… Flat slab 5 ……… Slab Muscle 51 …… Upper main muscle 52 …… Lower main muscle 6 ……… Wedge

Claims (3)

鋼管柱に接合されるフラットスラブの厚さの範囲において、孔あきジベルが前記鋼管柱の外周面に対し、少なくとも2方向を向き、固定状態を維持して配置され、この孔あきジベルの挿通孔を貫通して前記フラットスラブ中に貫通鉄筋が配筋され、前記孔あきジベルは複数枚組み合わせられて前記鋼管柱を包囲していることを特徴とする鋼管柱とフラットスラブの接合部。 In the range of the thickness of the flat slab to be joined to the steel pipe column, the perforated divel is arranged in at least two directions with respect to the outer peripheral surface of the steel pipe column and maintained in a fixed state. The steel pipe column and the flat slab are connected to each other by penetrating through a reinforcing bar in the flat slab and combining a plurality of perforated gibels to surround the steel pipe column. 前記孔あきジベルは前記フラットスラブ中に配筋されるスラブ筋に交差する方向を向き、前記貫通鉄筋は前記スラブ筋に交差する方向を向いていることを特徴とする請求項に記載の鋼管柱とフラットスラブの接合部。 2. The steel pipe according to claim 1 , wherein the perforated gibber faces a direction intersecting a slab bar arranged in the flat slab, and the penetration reinforcing bar faces a direction intersecting the slab bar. Joint between column and flat slab. 前記孔あきジベルは前記フラットスラブ中に配筋されるスラブ筋である上端主筋と下端主筋との間に納まるように配置されていることを特徴とする請求項1、もしくは請求項2に記載の鋼管柱とフラットスラブの接合部。
The said perforated perforation is arrange | positioned so that it may be settled between the upper-end main reinforcement and lower-end main reinforcement which are slab reinforcement arranged in the said flat slab, The Claim 1 or Claim 2 characterized by the above-mentioned. Joint between steel pipe column and flat slab.
JP2006267158A 2006-09-29 2006-09-29 Joint between steel pipe column and flat slab Active JP4943795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267158A JP4943795B2 (en) 2006-09-29 2006-09-29 Joint between steel pipe column and flat slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267158A JP4943795B2 (en) 2006-09-29 2006-09-29 Joint between steel pipe column and flat slab

Publications (2)

Publication Number Publication Date
JP2008088639A JP2008088639A (en) 2008-04-17
JP4943795B2 true JP4943795B2 (en) 2012-05-30

Family

ID=39373075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267158A Active JP4943795B2 (en) 2006-09-29 2006-09-29 Joint between steel pipe column and flat slab

Country Status (1)

Country Link
JP (1) JP4943795B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935305B1 (en) * 2009-01-15 2010-01-06 엄기형 Reinforcement and method for joining plates
JP5653236B2 (en) * 2011-01-25 2015-01-14 鹿島建設株式会社 Shear force transmission structure of concrete column / beam joint
JP7422085B2 (en) * 2019-05-23 2024-01-25 Jfeスチール株式会社 Joint structure between concrete-filled steel pipe column and reinforced concrete slab

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217542A (en) * 1990-01-23 1991-09-25 Mitsui Constr Co Ltd Jointing construction of steel pipe column and slab in flat slab structure

Also Published As

Publication number Publication date
JP2008088639A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5789173B2 (en) S-beam RC shear wall structure
JP4943795B2 (en) Joint between steel pipe column and flat slab
JP4213753B2 (en) Foundation reinforcement
KR101083762B1 (en) Connection Structure of Concrete Filled Steel Tube Column and Flat Plate Slab
JP2002161603A (en) Method for fixing full pc floor board
JP5035984B2 (en) Joint structure of precast floor slab and beam
JP4389570B2 (en) Connection structure of steel wall and reinforced concrete slab
JP7391172B2 (en) Joint structure between concrete-filled steel pipe column and reinforced concrete slab
JP6429652B2 (en) Stress transmission structure between seismic wall and lower beam in concrete column beam frame
JP5607384B2 (en) Construction method for beam-column joints
JP6428027B2 (en) Column rebar connection panel and rebar structure
JP6070118B2 (en) Retaining wall structure, method for constructing retaining wall structure
KR102417716B1 (en) Beam-column steel pipe joint panel manufactured by partial penetration welding on four sides
JP7156347B2 (en) Joint structure of steel wall and reinforced concrete floor slab
JP5134228B2 (en) Joint between steel pipe column and flat slab
JP6871493B2 (en) Pile head reinforcement structure
JP2021528580A (en) Joint structure of concrete-filled steel pipe columns and reinforced concrete slabs
JP3826348B2 (en) Construction method of composite wall with mountain retaining core and underground outer wall
KR101304501B1 (en) Steel Pipe Pile head reinforcement device
JP2006057253A (en) Construction method for steel sheet pile-combined spread foundation, and steel sheet pile-combined spread foundation
JP2007051500A (en) Joint structure of column and pile
JP2008223245A (en) Column base structure
KR20050021611A (en) Apparatus for enhancing shear strength of column slab connection part and structure thereof using the same
JP4300166B2 (en) Power transmission mechanism construction method and power transmission mechanism
JP4393945B2 (en) Power transmission mechanism construction method and power transmission mechanism

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250