JP4940864B2 - Throw-away rotary tool and tip mounted on it - Google Patents

Throw-away rotary tool and tip mounted on it Download PDF

Info

Publication number
JP4940864B2
JP4940864B2 JP2006266168A JP2006266168A JP4940864B2 JP 4940864 B2 JP4940864 B2 JP 4940864B2 JP 2006266168 A JP2006266168 A JP 2006266168A JP 2006266168 A JP2006266168 A JP 2006266168A JP 4940864 B2 JP4940864 B2 JP 4940864B2
Authority
JP
Japan
Prior art keywords
cutting edge
outer peripheral
peripheral cutting
tool
rake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006266168A
Other languages
Japanese (ja)
Other versions
JP2008080469A (en
Inventor
龍一 佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2006266168A priority Critical patent/JP4940864B2/en
Publication of JP2008080469A publication Critical patent/JP2008080469A/en
Application granted granted Critical
Publication of JP4940864B2 publication Critical patent/JP4940864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Description

本発明は、フライス、エンドミル等のスローアウェイ式回転工具及びそれに装着するチップに関し、特に外周切刃の直径が小さくかつ外周切刃長が大きいものにおいて、外周切刃の切れ味と加工壁面精度の両立をはかったスローアウェイ式回転工具及びこれに装着されるチップに関するものである。   The present invention relates to a throw-away rotary tool such as a milling cutter and an end mill and a tip attached to the throw-away rotary tool. The present invention relates to a throw-away rotary tool and a tip attached to the throw-away rotary tool.

この種のスローアウェイ式回転工具に関する公知技術を図10〜図13に例示する。図10に示す切削インサートは平行6面体の基本形状をしていて、フライス盤で回転させるために、フライス本体に装着させるものである。図11に示すフライス本体は、平行6面体の切削インサートを受容するために、少なくとも一つのポケットを含んでなる。切削インサート10が、補側部13、14ならびに上面15と下面16と一体化する二つの実質的に平行な主側部11、12とを含む。上面15は、主側部11、12との交差線で主切れ刃17、18を形成する。主切れ刃は、各切れ刃が下面16に対して鋭角を形成するので、対向する方向に傾斜する。それによって、それらが切削インサートの対向する側部を与えられ、増加するが、軸角を対向する方向に向かわせる。それぞれの主切れ刃は、フライス本体の切削インサートポケットに装着されたときに、その工具の作用ポジ軸角を増加する。さらにその上に、上面15が、それぞれの補側部13、14の比較的小さな部分での交差線で補切れ刃またはワイパーは19、20を形成する。主切れ刃17、18と、それぞれと協働する補切れ刃19、20とが、フライス加工の際に別の対が作動していないときに、作動する一対の切れ刃を形成する。二つの接する切れ刃は、切削コーナの領域で交差する。切削コーナは、このコーナを二つの等しい角に分割する2等分線を規定する。2等分線は、コーナの半径の中心とは交差しない。一対の切れ刃が磨耗したときに、この切削インサートは別の一対の切れ刃が作用位置になるように割り出される。上面が切れ刃領域に切り屑面を構成し且つ主側部と補側部とともに刃先角を形成し、この角度は90度より小さくて、すなわちこの切削インサートはポジ型基本形状である。さらに、切り屑面15は、加工部材を容易に切削するために、好ましくは増加傾向でポジ型すくい角を形成する。下面16は、補側部と主側部の協働部分とともに鈍角の内角を形成する。中央に配置される孔21は、フライス本体に装着するときにネジのような締結手段を受容するために備えられる。フライスカッターは90度コーナの肩付きフライスに好ましく装着される(例えば、特許文献1参照)。   The well-known technique regarding this type of throw-away rotary tool is illustrated in FIGS. The cutting insert shown in FIG. 10 has a parallelepiped basic shape, and is attached to a milling body to be rotated by a milling machine. The milling body shown in FIG. 11 comprises at least one pocket for receiving a parallelepiped cutting insert. The cutting insert 10 includes complementary side portions 13, 14 and two substantially parallel main side portions 11, 12 that are integral with the upper surface 15 and the lower surface 16. The upper surface 15 forms main cutting edges 17 and 18 at intersection lines with the main side portions 11 and 12. The main cutting edges are inclined in opposite directions because each cutting edge forms an acute angle with respect to the lower surface 16. Thereby they are provided with opposing sides of the cutting insert and increase, but the axial angle is directed in the opposite direction. Each main cutting edge increases the working positive axis angle of the tool when mounted in the cutting insert pocket of the milling body. Furthermore, a top cutting edge or wiper forms 19, 20 with the top surface 15 intersecting at a relatively small part of the respective complementary side 13,13. The main cutting edges 17, 18 and the complementary cutting edges 19, 20 cooperating with each form a pair of cutting edges that operate when another pair is not operating during milling. Two adjacent cutting edges intersect at the area of the cutting corner. The cutting corner defines a bisector that divides the corner into two equal corners. The bisector does not intersect the center of the corner radius. When a pair of cutting edges are worn, the cutting insert is indexed so that another pair of cutting edges is in the working position. The upper surface forms a chip surface in the cutting edge region and forms a cutting edge angle together with the main side portion and the auxiliary side portion, and this angle is smaller than 90 degrees, that is, the cutting insert has a positive basic shape. Further, the chip surface 15 preferably forms a positive rake angle with an increasing tendency to easily cut the workpiece. The lower surface 16 forms an obtuse internal angle together with the cooperating portions of the complementary side portion and the main side portion. A centrally located hole 21 is provided for receiving fastening means such as screws when mounted on the milling body. The milling cutter is preferably mounted on a shoulder milling cutter at a 90-degree corner (see, for example, Patent Document 1).

図13に示す回転切粉除去機械加工用のフライス工具は、切削ヘッド10、保持手段11及びシャンク12を含んでいて、前記切削ヘッド10はそれと一体の少なくとも1つの切れ刃27を備え、前記切削ヘッド及び前記保持手段は前記切削ヘッドを前記シャンクに取り付けるための部分的に重なり合う非対称手段15、19を含み、前記工具は回転軸を有している。そして、前記切削ヘッド10は1〜6個の主切れ刃27を含んでいて、各々の主切れ刃27は本質的に直線状の刃27A及び凸状に湾曲した好ましくは部分的な円形の刃27Bを含み、前記凸状の刃27Bは前記の本質的に直線状の刃27Aの半径方向外側に備わっていることを特徴とするものである(例えば、特許文献2参照)。
特表2002−524275号公報 特表2001−505137号公報
The milling tool for rotary chip removal machining shown in FIG. 13 includes a cutting head 10, a holding means 11, and a shank 12, and the cutting head 10 includes at least one cutting edge 27 integral therewith, The head and the holding means include partially overlapping asymmetric means 15, 19 for attaching the cutting head to the shank, and the tool has an axis of rotation. The cutting head 10 comprises 1 to 6 main cutting edges 27, each main cutting edge 27 being essentially a straight edge 27A and a convexly curved, preferably partially circular edge. 27B, and the convex blade 27B is provided on the radially outer side of the essentially linear blade 27A (see, for example, Patent Document 2).
Special table 2002-524275 gazette Special table 2001-505137

図11に示すフライス工具の主切れ刃は、作用ポジ軸角を増加するので、該フライス工具の中心軸線まわりの回転軌跡が直線とはならないため、加工壁面の真直度を悪化させる問題があった。また、主切れ刃の該主切れ刃方向の両端における逃げ面の逃げ角の変化が生じる。特に20mm程度以下の小径フライス工具では、前記逃げ角の変化が著しく大きくなり、最も逃げ角が小さくなる箇所で適正な逃げ角を設定すると、最も逃げ角が大きくなる箇所で著しく過大な逃げ角が設定されてしまい、主切れ刃の強度不足を招きチッピングや欠損を生じる問題があった。加工壁面の精度を高めるため、主切れ刃の作用ポジ軸角を増加させなくすると、すくい角が小さくなるため切削抵抗が大きくなり切れ味が悪化するという問題があった。
さらに、切削インサートの中央に配置される孔21に受容されるネジによってフライス本体に取り付ける形態のものであり、図12に模式的に示すように、ネジの中心付近を通り前記フライス本体の中心軸線に直交する平面で切断したときの断面形状は、外周切刃の直径を小さくした場合、2枚の切削インサートが接近するため前記フライス本体の中央部の肉厚(芯厚)が小さくなり、該フライス本体の剛性を確保できなくなる。一方、この問題を解消するために切削インサートを小型化した場合、孔21まわりの肉厚が薄くなり、切削インサートの剛性を確保できなくなる。あるいは、工具の作用ポジ軸角を増加させた場合には、フライス本体における切削インサートポケットのバックメタルの断面積が非常に小さくなるため、前記ネジのかかりが浅くなって緩むおそれがあるほか、切削抵抗(主に主分力)による塑性変形や破損が生じるおそれがあることから、加工壁面の精度が悪化するほか、同一工具径のソリッドエンドミルにくらべ切削条件をかなり落とさなければ使用することができないという問題があった。
Since the main cutting edge of the milling tool shown in FIG. 11 increases the working positive shaft angle, the rotation trajectory around the central axis of the milling tool does not become a straight line, which has a problem of deteriorating the straightness of the machining wall surface. . Further, the clearance angle of the flank at both ends of the main cutting edge in the direction of the main cutting edge is changed. In particular, in a small-diameter milling tool of about 20 mm or less, the change in the clearance angle becomes remarkably large, and when an appropriate clearance angle is set at a location where the clearance angle is the smallest, a significantly excessive clearance angle is generated at the location where the clearance angle is the largest. As a result, the main cutting edge is insufficient in strength, causing chipping and chipping. If the working positive shaft angle of the main cutting edge is not increased in order to increase the accuracy of the processing wall surface, there is a problem that the rake angle is reduced, the cutting resistance is increased, and the sharpness is deteriorated.
Furthermore, it is a thing of the form attached to a milling body with the screw | thread received by the hole 21 arrange | positioned in the center of a cutting insert, and as shown typically in FIG. 12, the center axis line of the said milling body passes through the center vicinity of a screw | thread. When the diameter of the outer peripheral cutting edge is reduced, the cross-sectional shape when cutting at a plane perpendicular to the surface of the milling body is close to the wall thickness (core thickness) of the milling body because the two cutting inserts approach, The rigidity of the milling body cannot be secured. On the other hand, when the cutting insert is downsized to solve this problem, the thickness around the hole 21 becomes thin, and the rigidity of the cutting insert cannot be secured. Alternatively, when the working positive shaft angle of the tool is increased, the cross-sectional area of the back metal of the cutting insert pocket in the milling body becomes very small, so that there is a risk that the screw will become shallow and loosen, Since there is a risk of plastic deformation and damage due to resistance (mainly the main component force), the accuracy of the machined wall deteriorates and it cannot be used unless the cutting conditions are significantly reduced compared to a solid end mill with the same tool diameter. There was a problem.

図13に示すフライス工具は、上述した工具剛性に関する問題は深刻ではないものの、切削ヘッドの切れ刃27、30の形状がソリッドエンドミルやソリッドドリルの先端部の切刃形状の如く複雑化し、保持手段の形状についても複雑化するため、該切削ヘッドを製作するのが困難であるとともに製作に要するコストが非常に高くなる問題があった。   In the milling tool shown in FIG. 13, the above-mentioned problem relating to the tool rigidity is not serious, but the shape of the cutting edges 27 and 30 of the cutting head is complicated as the shape of the cutting edge at the tip of a solid end mill or a solid drill. Since the shape of the head is also complicated, there is a problem that it is difficult to manufacture the cutting head and the cost required for the manufacturing becomes very high.

本発明は、上記問題を解決するためになされたもので、外周切刃の切れ味を落とすことなく外周切刃の回転軌跡における真直度を高めるとともに、工具本体及びチップの剛性を高めて工具の撓みを抑えることにより、加工壁面の精度悪化を防止したスローアウェイ式回転工具及びこれに装着されるチップを提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and improves the straightness in the rotation trajectory of the outer peripheral cutting edge without reducing the sharpness of the outer peripheral cutting edge, and also increases the rigidity of the tool body and the tip, thereby bending the tool. An object of the present invention is to provide a throw-away rotary tool that prevents deterioration of the accuracy of the machining wall surface and a tip attached to the throw-away rotary tool.

上記課題を解決するために、本発明は以下の手段を採用する。請求項1に係る発明は、中心軸線まわりに回転させられる工具本体には、該工具本体の先端部外周面に少なくとも1つのチップ取付座を切欠き形成し、このチップ取付座に載置したチップを少なくとも1つの固定手段によって着脱自在に装着してなるスローアウェイ式回転工具であって、略多角形板状をなす前記チップは、工具回転方向を向く上面に形成されたすくい面と、前記上面に対向する下面に形成された着座面と、前記すくい面に交差し工具外周側を向く側面に形成された逃げ面と、すくい面と逃げ面の交差稜線部に形成され且つ工具本体の外周面から突出した外周切刃と、工具内周側を向く側面又は工具基端部側を向く側面の少なくとも一方に形成された被拘束面とを備え、少なくとも前記外周切刃に連なる外周切刃すくい面の表面形状を実質的にプレス焼成により形成し、かつ外周切刃すくい面に交差する外周切刃逃げ面の表面形状をプレス焼成後の研削加工により形成し、前記外周切刃の全長にわたって、アキシャルレーキを正とし、前記外周切刃すくい面を、外周すくい角を増加させる傾斜面で構成し、前記外周切刃逃げ面をねじれ面状に形成するとともに、前記外周切刃の各位置における前記中心軸線から前記外周切刃までの距離をほぼ一定としたことを特徴とするスローアウェイ式回転工具である。
請求項1に係る発明によれば、外周切刃の全長にわたって、アキシャルレーキが正とされ、かつ外周切刃すくい面が外周すくい角を増加させる傾斜面で構成され、さらに外周切刃逃げ面がねじれ面状に形成されたことにより、外周切刃の切削抵抗が小さく切れ味が良好であるとともに、工具本体の中心軸線から外周切刃までの距離がほぼ一定とされるため、前記外周切刃の前記中心軸線まわりの回転軌跡の真直度が悪化することがなく、加工壁面の精度悪化が防止される。
また、外周切刃すくい面の表面形状が実質的にプレス焼成により形成されるため、該外周切刃すくい面の表面形状を自由度の高い形状とすることが可能となる。例えば、外周切刃方向における各位置において切れ味と切刃強度を両立する、最適な外周すくい角が設定される。しかも、この外周切刃すくい面と交差する外周切刃逃げ面の表面形状がプレス焼成後の研磨加工により形成されたことから、これら外周切刃すくい面と外周切刃逃げ面との交差稜線部に形成された外周切刃の形状が高精度に成形され、外周切刃の回転軌跡の真直度の悪化が防止される。
In order to solve the above problems, the present invention employs the following means. According to the first aspect of the present invention, at least one tip mounting seat is formed on the outer peripheral surface of the tip of the tool body in the tool body rotated about the central axis, and the tip placed on the tip mounting seat is formed. Is a throw-away rotary tool that is detachably mounted by at least one fixing means, and the tip having a substantially polygonal plate shape includes a rake surface formed on an upper surface facing a tool rotation direction, and the upper surface A seating surface formed on the lower surface facing the rake surface, a flank surface formed on a side surface that intersects the rake surface and faces the outer peripheral side of the tool, and an outer peripheral surface of the tool body that is formed at a cross ridge line portion of the rake surface and the flank surface. An outer peripheral cutting edge protruding from the outer peripheral cutting edge, and a constrained surface formed on at least one of the side face facing the inner peripheral side of the tool or the side face facing the tool base end side, and at least the outer peripheral cutting edge rake face connected to the outer peripheral cutting edge Table of The shape is substantially formed by press firing, and the surface shape of the outer peripheral cutting edge flank intersecting the outer peripheral cutting edge rake face is formed by grinding after press firing, and the axial rake is formed over the entire length of the outer peripheral cutting edge. The outer peripheral cutting edge rake face is formed of an inclined surface that increases the outer peripheral rake angle, the outer peripheral cutting edge flank is formed in a twisted surface, and from the central axis at each position of the outer peripheral cutting edge. A throw-away rotary tool characterized in that a distance to the outer peripheral cutting edge is substantially constant.
According to the first aspect of the present invention, the axial rake is positive over the entire length of the outer peripheral cutting edge, the outer peripheral cutting edge rake face is constituted by an inclined surface that increases the outer peripheral rake angle, and the outer peripheral cutting edge flank face is further provided. By forming a twisted surface, the cutting resistance of the outer peripheral cutting edge is small and the sharpness is good, and the distance from the central axis of the tool body to the outer peripheral cutting edge is substantially constant. The straightness of the rotation locus around the central axis is not deteriorated, and the accuracy of the machining wall surface is prevented from being deteriorated.
In addition, since the surface shape of the outer peripheral cutting edge rake face is substantially formed by press firing, the surface shape of the outer peripheral cutting edge rake face can be made to have a high degree of freedom. For example, an optimum outer peripheral rake angle that achieves both sharpness and cutting edge strength at each position in the outer peripheral cutting edge direction is set. In addition, since the surface shape of the outer peripheral cutting edge flank that intersects with the outer peripheral cutting edge rake face was formed by polishing after press firing, the intersecting ridge line portion between the outer peripheral cutting edge rake face and the outer peripheral cutting edge flank face The shape of the outer peripheral cutting edge formed in the above is formed with high accuracy, and the deterioration of the straightness of the rotation trajectory of the outer peripheral cutting edge is prevented.

請求項2に係る発明は、請求項1に係る発明において、前記チップが前記工具本体に装着された状態で、前記中心軸線方向における前記外周切刃の全長にわたって、外周すくい角及び前記外周切刃逃げ面の逃げ角がほぼ一定とされていることを特徴とする。
請求項2に係る発明によれば、工具本体に装着されたチップの外周切刃全長にわたって、外周すくい角及び外周切刃逃げ面の逃げ角がほぼ一定とされるため、外周切刃の各位置における切削抵抗及び切刃強度が均一化され、切れ味の安定化や切刃の長寿命化が実現される。
According to a second aspect of the present invention, in the first aspect of the invention, the outer rake angle and the outer peripheral cutting edge over the entire length of the outer peripheral cutting edge in the central axis direction in a state where the insert is mounted on the tool body. The clearance angle of the flank is substantially constant.
According to the second aspect of the present invention, the outer peripheral rake angle and the clearance angle of the outer peripheral cutting edge flank are substantially constant over the entire outer peripheral cutting edge length of the tip mounted on the tool body. The cutting resistance and the cutting edge strength are made uniform, and the sharpness is stabilized and the cutting edge is extended.

請求項3に係る発明は、請求項1または2に係る発明において、前記アキシャルレーキ及び前記外周すくい角を正としたことを特徴とする。
請求項3に係る発明によれば、アキシャルレーキ及び外周すくい角が正とされるため、切削抵抗が小さく抑えられ、外周切刃の切れ味が良好となる。よって、工具本体に加わる負荷が小さく撓みが生じにくくなるため、加工壁面の精度悪化が防止される。さらに、工具びびりの発生がおさえられるので、従来工具よりも高い切削条件による切削加工が可能となる。
The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the axial rake and the outer peripheral rake angle are positive.
According to the invention which concerns on Claim 3, since an axial rake and an outer periphery rake angle are made positive, cutting resistance is restrained small and the sharpness of an outer periphery cutting edge becomes favorable. Therefore, since the load applied to the tool body is small and bending is difficult to occur, the accuracy of the machining wall surface is prevented from being deteriorated. Furthermore, since occurrence of tool chatter is suppressed, cutting can be performed under higher cutting conditions than those of conventional tools.

請求項4に係る発明は、請求項1〜3のいずれか1項に係る発明において、前記チップは、長尺状の略矩形板状をなし、工具回転方向を向く上面の長辺に沿って形成されたすくい面と、前記上面に対向する下面に形成された着座面と、前記すくい面に隣接し工具外周側を向く側面に形成された逃げ面と、これらすくい面と逃げ面の交差稜線部に形成された外周切刃と、工具内周側に位置する長辺に連なる側面及び工具基端部側に位置する短辺に連なる側面の少なくとも一方に形成された被拘束面と、を備え、前記取付溝に挿入されたチップは、その上面の前記すくい面に隣接する領域に前記中心軸線方向に互いに離間した、少なくとも2つの被押圧部を、前記チップの上面に面する前記取付溝の壁面側の前記被押圧部を臨む位置に設けられた雌ねじ孔にねじ込まれたねじ部材によって、該チップの着座面側に向かって押圧されて固定されていることを特徴とする。
請求項4に係る発明によれば、チップを工具本体に固定するねじ部材が該チップの上下面を貫通しないため、チップの小型化が可能となり、該チップを装着する工具本体の芯厚部及びチップ取付座周辺に充分な肉厚が確保される。また、チップが着座するチップ取付座底面側に雌ねじ孔を要しないので、前記底面側の領域の剛性がきわめて高くなる。以上のことから、切削抵抗による工具本体の撓みがおさえられるため、加工壁面の精度悪化が防止され、従来工具よりも高い切削条件の加工が可能となる。
The invention according to a fourth aspect is the invention according to any one of the first to third aspects, wherein the tip is formed in a long and substantially rectangular plate shape along the long side of the upper surface facing the tool rotation direction. The formed rake face, the seating face formed on the lower surface opposite to the upper face, the flank face formed on the side face adjacent to the rake face and facing the outer peripheral side of the rake face, and the ridge line between the rake face and the flank face And a constrained surface formed on at least one of a side surface connected to the long side located on the inner peripheral side of the tool and a side surface connected to the short side located on the tool base end side. The chip inserted into the mounting groove has at least two pressed parts spaced apart from each other in the central axis direction in a region adjacent to the rake surface on the top surface of the mounting groove facing the top surface of the chip. Provided at a position facing the pressed part on the wall surface side By a screw member screwed into the threaded hole, characterized in that it is fixed by being pressed against the seating surface side of the chip.
According to the invention of claim 4, since the screw member for fixing the chip to the tool body does not penetrate the upper and lower surfaces of the chip, the chip can be miniaturized, and the core thickness portion of the tool body to which the chip is mounted and A sufficient thickness is secured around the chip mounting seat. Further, since the female screw hole is not required on the bottom surface side of the chip mounting seat on which the chip is seated, the rigidity of the region on the bottom surface side becomes extremely high. From the above, since the bending of the tool main body due to the cutting resistance is suppressed, the accuracy of the machining wall surface is prevented from being deteriorated, and machining with higher cutting conditions than that of the conventional tool is possible.

請求項5に係る発明は、請求項1〜4のいずれか1項記載のスローアウェイ式回転工具に装着されるチップにおいて、請求項1〜4のいずれか1項記載のスローアウェイ式回転工具に装着されるチップにおいて、長尺状の略矩形板状をなし、その上面の少なくとも1つのコーナに隣接する長辺には外周切刃を形成し、この外周切刃に連なる上面には外周切刃すくい面を形成し、この外周切刃すくい面に交差する側面には外周切刃逃げ面を形成し、前記外周切刃すくい面の表面形状を実質的にプレス焼成により形成し、かつ前記外周切刃逃げ面の表面形状をプレス焼成後の研削加工により形成し、前記外周切刃に直交する断面において、前記外周切刃すくい面のすくい角を、前記外周切刃の一端から他端へ向かうにしたがって漸次減少する一方で、前記外周切刃逃げ面の逃げ角を漸次増加させ、これら外周切刃すくい面と外周切刃逃げ面とのなす刃物角が前記外周切刃の全長にわたってほぼ一定とされていることを特徴とするチップである。
請求項5に係る発明によれば、外周切刃すくい面の表面形状が実質的にプレス焼成により形成されているため、該外周切刃すくい面の表面形状を自由度の高い形状とすることができるとともに、この外周切刃すくい面に隣接する外周切刃逃げ面の表面形状がプレス焼成後の研磨加工により形成されたことから、これら外周切刃すくい面と外周切刃逃げ面との交差稜線部に形成された外周切刃の形状を高精度に成形することができる。このようなチップをスローアウェイ式回転工具の工具本体に装着した際において、外周切刃方向における各位置において切れ味と切刃強度が両立する、最適な外周すくい角に設定することが可能であるとともに、外周切刃の回転軌跡の真直度の悪化が防止される。
The invention according to claim 5 is the tip attached to the throw-away rotary tool according to any one of claims 1 to 4, wherein the throw-away rotary tool according to any one of claims 1 to 4 is used. The chip to be mounted has a long, substantially rectangular plate shape, and an outer peripheral cutting edge is formed on a long side adjacent to at least one corner on the upper surface, and an outer peripheral cutting blade is formed on the upper surface connected to the outer peripheral cutting blade. A rake face is formed, a peripheral cutting edge flank face is formed on a side surface intersecting the peripheral cutting edge rake face, a surface shape of the peripheral cutting edge rake face is substantially formed by press firing, and the peripheral cutting edge is formed. The surface shape of the flank face is formed by grinding after press firing, and the rake angle of the rim face of the outer peripheral cutting edge is directed from one end of the outer peripheral cutting edge to the other end in a cross section perpendicular to the outer peripheral cutting edge. Therefore, while gradually decreasing The clearance angle of the outer peripheral cutting edge flank is gradually increased, and the blade angle formed by the outer peripheral cutting edge rake face and the outer peripheral cutting edge flank is substantially constant over the entire length of the outer peripheral cutting edge. It is a chip to do.
According to the invention of claim 5, since the surface shape of the outer peripheral cutting edge rake face is substantially formed by press firing, the surface shape of the outer peripheral cutting edge rake face can be made to have a high degree of freedom. Since the surface shape of the peripheral cutting edge flank adjacent to the peripheral cutting edge rake face was formed by polishing after press firing, the cross ridge line between the peripheral cutting edge rake face and the peripheral cutting edge flank face The shape of the outer peripheral cutting edge formed in the portion can be formed with high accuracy. When such a tip is mounted on the tool body of a throw-away rotary tool, it is possible to set an optimum outer peripheral rake angle that achieves both sharpness and cutting edge strength at each position in the outer peripheral cutting edge direction. The straightness of the rotation trajectory of the outer peripheral cutting edge is prevented from deteriorating.

本発明に係るスローアウェイ式回転工具及びこれに装着されるチップによれば、外周切刃の全長にわたって、アキシャルレーキが正とされ、かつ外周切刃すくい面が外周すくい角を増加させる傾斜面で構成され、さらに外周切刃逃げ面がねじれ面状に形成されたことにより、外周切刃の切削抵抗が小さく切れ味が良好であるとともに、外周切刃の各位置における工具本体の中心軸線から外周切刃までの距離がほぼ一定とされるため、前記外周切刃の前記中心軸線まわりの回転軌跡の真直度が悪化することがなく、加工壁面の精度悪化が防止される。
また、外周切刃すくい面の表面形状が実質的にプレス焼成により形成されるため、該外周切刃すくい面の表面形状を自由度の高い形状とすることが可能となる。例えば、外周切刃方向における各位置において切れ味と切刃強度を両立する、最適な外周すくい角が設定される。しかも、この外周切刃すくい面と交差する外周切刃逃げ面の表面形状がプレス焼成後の研磨加工により形成されたことから、これら外周切刃すくい面と外周切刃逃げ面との交差稜線部に形成された外周切刃の各位置における工具本体の中心軸線から外周切刃までの距離がより高精度に成形されるので、外周切刃の回転軌跡において真直度の悪化が防止される。
According to the throw-away rotary tool and the tip mounted thereon according to the present invention, the axial rake is positive over the entire length of the outer peripheral cutting edge, and the outer peripheral cutting edge rake face is an inclined surface that increases the outer peripheral rake angle. In addition, since the outer peripheral cutting edge flank surface is formed in a twisted surface, the cutting resistance of the outer peripheral cutting edge is small and the sharpness is good, and the outer peripheral cutting edge is cut from the central axis of the tool body at each position of the outer peripheral cutting edge. Since the distance to the blade is substantially constant, the straightness of the rotation trajectory of the outer peripheral cutting blade around the central axis is not deteriorated, and the accuracy of the machining wall surface is prevented from being deteriorated.
In addition, since the surface shape of the outer peripheral cutting edge rake face is substantially formed by press firing, the surface shape of the outer peripheral cutting edge rake face can be made to have a high degree of freedom. For example, an optimum outer peripheral rake angle that achieves both sharpness and cutting edge strength at each position in the outer peripheral cutting edge direction is set. In addition, since the surface shape of the outer peripheral cutting edge flank that intersects with the outer peripheral cutting edge rake face was formed by polishing after press firing, the intersecting ridge line portion between the outer peripheral cutting edge rake face and the outer peripheral cutting edge flank face Since the distance from the central axis of the tool main body to the outer peripheral cutting edge at each position of the outer peripheral cutting edge formed with higher accuracy is formed with high accuracy, deterioration of straightness in the rotation trajectory of the outer peripheral cutting edge is prevented.

以下に、本発明に係るスローアウェイ式回転工具の一実施形態について、図面を参照して説明する。
図1は、本実施形態に係るスローアウェイ式エンドミルの斜視図である。図2は、図1に示すエンドミルの分解斜視図である。図3の(a)〜(c)は、それぞれ図1に示すエンドミルの平面図、正面図、先端視側面図である。図4は、図1に示すエンドミルの先端部拡大平面図である。図5〜図7は、それぞれ図4におけるS1−S1線断面図、S2−S2線断面図、S3−S3線断面図である。図8は、図1に示すエンドミルに装着されるチップの斜視図である。図9の(a)〜(d)はそれぞれ図8に示すチップの背面図、平面図、正面図、右側面図である。
Hereinafter, an embodiment of a throw-away rotary tool according to the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a throw-away end mill according to this embodiment. FIG. 2 is an exploded perspective view of the end mill shown in FIG. (A)-(c) of Drawing 3 is a top view, a front view, and a tip view side view of an end mill shown in Drawing 1, respectively. FIG. 4 is an enlarged plan view of the tip of the end mill shown in FIG. 5 to 7 are a sectional view taken along line S1-S1, a sectional view taken along line S2-S2, and a sectional view taken along line S3-S3 in FIG. FIG. 8 is a perspective view of a tip mounted on the end mill shown in FIG. 9A to 9D are a rear view, a plan view, a front view, and a right side view of the chip shown in FIG. 8, respectively.

図1〜図3に示すように、本実施形態に係るスローアウェイ式エンドミル1は、略丸棒状をなす工具本体10の先端外周面に設けた2つの取付溝20に、切刃を備えた長尺状の略多角形板状をなすチップ30が、その長手方向が前記工具本体の中心軸線CL方向と略平行となるようにそれぞれ挿入され、固定手段となる2つのねじ部材40A、40Bを利用して着脱自在に固定されてなる。   As shown in FIGS. 1 to 3, the throw-away end mill 1 according to the present embodiment includes a long cutting edge in two mounting grooves 20 provided on the outer peripheral surface of the tip of a tool body 10 having a substantially round bar shape. A chip 30 having a substantially polygonal plate shape is inserted so that its longitudinal direction is substantially parallel to the direction of the central axis CL of the tool body, and two screw members 40A and 40B serving as fixing means are used. And is detachably fixed.

工具本体10は、略丸棒状をなし、工具先端部側に形成された頭部10Aと、この頭部10Aに連なって工具基端部側に形成されたやや径大のシャンク部10Bとを備えている。さらに、前記頭部10Aの先端部外周面には、先端面10aから工具基端部側に延在する溝状をなす2つのチップ取付座20が工具本体10の中心軸線CLを基準としてほぼ対称的に形成されている。チップ取付座20の工具回転方向K後方側に位置する壁面には、チップ30を着座するための平坦な取付面21が形成され、この取付面21に隣接する底面及び工具基端部側の壁面には、平坦面からなる拘束面22、23がそれぞれ形成されている。   The tool body 10 has a substantially round bar shape, and includes a head portion 10A formed on the tool distal end side, and a shank portion 10B having a slightly larger diameter formed on the tool base end side continuous with the head portion 10A. ing. Further, on the outer peripheral surface of the distal end portion of the head portion 10A, two chip mounting seats 20 having a groove shape extending from the distal end surface 10a toward the tool proximal end side are substantially symmetrical with respect to the central axis CL of the tool main body 10. Is formed. A flat mounting surface 21 for seating the chip 30 is formed on the wall surface of the chip mounting seat 20 on the rear side in the tool rotation direction K. The bottom surface adjacent to the mounting surface 21 and the wall surface on the tool base end side. Are formed with constraining surfaces 22 and 23 each having a flat surface.

各チップ取付座20の工具回転方向K側に隣接した工具本体10の外周面には、切屑を排出するためのチップポケットが切欠き形成されている。このチップポケットは、主チップポケット11Aと副チップポケット11Bからなり、主チップポケット11Aは、工具本体の中心軸線CL方向で工具本体の先端面10aからチップ取付座20の工具基端部側の端部付近まで延在しており、前記中心軸線に直交する断面において工具本体10の内方に向かって凹んだ曲面状壁面を有している。副チップポケット11Bは、主チップポケット11Aの工具先端部側に隣接し、平面視で、工具本体の先端面10aの中心軸線CL付近から工具基端部側かつ工具外周側に向かうように前記中心軸線CLに対して傾斜して形成されている。   A chip pocket for discharging chips is formed in the outer peripheral surface of the tool body 10 adjacent to the tool rotation direction K side of each chip mounting seat 20. This chip pocket is composed of a main chip pocket 11A and a sub chip pocket 11B. The main chip pocket 11A is an end on the tool base end side of the chip mounting seat 20 from the tip surface 10a of the tool body in the direction of the central axis CL of the tool body. It has a curved wall surface that extends to the vicinity of the portion and is recessed toward the inside of the tool body 10 in a cross section orthogonal to the central axis. The sub-chip pocket 11B is adjacent to the tool tip end side of the main chip pocket 11A, and is centered so as to go from the vicinity of the center axis CL of the tip surface 10a of the tool body toward the tool base end side and the tool outer peripheral side in plan view. It is formed to be inclined with respect to the axis line CL.

超硬合金、サーメット、セラミックス等の硬質材料からなるチップ30は、図8及び図9に示すように、長尺状の略多角形板状、好ましくは略矩形板状をなし、その上面30aの平面視円弧状をなすコーナ31Cを挟んで隣接する長辺及び短辺には、外周切刃31A及び副切刃31Bがそれぞれ形成されている。さらに、該チップの上面30aには、外周切刃31Aに連なる外周切刃すくい面32A及び副切刃31Bに連なる副切刃すくい面32Bが形成され、これら外周切刃すくい面32A及び副切刃すくい面32Bにそれぞれ隣接する該チップ30の側面には、外周切刃逃げ面33A及び副切刃逃げ面33Bがそれぞれ形成されている。少なくとも外周切刃すくい面32Aの表面形状は、プレス焼成により形成されるか、または、プレス焼成された後、外周切刃31Aの稜線に沿ってホーニングを付与するために遊離砥粒等を用いて研磨加工されるものの、プレス焼成により形成された表面形状をほぼ維持しているので、実質的にプレス焼成により形成されている。さらに、外周切刃31Aの全長にわたって、外周切刃すくい面32Aは、該外周切刃31Aから離れるにしたがって着座面34に漸次近づく傾斜面で形成されていて、正のすくい角を付与されている。さらに、外周切刃すくい面32Aのすくい角は、外周切刃31Aにおける副切刃側端部から他端部に向かうにつれ、漸次小さくなるように変化している。   As shown in FIGS. 8 and 9, the chip 30 made of a hard material such as cemented carbide, cermet, or ceramic has an elongated substantially polygonal plate shape, preferably a substantially rectangular plate shape, and has an upper surface 30a. An outer peripheral cutting edge 31A and an auxiliary cutting edge 31B are formed on the long side and the short side adjacent to each other with the corner 31C having a circular arc shape in plan view interposed therebetween. Further, an outer peripheral cutting edge rake face 32A continuous with the outer peripheral cutting edge 31A and a secondary cutting edge rake face 32B continuous with the auxiliary cutting edge 31B are formed on the upper surface 30a of the chip. The outer peripheral cutting edge rake face 32A and the auxiliary cutting edge An outer peripheral cutting edge relief surface 33A and a secondary cutting edge relief surface 33B are respectively formed on the side surfaces of the chip 30 adjacent to the rake face 32B. At least the surface shape of the outer peripheral cutting edge rake face 32A is formed by press firing, or after press firing, using free abrasive grains or the like to impart honing along the ridgeline of the outer peripheral cutting edge 31A. Although it is polished, the surface shape formed by press firing is substantially maintained, so that it is substantially formed by press firing. Further, over the entire length of the outer peripheral cutting edge 31A, the outer peripheral cutting edge rake face 32A is formed as an inclined surface that gradually approaches the seating surface 34 as the distance from the outer peripheral cutting edge 31A increases, and is given a positive rake angle. . Further, the rake angle of the outer peripheral cutting edge rake face 32A changes so as to gradually decrease from the sub cutting edge side end portion to the other end portion of the outer peripheral cutting edge 31A.

外周切刃31A及び副切刃31Bに連なる該チップの各側面には、外周切刃逃げ面33A及び副切刃逃げ面33Bが形成されている。少なくとも外周切刃逃げ面33Aの表面形状は、研削砥石を用いた研削加工により形成され、しかも、外周切刃31Aにおけるコーナ31C側端部から他端部に向かうにつれ逃げ角が漸次大きくなるように形成されたねじれ面で形成されている。   An outer peripheral cutting edge relief surface 33A and an auxiliary cutting edge relief surface 33B are formed on each side surface of the tip connected to the outer peripheral cutting edge 31A and the auxiliary cutting edge 31B. The surface shape of at least the outer peripheral cutting edge clearance surface 33A is formed by grinding using a grinding wheel, and the clearance angle gradually increases from the corner 31C side end portion to the other end portion of the outer peripheral cutting blade 31A. It is formed by the formed twisted surface.

チップ30の上面30aにおける、外周切刃31Aに対向する長辺側の領域には、工具本体10に取り付ける際に、固定手段であるねじ部材40A、40Bによって押圧される被押圧部35が設けられている。この被押圧部35は、前記上面30aの表面から該チップ30の厚み方向下面30b側へわずかに陥没し、平面視で、略半円形状をなす2つの凹部35A、35Bからなる。これら凹部35A、35Bは、前記長辺から延びる側面の一部を切欠くとともに、該チップ30の長手方向における全長の中間点を挟んで両側に間隔をあけて設けられている。各凹部35A、35Bの底面36A、36Bは、平坦面とされ、その垂線Pが着座面34に近づくにしたがって2つの被拘束面37、38に漸次近づくように、着座面34の垂線に対して傾斜しており、その傾斜角が5°〜20°の範囲となるように形成されている(図5参照)。   In a region on the long side facing the outer peripheral cutting edge 31 </ b> A on the upper surface 30 a of the chip 30, a pressed portion 35 that is pressed by the screw members 40 </ b> A and 40 </ b> B that are fixing means when being attached to the tool body 10 is provided. ing. The pressed portion 35 is slightly depressed from the surface of the upper surface 30a toward the lower surface 30b in the thickness direction of the chip 30, and includes two concave portions 35A and 35B having a substantially semicircular shape in plan view. The concave portions 35A and 35B are cut out at a part of the side surface extending from the long side, and are provided on both sides with an intermediate point of the entire length in the longitudinal direction of the chip 30 therebetween. The bottom surfaces 36A and 36B of the recesses 35A and 35B are flat surfaces, and the normal P of the seating surface 34 gradually approaches the two constrained surfaces 37 and 38 as the normal P approaches the seating surface 34. It is inclined and formed so that its inclination angle is in the range of 5 ° to 20 ° (see FIG. 5).

チップ30は、工具本体10に装着される際において、図3の(a)〜(c)に示すように上面30aを工具回転方向Kに向けて、その着座面34をチップ取付座の取付面21に着座し、その被拘束面37、38を対応するチップ取付座の拘束面22、23にそれぞれ当接するようにしてチップ取付座20に載置される。このとき、チップの外周切刃31A及び副切刃31Bは、工具本体10の外周面10b及び先端面10aからそれぞれ突出している。   When the tip 30 is mounted on the tool body 10, as shown in FIGS. 3A to 3C, the upper surface 30a is directed in the tool rotation direction K, and its seating surface 34 is the mounting surface of the tip mounting seat. 21 is placed on the chip mounting seat 20 so that the restrained surfaces 37 and 38 abut against the restraining surfaces 22 and 23 of the corresponding chip mounting seats, respectively. At this time, the outer peripheral cutting edge 31A and the auxiliary cutting edge 31B of the chip protrude from the outer peripheral surface 10b and the tip end surface 10a of the tool body 10, respectively.

チップ取付座20の工具回転方向K側に位置する壁面側には、チップ30の各凹部35A、35Bを臨む位置に、各凹部の底面36A、36Bの垂線Pと平行に延びる中心軸線CLsを有した雌ねじ孔13A、13Bがそれぞれ穿設されている。これら雌ねじ孔13A、13Bにねじ込まれたねじ部材40A、40Bがその先端面41A、41Bで前記底面36A、36Bをその垂線P方向に押圧することにより、各チップ30は、主に取付面21側に押圧されるとともに各拘束面22、23側にもそれぞれ押圧されて、チップ取付座20内にしっかりとクランプされる。   On the wall surface side of the tip mounting seat 20 on the tool rotation direction K side, there is a central axis CLs extending in parallel with the perpendicular P of the bottom surfaces 36A and 36B of the recesses at a position facing the recesses 35A and 35B of the tip 30. The female screw holes 13A and 13B are formed. When the screw members 40A and 40B screwed into the female screw holes 13A and 13B press the bottom surfaces 36A and 36B in the direction of the perpendicular P with the front end surfaces 41A and 41B, each chip 30 is mainly attached to the mounting surface 21 side. And is also pressed to the respective restraining surfaces 22 and 23 side and is firmly clamped in the chip mounting seat 20.

図3に図示するように本スローアウェイ式エンドミル1の正面視において、チップ30は、工具本体10の工具先端部側から工具基端部側に向かうにつれ工具回転方向K後方側に向かうように傾斜して正のアキシャルレーキγpに設定されるとともに、本スローアウェイ式エンドミル1の先端視において、チップ30は、該エンドミルの中心軸線CLに対して芯上がりとなり、負のラジアルレーキγf´に設定されている。このラジアルレーキγf´は、外周切刃31Aの最先端で最も負であるが、工具基端部側に向かうにつれ漸次増加している。既述したようにチップの外周切刃すくい面32Aは、外周切刃31Aの全長にわたって、正のすくい角を付与され、かつ、副切刃側端部から他端部に向かうにつれすくい角が漸次小さくなっていることから、本スローアウェイ式エンドミル1における外周すくい角γfは、チップの取付姿勢で決まるラジアルレーキγf´に、外周切刃すくい面32Aのすくい角が加わることによって増加し、かつ外周切刃31Aの全長にわたって略一定の値に設定されている。   As shown in FIG. 3, in the front view of the present throwaway end mill 1, the tip 30 is inclined so as to go to the tool rotation direction K rear side as it goes from the tool distal end side to the tool base end side of the tool body 10. Thus, the positive axial rake γp is set, and the tip 30 rises from the center axis CL of the end mill end mill 1 when viewed from the front end of the present throw-away end mill 1, and is set to a negative radial rake γf ′. ing. The radial rake γf ′ is the most negative at the forefront of the outer peripheral cutting edge 31A, but gradually increases toward the tool base end side. As described above, the outer peripheral cutting edge rake face 32A of the chip is given a positive rake angle over the entire length of the outer peripheral cutting edge 31A, and the rake angle gradually increases from the secondary cutting edge side end toward the other end. Therefore, the outer peripheral rake angle γf in the throw-away end mill 1 is increased by adding the rake angle of the outer peripheral cutting edge rake face 32A to the radial rake γf ′ determined by the tip mounting posture. It is set to a substantially constant value over the entire length of the cutting blade 31A.

また、上述したようにチップの外周切刃逃げ面33Aは、外周切刃31Aの最先端から後端側に向かうにつれ逃げ角が漸次大きくなるねじれ面で形成されていることから、本スローアウェイ式エンドミルにおける外周逃げ角αfは、外周切刃31Aの全長にわたって略一定の値となっている。   Further, as described above, the outer peripheral cutting edge clearance surface 33A of the chip is formed of a twisted surface whose clearance angle gradually increases from the leading edge of the outer peripheral cutting edge 31A toward the rear end side. The outer peripheral clearance angle αf in the end mill has a substantially constant value over the entire length of the outer peripheral cutting edge 31A.

さらに、工具本体10に装着されたチップ30は、その外周切刃31Aが本スローアウェイ式エンドミル1の中心軸線CLまわりの円筒面を前記アキシャルレーキγp方向に平行な方向に傾けられた傾斜平面による切断面の輪郭形状に略等しく形成され、外周切刃31Aの各位置における前記中心軸線CLから外周切刃31Aまでの距離が略一定となるように形成されている。チップ30単体において、該チップ30を平面視したとき、外周切刃31Aは、その両端部から中間部へ向かうにしたがって外方に張り出した所定の曲線状に形成されている。   Further, the tip 30 mounted on the tool body 10 is formed by an inclined plane whose outer peripheral cutting edge 31A is inclined in a direction parallel to the axial rake γp direction on the cylindrical surface around the central axis CL of the throw-away end mill 1. It is formed to be substantially equal to the contour shape of the cutting surface, and is formed such that the distance from the central axis CL to the outer peripheral cutting edge 31A at each position of the outer peripheral cutting edge 31A is substantially constant. In the single chip 30, when the chip 30 is viewed in plan, the outer peripheral cutting edge 31 </ b> A is formed in a predetermined curved shape projecting outward from the both end portions toward the intermediate portion.

以上の構成を有するスローアウェイ式エンドミル1及びそれに装着するチップ30によれば、外周切刃31Aの全長にわたって、正のすくい角を付与された外周切刃すくい面32Aが該エンドミルの外周すくい角γfを増加させ、かつ外周切刃逃げ面33Aがねじれ面状に形成されたことから、切削抵抗が小さく切れ味が良好となる。また、外周切刃31A工具本体10の中心軸線CLから外周切刃31Aまでの距離が該外周切刃31Aの全長にわたってほぼ一定とされたことから、前記中心軸線CLを回転中心とした外周切刃31Aの回転軌跡の真直度が悪化せず、加工壁面の精度の悪化がおさえられる。   According to the throw-away end mill 1 having the above-described configuration and the tip 30 attached thereto, the outer peripheral rake face 32A provided with a positive rake angle over the entire length of the outer peripheral cutting edge 31A is the outer peripheral rake angle γf of the end mill. Since the outer peripheral cutting edge relief surface 33A is formed in a twisted surface, the cutting resistance is small and the sharpness is improved. Further, since the distance from the central axis CL of the outer peripheral cutting edge 31A tool body 10 to the outer peripheral cutting edge 31A is substantially constant over the entire length of the outer peripheral cutting edge 31A, the outer peripheral cutting edge with the central axis CL as the rotation center. The straightness of the rotation trajectory of 31A does not deteriorate, and the accuracy of the machining wall surface is suppressed.

また、外周切刃すくい面32Aの表面形状が実質的にプレス焼成により形成されているため、自由度の高い形状が成形可能となり、外周切刃31A方向における各位置において切れ味と切刃強度を両立する、最適な外周すくい角γfが設定可能となる。しかも、この外周切刃すくい面32Aと交差する外周切刃逃げ面33Aの表面形状がプレス焼成後の研削加工により形成されていることから、これら外周切刃すくい面32Aと外周切刃逃げ面33Aとの交差稜線部に形成された外周切刃31Aの各位置における工具本体10の中心軸線CLから外周切刃31Aまでの距離が略一定となるように、高精度に成形されるため、回転軌跡の真直度の悪化がおさえられる。   Further, since the surface shape of the outer peripheral cutting edge rake face 32A is substantially formed by press firing, a shape with a high degree of freedom can be formed, and both sharpness and cutting edge strength can be achieved at each position in the direction of the outer peripheral cutting edge 31A. Therefore, it is possible to set the optimum outer peripheral rake angle γf. Moreover, since the surface shape of the outer peripheral cutting edge flank 33A intersecting with the outer peripheral cutting edge rake face 32A is formed by grinding after press firing, the outer peripheral cutting edge rake face 32A and the outer peripheral cutting edge flank 33A. Since the distance from the central axis CL of the tool body 10 to the outer peripheral cutting edge 31A at each position of the outer peripheral cutting edge 31A formed at the crossing ridge line with the outer peripheral cutting edge is substantially constant, the rotation locus Deterioration of straightness is suppressed.

チップ30が工具本体10に装着されたとき、工具本体10の中心軸線CL方向における外周切刃31Aの全長にわたって、外周すくい角γf及び外周切刃逃げ面の逃げ角αfがほぼ一定とされていることから、外周切刃31Aの各位置における切削抵抗及び切刃強度が均一化し、切れ味の安定化や外周切刃31Aの長寿命化が実現される。   When the tip 30 is mounted on the tool body 10, the outer peripheral rake angle γf and the outer cutting edge flank clearance angle αf are substantially constant over the entire length of the outer peripheral cutting edge 31A in the central axis CL direction of the tool main body 10. Therefore, the cutting resistance and the cutting edge strength at each position of the outer peripheral cutting edge 31A are made uniform, and the sharpness is stabilized and the life of the outer peripheral cutting edge 31A is extended.

外周切刃のアキシャルレーキγpが正、かつ外周すくい角γfがチップの外周切刃すくい面により増加させられるため、切削抵抗が小さくおさえられ切れ味が良好となる。よって、工具本体10に加わる負荷が小さく撓みが生じにくくなるため、加工壁面の精度悪化がおさえられる。さらに、工具びびりの発生がおさえられるので、従来工具よりも高い切削条件による加工が可能となる。   Since the axial rake γp of the outer peripheral cutting edge is positive and the outer peripheral rake angle γf is increased by the outer peripheral cutting edge rake face of the chip, the cutting resistance is reduced and the sharpness is improved. Therefore, since the load applied to the tool body 10 is small and bending is difficult to occur, the accuracy of the machining wall surface is reduced. Furthermore, since the occurrence of tool chatter is suppressed, it is possible to perform machining under higher cutting conditions than those of conventional tools.

外周切刃31Aの切削抵抗を小さくし切れ味を高めることに配慮して、アキシャルレーキγpは10°〜20°の範囲に設定され、かつ外周すくい角γfは−5°〜15°の範囲に設定されるのが望ましい。これは、アキシャルレーキγpが10°未満では、切削抵抗の低減効果が不十分であり、20°を超えると取付溝20の後端部において取付溝20の取付面20側の肉厚を確保することが難しくなるからである。また、外周すくい角γfが−5°未満でも、切削抵抗の低減効果が不十分であり、15°を超える場合には、外周切刃31Aのすくい角が過大となり外周切刃31Aの強度不足を招くおそれがあり、あるいは、ラジアルレーキγf´が過大となり取付溝20の取付面21側の肉厚が充分確保されないおそれがあるからである。   In consideration of reducing the cutting resistance of the outer peripheral cutting edge 31A and increasing the sharpness, the axial rake γp is set in the range of 10 ° to 20 °, and the outer rake angle γf is set in the range of −5 ° to 15 °. It is desirable to be done. This is because if the axial rake γp is less than 10 °, the effect of reducing the cutting resistance is insufficient, and if it exceeds 20 °, the thickness of the mounting groove 20 on the mounting surface 20 side is secured at the rear end portion of the mounting groove 20. Because it becomes difficult. Further, even when the outer peripheral rake angle γf is less than −5 °, the effect of reducing the cutting resistance is insufficient. When the outer peripheral rake angle γf exceeds 15 °, the outer rake angle of the outer peripheral cutting edge 31A becomes excessive and the strength of the outer peripheral cutting edge 31A is insufficient. This is because the radial rake γf ′ may be excessive and the thickness of the mounting groove 20 on the mounting surface 21 side may not be sufficiently secured.

チップ30を工具本体10に装着する方法に関して、本スローアウェイ式エンドミル1においては、ねじ部材40A、40Bがチップの上面30aからわずかに陥没する凹部の底面36A、36Bを押圧してチップ30をクランプするようにしたことから、図12に図示する従来工具1´のように、チップ30´の中央部を上下面に貫通するねじ部材40´を受容する孔35´が設けられたものにくらべて、チップ30の剛性が高くなるため、チップ30の上面及び下面のサイズや厚みを縮小でき、チップ30の小型化がはかられる。このチップ30の小型化にともない工具本体の頭部10Aは、2つのチップ30に挟まれた芯厚部及びチップ取付座20周辺の肉厚が充分確保され工具本体10の剛性が高くなる。したがって、切削抵抗による工具本体10の撓みが前記従来工具1´よりも大幅に抑制されるため、加工壁面の精度悪化が防止され、従来工具よりも高い切削条件の加工を可能にする。   Regarding the method of mounting the tip 30 on the tool body 10, in the present throw-away end mill 1, the screw members 40A and 40B press the bottom surfaces 36A and 36B of the recesses slightly recessed from the top surface 30a of the tip to clamp the tip 30. Therefore, as in the conventional tool 1 'shown in FIG. 12, compared to a tool provided with a hole 35' for receiving a screw member 40 'penetrating the central portion of the tip 30' on the upper and lower surfaces. Since the rigidity of the chip 30 is increased, the size and thickness of the upper surface and the lower surface of the chip 30 can be reduced, and the chip 30 can be reduced in size. With the miniaturization of the tip 30, the tool body head 10A has a sufficient core thickness between the two tips 30 and a thickness around the tip mounting seat 20 to increase the rigidity of the tool body 10. Therefore, since the bending of the tool body 10 due to the cutting resistance is significantly suppressed as compared with the conventional tool 1 ′, the accuracy of the machining wall surface is prevented from being deteriorated, and machining with higher cutting conditions than that of the conventional tool is possible.

また、本スローアウェイ式エンドミル1では、該エンドミル1の接線方向に作用する主分力を主に受け止めるチップ取付座20の取付面21側には、雌ねじ孔等の肉厚、強度を低下させるものが一切形成されないことから、前記従来工具1´にくらべチップ30を強固に支持することができるため、工具本体10の撓みやびびりがおさえられ、加工壁面の精度悪化が防止される。   Further, in the present throw-away end mill 1, the thickness and strength of a female screw hole or the like are reduced on the mounting surface 21 side of the tip mounting seat 20 that mainly receives the main component force acting in the tangential direction of the end mill 1. Since no tip is formed, the tip 30 can be supported more firmly than the conventional tool 1 ′, so that the tool body 10 can be prevented from bending and chattering, and the accuracy of the machining wall surface can be prevented from deteriorating.

さらに、チップの凹部の底面36A、36Bの垂線P及びねじ部材40A、40Bの中心軸線CLsを、着座面34に近づくにしたがって被拘束面37、38に漸次近づくように傾斜させ、ねじ部材40A、40Bが凹部35A、35Bの底面を前記着座面34側に向かって押圧するようにしたことから、チップ30は、その着座面34及び被拘束面37、38がチップ取付座の取付面24及び拘束面22、23にそれぞれ押し付けられて、前記チップ取付座20内にしっかりとクランプされる。特にチップの着座面34及び各被拘束面37、38、ならびに、チップ取付座の取付面24及び各拘束面22、23が互いに略90°で交差しているため、切削抵抗によるチップ30の動きが防止され、加工壁面の精度悪化が防止される。特に、前記凹部の底面36A、36Bの垂線P及びねじ部材40A、40Bの中心軸線CLsと、着座面34の垂線とのなす角度を5°〜20°の範囲内に設定することにより、チップ30のクランプ力をいっそう強力にするとともにクランプ精度を正確にすることができる。これは、前記角度を5°未満にするとチップ30を各拘束面22、23側に押し付ける力が不足し、前記角度が20°を超えるとチップ30が各拘束面22、23側に強く押し付けられ、チップ30が取付面24から浮き上がるおそれがあるため、切削加工中にチップ30が動いて加工壁面の精度悪化を引き起こすおそれがあるからである。   Further, the perpendicular P of the bottom surfaces 36A and 36B of the recesses of the chip and the central axis CLs of the screw members 40A and 40B are inclined so as to gradually approach the restrained surfaces 37 and 38 as they approach the seating surface 34, and the screw members 40A, Since 40B presses the bottom surfaces of the recesses 35A and 35B toward the seating surface 34, the tip 30 has the seating surface 34 and the restrained surfaces 37 and 38, the mounting surface 24 of the tip mounting seat and the restraint. It is pressed against each of the surfaces 22 and 23 and is firmly clamped in the chip mounting seat 20. In particular, since the seat seating surface 34 and the restrained surfaces 37 and 38 and the tip mounting seat mounting surface 24 and the restraining surfaces 22 and 23 intersect each other at approximately 90 °, the motion of the tip 30 due to cutting resistance is achieved. Is prevented and accuracy deterioration of the processed wall surface is prevented. In particular, by setting the angle formed by the perpendicular P of the bottom surfaces 36A and 36B of the recesses and the central axis CLs of the screw members 40A and 40B and the perpendicular of the seating surface 34 within a range of 5 ° to 20 °, the chip 30 The clamping force can be made stronger and the clamping accuracy can be made accurate. This is because if the angle is less than 5 °, the force for pressing the tip 30 against the restraining surfaces 22 and 23 is insufficient, and if the angle exceeds 20 °, the tip 30 is strongly pressed against the restraining surfaces 22 and 23. This is because the tip 30 may be lifted from the mounting surface 24, so that the tip 30 may move during the cutting process and cause deterioration in accuracy of the machining wall surface.

さらに、各ねじ部材40A、40Bがチップ30の長手方向の中間点を挟んで両側に間隔をあけて2箇所に設けられた、凹部の底面36A、36Bをそれぞれ押圧していることから、大きなクランプ力がチップ30に均等に作用する。そのため、外周切刃31A方向の切込みが小さく、外周切刃31Aの先端部側付近に局所的な切削抵抗が作用する場合にも、チップ30がチップ取付座20内で動くことがなく、チップ30の位置決め精度がきわめて良好となるため、加工壁面の精度悪化が防止される。   Furthermore, since each screw member 40A, 40B presses the bottom surfaces 36A, 36B of the recesses provided at two positions with a gap on both sides across the intermediate point in the longitudinal direction of the chip 30, a large clamp The force acts evenly on the tip 30. Therefore, even when the cutting in the direction of the outer peripheral cutting edge 31A is small and a local cutting resistance acts near the distal end side of the outer peripheral cutting edge 31A, the chip 30 does not move in the chip mounting seat 20, and the chip 30 Since the positioning accuracy is extremely good, deterioration of the accuracy of the machining wall surface is prevented.

工具本体10の中心軸線CL方向における外周切刃31Aの長さLは、本スローアウェイ式エンドミル1の外周切刃31Aの直径Dの1倍以上且つ2倍以下の範囲内に設定される。そうすれば、前記中心軸線CL方向の切込みを大きくした高能率切削加工において、工具本体10の剛性を向上させる効果が充分発揮されるとともに、既述した加工壁面の精度の悪化をおさえるという効果が顕著となる。なお、前記長さLを前記外周切刃の直径Dの2倍以上にした場合、中心軸線CLに対して斜交するチップ取付座20の後端部において肉厚の低下が著しくなるため、工具本体10の剛性を高めるといった所期の効果が得られないおそれがある。   The length L of the outer peripheral cutting edge 31A in the direction of the central axis CL of the tool body 10 is set within a range of 1 to 2 times the diameter D of the outer peripheral cutting edge 31A of the present throw-away end mill 1. Then, in the high-efficiency cutting that increases the depth of cut in the central axis CL direction, the effect of improving the rigidity of the tool body 10 is sufficiently exerted, and the above-described effect of reducing the accuracy of the machining wall surface described above is achieved. Become prominent. In addition, when the length L is set to be twice or more the diameter D of the outer peripheral cutting edge, the thickness of the tip mounting seat 20 obliquely intersecting the central axis CL greatly decreases in thickness. There is a possibility that an expected effect of increasing the rigidity of the main body 10 may not be obtained.

このスローアウェイ式エンドミル1は、以上に説明したように、チップ30を小型化するのに好適な構成を有し、これにより小径工具における工具本体10の剛性向上にきわめて有効であることから、外周切刃の直径Dが6mm〜20mmの範囲に設定されたスローアウェイ式エンドミルに適用した場合、特に加工壁面の精度悪化を防止する点で有効となる。   As described above, the throw-away end mill 1 has a configuration suitable for reducing the size of the tip 30, and is extremely effective in improving the rigidity of the tool body 10 in a small-diameter tool. When applied to a throw-away end mill in which the diameter D of the cutting edge is set in the range of 6 mm to 20 mm, this is particularly effective in preventing deterioration in accuracy of the machining wall surface.

本発明のスローアウェイ式回転工具は、以上に説明した実施形態に限定されるものではなく、スローアウェイ式正面フライスやスローアウェイ式サイドカッタ等にも適用可能である。   The throw-away rotary tool of the present invention is not limited to the embodiment described above, and can be applied to a throw-away front milling cutter, a throw-away side cutter, and the like.

本発明の実施形態に係るスローアウェイ式エンドミルの斜視図である。1 is a perspective view of a throw-away end mill according to an embodiment of the present invention. 図1に示すスローアウェイ式エンドミルの分解斜視図である。FIG. 2 is an exploded perspective view of the throw-away end mill shown in FIG. 1. (a)〜(c)は、それぞれ図1に示すスローアウェイ式エンドミルの平面図、正面図、先端視側面図である。(A)-(c) is the top view of a throwaway type end mill shown in Drawing 1, a front view, and a tip view side view, respectively. 図1に示すスローアウェイ式エンドミルの先端部拡大平面図である。It is a front-end | tip part enlarged plan view of the throw away type end mill shown in FIG. 図4におけるS1−S1線断面図である。It is the S1-S1 sectional view taken on the line in FIG. 図4におけるS2−S2線断面図である。It is the S2-S2 sectional view taken on the line in FIG. 図4におけるS3−S3線断面図である。It is the S3-S3 sectional view taken on the line in FIG. 図1に示すスローアウェイ式エンドミルに装着されるチップの斜視図である。It is a perspective view of the chip | tip with which the throwaway type end mill shown in FIG. 1 is mounted | worn. (a)〜(d)は、それぞれ図8に示すチップの背面図、平面図、正面図、右側面図である。(A)-(d) is the rear view of the chip | tip shown in FIG. 8, a top view, a front view, and a right view, respectively. 従来のフライスカッターに装着される切削インサートの斜視図である。It is a perspective view of the cutting insert with which the conventional milling cutter is mounted. 図10に示す切削インサートを装着するフライスカッターの正面図である。It is a front view of the milling cutter which mounts | wears with the cutting insert shown in FIG. 図11に示すフライスカッターの軸直角断面の模式図である。It is a schematic diagram of the cross section orthogonal to the axis of the milling cutter shown in FIG. 他の従来フライス工具の一部断面正面図である。It is a partial cross section front view of another conventional milling tool.

符号の説明Explanation of symbols

1 スローアウェイ式エンドミル(スローアウェイ式回転工具)
10 工具本体
10a 工具本体の先端面
10b 工具本体の外周面
13A、13B 雌ねじ孔
20 チップ取付座
21 取付面
22、23 拘束面
30 チップ
30a 上面
30b 下面
31A 外周切刃
31B 副切刃
32A 外周切刃すくい面
33A 外周切刃逃げ面
34 着座面
35 被押圧部
35A、35B 凹部
36A、36B 凹部の底面
37、38 被拘束面
40A、40B ねじ部材(固定手段)
CL 工具本体の中心軸線
D 外周切刃の直径
γp アキシャルレーキ
γf´ ラジアルレーキ
γf 外周すくい角
1 Throw-away end mill (throw-away rotary tool)
DESCRIPTION OF SYMBOLS 10 Tool main body 10a Tool body front end surface 10b Tool main body outer peripheral surface 13A, 13B Female screw hole 20 Tip mounting seat 21 Mounting surface 22, 23 Constraining surface 30 Tip 30a Upper surface 30b Lower surface 31A Outer cutting blade 31B Sub cutting blade 32A Outer cutting blade Rake face 33A Outer peripheral cutting edge relief face 34 Seating face 35 Pressed part 35A, 35B Recess 36A, 36B Recess bottom face 37, 38 Restrained face 40A, 40B Screw member (fixing means)
CL Center axis D of tool body Diameter of outer peripheral cutting edge γp Axial rake γf 'Radial rake γf Outer rake angle

Claims (4)

中心軸線まわりに回転させられる工具本体には、該工具本体の先端部外周面に少なくとも1つのチップ取付を切欠き形成し、このチップ取付に載置したチップを少なくとも1つの固定手段によって着脱自在に装着してなるスローアウェイ式回転工具であって、
略多角形板状をなす前記チップは、
工具回転方向を向く上面に形成されたすくい面と、前記上面に対向する下面に形成された着座面と、前記すくい面に交差し工具外周側を向く側面に形成された逃げ面と、すくい面と逃げ面の交差稜線部に形成され且つ工具本体の外周面から突出した外周切刃と、工具内周側を向く側面又は工具基端部側を向く側面の少なくとも一方に形成された被拘束面とを備え、
前記チップの上面には、前記中心軸線方向に互いに離間して設けられた少なくとも2つの被押圧部と、該上面に面する前記取付溝の壁面の開口端部に沿って該上面から上方へ隆起する段部とが設けられており、
少なくとも前記外周切刃に連なる外周切刃すくい面の表面形状を実質的にプレス焼成により形成し、かつ外周切刃すくい面に交差する外周切刃逃げ面の表面形状をプレス焼成後の研削加工により形成し、
前記外周切刃の全長にわたって、アキシャルレーキを正とし、
前記外周切刃に直交する断面において、前記チップの前記外周切刃のすくい面のすくい角を、工具先端部側から工具基端部側へ向かうにしたがって漸次減少させる一方で、前記チップの前記外周切刃の逃げ面の逃げ角を、工具先端部側から工具基端部側へ向かうにしたがって漸次増加させるとともに、前記外周切刃の全長にわたって、前記工具本体に対して規定された前記チップのすくい角γf及び逃げ角αfを一定とし、及び、
前記外周切刃の各位置における前記中心軸線から前記外周切刃までの距離を一定としたことを特徴とするスローアウェイ式回転工具。
At least one tip mounting groove is formed in the outer peripheral surface of the tip of the tool body on the tool body rotated around the central axis, and the chip placed in the chip mounting groove is attached and detached by at least one fixing means. It is a throw-away rotary tool that is freely mounted,
The chip having a substantially polygonal plate shape,
A rake face formed on the upper surface facing the tool rotation direction, a seating surface formed on the lower surface facing the upper face, a flank face formed on a side surface that intersects the rake face and faces the outer peripheral side of the tool, and a rake face And a constrained surface formed on at least one of the outer peripheral cutting edge formed at the intersection ridge line portion of the flank and protruding from the outer peripheral surface of the tool body, and the side surface facing the tool inner peripheral side or the side surface facing the tool base end side And
The upper surface of the chip is projected upward from the upper surface along at least two pressed portions provided apart from each other in the central axis direction and the opening end of the wall surface of the mounting groove facing the upper surface. And a step portion to be provided,
At least the surface shape of the outer peripheral cutting edge rake face connected to the outer peripheral cutting edge is substantially formed by press firing, and the surface shape of the outer peripheral cutting edge flank intersecting the outer peripheral cutting edge rake face is obtained by grinding after press firing. Forming,
Axial rake is positive over the entire length of the outer peripheral cutting edge,
In the cross section orthogonal to the outer peripheral cutting edge, the rake angle of the rake face of the outer peripheral cutting edge of the tip is gradually decreased from the tool distal end side toward the tool base end side, while the outer periphery of the tip The clearance angle of the flank of the cutting edge is gradually increased from the tool tip side toward the tool base end side, and the tip scoop defined with respect to the tool body over the entire length of the outer peripheral cutting edge The angle γf and the clearance angle αf are constant, and
Indexable rotating tool, characterized in that the distance a constant to the outer peripheral cutting edge from said central axis at each position of the peripheral cutting edge.
前記工具本体に対して規定された前記チップのすくい角γfを正としたことを特徴とする請求項1記載のスローアウェイ式回転工具。 Indexable rotary tool according to claim 1 Symbol mounting, characterized in that the rake angle γf of the chips specified were positive with respect to the tool body. 前記チップは、
長尺状の略矩形板状をなし、工具回転方向を向く上面の長辺に沿って形成されたすくい面と、前記上面に対向する下面に形成された着座面と、前記すくい面に隣接し工具外周側を向く側面に形成された逃げ面と、これらすくい面と逃げ面の交差稜線部に形成された外周切刃と、工具内周側に位置する長辺に連なる側面及び工具基端部側に位置する短辺に連なる側面の少なくとも一方に形成された被拘束面と、を備え、
前記着座面及び前記被拘束面を、対応する前記取付溝の壁面にそれぞれ当接するとともに、該チップの上面に設けられた被押圧部を、該上面に面する取付溝の壁面側に設けた雌ねじ孔に螺合する前記ねじ部材により該チップの着座面側に向かって押圧することによって、前記取付溝に固定されていることを特徴とする請求項1又は2項記載のスローアウェイ式回転工具。
The chip is
A rake surface formed along the long side of the upper surface facing the tool rotation direction, a seating surface formed on the lower surface facing the upper surface, and adjacent to the rake surface. The flank formed on the side facing the tool outer peripheral side, the outer peripheral cutting edge formed at the crossing ridge line portion of the rake surface and the flank, the side surface connected to the long side located on the inner peripheral side of the tool, and the tool base end A constrained surface formed on at least one of the side surfaces connected to the short side located on the side,
An internal thread in which the seating surface and the restrained surface are in contact with the corresponding wall surface of the mounting groove, and the pressed portion provided on the upper surface of the chip is provided on the wall surface side of the mounting groove facing the upper surface. 3. The throw-away rotary tool according to claim 1, wherein the throw-away rotary tool is fixed to the mounting groove by being pressed toward the seating surface side of the tip by the screw member screwed into the hole.
請求項1〜のいずれか1項記載のスローアウェイ式回転工具に装着されるチップにおいて、長尺状の略矩形板状をなし、その上面の少なくとも1つのコーナに隣接する長辺には外周切刃を形成し、この外周切刃に連なる上面には外周切刃すくい面を形成し、この外周切刃すくい面に交差する側面には外周切刃逃げ面を形成し、前記外周切刃すくい面の表面形状を実質的にプレス焼成により形成し、かつ前記外周切刃逃げ面の表面形状をプレス焼成後の研削加工により形成し、前記外周切刃に直交する断面において、前記外周切刃すくい面のすくい角を、前記外周切刃の一端から他端へ向かうにしたがって漸次減少する一方で、前記外周切刃逃げ面の逃げ角を漸次増加させ、これら外周切刃すくい面と外周切刃逃げ面とのなす刃物角が前記外周切刃の全長にわたって一定とされていることを特徴とするチップ。
The tip mounted on the throw-away rotary tool according to any one of claims 1 to 3 , wherein the tip is formed in a long and substantially rectangular plate shape, and a long side adjacent to at least one corner on the upper surface thereof has an outer periphery. A cutting edge is formed, an outer peripheral cutting edge rake face is formed on the upper surface connected to the outer peripheral cutting edge, an outer peripheral cutting edge relief face is formed on a side surface intersecting the outer peripheral cutting edge rake face, and the outer peripheral cutting edge rake is formed. The surface shape of the surface is substantially formed by press firing, and the surface shape of the outer peripheral cutting edge flank is formed by grinding after press firing, and the outer peripheral cutting edge rake is cut in a cross section perpendicular to the outer peripheral cutting edge. While the rake angle of the surface gradually decreases from one end to the other end of the outer peripheral cutting edge, the clearance angle of the outer peripheral cutting edge flank gradually increases, and the outer peripheral cutting edge rake face and the outer peripheral cutting edge clearance are increased. The blade angle made with the surface is Chip, characterized in that there is a a certain over the entire length of the peripheral cutting edge.
JP2006266168A 2006-09-29 2006-09-29 Throw-away rotary tool and tip mounted on it Active JP4940864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266168A JP4940864B2 (en) 2006-09-29 2006-09-29 Throw-away rotary tool and tip mounted on it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266168A JP4940864B2 (en) 2006-09-29 2006-09-29 Throw-away rotary tool and tip mounted on it

Publications (2)

Publication Number Publication Date
JP2008080469A JP2008080469A (en) 2008-04-10
JP4940864B2 true JP4940864B2 (en) 2012-05-30

Family

ID=39351831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266168A Active JP4940864B2 (en) 2006-09-29 2006-09-29 Throw-away rotary tool and tip mounted on it

Country Status (1)

Country Link
JP (1) JP4940864B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309820B2 (en) * 2008-09-12 2013-10-09 三菱マテリアル株式会社 Cutting insert and insert detachable rolling tool
SE534832C2 (en) * 2010-05-10 2012-01-17 Sandvik Intellectual Property Indexable cutter for milling tools

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620646B2 (en) * 1985-10-07 1994-03-23 三菱マテリアル株式会社 Throw-away tip
IL93883A (en) * 1989-04-12 1993-02-21 Iscar Ltd Cutting insert for a milling cutting tool
JP3033169B2 (en) * 1990-10-05 2000-04-17 住友電気工業株式会社 Diamond-coated indexable insert and method for producing the same
JPH0777689B2 (en) * 1992-11-24 1995-08-23 三菱マテリアル株式会社 Throw-away tip
SE512040C2 (en) * 1998-05-06 2000-01-17 Sandvik Ab Inserts for stick cutters
SE517447C2 (en) * 1999-06-29 2002-06-04 Seco Tools Ab Thread mill with cutter

Also Published As

Publication number Publication date
JP2008080469A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP5007853B2 (en) Cutting inserts and cutting edge exchangeable cutting tools
WO2017047700A1 (en) Cutting insert and replaceable-blade-type cutting tool
JP6330913B2 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
WO2007142224A1 (en) Cutting tool and cutting insert
JP4639881B2 (en) Throw-away cutting tool
JP2018534159A (en) Turning insert and method
JP6361948B2 (en) Cutting inserts and cutting tools
KR20190034266A (en) Cutting inserts and cutting blades
JP2014083667A (en) Cutting insert and tip replaceable cutting tool
JP5098353B2 (en) Throw-away insert and throw-away type rolling tool using the same
JP2007260788A (en) Cutting insert and cutting tool
JP4810902B2 (en) Inserts and turning tools
JP4830552B2 (en) Face milling
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
JP5050492B2 (en) Slow-away cutting tool with blade run-out adjustment mechanism and blade run-out adjustment mechanism
JP4952068B2 (en) Throw-away rotary tool
JP4940864B2 (en) Throw-away rotary tool and tip mounted on it
JP4940863B2 (en) Throw-away rotary tool
JP4500748B2 (en) Throw-away tool
JP2008100316A (en) Cutting tool, and finishing blade insert
US11376674B2 (en) Kit for a milling tool and a milling tool
JP4952560B2 (en) Throw-away face mill
JP4952171B2 (en) Throw-away rotary tool
JP4769189B2 (en) Insert blade
JP5729027B2 (en) Cutting insert and cutting edge changeable cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4940864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250