JP4940825B2 - Method for producing piezoelectric ceramic composition - Google Patents

Method for producing piezoelectric ceramic composition Download PDF

Info

Publication number
JP4940825B2
JP4940825B2 JP2006225109A JP2006225109A JP4940825B2 JP 4940825 B2 JP4940825 B2 JP 4940825B2 JP 2006225109 A JP2006225109 A JP 2006225109A JP 2006225109 A JP2006225109 A JP 2006225109A JP 4940825 B2 JP4940825 B2 JP 4940825B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
ceramic composition
solvent
composition
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006225109A
Other languages
Japanese (ja)
Other versions
JP2008050178A (en
Inventor
寛 竹内
信吾 浦木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006225109A priority Critical patent/JP4940825B2/en
Publication of JP2008050178A publication Critical patent/JP2008050178A/en
Application granted granted Critical
Publication of JP4940825B2 publication Critical patent/JP4940825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、圧電磁器組成物の製造方法に関する。   The present invention relates to a method for producing a piezoelectric ceramic composition.

従来、圧電磁器組成物としては,鉛を含んだPZT(PbTiO3−PbZrO3)成分系磁器が用いられてきた。前記PZTは、大きな圧電性を示しかつ高い機械的品質係数を有しており、センサ、アクチュエータ、フィルター等の各用途に要求されるさまざまな特性の材料を容易に作製できるからである。また、前記PZTは高い比誘電率を有するためコンデンサ等としても利用することができる。 Conventionally, PZT (PbTiO 3 —PbZrO 3 ) component ceramics containing lead have been used as piezoelectric ceramic compositions. This is because the PZT exhibits a large piezoelectricity and has a high mechanical quality factor, and can easily produce materials having various characteristics required for each application such as a sensor, an actuator, and a filter. Moreover, since the PZT has a high relative dielectric constant, it can also be used as a capacitor.

ところが、前記PZTからなる圧電磁器組成物は、優れた特性を有する一方、その構成元素に鉛を含んでいるため、PZTを含んだ製品の産業廃棄物から有害な鉛が溶出し、環境汚染を引き起こすおそれがあった。そして、近年の環境問題に対する意識の高まりは、PZTのように環境汚染の原因となりうる製品の製造を困難にしてきた。   However, the piezoelectric ceramic composition made of PZT has excellent characteristics, but contains lead as a constituent element, and therefore, harmful lead is eluted from industrial waste of products containing PZT, thereby preventing environmental pollution. There was a risk of causing it. The recent increase in awareness of environmental problems has made it difficult to manufacture products that can cause environmental pollution such as PZT.

そのため、組成物中に鉛を含有しない、一般式{LiX(K1-YNaY1-X}(Nb1-Z-WTaZSbW)O3で表され、かつx〜wがそれぞれ0<x≦0.2、0≦y≦1、0<z≦0.4、0<w≦0.2の組成範囲にある化合物を主成分とする圧電磁器組成物が開発されている(特許文献1参照)。 Therefore, not containing lead in the composition formula {Li X (K 1-Y Na Y) 1-X} is represented by (Nb 1-ZW Ta Z Sb W) O 3, and x~w each Piezoelectric ceramic compositions based on compounds in the composition range of 0 <x ≦ 0.2, 0 ≦ y ≦ 1, 0 <z ≦ 0.4, 0 <w ≦ 0.2 have been developed ( Patent Document 1).

このような圧電磁器組成物の従来の製造方法はたとえば以下のようであった。Li、K、Naのそれぞれの炭酸塩とNb、Ta、Sbのそれぞれの酸化物を化学量論比に基づいて配合し、配合した原料をボールミルによりアセトン中で24時間混合、乾燥して混合物を作製する。この混合物を仮焼し、この仮焼後の混合物をさらにボールミルによりアセトン中で24時間粉砕する。続いて、バインダーを添加し、加圧成形を行う。このようにして得られた成形体を焼成(本焼成)し、焼成体を作製する。
特開2004−300012号公報
A conventional method for producing such a piezoelectric ceramic composition is as follows, for example. The carbonates of Li, K, and Na and the oxides of Nb, Ta, and Sb are blended based on the stoichiometric ratio, and the blended raw materials are mixed in acetone for 24 hours using a ball mill and dried. Make it. This mixture is calcined, and the calcined mixture is further pulverized in acetone for 24 hours by a ball mill. Subsequently, a binder is added and pressure molding is performed. The molded body thus obtained is fired (main firing) to produce a fired body.
JP 2004-300012 A

しかしながら,上記製造方法で製造された圧電磁器組成物は,圧電特性が低いという問題があった。   However, the piezoelectric ceramic composition manufactured by the above manufacturing method has a problem of low piezoelectric characteristics.

発明者らは、圧電特性が低い原因について、鋭意研究した結果、以下のことを見出した。   As a result of intensive studies on the cause of low piezoelectric characteristics, the inventors have found the following.

即ち、Li、K、Naのそれぞれの炭酸塩等は吸湿性が高かったり、潮解性があるために、仮焼成前の湿式の粉砕、混合時に水を含む溶媒を使うと、原料の化学量論比を維持することが難しく、焼成して作られる圧電磁器組成物の圧電特性が低下する。   That is, each carbonate of Li, K, Na, etc. has high hygroscopicity or deliquescence, so when using a solvent containing water during wet grinding before mixing and mixing, the stoichiometry of the raw material It is difficult to maintain the ratio, and the piezoelectric characteristics of the piezoelectric ceramic composition produced by firing are reduced.

また、仮焼成後の湿式の粉砕時にアセトンなどの水を含まない極性の低い溶媒を使うと、粉砕の効率が悪く、また焼成後の組成が均一になりにくいので、焼成して作られる圧電磁器組成物の圧電特性が低下する。   Piezoelectric ceramics that are made by firing because the use of a low-polarity solvent that does not contain water, such as acetone, during wet pulverization after pre-firing causes poor pulverization efficiency and makes the composition after firing difficult to be uniform. The piezoelectric properties of the composition are reduced.

本発明は、上記課題に鑑みてなされたものであって、鉛を含まず,粉砕、混合の効率が良く,圧電特性が優れた圧電磁器組成物の製造方法を提供しようとすることを目的とする。   The present invention has been made in view of the above problems, and aims to provide a method for producing a piezoelectric ceramic composition that does not contain lead, has good grinding and mixing efficiency, and has excellent piezoelectric characteristics. To do.

本発明の上記課題は、以下の構成により達成される。
1.下記一般式(1)で表される組成物を主成分とする圧電磁器組成物の製造方法であって、Li、K、Naのそれぞれを含有する化合物とNb、Ta、Sbのそれぞれを含有する化合物を、水を含まない溶媒中で粉砕、混合してから仮焼成し、仮焼成後の混合物を水を含む溶媒中で粉砕してから本焼成する圧電磁器組成物の製造方法であって、
前記Li、K、Naのそれぞれを含有する化合物は、Li、K、Naの炭酸塩であり、
前記一般式(1)で表される組成物に、BiFeO を添加後の組成物全体量に対して1mol%未満となるように添加されていることを特徴とする圧電磁器組成物の製造方法。
一般式(1)
{Li(K1−yNa1−x}(Nb1−z−wTaSb)O
(式中、0<x≦0.2、0≦y≦1、0<z≦0.4、0<w≦0.2)
2.前記水を含まない溶媒は無水アルコール系溶媒であることを特徴とする前記1記載の圧電磁器組成物の製造方法。
The above object of the present invention is achieved by the following configurations.
1. A method for producing a piezoelectric ceramic composition comprising as a main component a composition represented by the following general formula (1), comprising a compound containing each of Li, K, and Na and each of Nb, Ta, and Sb A method for producing a piezoelectric ceramic composition in which a compound is pulverized and mixed in a solvent that does not contain water and then calcined, and the calcined mixture is pulverized in a solvent that contains water and then calcined.
The compound containing each of Li, K, and Na is a carbonate of Li, K, and Na.
A method for producing a piezoelectric ceramic composition, wherein the composition represented by the general formula (1) is added so that the amount of BiFeO 3 is less than 1 mol% with respect to the total amount of the composition after the addition. .
General formula (1)
{Li x (K 1-y Na y) 1-x} (Nb 1-z-w Ta z Sb w) O 3
(Where 0 <x ≦ 0.2, 0 ≦ y ≦ 1, 0 <z ≦ 0.4, 0 <w ≦ 0.2)
2. 2. The method for producing a piezoelectric ceramic composition according to 1 above, wherein the water-free solvent is an anhydrous alcohol solvent.

本発明によれば、配合した原料のLi、K、Naの化学量論比が変化しにくく、また粉砕、混合の効率が高くて組成を均一にしやすいので、焼成して作られる圧電磁器組成物の圧電特性が向上する。鉛を含まないので環境汚染を引き起こす恐れがなく、圧電特性のよい圧電磁器組成物を効率よく製造することができる。   According to the present invention, the stoichiometric ratio of the blended raw materials Li, K, and Na is not easily changed, and the pulverization and mixing efficiency is high and the composition is easily uniformed. This improves the piezoelectric characteristics. Since it does not contain lead, there is no risk of causing environmental pollution, and a piezoelectric ceramic composition with good piezoelectric characteristics can be produced efficiently.

以下に、本発明に係る圧電磁器組成物の製造方法の一実施形態について説明する。   Below, one Embodiment of the manufacturing method of the piezoelectric ceramic composition which concerns on this invention is described.

本発明に係る圧電磁器組成物の製造方法は、下記一般式(1)で表される組成物を主成分とする圧電磁器組成物の製造方法であって、Li、K、Naのそれぞれを含有する化合物とNb、Ta、Sbのそれぞれを含有する化合物を、水を含まない溶媒中で粉砕、混合してから仮焼成し、仮焼成後の混合物を水を含む溶媒中で粉砕してから本焼成することを特徴とする。
一般式(1)
{Lix(K1-yNay1-x}(Nb1-z-wTazSbw)O3
(式中、0<x≦0.2、0≦y≦1、0<z≦0.4、0<w≦0.2)
本発明者らは、特開2004−300012号公報に開示された圧電磁器組成物の製造方法において、粉砕、混合の効率を向上させるために鋭意研究した結果、湿式の粉砕、混合時に極性の大きい溶媒を使うと、極性の小さい溶媒を使う場合と比較して粉砕、混合の効率が向上することを見出した。仮焼成前の粉砕、混合時には水を溶媒として使用すると原料の化学量論比を維持することが難しいが、仮焼成のあとでは、水を含む溶媒を使っても配合した原料のLi、K、Naの化学量論比が変化しにくいことを見出し、本発明を完成した。
The method for producing a piezoelectric ceramic composition according to the present invention is a method for producing a piezoelectric ceramic composition containing as a main component a composition represented by the following general formula (1), and contains each of Li, K, and Na. The compound containing Nb, Ta, and Sb and the compound containing each of Nb, Ta, and Sb are pulverized and mixed in a solvent that does not contain water, and then calcined. It is characterized by firing.
General formula (1)
{Li x (K 1-y Na y) 1-x} (Nb 1-zw Ta z Sb w) O 3
(Where 0 <x ≦ 0.2, 0 ≦ y ≦ 1, 0 <z ≦ 0.4, 0 <w ≦ 0.2)
As a result of diligent research to improve the efficiency of pulverization and mixing in the method for manufacturing a piezoelectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 2004-300012, the present inventors have a high polarity during wet pulverization and mixing. It has been found that the use of a solvent improves the efficiency of pulverization and mixing compared to the case of using a less polar solvent. It is difficult to maintain the stoichiometric ratio of the raw material when water is used as a solvent at the time of pulverization and mixing before calcination, but after calcination, even if a solvent containing water is used, the blended raw materials Li, K, The present inventors have found that the stoichiometric ratio of Na hardly changes, and thus completed the present invention.

仮焼成前の粉砕、混合時には水を含まない溶媒を使用すると確かに粉砕、混合の効率は低下するが、その低下度合いは僅かで充分使用可能な範囲にあり、それよりも溶媒に含まれる水分による炭酸塩等の吸湿や潮解に起因する粉砕、混合の効率の低下の度合いの方が極めて大きいことを見出したのである。一方、仮焼成のあとでは、水を含む溶媒を使うことにより、粉砕の効率が向上するとともに、仮焼成が不十分となって未反応のアルカリ金属炭酸塩等が残留した場合においても、本焼成処理に先立って、未反応のアルカリ金属炭酸塩等を水を含む溶媒で十分に除去できる。初めにアルカリ金属炭酸塩等を過剰に加えておいて、ある程度は仮焼で飛んで、残った分を洗うのがよい。   When using a solvent that does not contain water at the time of pulverization and mixing, the efficiency of pulverization and mixing is reduced. However, the degree of decrease is slight and it is in the usable range. It has been found that the degree of reduction in the efficiency of pulverization and mixing due to moisture absorption and deliquescence of carbonate and the like due to is much greater. On the other hand, after calcination, by using a solvent containing water, the efficiency of pulverization is improved, and even when calcination is insufficient and unreacted alkali metal carbonate or the like remains, this calcination Prior to the treatment, unreacted alkali metal carbonate and the like can be sufficiently removed with a solvent containing water. It is better to first add an excess of alkali metal carbonate, etc., fly to some extent by calcination, and wash the remaining part.

また、上記の一般式(1)で表される組成物を主成分とし、さらに、下記一般式(2)で表される組成物を、添加後の組成物全体に対して1mol%未満となるように添加すると得られる圧電磁器組成物の分極量が増加するとともに比誘電率が向上し、圧電特性に優れた圧電磁器組成物とすることができる。
一般式(2)
ABO3
(式中AはBiを表し、BはFe,In,Sc,Y,Mnの少なくとも1つを表す)
本発明において、上記一般式(1)で表される主成分は、ペロブスカイト構造(ABO3)をとり、Aサイトの元素構成は、K,Na,Liに相当し、Bサイトの元素構成は,Nb,Ta,Sbに相当する。上記一般式(2)で表される組成物を副成分として、ペロブスカイト構造をとるようなBiBO3(BiがAサイトの元素に相当する)で表される組合せで添加することにより、得られる圧電磁器組成物の残留分極を顕著に増加させて圧電特性を向上させることができる。圧電特性が向上する理由としては、BiはBi23単独で添加すると+5価となりBサイトに置換されやすいが、ペロブスカイト構造をとることが知られているBiBO3(例えば、BiFeO3)の組合せで添加すると+3価となりAサイトに置換されやすいためであると考えられる。
In addition, the composition represented by the above general formula (1) is a main component, and the composition represented by the following general formula (2) is less than 1 mol% with respect to the total composition after addition. When added in this manner, the amount of polarization of the obtained piezoelectric ceramic composition is increased and the relative dielectric constant is improved, whereby a piezoelectric ceramic composition having excellent piezoelectric characteristics can be obtained.
General formula (2)
ABO 3
(In the formula, A represents Bi, and B represents at least one of Fe, In, Sc, Y, and Mn)
In the present invention, the main component represented by the general formula (1) has a perovskite structure (ABO 3 ), the element configuration of the A site corresponds to K, Na, Li, and the element configuration of the B site is It corresponds to Nb, Ta, Sb. By adding the composition represented by the general formula (2) as a subcomponent in a combination represented by BiBO 3 (Bi corresponds to an element at the A site) having a perovskite structure, a piezoelectric obtained The remanent polarization of the porcelain composition can be significantly increased to improve the piezoelectric characteristics. The reason why the piezoelectric properties are improved is that Bi is added to Bi 2 O 3 alone and becomes +5 valent, and is easily replaced with the B site, but a combination of BiBO 3 (for example, BiFeO 3 ) known to have a perovskite structure. This is considered to be because it becomes +3 valence and is easily replaced with the A site.

本発明では、上記一般式(1)で表される組成物を主成分とする圧電磁器組成物を以下のように製造する。   In this invention, the piezoelectric ceramic composition which has as a main component the composition represented by the said General formula (1) is manufactured as follows.

原料として、Liを含有する化合物としては、Li2CO3、Li2O、LiNO3、LiOH等、Naを含有する化合物としては、Na2CO3、NaHCO3、NaNO3等、Kを含有する化合物としては、K2NO3、KNO3、KNbO3、KTaO3等を、また、Nbを含有する化合物としては、Nb25、Nb23、NbO2等、Taを含有する化合物としては、Ta25等、Sbを含有する化合物としては、Sb25、Sb23、Sb24等を準備する。 As raw materials, Li-containing compounds include Li 2 CO 3 , Li 2 O, LiNO 3 , LiOH and the like, and Na-containing compounds include Na 2 CO 3 , NaHCO 3 , NaNO 3 and the like, including K. the compound, a K 2 NO 3, KNO 3, KNbO 3, KTaO 3 , etc., Examples of the compound containing Nb, Nb 2 O 5, Nb 2 O 3, NbO 2 , etc., as a compound containing Ta Sb 2 O 5 , Sb 2 O 3 , Sb 2 O 4, etc. are prepared as compounds containing Sb, such as Ta 2 O 5 .

ここで、Li、K、Naのそれぞれを含有する化合物は、Li、K、Naの炭酸塩であることが好ましい。すなわち、Liを含有する化合物としては、Li2CO3、Naを含有する化合物としては、Na2CO3、Kを含有する化合物としては、K2 3が好ましい。Li、K、Naと揮発成分のみを含むので、原料の配合時に焼成後の化学量論比を容易に決定することができる。 Here, the compound containing each of Li, K, and Na is preferably a carbonate of Li, K, and Na. That is, as the compound containing Li, a compound containing Li 2 CO 3, Na Examples of the compound containing Na 2 CO 3, K, preferably K 2 C O 3. Since it contains only Li, K, Na and volatile components, the stoichiometric ratio after firing can be easily determined when the raw materials are blended.

原料を十分に乾燥させ、乾燥後の各原料を化学量論比に基づいて秤量し、水を含まない溶媒中でボールミル等により混合、乾燥させる。仮焼成前の粉砕、混合時には水を溶媒として使用すると原料の化学量論比を維持することが難しいために、水を含まない溶媒を用いる。水を含まない溶媒としては、有機溶媒が好ましく、有機溶媒としては、アルコール系溶媒、多価アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒等を挙げることができる。   The raw materials are sufficiently dried, each dried raw material is weighed based on the stoichiometric ratio, and mixed and dried in a solvent not containing water by a ball mill or the like. When water is used as a solvent during pulverization and mixing before calcination, it is difficult to maintain the stoichiometric ratio of the raw materials. Therefore, a solvent that does not contain water is used. The solvent not containing water is preferably an organic solvent, and examples of the organic solvent include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents, and the like.

アルコール系溶媒としては、メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、シクロヘキサノール、メチルシクロヘキサノール等を挙げることができる。   Examples of alcohol solvents include methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, and methylcyclohexanol.

多価アルコール系溶媒としては、エチレングリコールモノメチルエーテル、エチレングリコールモノアセトエステル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシブタノール、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールモノブチルエーテル等を挙げることができる。   Examples of the polyhydric alcohol solvent include ethylene glycol monomethyl ether, ethylene glycol monoacetate, diethylene glycol monomethyl ether, diethylene glycol monoacetate, propylene glycol monoethyl ether, propylene glycol monoacetate, dipropylene glycol monoethyl ether, propylene glycol monomethyl ether, Mention may be made of propylene glycol monopropyl ether, methoxybutanol, propylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol propyl ether, dipropylene glycol monobutyl ether and the like.

エーテル系溶媒としては、メチラール、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジアミルエーテル、ジエチルアセタール、ジヘキシルエーテル、トリオキサン、ジオキサン等を挙げることができる。   Examples of ether solvents include methylal, diethyl ether, dipropyl ether, dibutyl ether, diamyl ether, diethyl acetal, dihexyl ether, trioxane, dioxane and the like.

ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルシクロヘキシルケトン、ジエチルケトン、エチルブチルケトン、トリメチルノナノン、アセトニルアセトン、ジメチルオキシド、ホロン、シクロヘキサノン、ダイアセトンアルコール等を挙げることができる。   Ketone solvents include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, diethyl ketone, ethyl butyl ketone, trimethylnonanone, acetonyl acetone, dimethyl oxide, phorone, cyclohexanone, diacetone. Alcohol etc. can be mentioned.

エステル系溶媒としては、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸シクロヘキシル、プロピオン酸メチル、酪酸エチル、オキシイソ酪酸エチル、アセト酢酸エチル、乳酸エチル、メトキシブチルアセテート、シュウ酸ジエチル、マロン酸ジエチル等を挙げることができる。   Ester solvents include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl butyrate, ethyl oxyisobutyrate, ethyl acetoacetate, ethyl lactate, methoxybutyl acetate, diethyl oxalate, diethyl malonate Etc.

上記の溶媒は、1種を用いてもよいし、2種以上を組合せて用いることもできる。   1 type may be used for said solvent and it can also be used in combination of 2 or more type.

これらの有機溶媒の中では極性の高い溶媒が好ましく、特にアルコール系溶媒が好ましい。このように水を含まない有機溶媒として無水アルコール系溶媒を用いることにより、粉砕、混合の効率がさらに向上するので、一層の粉砕、混合の時間短縮、焼成して作られる圧電磁器組成物の圧電特性向上が図れる。また、無水アルコール系溶媒の中でも特に無水メタノール、無水エタノール、無水プロパノールが好ましい。   Among these organic solvents, highly polar solvents are preferable, and alcohol solvents are particularly preferable. By using an anhydrous alcohol solvent as an organic solvent that does not contain water in this way, the efficiency of pulverization and mixing is further improved, so that the piezoelectric ceramic composition piezoelectric material produced by further pulverization and mixing time reduction and firing is further improved. The characteristics can be improved. Of anhydrous alcohol solvents, anhydrous methanol, anhydrous ethanol, and anhydrous propanol are particularly preferable.

続いて、この混合物を700〜800℃程度で仮焼し、原料を分解するとともに固相熱化学反応により固溶体化する。得られた仮焼後の混合物を中心粒径5μm程度の微粒子に水を含む溶媒中で粉砕し、乾燥して仮焼粉とする。   Subsequently, the mixture is calcined at about 700 to 800 ° C. to decompose the raw material and form a solid solution by solid phase thermochemical reaction. The obtained mixture after calcination is pulverized in a solvent containing water into fine particles having a center particle diameter of about 5 μm and dried to obtain a calcination powder.

水を含む溶媒としては純水が好ましいが、水と相溶する有機溶媒と混合してもよい。   As a solvent containing water, pure water is preferable, but it may be mixed with an organic solvent compatible with water.

仮焼粉に有機質の粘結剤(バインダー等)を添加し、造粒して加圧成形を行う。加圧成形は、造粒した粉砕物を一軸プレス成形等によりペレット状に成形したものを、さらに冷間等方圧プレス(CIP)等により再成形するのが好ましい。   An organic binder (binder, etc.) is added to the calcined powder, granulated, and pressed. In the pressure molding, it is preferable that a granulated pulverized product is molded into a pellet by uniaxial press molding or the like and further remolded by cold isostatic pressing (CIP) or the like.

このようにして得られた成形体を、1000〜1300℃程度にて焼成(本焼成)し、焼成体を作製する。得られた焼成体を所定のサイズに切断、平行研磨した後、試料の両面にスパッタ法等により電極を形成する。そして、80〜150℃程度のシリコーンオイル中において1〜6kV/mmの直流電圧を電極間に印加し、厚み方向に分極を施して圧電磁器組成物が作製される。   The molded body thus obtained is fired (mainly fired) at about 1000 to 1300 ° C. to produce a fired body. The obtained fired body is cut into a predetermined size and subjected to parallel polishing, and then electrodes are formed on both surfaces of the sample by sputtering or the like. Then, a direct current voltage of 1 to 6 kV / mm is applied between the electrodes in a silicone oil of about 80 to 150 ° C., and polarization is applied in the thickness direction to produce a piezoelectric ceramic composition.

さらに、下記一般式(2)で表される組成物
一般式(2)
ABO3
(式中AはBiを表し、BはFe,In,Sc,Y,Mnの少なくとも1つを表す)
を添加する場合には以下のように製造する。
Furthermore, the composition represented by the following general formula (2) General formula (2)
ABO 3
(In the formula, A represents Bi, and B represents at least one of Fe, In, Sc, Y, and Mn)
Is added as follows.

前記一般式(2)で表される副成分は、BiBO3型のペロブスカイト化合物を構成する化合物を主成分に添加することが好ましいが、主成分と混合する工程においてBiBO3型のペロブスカイト化合物となる原料を組み合わせて添加することとしても良い。 Secondary component represented by the general formula (2) is preferably added to the main component compounds constituting the BiBO 3 type perovskite compound, and BiBO 3 type perovskite compound in the step of mixing a main component It is good also as adding combining a raw material.

BiBO3型のペロブスカイト化合物を構成する化合物を主成分に添加する場合には、添加物としては例えば、BiFeO3、BiMnO3、BiYO3等を準備する。具体的には、添加物の原料として、たとえば、Biを含有する化合物としてはBi23、Inを含有する化合物としてはIn23、Scを含有する化合物としてはSc23、Feを含有する化合物としてはFe23、Yを含有する化合物としてはY23、Mnを含有する化合物としてはMn23を準備し、十分に乾燥させ、乾燥後の各原料を一般式BiBO3となるような化学量論比に基づいて秤量し、湿式混合させて添加物混合粉とする。 When a compound constituting a BiBO 3 type perovskite compound is added to the main component, for example, BiFeO 3 , BiMnO 3 , BiYO 3 or the like is prepared as an additive. Specifically, as a raw material of the additive, for example, Bi 2 O 3 as a compound containing Bi, In 2 O 3 as a compound containing In, Sc 2 O 3 , Fe as a compound containing Sc Fe 2 O 3 as a compound containing, as the compound containing Y prepare Mn 2 O 3 as a compound containing Y 2 O 3, Mn, thoroughly dried, generally each raw material after drying Weigh based on the stoichiometric ratio such that the formula BiBO 3 is obtained, and wet mix to obtain additive mixed powder.

添加物混合粉と上記の方法で得られた主成分仮焼粉とを、添加混合粉が添加後の粉体全体量(主成分仮焼粉+添加混合粉)に対して1mol%未満となるように配合する。配合したものをボールミル等により十分混合、乾燥して混合物を作製する。そして、得られた混合物を700〜800℃程度にて仮焼した後、純水中で粉砕する。   The additive mixed powder and the main component calcined powder obtained by the above method are less than 1 mol% with respect to the total amount of powder after the addition mixed powder (main component calcined powder + additive mixed powder). Blend as follows. The blended material is sufficiently mixed and dried by a ball mill or the like to prepare a mixture. And after calcining the obtained mixture at about 700-800 degreeC, it grind | pulverizes in a pure water.

得られた仮焼粉を上記の方法と同様の方法で、成形、焼成(本焼成)、電極形成、分極を施して圧電磁器組成物が作製される。   The obtained calcined powder is subjected to molding, firing (main firing), electrode formation, and polarization in the same manner as described above to produce a piezoelectric ceramic composition.

以下、実験例により本発明を具体的に説明する。
試料1.
まず、純度99%以上の高純度のLi2CO3、Na2CO3、K2CO3、Nb25、Ta25、Sb25を準備した。これらの原料を十分乾燥させ、前記一般式{Lix(K1-yNay1-x}(Nb1-z-wTazSbw)O3において、x=0.04、y=0.52、z=0.1、w=0.06となるような化学量論比、即ち前記一般式が{Li0.04(K0.48Na0.520.96}(Nb0.86Ta0.1Sb0.06)O3となるような化学量論比にて配合した。配合した原料をボールミルにより無水エタノール中で24時間粉砕、混合、乾燥して混合物を作製した。続いて、次に、この混合物を750℃にて5時間仮焼し、この仮焼後の混合物を純水中でボールミルにて24時間粉砕した。
Hereinafter, the present invention will be described in detail by experimental examples.
Sample 1.
First, high purity Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Nb 2 O 5 , Ta 2 O 5 and Sb 2 O 5 with a purity of 99% or more were prepared. These raw materials are sufficiently dried, and in the general formula {Li x (K 1−y Na y ) 1−x } (Nb 1−zw Ta z Sb w ) O 3 , x = 0.04, y = 0. 52, z = 0.1, w = 0.06, that is, the general formula is {Li 0.04 (K 0.48 Na 0.52 ) 0.96 } (Nb 0.86 Ta 0.1 Sb 0.06 ) O 3 The stoichiometric ratio was blended. The blended raw materials were pulverized in absolute ethanol for 24 hours by a ball mill, mixed and dried to prepare a mixture. Subsequently, the mixture was calcined at 750 ° C. for 5 hours, and the calcined mixture was pulverized in pure water with a ball mill for 24 hours.

続いて、バインダーとしてポリビニールブチラールを添加し、造粒し加圧成形を行った。加圧成形は、造粒した粉砕物を一軸プレス成形によりペレット状に成形したものを、さらに冷間等方圧プレス(CIP)により1ton/cm2の圧力で再成形した。 Subsequently, polyvinyl butyral was added as a binder, granulated, and subjected to pressure molding. In the pressure molding, the granulated pulverized product was molded into a pellet by uniaxial press molding, and further remolded at a pressure of 1 ton / cm 2 by cold isostatic pressing (CIP).

このようにして得られた成形体を1000〜1300℃にて1時間焼成(本焼成)し、焼成体を作製した。なお、このときの焼成温度は、1000〜1300℃の間で最大密度になる温度を選定した。   The molded body thus obtained was fired at 1000 to 1300 ° C. for 1 hour (main firing) to produce a fired body. In addition, the temperature which becomes the maximum density between 1000-1300 degreeC was selected for the calcination temperature at this time.

得られた焼成体を所定のサイズに切断、平行研磨した後、試料の両面にスパッタ法により電極を形成した。そして、100℃のシリコーンオイル中において5kV/mmの直流電圧を電極間に印加し、厚み方向に分極を施して圧電磁器組成物を作製した。
試料2〜5.
原料を表1A欄に示す溶媒中で粉砕、混合したこと、および仮焼後の混合物を表1B欄に示す溶媒中で粉砕したこと以外は試料1と同様の方法で圧電磁器組成物を作製した。
試料6.
純度99%以上の高純度のBi23、Fe23を準備した。これらの原料をBiFeO3となるような化学量論比にて配合し、添加混合粉とした。添加混合粉が添加後の粉体全体量(主成分仮焼粉+添加混合粉)に対して0.6mol%となるように、試料1と同様の方法で得られた仮焼後の混合物と混合し、純水中でボールミルにて24時間粉砕した。次に、この混合物を700〜800℃にて5時間仮焼し、この仮焼後の混合物を純水中でボールミルにて24時間粉砕した。続いて試料1と同様の方法で加圧成形、焼成(本焼成)を行い、電極形成、分極処理を行って圧電磁器組成物を作製した。
The obtained fired body was cut into a predetermined size and subjected to parallel polishing, and then electrodes were formed on both surfaces of the sample by sputtering. Then, a DC voltage of 5 kV / mm was applied between the electrodes in 100 ° C. silicone oil, and polarization was applied in the thickness direction to produce a piezoelectric ceramic composition.
Samples 2-5.
A piezoelectric ceramic composition was prepared in the same manner as Sample 1 except that the raw materials were pulverized and mixed in the solvent shown in Table 1A, and the mixture after calcination was pulverized in the solvent shown in Table 1B. .
Sample 6
High purity Bi 2 O 3 and Fe 2 O 3 having a purity of 99% or more were prepared. These raw materials were blended at a stoichiometric ratio so as to be BiFeO 3 to obtain an additive mixed powder. The mixture after calcining obtained by the same method as Sample 1 so that the added powder mixture is 0.6 mol% with respect to the total amount of powder after addition (main component calcined powder + added powder mixture) The mixture was mixed and pulverized in pure water with a ball mill for 24 hours. Next, this mixture was calcined at 700 to 800 ° C. for 5 hours, and this calcined mixture was pulverized in pure water for 24 hours by a ball mill. Subsequently, pressure molding and firing (main firing) were performed in the same manner as Sample 1, and electrode formation and polarization treatment were performed to prepare a piezoelectric ceramic composition.

次に、試料No.1〜No.6について、圧電d31定数、比誘電率εrを測定した。ここで、圧電d31定数は、インピーダンスアナライザー(Agilent Technologies社製 4294A)を用いて共振−反共振法により測定した。比誘電率εrは、インピーダンスアナライザー(Agilent Technologies社製 4294A)を用いて、測定周波数100kHzにて測定した。結果を表1に示す。 Next, sample No. 1-No. For No. 6, the piezoelectric d 31 constant and the relative dielectric constant εr were measured. Here, the piezoelectric d 31 constant was measured by a resonance-antiresonance method using an impedance analyzer (4294A manufactured by Agilent Technologies). The relative dielectric constant εr was measured at a measurement frequency of 100 kHz using an impedance analyzer (4294A manufactured by Agilent Technologies). The results are shown in Table 1.

Figure 0004940825
Figure 0004940825

表1から明らかなように、本発明の方法によって製造された圧電磁器組成物(試料)は、従来知られていた方法によって製造された圧電磁器組成物(試料3,4,5)よりも圧電d31定数が向上していることが確認できた。本発明の方法により、鉛を含まないので環境汚染を引き起こす恐れがない圧電磁器組成物において、圧電特性に優れた圧電磁器組成物を製造することができた。 As is apparent from Table 1, the piezoelectric ceramic composition (sample 6 ) produced by the method of the present invention is more than the piezoelectric ceramic composition (samples 3, 4, and 5) produced by a conventionally known method. It was confirmed that the piezoelectric d 31 constant was improved. According to the method of the present invention, a piezoelectric ceramic composition excellent in piezoelectric characteristics could be produced in a piezoelectric ceramic composition that does not contain lead and therefore does not cause environmental pollution.

また、試料6においては、比誘電率が向上し、さらに圧電特性に優れた圧電磁器組成物を製造することができた。   In Sample 6, a piezoelectric ceramic composition with improved relative dielectric constant and excellent piezoelectric characteristics could be produced.

Claims (2)

下記一般式(1)で表される組成物を主成分とする圧電磁器組成物の製造方法であって、Li、K、Naのそれぞれを含有する化合物とNb、Ta、Sbのそれぞれを含有する化合物を、水を含まない溶媒中で粉砕、混合してから仮焼成し、仮焼成後の混合物を水を含む溶媒中で粉砕してから本焼成する圧電磁器組成物の製造方法であって、
前記Li、K、Naのそれぞれを含有する化合物は、Li、K、Naの炭酸塩であり、
前記一般式(1)で表される組成物に、BiFeO を添加後の組成物全体量に対して1mol%未満となるように添加されていることを特徴とする圧電磁器組成物の製造方法。
一般式(1)
{Li(K1−yNa1−x}(Nb1−z−wTaSb)O
(式中、0<x≦0.2、0≦y≦1、0<z≦0.4、0<w≦0.2)
A method for producing a piezoelectric ceramic composition comprising as a main component a composition represented by the following general formula (1), comprising a compound containing each of Li, K, and Na and each of Nb, Ta, and Sb A method for producing a piezoelectric ceramic composition in which a compound is pulverized and mixed in a solvent that does not contain water and then calcined, and the calcined mixture is pulverized in a solvent that contains water and then calcined.
The compound containing each of Li, K, and Na is a carbonate of Li, K, and Na.
A method for producing a piezoelectric ceramic composition, wherein the composition represented by the general formula (1) is added so that the amount of BiFeO 3 is less than 1 mol% with respect to the total amount of the composition after the addition. .
General formula (1)
{Li x (K 1-y Na y) 1-x} (Nb 1-z-w Ta z Sb w) O 3
(Where 0 <x ≦ 0.2, 0 ≦ y ≦ 1, 0 <z ≦ 0.4, 0 <w ≦ 0.2)
前記水を含まない溶媒は無水アルコール系溶媒であることを特徴とする請求項1記載の圧電磁器組成物の製造方法。   The method for producing a piezoelectric ceramic composition according to claim 1, wherein the water-free solvent is an anhydrous alcohol solvent.
JP2006225109A 2006-08-22 2006-08-22 Method for producing piezoelectric ceramic composition Active JP4940825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225109A JP4940825B2 (en) 2006-08-22 2006-08-22 Method for producing piezoelectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225109A JP4940825B2 (en) 2006-08-22 2006-08-22 Method for producing piezoelectric ceramic composition

Publications (2)

Publication Number Publication Date
JP2008050178A JP2008050178A (en) 2008-03-06
JP4940825B2 true JP4940825B2 (en) 2012-05-30

Family

ID=39234566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225109A Active JP4940825B2 (en) 2006-08-22 2006-08-22 Method for producing piezoelectric ceramic composition

Country Status (1)

Country Link
JP (1) JP4940825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550402B2 (en) * 2010-03-19 2014-07-16 京セラ株式会社 Piezoelectric ceramic and piezoelectric element using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369175A (en) * 1989-08-08 1991-03-25 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP4140796B2 (en) * 1998-10-26 2008-08-27 Tdk株式会社 Piezoelectric ceramics
JP2000169223A (en) * 1998-11-30 2000-06-20 Kyocera Corp Piezoelectric ceramic composition and its production
JP4156461B2 (en) * 2002-07-16 2008-09-24 株式会社デンソー Piezoelectric ceramic composition, method for producing the same, and piezoelectric element

Also Published As

Publication number Publication date
JP2008050178A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5407330B2 (en) Piezoelectric ceramic composition
JP2004244300A (en) Piezoelectric ceramic composition, its production method, piezoelectric element, and dielectric element
EP2610233B1 (en) Piezoelectric ceramic and piezoelectric device
JPWO2007094115A1 (en) Piezoelectric ceramic composition
JP2009120443A (en) (Li, Na, K)(Nb, Ta)O3 BASED PIEZOELECTRIC MATERIAL AND MANUFACTURING METHOD THEREOF
USRE46445E1 (en) NBT based lead-free piezoelectric materials for high power applications
JP5008090B2 (en) Lead-free piezoelectric ceramics and piezoelectric, dielectric and pyroelectric elements using the same
JP2008207999A (en) Method for manufacturing piezoelectric ceramic composition
JPWO2008032500A1 (en) Method for manufacturing piezoelectric body and piezoelectric body
JP4940825B2 (en) Method for producing piezoelectric ceramic composition
JP2009096668A (en) Piezoelectric ceramic
KR101866845B1 (en) Lead-free piezoelectric ceramic composition with excellent electric field-induced strain property and preparation method of the same
JP4260410B2 (en) Piezoelectric ceramics
KR100875479B1 (en) Lead-free piezoelectric ceramic composition and its manufacturing method
JP2011236091A (en) Method for producing alkali niobate-based piezoelectric ceramics
JP2002348173A (en) Piezoelectric ceramic material and its manufacturing method
KR20180003277A (en) Producing method of lead-free piezoelectric ceramics with high strains
JP4828570B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component
JP2008056549A (en) Unleaded piezoelectric porcelain composition
KR101261445B1 (en) Bismuth-based Lead-free Piezoelectric Ceramics and Manufacturing Method therefor
JP6076058B2 (en) Piezoelectric material and method for manufacturing piezoelectric material
CN114907122B (en) Ternary leadless piezoelectric ceramic of calcium zirconate-bismuth potassium titanate-potassium sodium lithium antimonate and preparation method thereof
JP2001048641A (en) Piezoelectric porcelain composition
Yoon et al. The Piezoelectric Properties of (Na 0.5 K 0.5) NbO 3-K 4 CuNb 8 O 23 Ceramics with Various K 4 CuNb 8 O 23 Doping and Sintering Temperatures
JP2003267779A (en) Method for manufacturing piezoelectric ceramic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4940825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350