JP4938999B2 - Method for forming conductive phosphor thin film and method for producing thin film phosphor substrate - Google Patents

Method for forming conductive phosphor thin film and method for producing thin film phosphor substrate Download PDF

Info

Publication number
JP4938999B2
JP4938999B2 JP2005173482A JP2005173482A JP4938999B2 JP 4938999 B2 JP4938999 B2 JP 4938999B2 JP 2005173482 A JP2005173482 A JP 2005173482A JP 2005173482 A JP2005173482 A JP 2005173482A JP 4938999 B2 JP4938999 B2 JP 4938999B2
Authority
JP
Japan
Prior art keywords
thin film
phosphor
conductive
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005173482A
Other languages
Japanese (ja)
Other versions
JP2006348100A (en
Inventor
尚希 塚原
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005173482A priority Critical patent/JP4938999B2/en
Publication of JP2006348100A publication Critical patent/JP2006348100A/en
Application granted granted Critical
Publication of JP4938999B2 publication Critical patent/JP4938999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Physical Vapour Deposition (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

本発明は、導電性蛍光体薄膜の形成方法及び薄膜蛍光体基板の作製方法に関する。 The present invention relates to a method for manufacturing a conductive phosphor thin film forming method and thin film phosphor board of.

近年、ディスプレイの分野においてはフラットパネルディスプレイの発展が著しく、大型フラットパネルディスプレイの有力候補として、フィールドエミッションディスプレイ(FED)が注目されている。このFED用の蛍光体として、粉末蛍光体と比べて平坦性に優れている、超高精細ディスプレイ用蛍光体である薄膜蛍光体が知られている。しかしながら、今までに、FED用蛍光体として薄膜蛍光体の実用例は報告されていない。この原因は、この薄膜蛍光体から発光した光はガラスを通して外部に取り出されるが、ガラスとの界面での反射(屈折)のためにガラス前面から効率よく光を取り出すことができず、光の波動効果によるガラス端面からの光の散逸が大きくなって、輝度の減少、視野角の減少、消費電力の増大という問題が生じるためである。   In recent years, the development of flat panel displays has been remarkable in the field of displays, and field emission displays (FEDs) have attracted attention as leading candidates for large flat panel displays. As a phosphor for this FED, a thin film phosphor that is excellent in flatness as compared with a powder phosphor and is a phosphor for an ultra-high-definition display is known. However, no practical examples of thin film phosphors have been reported so far as phosphors for FED. The reason for this is that light emitted from this thin film phosphor is extracted outside through the glass, but light cannot be extracted efficiently from the front of the glass due to reflection (refraction) at the interface with the glass. This is because the dissipation of light from the glass end face due to the effect becomes large, causing problems such as a reduction in luminance, a reduction in viewing angle, and an increase in power consumption.

上述したような従来からの問題点を解決するための薄膜蛍光体基板が提案されている(例えば、特許文献1参照)。この場合の薄膜蛍光体基板は、透明基板、導電膜、蛍光体薄膜、及び低屈折率膜を有する4層構造からなる。この蛍光体薄膜は、導電性を持たない酸化物からなるものである。この蛍光体薄膜はまた、その膜厚が1μm以下であり、母材にランタノイド元素が付活されたものであって、電子ビーム蒸着法又はスパッタ法により作製されている。また、低屈折率膜を設け、蛍光体薄膜から発光した光が透明基板の端面から放出されるのを防ぎ、十分な光を基板正面から取り出すことができるようにしている。しかし、このように構成された薄膜蛍光体基板をFEDに用いるのには次のような問題が発生する虞れがある。FEDでは、その構造から放出される電子が低加速電圧であるので、放出された電子が蛍光体薄膜を通過できずに、蛍光体薄膜表面にチャージアップしてしまい、十分な発光輝度が得られなくなるという虞れがある。
特開2005−82707号公報(特許請求の範囲等)
A thin film phosphor substrate for solving the conventional problems as described above has been proposed (see, for example, Patent Document 1). The thin film phosphor substrate in this case has a four-layer structure having a transparent substrate, a conductive film, a phosphor thin film, and a low refractive index film. This phosphor thin film is made of an oxide having no conductivity. This phosphor thin film has a thickness of 1 μm or less, and a lanthanoid element activated in a base material, and is produced by an electron beam evaporation method or a sputtering method. In addition, a low refractive index film is provided to prevent light emitted from the phosphor thin film from being emitted from the end face of the transparent substrate, so that sufficient light can be extracted from the front of the substrate. However, the use of the thin film phosphor substrate configured as described above for the FED may cause the following problems. In the FED, since electrons emitted from the structure have a low acceleration voltage, the emitted electrons cannot pass through the phosphor thin film and are charged up on the surface of the phosphor thin film, so that sufficient emission luminance can be obtained. There is a fear of disappearing.
JP 2005-82707 A (Claims etc.)

本発明の課題は、上記した従来技術の問題を解決することにあり、低加速電圧下においても蛍光体薄膜表面にチャージアップが起こることなく、十分な発光輝度が得られる導電性蛍光体薄膜の形成方法及び薄膜蛍光体基板の作製方法を提供することにある。 An object of the present invention is to solve the conventional above technical problems, low acceleration without charge-up occurs in the phosphor thin film surface even under voltage, sufficient conductivity phosphor thin film light-emitting luminance can be obtained and to provide a forming method and a manufacturing method of a thin film phosphor board of.

本発明は、上記課題を解決するために、蛍光体薄膜に導電性を付与することにより、低加速電圧下においても蛍光体薄膜表面にチャージアップが起こることなく、十分な発光輝度を得ることができるようしたものである。   In order to solve the above-mentioned problems, the present invention can obtain sufficient light emission luminance by imparting conductivity to a phosphor thin film without causing charge-up on the surface of the phosphor thin film even under a low acceleration voltage. It is something that can be done.

本発明の導電性蛍光体薄膜の形成方法は、 、Gd 、ZnGa 及びSrTiO から選ばれた少なくとも一種の酸化物からなる母材酸化物と、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウムから選ばれた少なくとも一種のランタノイド元素からなる付活材と導電性酸化物となり得るZn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiから選ばれた少なくとも1種の金属とを多元蒸着し、次いでこの多元蒸着したものを大気中で焼成することにより導電性蛍光体薄膜を形成することを特徴とする。この場合、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウムから選ばれた少なくとも一種のランタノイド元素からなる付活材で付活された 、Gd 、ZnGa 及びSrTiO から選ばれた少なくとも一種の酸化物からなる母材酸化物と導電性酸化物となり得るZn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiから選ばれた少なくとも1種の金属とを多元蒸着し、次いでこの多元蒸着したものを大気中で焼成することにより導電性蛍光体薄膜を形成しても良い。 The method for forming a conductive phosphor thin film of the present invention includes a base material oxide composed of at least one oxide selected from Y 2 O 3 , Gd 2 O 3 , ZnGa 2 O 4 and SrTiO 3 , lanthanum, and cerium. , An active material made of at least one lanthanoid element selected from praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, and Zn, In that can be a conductive oxide , Sn, Cr, Mo, Os, Re, Nb, V, W, Sm, Ir, Ru, Nd, La, and at least one metal selected from Ti, and then this multi-source deposition A conductive phosphor thin film is formed by baking the material in the air . In this case, lanthanum, cerium, praseodymium, neodymium, samarium, was activated europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and activated with material made of at least one lanthanide element selected from lutetium A base oxide composed of at least one oxide selected from Y 2 O 3 , Gd 2 O 3 , ZnGa 2 O 4 and SrTiO 3; and Zn, In, Sn, Cr, Mo, which can be a conductive oxide , Multi- source deposition of at least one metal selected from Os, Re, Nb, V, W, Sm, Ir, Ru, Nd, La, and Ti, and then firing the multi- source deposition in the air A conductive phosphor thin film may be formed by the above.

本発明の薄膜蛍光体基板の作製方法は、透明基板上に導電膜を形成し、この導電膜上に上記導電性蛍光体薄膜の形成方法を用いて導電性蛍光体薄膜を形成して、3層構造の薄膜蛍光体基板を作製することを特徴とする。 The method for producing a thin film phosphor substrate of the present invention comprises forming a conductive phosphor film on a transparent substrate, forming a conductive phosphor thin film on the conductive film using the method for forming a conductive phosphor thin film, and 3 A thin-film phosphor substrate having a layer structure is produced.

また、本発明の薄膜蛍光体基板の作製方法は、透明基板上に上記導電性蛍光体薄膜の形成方法を用いて導電性蛍光体薄膜を形成し、その後この導電性蛍光体薄膜上に導電膜を形成して、3層構造の薄膜蛍光体基板を作製することを特徴とする。
The method for producing a thin film phosphor substrate according to the present invention comprises forming a conductive phosphor thin film on a transparent substrate by using the method for forming a conductive phosphor thin film, and then forming a conductive film on the conductive phosphor thin film. To form a thin film phosphor substrate having a three-layer structure.

本発明によれば、扱いやすい複数の酸化物を用いる同時蒸着により成膜し、導電性の付与された蛍光体薄膜を提供できると共に、この薄膜を用いた薄膜蛍光体基板を提供できるので、導電性を付与していない蛍光体薄膜の場合と比べて、蛍光体薄膜表面にチャージアップが起こることもなく、低加速電圧でも顕著な発光輝度が得られ、さらに蛍光体基板の長寿命化を図ることが可能になるという効果を奏する。   According to the present invention, it is possible to provide a phosphor thin film provided with conductivity by simultaneous vapor deposition using a plurality of easy-to-handle oxides, and to provide a thin film phosphor substrate using this thin film. Compared with a phosphor thin film that has not been imparted with the property, the surface of the phosphor thin film is not charged up, a remarkable light emission luminance is obtained even at a low acceleration voltage, and the life of the phosphor substrate is further extended. There is an effect that it becomes possible.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明によれば、導電性蛍光体薄膜は、上記したように、例えば、母材酸化物、付活材としてのランタノイド元素及び薄膜形成時に導電性酸化物となり得る物質を多元蒸着して成膜し、次いで大気中で焼成することにより形成される。また、本発明によれば、透明基板、導電膜(好ましくは透明導電膜)、及び上記導電性蛍光体薄膜を有する3層構造からなる薄膜蛍光体基板は、例えば、透明基板上に導電膜を形成し、この導電膜上に、母材酸化物と付活材としてのランタノイド元素と導電性酸化物となり得る物質とを電子ビーム蒸着法又はスパッタ法により多元蒸着し、次いで焼成することにより導電性蛍光体薄膜を形成して作製される。この場合、成膜プロセスは、電子ビーム蒸着法又はスパッタ法に加えてガス中蒸着法による同時蒸着により実施することも可能である。   According to the present invention, as described above, the conductive phosphor thin film is formed by, for example, multi-source vapor deposition of a base material oxide, a lanthanoid element as an activator, and a material that can become a conductive oxide when forming the thin film. And then fired in air. Further, according to the present invention, a thin film phosphor substrate having a three-layer structure having a transparent substrate, a conductive film (preferably a transparent conductive film), and the conductive phosphor thin film has a conductive film on a transparent substrate, for example. A conductive oxide is formed on the conductive film by subjecting the base material oxide, the lanthanoid element as the activator, and a substance that can become a conductive oxide to multi-source deposition by electron beam evaporation or sputtering, and then firing. It is produced by forming a phosphor thin film. In this case, the film formation process can be performed by simultaneous vapor deposition by gas vapor deposition in addition to electron beam vapor deposition or sputtering.

本発明で用いる母材酸化物としては、例えば、Y、Gd、ZnGa、及びSrTiO等から選ばれた少なくとも一種の酸化物を挙げることができる。付活材としてのランタノイド元素は、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウムから選ばれた少なくとも一種であれば良い。また、導電性酸化物となり得る物質としては、大気中焼成により導電性酸化物を生成し得る金属、例えば、Zn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiから選ばれた少なくとも1種の金属を挙げることができる。 Examples of the base material oxide used in the present invention include at least one oxide selected from Y 2 O 3 , Gd 2 O 3 , ZnGa 2 O 4 , SrTiO 3 and the like. The lanthanoid element as the activator may be at least one selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. In addition, as a substance that can be a conductive oxide, a metal that can generate a conductive oxide by firing in the atmosphere, for example, Zn, In, Sn, Cr, Mo, Os, Re, Nb, V, W, Sm, Mention may be made of at least one metal selected from Ir, Ru, Nd, La and Ti.

スパッタ法で多元蒸着としての成膜プロセスを実施する場合には、そのスパッタリングターゲットとして、母材酸化物、付活材の酸化物及び導電性酸化物となり得る物質の酸化物のそれぞれで構成されたターゲットを用いれば良い。電子ビーム蒸着法及びガス中蒸着法の場合も、これらの母材酸化物、付活材の酸化物及び導電性酸化物となり得る物質の酸化物のそれぞれを構成し得る材料を用いれば良く、例えば、上記した材料を用いる。なお、上記酸化物の代わりに金属単体を用いて成膜しても良く、成膜後、焼成を行うため、最終的には酸化物となる。   When performing a film forming process as multi-source deposition by sputtering, each of the sputtering targets is composed of a base material oxide, an oxide of an activator, and an oxide of a substance that can be a conductive oxide. A target may be used. In the case of the electron beam vapor deposition method and the gas vapor deposition method, a material that can constitute each of the base material oxide, the oxide of the activator, and the oxide of the substance that can be a conductive oxide may be used. The materials described above are used. Note that a film may be formed using a single metal instead of the above oxide, and after the film formation, firing is performed, so that the oxide is finally formed.

上記成膜プロセスをスパッタリング法で行う場合、例えば、公知のRFスパッタリング法を用い、ターゲットとして、酸化ランタノイドからなるターゲットと、母材酸化物からなるターゲットと、導電性酸化物からなるターゲットとを同時に用いてスパッタ成膜して前駆体を得、この前駆体を大気中所定の温度で焼成することにより、所望の導電性蛍光体薄膜を形成することができる。同時スパッタリングは、例えば、母材酸化物のスパッタターゲットの表面にそれより径の小さな酸化ランタノイドのスパッタターゲットと導電性酸化物のターゲットとを好ましくは複数個乗せたターゲット配置形状で同時にスパッタを行えば良い。このターゲット形状は、特に制限はなく、所望の目的を達成できるようなものであれば良い。   When performing the film formation process by a sputtering method, for example, using a known RF sputtering method, a target made of a lanthanoid oxide, a target made of a base material oxide, and a target made of a conductive oxide are simultaneously used. The precursor is formed by sputtering to obtain a precursor, and the precursor is fired at a predetermined temperature in the atmosphere, whereby a desired conductive phosphor thin film can be formed. Co-sputtering is performed, for example, by performing sputtering simultaneously in a target arrangement shape in which a plurality of lanthanoid oxide sputtering targets having a smaller diameter and a conductive oxide target are preferably placed on the surface of a base oxide sputtering target. good. The target shape is not particularly limited as long as it can achieve a desired purpose.

また、電子ビーム蒸着法の場合は、導電性蛍光体薄膜の各成分元素を蒸発源とし、個々の蒸発源からの分子状の成分元素を基板上で反応させて所望の薄膜を形成しても良い。   In the case of the electron beam evaporation method, each component element of the conductive phosphor thin film is used as an evaporation source, and a molecular component element from each evaporation source is reacted on the substrate to form a desired thin film. good.

本発明の導電性蛍光体薄膜は、母材酸化物にランタノイド元素が付活され、更に導電性酸化物が分散されたものであり、その組成をatm%で表示すれば、一般に、ランタノイド元素の酸化物として、0.1〜10atm%程度、好ましくは2〜5atm%であり、導電性酸化物となり得る物質として、1〜40atm%程度、好ましくは1〜5atm%であり、残部は母材酸化物である。この範囲内の組成を有する導電性蛍光体薄膜であれば電子線による所望の発光を示す。   In the conductive phosphor thin film of the present invention, the lanthanoid element is activated in the base material oxide, and the conductive oxide is further dispersed. If the composition is expressed in atm%, generally the lanthanoid element The oxide is about 0.1 to 10 atm%, preferably 2 to 5 atm%, and the substance that can be a conductive oxide is about 1 to 40 atm%, preferably 1 to 5 atm%, and the balance is base material oxidation. It is a thing. A conductive phosphor thin film having a composition within this range exhibits desired light emission by an electron beam.

なお、焼成後に得られた導電性蛍光体薄膜は、例えば、[A(1−x)](式中、Aは母材金属、Bはランタノイド元素、Cは導電性酸化物を形成し得る金属、0<x<0.05、0<y<0.1である)の組成になっていると思われる。 The conductive phosphor thin film obtained after firing is, for example, [A (1-x) B x ] 2 O 3 Cy (where A is a base metal, B is a lanthanoid element, and C is conductive) It is considered that the composition of the metal capable of forming an oxide, 0 <x <0.05, 0 <y <0.1).

この透明基板としては、特に制限されるものではなく、例えばガラス基板、ITO膜からなる基板、ZnO膜からなる基板等を挙げることができる。   The transparent substrate is not particularly limited, and examples thereof include a glass substrate, a substrate made of an ITO film, and a substrate made of a ZnO film.

本発明によれば、上記した多元蒸着の後に大気中で焼成して導電性蛍光体薄膜を形成するが、その際の焼成温度は、基板の耐熱温度以下であることが必要である。例えば、通常のガラス基板を用いた場合、その耐熱温度である500℃程度であれば、所望の薄膜を生成できる。   According to the present invention, the conductive phosphor thin film is formed by firing in the air after the above-described multi-source deposition, and the firing temperature at that time needs to be equal to or lower than the heat resistant temperature of the substrate. For example, when a normal glass substrate is used, a desired thin film can be generated as long as the heat resistant temperature is about 500 ° C.

本発明では、大気中で、母材酸化物と付活材としてのランタノイド元素と導電性酸化物となり得る物質とを用いて同時に成膜処理しているので、母材酸化物内に均等に付活材が分散し、焼成時に結晶性が上昇すると共に、導電性酸化物となり得る物質も同時に成膜処理しているので、母材酸化物中に均等に分散し、得られた導電性蛍光体薄膜の発光輝度が高くなる上、蛍光体表面でのチャージアップも抑制され得る。この場合、母材酸化物に予めランタノイド元素を付活したものを用いて導電性酸化物となり得る物質と共に多元蒸着しても、同様の結果が得られる。   In the present invention, since film formation is simultaneously performed in the atmosphere using a base material oxide, a lanthanoid element as an activator, and a substance that can become a conductive oxide, the film is applied evenly in the base material oxide. Since the active material is dispersed, the crystallinity is increased during firing, and a substance that can become a conductive oxide is simultaneously formed into a film, so that the conductive phosphor obtained is uniformly dispersed in the base material oxide. The light emission brightness of the thin film is increased, and charge-up on the phosphor surface can be suppressed. In this case, the same result can be obtained even when multi-source deposition is performed together with a material that can be a conductive oxide using a lanthanoid element previously activated on a base material oxide.

本発明では、透明基板又は導電膜上に直接導電性蛍光体薄膜を形成でき、かつ、その膜厚制御も比較的容易に行える。例えば、膜厚が1μm以下(例えば、100〜500nm程度)の薄膜を形成することもでき、このような膜厚を有する導電性蛍光体薄膜で本発明の目的を達成することができる。   In the present invention, the conductive phosphor thin film can be directly formed on the transparent substrate or the conductive film, and the film thickness can be controlled relatively easily. For example, a thin film having a thickness of 1 μm or less (for example, about 100 to 500 nm) can be formed, and the object of the present invention can be achieved with a conductive phosphor thin film having such a thickness.

これに対して、従来のように、蛍光体薄膜を作製する時にスパッタ法やEB蒸着法を用いて母材酸化物と付活材とを交互に積層させるだけでは、焼成時に付活材が母材酸化物の内部に十分に分散しないので、主に母材酸化物と付活材との界面のみが発光してしまい、発光輝度が低くなる。   On the other hand, as in the prior art, when the phosphor thin film is produced, the activator is used as the base material during firing only by alternately laminating the base material oxide and the activator using the sputtering method or the EB vapor deposition method. Since it is not sufficiently dispersed inside the material oxide, mainly only the interface between the base material oxide and the activator emits light, and the light emission luminance is lowered.

以下に、本発明について実施例を挙げて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

本発明に従ってY:Eu Znからなる導電性蛍光体薄膜を形成した。 In accordance with the present invention Y 2 O 3 : Eu A conductive phosphor thin film made of Zn was formed.

まず、酸化イットリウムターゲットと酸化ユーロピウムターゲットとZnOターゲットとを用いて、通常の条件でガラス基板に対して同時にスパッタ成膜した。そして、得られた前駆体の形成された基板を電気炉に入れ、大気中500℃で焼成した。この場合、500℃まで30分で上昇させ、そのまま60分間保持した。その後、自然放冷で室温まで下げ、処理された基板を取り出した。また、比較のために、上記方法に準じて、酸化イットリウムターゲットと酸化ユーロピウムターゲットとを用い、導電性を付与していない蛍光体薄膜を作製した。かくして得られた薄膜の組成は、導電性蛍光体薄膜の場合、Eu:2atm%、Zn:5atm%、残部Yであり、導電性を付与していない蛍光体薄膜の場合、Eu:2atm%、残部Yであった。また、得られた薄膜の膜厚は、それぞれ、約400nmであった。 First, using a yttrium oxide target, a europium oxide target, and a ZnO target, a sputter film was simultaneously formed on a glass substrate under normal conditions. And the board | substrate with which the obtained precursor was formed was put into the electric furnace, and it baked at 500 degreeC in air | atmosphere. In this case, the temperature was raised to 500 ° C. in 30 minutes and held for 60 minutes. Thereafter, the substrate was naturally cooled to room temperature, and the treated substrate was taken out. For comparison, a phosphor thin film not imparted with conductivity was produced using an yttrium oxide target and a europium oxide target in accordance with the above method. The composition of the thin film thus obtained is Eu: 2 atm%, Zn: 5 atm% and the balance Y 2 O 3 in the case of the conductive phosphor thin film, and Eu: It was 2 atm% and the balance was Y 2 O 3 . Moreover, the film thickness of the obtained thin film was about 400 nm, respectively.

上記の方法で得られた導電性を付与したY:Eu Zn蛍光体薄膜及び導電性を付与していないY:Eu蛍光体薄膜のそれぞれに対して、加速電圧3kVまでの電子線を照射した時に得られる輝度を電流密度2.5mA/cmで測定した。その結果を、図1に、加速電圧(kV)に対する輝度(cd/m)の変化として示す。図1から明らかなように、導電性を付与したサンプルの方が高輝度を示していることが分かる。従って、本実施例で得られた導電性を付与した蛍光体薄膜は、低加速電圧でも高輝度を示し、かつ、チャージアップもなかったため、FED等において十分使用に耐え得ることが分かる。   Y imparted with conductivity obtained by the above method2O3: Eu Zn phosphor thin film and Y not imparting conductivity2O3: The luminance obtained when each of the Eu phosphor thin films is irradiated with an electron beam up to an acceleration voltage of 3 kV is a current density of 2.5 mA / cm.2Measured with The result is shown in FIG. 1 as luminance (cd / m) with respect to acceleration voltage (kV).2). As is clear from FIG. 1, it can be seen that the sample provided with conductivity exhibits higher luminance. Therefore, it can be seen that the phosphor thin film imparted with conductivity obtained in this example exhibits high luminance even at a low acceleration voltage and has no charge-up, so that it can sufficiently be used in an FED or the like.

実施例1と同様の手法で作製したY:Eu Zn蛍光体薄膜とY:Eu蛍光体薄膜とを用いて、スタート輝度を110cd/mとした時の加速電圧3kVの電子線の照射による寿命測定を行った。その結果を、図2に、時間(分)に対する輝度(cd/m)の変化として示す。図2から明らかなように、導電性を付与していないサンプルは、蛍光体表面のチャージアップにより発光輝度が時間と共に減少しているが、導電性を付与することにより、20分程度で輝度の減少が治まり安定状態になった。つまり寿命が長くなったと言える。 Y 2 O 3 : Eu produced by the same method as in Example 1 Using a Zn phosphor thin film and a Y 2 O 3 : Eu phosphor thin film, lifetime measurement was performed by irradiation with an electron beam with an acceleration voltage of 3 kV when the start luminance was 110 cd / m 2 . The result is shown in FIG. 2 as a change in luminance (cd / m 2 ) with respect to time (minutes). As is clear from FIG. 2, in the sample not imparted with conductivity, the light emission luminance decreased with time due to the charge-up of the phosphor surface. The decrease has subsided and has become stable. In other words, it can be said that the lifetime has been extended.

実施例1及び2から、導電性を付与することで輝度が上昇するだけでなく、帯電の抑制効果も同時に得られるため、低加速電圧でも十分な発光輝度が得られ、FED等のように電子が低加速電圧で放出されるディスプレイ分野で蛍光体として有用である。   From Examples 1 and 2, not only the luminance is increased by imparting conductivity, but also the effect of suppressing charging is obtained at the same time. Therefore, sufficient emission luminance can be obtained even at a low acceleration voltage, and electrons such as FED can be obtained. Is useful as a phosphor in the field of displays in which is emitted at low acceleration voltages.

上記実施例では、酸化イットリウムと酸化ユーロピウムと酸化亜鉛とを用いて蛍光体薄膜を作製したが、その他の上記した酸化物も用いても同様な結果が得られる。   In the above embodiment, the phosphor thin film was prepared using yttrium oxide, europium oxide, and zinc oxide. However, similar results can be obtained by using other oxides described above.

本発明に従って、電子ビーム蒸着法によりY:Eu Zn導電性蛍光体薄膜を形成した。 In accordance with the present invention, Y 2 O 3 : Eu by electron beam evaporation. A Zn conductive phosphor thin film was formed.

まず、酸化イットリウムのEBターゲットを第1の坩堝に入れ、第1の電源を用いて、また、酸化ユーロピウムのEBターゲットを第2の坩堝に入れ、第2の電源を用いて、また、ZnOのEBターゲットを第3の坩堝に入れ、第3の電源を用いて、同時に蒸着操作を行って成膜した。その後、得られた前駆体の形成された基板を電気炉に入れ、大気中500℃で焼成した。この場合、500℃まで30分で上昇させ、そのまま60分間保持した。その後、自然放冷で室温まで下げ、処理された基板を取り出した。また、比較のために、上記方法に準じて、酸化イットリウムのEBターゲットと酸化ユーロピウムのEBターゲットとを用い、導電性を付与していない蛍光体薄膜を作製した。かくして得られた薄膜の組成は、導電性蛍光体薄膜の場合、Eu:2atm%、Zn:5atm%、残部Yであり、導電性を付与していない蛍光体薄膜の場合、Eu:2atm%、残部Yであった。また、得られた薄膜の膜厚は、それぞれ、約400nmであった。 First, an yttrium oxide EB target is placed in a first crucible and using a first power source, a europium oxide EB target is placed in a second crucible and a second power source is used, and ZnO The EB target was placed in a third crucible, and a film was formed by simultaneously performing a vapor deposition operation using a third power source. Thereafter, the obtained substrate on which the precursor was formed was placed in an electric furnace and baked at 500 ° C. in the atmosphere. In this case, the temperature was raised to 500 ° C. in 30 minutes and held for 60 minutes. Thereafter, the substrate was naturally cooled to room temperature, and the treated substrate was taken out. For comparison, a phosphor thin film not imparted with conductivity was prepared using an yttrium oxide EB target and a europium oxide EB target in accordance with the above method. The composition of the thin film thus obtained is Eu: 2 atm%, Zn: 5 atm% and the balance Y 2 O 3 in the case of the conductive phosphor thin film, and Eu: It was 2 atm% and the balance was Y 2 O 3 . Moreover, the film thickness of the obtained thin film was about 400 nm, respectively.

上記の方法で得られた導電性を付与したY:Eu Zn蛍光体薄膜及び導電性を付与していないY:Eu蛍光体薄膜のそれぞれに対して、加速電圧3kVまでの電子線を照射した時に得られる輝度を実施例1と同様に測定した。その結果、導電性を付与したサンプルの方が導電性を付与しないサンプルより高輝度を示した。本実施例で得られた導電性を付与した蛍光体薄膜は、低加速電圧でも高輝度を示し、かつ、チャージアップもなかったため、FED等において十分使用に耐え得ることが分かる。 Y 2 O 3 : Eu provided with conductivity obtained by the above method The luminance obtained when an electron beam up to an acceleration voltage of 3 kV was irradiated to each of the Zn phosphor thin film and the Y 2 O 3 : Eu phosphor thin film not imparted with conductivity was measured in the same manner as in Example 1. . As a result, the sample imparted with conductivity showed higher luminance than the sample not imparted with conductivity. It can be seen that the phosphor thin film imparted with conductivity obtained in this example exhibits high luminance even at a low acceleration voltage and has no charge-up, so that it can sufficiently be used in an FED or the like.

本発明によれば、低加速電圧でも十分に発光輝度が得られ、長寿命化を図ることが可能な蛍光体薄膜を提供できるので、この薄膜を用いた蛍光体基板はFEDや高精細CRTのディスプレイ等の分野で利用可能である。   According to the present invention, it is possible to provide a phosphor thin film that can obtain sufficient emission luminance even at a low acceleration voltage and can have a long life. Therefore, a phosphor substrate using this thin film can be used for FED and high-definition CRT. It can be used in fields such as displays.

実施例1におけるY:Eu Zn蛍光体薄膜及びY:Eu蛍光体薄膜についての、加速電圧と輝度との関係を示すグラフ。Y 2 O 3 : Eu in Example 1 Zn phosphor thin and Y 2 O 3: about Eu phosphor thin film, a graph showing the relationship between the acceleration voltage and the luminance. 実施例2におけるY:Eu Zn蛍光体薄膜及びY:Eu蛍光体薄膜についての寿命測定結果を示すグラフ。Y 2 O 3 : Eu in Example 2 Zn phosphor thin and Y 2 O 3: a graph showing the lifetime measurement results for Eu phosphor thin film.

Claims (5)

、Gd 、ZnGa 及びSrTiO から選ばれた少なくとも一種の酸化物からなる母材酸化物と、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウムから選ばれた少なくとも一種のランタノイド元素からなる付活材と導電性酸化物となり得るZn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiから選ばれた少なくとも1種の金属とを多元蒸着し、次いでこの多元蒸着したものを大気中で焼成することにより導電性蛍光体薄膜を形成することを特徴とする導電性蛍光体薄膜の形成方法。 A matrix oxide composed of at least one oxide selected from Y 2 O 3 , Gd 2 O 3 , ZnGa 2 O 4 and SrTiO 3 , lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, An activator comprising at least one lanthanoid element selected from dysprosium, holmium, erbium, thulium, ytterbium and lutetium, and Zn, In, Sn, Cr, Mo, Os, Re, Nb, which can be a conductive oxide Conductive phosphor thin film by multi-depositing at least one metal selected from V, W, Sm, Ir, Ru, Nd, La and Ti, and then firing the multi-deposited one in the air And forming a conductive phosphor thin film. ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウムから選ばれた少なくとも一種のランタノイド元素からなる付活材で付活された 、Gd 、ZnGa 及びSrTiO から選ばれた少なくとも一種の酸化物からなる母材酸化物と導電性酸化物となり得るZn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiから選ばれた少なくとも1種の金属とを多元蒸着し、次いでこの多元蒸着したものを大気中焼成することにより導電性蛍光体薄膜を形成することを特徴とする導電性蛍光体薄膜の形成方法。 Y 2 O activated with an activator comprising at least one lanthanoid element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium 3 , Gd 2 O 3 , ZnGa 2 O 4 and SrTiO 3, a base material oxide composed of at least one oxide, and a conductive oxide such as Zn, In, Sn, Cr, Mo, Os, Re Nb, V, W, Sm, Ir, Ru, Nd, La, and Ti are vapor-deposited with at least one metal, and then the multi-vapor-deposited material is baked in the atmosphere for conducting fluorescence. A method of forming a conductive phosphor thin film, comprising forming a phosphor thin film. 前記蒸着を、電子ビーム蒸着又はスパッタ法により行うことを特徴とする請求項又は記載の導電性蛍光体薄膜の形成方法。 It said evaporation, electron beam evaporation or claim 1 or 2 method for forming a conductive phosphor thin film, wherein the performing by sputtering. 透明基板上に導電膜を形成し、この導電膜上に請求項1〜3のいずれか1項記載の形成方法を用いて導電性蛍光体薄膜を形成して、3層構造の薄膜蛍光体基板を作製することを特徴とする薄膜蛍光体基板の作製方法。 A conductive film is formed on a transparent substrate, a conductive phosphor thin film is formed on the conductive film using the formation method according to claim 1, and a thin film phosphor substrate having a three-layer structure is formed. A method for manufacturing a thin film phosphor substrate, comprising: manufacturing a thin film phosphor substrate. 透明基板上に請求項1〜3のいずれか1項記載の形成方法を用いて導電性蛍光体薄膜を形成し、その後この導電性蛍光体薄膜上に導電膜を形成して、3層構造の薄膜蛍光体基板を作製することを特徴とする薄膜蛍光体基板の作製方法。 A conductive phosphor thin film is formed on the transparent substrate by using the forming method according to any one of claims 1 to 3 , and then a conductive film is formed on the conductive phosphor thin film to form a three-layer structure. A method for producing a thin film phosphor substrate, comprising producing a thin film phosphor substrate.
JP2005173482A 2005-06-14 2005-06-14 Method for forming conductive phosphor thin film and method for producing thin film phosphor substrate Active JP4938999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173482A JP4938999B2 (en) 2005-06-14 2005-06-14 Method for forming conductive phosphor thin film and method for producing thin film phosphor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173482A JP4938999B2 (en) 2005-06-14 2005-06-14 Method for forming conductive phosphor thin film and method for producing thin film phosphor substrate

Publications (2)

Publication Number Publication Date
JP2006348100A JP2006348100A (en) 2006-12-28
JP4938999B2 true JP4938999B2 (en) 2012-05-23

Family

ID=37644278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173482A Active JP4938999B2 (en) 2005-06-14 2005-06-14 Method for forming conductive phosphor thin film and method for producing thin film phosphor substrate

Country Status (1)

Country Link
JP (1) JP4938999B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071689A1 (en) * 2010-05-31 2013-03-21 Oceans King Lighting Science & Technology Co., Ltd. Rare earth elements doping on yttrium oxide luminescent thin film containing conductive oxides and preparation methods thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266768A (en) * 2000-03-15 2001-09-28 Matsushita Electric Works Ltd Surface emission plate, method of producing plane luminescent plate, flat crt display, and field emission display
JP2002201469A (en) * 2000-08-30 2002-07-19 Hokushin Ind Inc Oxide phosphor for electroluminescence device and electroluminescence device
JP2005068352A (en) * 2003-08-27 2005-03-17 Ulvac Japan Ltd Nano thin film phosphor and synthetic method thereof
JP2005082707A (en) * 2003-09-09 2005-03-31 Ulvac Japan Ltd Thin film phosphor substrate and method for preparing the same

Also Published As

Publication number Publication date
JP2006348100A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
KR100606642B1 (en) Target for transparent conductive thin film, Transparent conductive thin film and Manufacturing method thereof, Electrode material for display, and Organic electroluminescence element and solar Cell
JP4927046B2 (en) MgO protective film having electron emission promoting substance, manufacturing method thereof, and plasma display panel provided with the protective film
JP2006012844A (en) Protective film of gas discharge display device and its manufacturing method
JP2000103614A (en) Mgo material for plasma display, its production and plasma display
KR100875114B1 (en) Materials of protective layer, method of preparing the same, protective layers made from the same and plasma display panel comprising the protective layer
JP4938999B2 (en) Method for forming conductive phosphor thin film and method for producing thin film phosphor substrate
JP4151289B2 (en) Gas discharge panel and manufacturing method thereof
KR20020053975A (en) Phosphor and method for fabricating the same
JP4413642B2 (en) Plasma display device and phosphor manufacturing method
JP5979361B2 (en) Light emitting element and light emitting device
JP2005082707A (en) Thin film phosphor substrate and method for preparing the same
JP2004269870A (en) Plasma display panel and method for producing phosphor
JP2005068352A (en) Nano thin film phosphor and synthetic method thereof
JP2009001699A (en) Red-emitting phosphor, fed device, and eld device
KR100988362B1 (en) Protective materials of low firing voltage and their method of manufacturing for pdp
CN102473568A (en) Plasma display panel
JP5099820B2 (en) Red light emitting phosphor, FED device and ELD device
JP2007045902A (en) Oxide, light emitting element and display device
JP5406577B2 (en) Phosphor thin film
JP4722530B2 (en) Light emitting element
JP5014112B2 (en) Electroluminescent phosphor, electroluminescent device, and sputtering target for producing the same
JPH02306591A (en) Manufacture of thin film electroluminescence element
TWI313477B (en) Field emission display
JP2004228003A (en) Fluorescent screen for cathode luminescence
JP2009114304A (en) Nanoparticle green phosphor for electron beam excitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4938999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250