JP5406577B2 - Phosphor thin film - Google Patents

Phosphor thin film Download PDF

Info

Publication number
JP5406577B2
JP5406577B2 JP2009078073A JP2009078073A JP5406577B2 JP 5406577 B2 JP5406577 B2 JP 5406577B2 JP 2009078073 A JP2009078073 A JP 2009078073A JP 2009078073 A JP2009078073 A JP 2009078073A JP 5406577 B2 JP5406577 B2 JP 5406577B2
Authority
JP
Japan
Prior art keywords
thin film
zns
phosphor
sputtering
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009078073A
Other languages
Japanese (ja)
Other versions
JP2010229278A (en
Inventor
雅夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009078073A priority Critical patent/JP5406577B2/en
Publication of JP2010229278A publication Critical patent/JP2010229278A/en
Application granted granted Critical
Publication of JP5406577B2 publication Critical patent/JP5406577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は蛍光体薄膜に関し、フラットディスプレイや照明、蛍光体センサーなどの蛍光体素子として利用される蛍光体薄膜に関する。   The present invention relates to a phosphor thin film, and relates to a phosphor thin film used as a phosphor element such as a flat display, illumination, and a phosphor sensor.

周知の通り無機蛍光体は、その発光層が無機材料で構成され、紫外線、電子線、電圧印加によって発光する性質を有するもので、金属を付活剤(発光粒子)としてこれを硫化亜鉛(ZnS)などの母体材料に添加したものは無機蛍光体の代表的な材料である。この無機蛍光体を大別すると、発光粒子をバインダーに分散させた数十μ以上の発光層を用いる分散型と数μ以下の薄膜で形成された発光層を用いる薄膜型がある。   As is well known, an inorganic phosphor has a light emitting layer made of an inorganic material and has a property of emitting light when applied with ultraviolet rays, an electron beam, or a voltage. This is made of zinc sulfide (ZnS) using a metal as an activator (light emitting particle). A material added to a base material such as) is a typical material of an inorganic phosphor. The inorganic phosphors are roughly classified into a dispersion type using a light emitting layer of several tens μm or more in which light emitting particles are dispersed in a binder and a thin film type using a light emitting layer formed of a thin film of several μm or less.

また、ZnSにMnを添加した薄膜型の無機蛍光体は、分散型に比べて、高電界で安定し発光効率が高いため無機EL(エレクトロルミネッセンス)などの素子として使われている。   In addition, a thin-film inorganic phosphor in which Mn is added to ZnS is used as a device for inorganic EL (electroluminescence) or the like because it is stable at a high electric field and has high luminous efficiency as compared with a dispersion type.

しかも、ディスプレイや薄型照明、バックライト分野では、大面積で均一な特性を有する発光素子求められているため、これらの点についても分散型よりも有利な薄膜型の無機蛍光体が注目されている。   In addition, in the fields of displays, thin illumination, and backlights, there is a demand for light-emitting elements having a large area and uniform characteristics, and in these respects, thin-film inorganic phosphors that are more advantageous than dispersion-types are attracting attention. .

この薄膜型無機蛍光体すなわち無機蛍光体薄膜(以下、蛍光体薄膜又は薄膜と略称することもある。)としては、母体材料であるZnSに付活剤(発光粒子)としてMnの金属を添加するものが古くから知られており、スパッタリング法などその薄膜の作製を含めて各種の技術が提案されている(特許文献1〜5参照)。   As this thin film-type inorganic phosphor, that is, an inorganic phosphor thin film (hereinafter, also abbreviated as a phosphor thin film or a thin film), a metal of Mn as an activator (light emitting particle) is added to ZnS as a base material. A thing has been known for a long time, and various techniques including the production of the thin film such as a sputtering method have been proposed (see Patent Documents 1 to 5).

この、ZnS-Mn系の蛍光体薄膜では明るい橙色の蛍光を示すが、その薄膜の作製方法により蛍光レベルが異なってくる。   This ZnS-Mn phosphor thin film shows bright orange fluorescence, but the fluorescence level varies depending on the method of producing the thin film.

すなわち、熱蒸着法や電子ビーム蒸着法で作成した場合に明るい蛍光を示すが、スパッタリング法で作成した場合には蛍光が弱いという問題がある。そして、上記各種提案技術によってもこの問題を十分に解決できない状態にある。   That is, bright fluorescence is produced when produced by a thermal vapor deposition method or electron beam vapor deposition method, but there is a problem that the fluorescence is weak when produced by a sputtering method. And it is in the state which cannot fully solve this problem also by the said various proposal techniques.

このように熱蒸着法や電子ビーム蒸着法などの成膜方法によれば発光強度の高い蛍光体薄膜が得られるものの、工業的に大面積且つ均一に成膜する場合には、スパッタリング法がすこぶる適しており、従って、スパッタリング法によって成膜した蛍光体の発光強度を向上させることが可能となれば、品質の高い大面積の蛍光体としての用途を広げることができ、工業的に極めて有用である。   Thus, although a phosphor thin film with high emission intensity can be obtained by a film forming method such as a thermal vapor deposition method or an electron beam vapor deposition method, the sputtering method is extremely difficult in the case of forming a large area and a uniform film industrially. Therefore, if it is possible to improve the emission intensity of the phosphor formed by sputtering, the application as a high-quality, large-area phosphor can be expanded, which is extremely useful industrially. is there.

特公昭49-48835号公報Japanese Patent Publication No.49-48835 特開昭63-202889号公報JP 63-202889 A 特開平2-114490号公報Japanese Patent Laid-Open No. 2-114490 特開平10-162957号公報Japanese Patent Laid-Open No. 10-162957 特開2003-20476号公報JP2003-20476

本発明は、上述した従来の技術背景とその問題に鑑みてなされたものであって、スパッタリング法により成膜された場合においても、実用に適した強い蛍光を発するZnS:Mn系の無機蛍光体薄膜を提供することを課題とする。   The present invention has been made in view of the above-described conventional technical background and problems thereof, and is a ZnS: Mn inorganic phosphor that emits strong fluorescence suitable for practical use even when deposited by sputtering. It is an object to provide a thin film.

このような課題を解決するために完成された本発明は以下の通りである。   The present invention completed in order to solve such a problem is as follows.

すなわち、請求項1に係る本発明は、Mnを付活剤として母体材料に添加してなる、平均膜厚が10nm〜5μmである、スパッタリング法で成膜されてなる蛍光体薄膜において、前記母体材料がZnSとZnOの二元系で構成され、Zn:40〜60 at%、O:2 at%〜20at%、Mn:0.1at%〜5.0at%、残りの成分がSと微量の不可避的不純物からなることを特徴とする無機蛍光体薄膜である。 That is, the present invention according to claim 1 is the phosphor thin film formed by sputtering , having an average film thickness of 10 nm to 5 μm, wherein Mn is added to the base material as an activator. The material consists of binary system of ZnS and ZnO, Zn: 40-60at%, O: 2at% -20at%, Mn: 0.1at% -5.0at%, the remaining components are unavoidable with trace amounts of S An inorganic phosphor thin film characterized by comprising impurities.

本発明によれば、その成膜方法としてスパッタリング法を採用した場合においても強い蛍光を示す無機蛍光体薄膜を提供することで、各種ディスプレーや照明用などで要求が高まっている均質なの大面積の蛍光体薄膜を効率よく提供することができるといった優れた効果を奏する。   According to the present invention, by providing an inorganic phosphor thin film that exhibits strong fluorescence even when a sputtering method is employed as the film formation method, a uniform large-area area that has been increasingly demanded for various displays and illuminations. There is an excellent effect that the phosphor thin film can be efficiently provided.

本発明のZnS-ZnO:Mn系における欠陥の発生状態を示す薄膜の模式平面拡大図。The schematic plane enlarged view of the thin film which shows the generation | occurrence | production state of the defect in the ZnS-ZnO: Mn type | system | group of this invention. 従来のZnS:Mn系おける欠陥の発生状態を示す薄膜の模式平面拡大図。The schematic plane enlarged view of the thin film which shows the generation | occurrence | production state of the defect in the conventional ZnS: Mn type | system | group.

(課題解決の原理)
以下、本発明の内容について詳述するが、先ず本発明の前記課題の解決原理に関して本発明を完成させるに至った経緯を含めて説明する。
(Principle of problem solving)
The contents of the present invention will be described in detail below. First, the principle of solving the problems of the present invention will be described including the background to the completion of the present invention.

スパッタリング法による成膜においては、通常Arの低ガス圧雰囲気中でプラズマ放電を発生させ、イオン化したArが成膜材料であるスパッタリングターゲットから各種原子をたたきだし、対極に設置した基板上にスパッタリングターゲットと同じ成分の原子が堆積して、薄膜が形成される。ZnS-Mn系の場合は、母体材料となるZnS粉末にMnを少量添加配合して焼結したスパッタリングターゲットが用いられる。このターゲットによるスパッタリングを行うと高エネルギーの中性Arが反跳し、基板に到達する。この反跳したArの衝突ダメージによりZnSに多数の欠陥が生じ、蛍光体の特性が悪化し、結果として前述のように所望の発光強度が得られないという重大な問題が発生する。   In film formation by sputtering, a plasma discharge is usually generated in a low gas pressure atmosphere of Ar, and various atoms are knocked out from a sputtering target in which ionized Ar is a film formation material. Atoms of the same component are deposited to form a thin film. In the case of the ZnS-Mn system, a sputtering target is used which is sintered by adding a small amount of Mn to a ZnS powder as a base material. When sputtering with this target is performed, high-energy neutral Ar recoils and reaches the substrate. Due to the collision damage of the recoiled Ar, a number of defects are generated in ZnS, and the characteristics of the phosphor are deteriorated. As a result, a serious problem that a desired emission intensity cannot be obtained as described above occurs.

本発明はこうしたスパッタリング成膜時のZnSの欠陥発生を抑制、防止すべく種々検討、実験を重ねた結果ZnSにZnOを適量添加して母体材料の組成を二元系とすることにより、ZnSの欠陥が消失し、蛍光体薄膜の発光強度を著しく高めることができる事実を究明した。   In the present invention, various studies and experiments were conducted to suppress and prevent the occurrence of ZnS defects during the sputtering film formation, and as a result of repeated experiments, ZnS was added in an appropriate amount to make the base material composition a binary system. The present inventors have investigated the fact that the defect disappears and the luminous intensity of the phosphor thin film can be remarkably increased.

この欠陥発生のメカニズムについて、図1及び図2に示した薄膜の模式平面拡大図により解説する。   The mechanism of the defect generation will be explained with reference to the enlarged schematic plan view of the thin film shown in FIGS.

図2はZnSのみを母体材料とした場合で、スパッタリングによりこのZnSの全域に分散した多数の欠陥が発生し、付活剤としてのMnの近傍に存在することになり、これらの欠陥によりMnの殻内励起が消失または阻害され、この結果、薄膜は発光しないかまたはその発光強度が低下することになる。   Fig. 2 shows the case where only ZnS is used as a base material, and a large number of defects dispersed throughout this ZnS are generated by sputtering and are present in the vicinity of Mn as an activator. Intra-shell excitation disappears or is inhibited, and as a result, the thin film does not emit light or its emission intensity decreases.

一方、本発明によるZnSにZnOを添加した二元系の母体材料とした場合は、同スパッタリング時に図1の通り、ZnOに欠陥が集中する現象が起き、このため、母体材料の主体であるZnSにおいては欠陥が現われなくなり、この結果、Mnの殻内励起が十分に行なわれて薄膜が発光すると共にその発光強度を図2の従来のものに比べて顕著に高めることができる。   On the other hand, in the case of a binary base material in which ZnO is added to ZnS according to the present invention, defects are concentrated in ZnO during the sputtering, as shown in FIG. In FIG. 2, defects do not appear, and as a result, Mn is sufficiently excited in the shell to emit light from the thin film, and the emission intensity can be significantly increased as compared with the conventional one in FIG.

こうした現象は、ZnOがZnSより蒸発し易く、スパッタリング時の母体材料が受けるダメージが相対的にZnOに強く現れ、これにより、ZnOに欠陥が集中するものと推定される。   Such a phenomenon is presumed that ZnO is easier to evaporate than ZnS, and damage to the base material during sputtering appears relatively strong in ZnO, thereby concentrating defects in ZnO.

(実施形態)
以下、本発明について、その実施形態に基づき、より具体的に説明する。
(Embodiment)
Hereinafter, the present invention will be described more specifically based on the embodiment.

本発明に係る蛍光体は、Mnを付活剤として母体材料に添加してなる蛍光体薄膜において、前記母体材料がZnSとZnOとで構成されていることをその基本的特徴とする。   The phosphor according to the present invention is characterized in that, in a phosphor thin film obtained by adding Mn as an activator to a host material, the host material is composed of ZnS and ZnO.

そして、本発明に係る蛍光体薄膜は、Zn:40at%〜60at%、O:2at%〜20at%、Mn: 0.1at%〜5.0at%、残りの成分ががSと不可避的不純物からなる組成(成分範囲)とすることが好ましいものである。なお、ここでat%は原子%である。   The phosphor thin film according to the present invention is composed of Zn: 40 at% to 60 at%, O: 2 at% to 20 at%, Mn: 0.1 at% to 5.0 at%, and the remaining components are S and inevitable impurities. (Component range) is preferable. Here, at% is atomic%.

この成分範囲を満足する蛍光体薄膜は、スパッタリング法による成膜の際に、薄膜中に生じる多数の欠陥をZnOに特に集中させることができ、これにより発光強度の高い均質な薄膜の作成が可能となる。   Phosphor thin films satisfying this component range can concentrate many defects in the thin film especially on ZnO during film formation by sputtering, which makes it possible to create a homogeneous thin film with high emission intensity. It becomes.

以下、各成分の範囲につきその規定理由を述べる。   In the following, the reasons for defining each component range will be described.

ZnはZnS-ZnOの二元系母体材料を構成する主成分であり、膜中のほぼ半数の成分がZnとなる。Znが40at%未満では残部のSが多くなるため成膜が困難となり、反対にZnが60at%を超えると残部のSが不足するためZnの金属成分が析出し、ZnSの構造が崩れ、発光強度が低下する。従って、Znの含有量は40at%〜60at%とする。   Zn is a main component constituting a ZnS-ZnO binary base material, and almost half of the components in the film are Zn. If the Zn content is less than 40 at%, the remaining S increases, making it difficult to form a film. Conversely, if the Zn content exceeds 60 at%, the remaining S will be insufficient, and the Zn metal component will precipitate, causing the ZnS structure to collapse and light emission. Strength decreases. Therefore, the Zn content is set to 40 at% to 60 at%.

次に、O(酸素)はZnOを形成して欠陥を制御する重要な働きをする成分であり、このOが2at%未満ではMnSに欠陥が生じ、十分な吐発光強度が得られなくなり、逆にOが20at%を超えるとZnSが減少するためやはり発光強度が低下することになる。従って、Oの含有量は2at%〜20at%とする。   Next, O (oxygen) is a component that plays an important role in controlling defects by forming ZnO. If this O is less than 2 at%, defects will occur in MnS, and sufficient emission intensity will not be obtained. If O exceeds 20 at%, ZnS decreases and the emission intensity also decreases. Therefore, the content of O is set to 2 at% to 20 at%.

Mnは橙色の蛍光を与える付活剤であり、このMnが0.1at%未満では発光強度が低すぎて蛍光は観察されず、また. 0.1at%を超える場合も発光強度は低下する。従ってMnの含有量は0.1at%〜5.0at%とする。   Mn is an activator that gives orange fluorescence. When Mn is less than 0.1 at%, the emission intensity is too low to observe fluorescence, and when it exceeds 0.1 at%, the emission intensity also decreases. Accordingly, the Mn content is set to 0.1 at% to 5.0 at%.

そして、これらZn、O、Mn以外の残りの成分は、Sと不可避な不純物である。Sは薄膜の主体成分であるZnSを形成するのに必須である。Znの成分規定のところで述べたように、このSが少なすぎるとZnの金属成分が析出し、ZnS構造がくずれ、蛍光が低下するし、Sが多すぎる場合は成膜が困難となる。   The remaining components other than Zn, O, and Mn are S and inevitable impurities. S is essential for forming ZnS which is a main component of the thin film. As described in the definition of the Zn component, if the amount of S is too small, the metal component of Zn is deposited, the ZnS structure is broken, the fluorescence decreases, and if the amount of S is too large, film formation becomes difficult.

このような成分範囲の蛍光体薄膜をスパッタリング法により作成する際には、発明者らの実験によれば、ZnS:65質量〜95質量%、ZnO:5質量%〜35質量%、Mn:0.05質量%〜2.00質量%、残りの成分が不可避的不純物からなるスパッタリングターゲットを用いると良いことが分かった。特にスパッタリングターゲットにおいてはスパッタリングの際にZnS及びZnOがかなり蒸発して、薄膜から抜ける現象が生じるためこれらを多めに配合した上記と成分とする必要がある。   When producing a phosphor thin film having such a component range by a sputtering method, according to experiments by the inventors, ZnS: 65 mass% to 95 mass%, ZnO: 5 mass% to 35 mass%, Mn: 0.05 It has been found that it is preferable to use a sputtering target having a mass% to 2.00 mass% and the remaining components made of inevitable impurities. In particular, in a sputtering target, ZnS and ZnO are considerably evaporated during sputtering, and a phenomenon of falling out of the thin film occurs. Therefore, it is necessary to use these components in a large amount.

また、本発明に係るZnS-ZnO:Mn系の無機蛍光体薄膜の平均膜厚は、10nm〜5μm以下とすることが望ましい。膜厚が10nm以下の場合、膜が不連続となり導電性が出現しない。5μm以上の場は、膜表面に割れが発生して均一膜の成膜ができなくなる。   The average film thickness of the ZnS—ZnO: Mn inorganic phosphor thin film according to the present invention is desirably 10 nm to 5 μm. When the film thickness is 10 nm or less, the film becomes discontinuous and no conductivity appears. In the case of 5 μm or more, a crack is generated on the film surface and a uniform film cannot be formed.

(実施例)
本発明についてその優れた効果を実証するため、以下、実施例を挙げて説明する。
(Example)
In order to demonstrate the superior effect of the present invention, examples will be described below.

ZnS粉末とZnO粉末およびMnを所定量混合したスパッタリングターゲットを焼結法によって作成した。次に、RFマグネトロンスパッタ法によってZnS−ZnO:Mn膜およびZnS:Mn膜をコーニング社製ガラス基板#1737に成膜した。   A sputtering target in which a predetermined amount of ZnS powder, ZnO powder and Mn was mixed was prepared by a sintering method. Next, a ZnS-ZnO: Mn film and a ZnS: Mn film were formed on a glass substrate # 1737 made by Corning by RF magnetron sputtering.

スパッタリングガスとしてArを使用し、ガス圧は3mTorrとして、2W/cmの印加電力によるRF放電によって、膜厚500nmの蛍光体薄膜を成膜した。成膜した基板を真空下で、400℃30分熱処理を行った。 A phosphor thin film having a thickness of 500 nm was formed by RF discharge using Ar as a sputtering gas and a gas pressure of 3 mTorr and an applied power of 2 W / cm 2 . The film-formed substrate was heat-treated at 400 ° C. for 30 minutes under vacuum.

蛍光体薄膜の組成はEPMA法により測定した。また、ブラックライト(最大強度波長352nm)を蛍光体薄膜に照射し、蛍光の有無を確認した。蛍光の相対的強度はPL評価装置(フォトルミネッセンス)で測定した。このとき、励起光源としてHeCdレーザーによる325nm波長の紫外線を用い、検出器はフォトマルR1387を用い、グレーティング数1200本の分光器SPEX1702を用いて室温での蛍光波長強度を測定した。   The composition of the phosphor thin film was measured by the EPMA method. In addition, the phosphor thin film was irradiated with black light (maximum intensity wavelength: 352 nm) to confirm the presence or absence of fluorescence. The relative intensity of fluorescence was measured with a PL evaluation device (photoluminescence). At this time, ultraviolet light having a wavelength of 325 nm by a HeCd laser was used as an excitation light source, a photomultiplier R1387 was used as a detector, and a fluorescence wavelength intensity at room temperature was measured using a spectrometer SPEX1702 having a grating number of 1200.

表1にスパッタリング成膜に用いたターゲットの成分(質量%)、これによって得られた蛍光体薄膜の成分(原子%)、この蛍光体薄膜のブラックライ照射試験に基づく蛍光の状態及び上記測定によるPL最大強度に示す。   Table 1 shows the components of the target used for sputtering film formation (mass%), the phosphor thin film components (atomic%) obtained by this, the state of fluorescence based on the black rye irradiation test of this phosphor thin film, and the above measurements. Shown in PL maximum intensity.

同表1の結果から、薄膜が本発明の成分規定の範囲内にあるZnS−ZnO:Mn系蛍光体薄膜を成膜した場合は、強い橙色の蛍光を確認したが、同規定範囲外の場合は何れも蛍光が確認できないか若しくは、弱い蛍光しか確認できないことが分かり、従って、本発明によると発光強度の高い優れた蛍光体薄膜がスパッタリング法によっても容易に作成できることが明らかである。   From the results shown in Table 1, when a ZnS-ZnO: Mn phosphor thin film whose thin film is within the range of the component definition of the present invention was formed, strong orange fluorescence was confirmed. It can be seen that no fluorescent light can be confirmed or only weak fluorescent light can be confirmed. Therefore, according to the present invention, it is clear that an excellent phosphor thin film having high emission intensity can be easily produced by sputtering.

Figure 0005406577
Figure 0005406577

Claims (1)

Mnを付活剤として母体材料に添加してなる、平均膜厚が10nm〜5μmである、スパッタリング法で成膜されてなる蛍光体薄膜において、前記母体材料がZnSとZnOの二元系で構成され、Zn:40〜60 at%、O:2 at%〜20at%、Mn:0.1at%〜5.0at%、残りの成分がSと微量の不可避的不純物からなることを特徴とする無機蛍光体薄膜。 In the phosphor thin film formed by sputtering , having an average film thickness of 10 nm to 5 μm, added to the base material as an activator, the base material is composed of a binary system of ZnS and ZnO. Zn: 40 to 60 at%, O: 2 at% to 20 at%, Mn: 0.1 at% to 5.0 at%, and the remaining components are composed of S and a trace amount of inevitable impurities Thin film.
JP2009078073A 2009-03-27 2009-03-27 Phosphor thin film Expired - Fee Related JP5406577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078073A JP5406577B2 (en) 2009-03-27 2009-03-27 Phosphor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078073A JP5406577B2 (en) 2009-03-27 2009-03-27 Phosphor thin film

Publications (2)

Publication Number Publication Date
JP2010229278A JP2010229278A (en) 2010-10-14
JP5406577B2 true JP5406577B2 (en) 2014-02-05

Family

ID=43045390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078073A Expired - Fee Related JP5406577B2 (en) 2009-03-27 2009-03-27 Phosphor thin film

Country Status (1)

Country Link
JP (1) JP5406577B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259082A (en) * 1975-11-11 1977-05-16 Matsushita Electric Ind Co Ltd Fluorescent substance for low speed electron beam
JP3706908B2 (en) * 2002-03-27 2005-10-19 独立行政法人産業技術総合研究所 Method for stable light emission of stress luminescent material for a long period of time and stress luminescent device therefor
JP2008266612A (en) * 2007-03-26 2008-11-06 Semiconductor Energy Lab Co Ltd Phosphor material and method for manufacturing the same
US20090057612A1 (en) * 2007-08-31 2009-03-05 Semiconductor Energy Laboratory Co., Ltd. Phosphor and method for manufacturing the same

Also Published As

Publication number Publication date
JP2010229278A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
US9096799B2 (en) Luminescent element, preparation method thereof and luminescence method
US9096796B2 (en) Luminescent element, preparation method thereof and luminescence method
JP5612688B2 (en) LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING METHOD
Huang et al. Intense red electroluminescence from ZnO: Sm3+/Tb3+ LED by efficient energy transfer from Tb3+ to Sm3+
US9102874B2 (en) Luminescent element, preparation method thereof and luminescence method
JPWO2012147744A1 (en) Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
JP5793723B2 (en) Thin film phosphor and method for forming the same
JP5406577B2 (en) Phosphor thin film
JP4827099B2 (en) Powder phosphor and method for manufacturing the same, and light emitting device, display device and fluorescent lamp having powder phosphor
Chung et al. Luminescent properties of CaTiO3: Pr thin-film phosphor deposited on ZnO/ITO/glass substrate
Chung et al. Characterization of compositional variation and luminescence of ZnGa2O4: Mn thin film phosphor
JP5339683B2 (en) Method of manufacturing phosphor film using multi-source vacuum deposition method
Bae et al. Photoluminescence characteristics of pulsed laser deposited Y2− xGdxO3: Eu3+ thin film phosphors
Yi et al. Surface morphology and photoluminescence characteristics of Eu-doped YVO4 thin films
Bae et al. Crystallinity and morphology dependent luminescence of Li-doped Y2− xGdxO3: Eu3+ thin film phosphors
Yi et al. Enhanced luminescence of Gd2O3: Eu3+ buffer-layered Y2O3: Eu3+ thin films
Park et al. ZnGa 2 O 4 thin films fabricated by Sol-gel spinning coating process
Shim et al. Enhanced luminescent characteristics of laser-ablated GdVO4: Eu3+ thin films by Li-doping
Jeong et al. Li-doping effect on enhancement of photoluminescence in Gd2O3: Eu3+ films
JP5014112B2 (en) Electroluminescent phosphor, electroluminescent device, and sputtering target for producing the same
JP5099820B2 (en) Red light emitting phosphor, FED device and ELD device
EP2657990B1 (en) Light emitting device and manufacturing method thereof
Shin et al. Deposition of Europium Oxide on Si and its optical properties depending on thermal annealing conditions
US20130209794A1 (en) Light emission apparatus and manufacturing method thereof
JP5566610B2 (en) Mixed phosphor and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

LAPS Cancellation because of no payment of annual fees