JP4936969B2 - Magnetostrictive torque sensor shaft manufacturing equipment - Google Patents

Magnetostrictive torque sensor shaft manufacturing equipment Download PDF

Info

Publication number
JP4936969B2
JP4936969B2 JP2007108234A JP2007108234A JP4936969B2 JP 4936969 B2 JP4936969 B2 JP 4936969B2 JP 2007108234 A JP2007108234 A JP 2007108234A JP 2007108234 A JP2007108234 A JP 2007108234A JP 4936969 B2 JP4936969 B2 JP 4936969B2
Authority
JP
Japan
Prior art keywords
torque sensor
sensor shaft
electrode
magnetostrictive
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007108234A
Other languages
Japanese (ja)
Other versions
JP2008267865A (en
Inventor
浩一 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Electronics Holdings Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Electronics Holdings Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2007108234A priority Critical patent/JP4936969B2/en
Publication of JP2008267865A publication Critical patent/JP2008267865A/en
Application granted granted Critical
Publication of JP4936969B2 publication Critical patent/JP4936969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Description

本発明は、トルクセンサシャフト本体の表面に磁歪膜を電解メッキにより設ける磁歪式トルクセンサシャフトの製造装置に関する。 The present invention relates to a manufacturing ZoSo location of the magnetostrictive torque sensor shaft provided by electroplating the magnetostrictive film on the surface of the torque sensor shaft body.

従来より、トルクの検出をするトルクセンサとしては、トルクセンサシャフト本体の表面に磁歪膜を設けて成る磁歪式トルクセンサシャフトを具え、このトルクセンサシャフトの磁歪膜を設けた部分の外周に検出コイルを配置した構成で、トルクセンサシャフトに作用するトルクにより、上記磁歪膜に引張りや圧縮の応力が及び、それによる逆磁歪効果で磁歪膜の透磁率が変化することに応じ、その透磁率変化を検出コイルにより検出するものが供されている(例えば特許文献1参照)。   Conventionally, as a torque sensor for detecting torque, a magnetostrictive torque sensor shaft having a magnetostrictive film provided on the surface of a torque sensor shaft body is provided, and a detection coil is provided on the outer periphery of the portion of the torque sensor shaft provided with the magnetostrictive film. In accordance with the configuration in which the tensile force or compressive stress is applied to the magnetostrictive film due to the torque acting on the torque sensor shaft, and the magnetic permeability of the magnetostrictive film changes due to the inverse magnetostrictive effect thereby, the change in the magnetic permeability is changed. What detects by a detection coil is provided (for example, refer patent document 1).

そして、このものにおいては、上記磁歪膜を、前記トルクセンサシャフト本体の表面に電解メッキで設けるようにしたものが供されている(例えば特許文献2参照)。
更に、磁歪膜に特定されないが、一般的メッキの方法及び装置として、複数本の被処理体を円周上に均等間隔に配置し、この被処理体を円周に沿って周回移動させると共に、被処理体自体も回転させながら、被処理体にメッキを施すようにしたものがある(例えば特許文献3参照)。
特開2003−98017号公報 特開2005-3622号公報 特開平4-63287号公報
And in this thing, what provided the said magnetostrictive film in the surface of the said torque sensor shaft main body by electroplating is provided (for example, refer patent document 2).
Further, although not specified as a magnetostrictive film, as a general plating method and apparatus, a plurality of objects to be processed are arranged at equal intervals on the circumference, and the objects to be processed are moved around the circumference, There is one in which the object to be processed is plated while rotating the object to be processed itself (see, for example, Patent Document 3).
JP 2003-98017 A JP 2005-3622 A JP-A-4-63287

磁歪材としての例えばニッケル(Ni)と鉄との合金は、図13に示すように、材料の組成(ニッケルと鉄との含有比率)により飽和磁歪定数(λ)が変化する(図13には、横軸にニッケルの比率を示しており、これの残りの比率が鉄の含有比率である)。
この材料を磁歪式トルクセンサの磁歪膜に応用した場合、上記飽和磁歪定数の変化により、シャフトに作用するトルクから得られる検出コイルのインダクタンス変化も変化することによって、磁歪式トルクセンサの感度が変化することになる。
For example, an alloy of nickel (Ni) and iron as a magnetostrictive material has a saturation magnetostriction constant (λ) that varies depending on the material composition (content ratio of nickel and iron) (see FIG. 13). The horizontal axis indicates the nickel ratio, and the remaining ratio is the iron content ratio).
When this material is applied to the magnetostrictive film of a magnetostrictive torque sensor, the sensitivity of the magnetostrictive torque sensor changes due to the change in inductance of the detection coil obtained from the torque acting on the shaft due to the change in the saturation magnetostriction constant. Will do.

一方、ニッケルと鉄との合金を電解メッキで形成する場合、特許文献2に示されているように、メッキ液中に複数のニッケル電極を配置し、その間のほゞ中央にトルクセンサシャフト本体を配置し、ニッケル電極を正極、シャフトを負極として、それらの間に通電することにより、トルクセンサシャフト本体の表面にニッケルと鉄との合金から成る磁歪膜を形成する。   On the other hand, when an alloy of nickel and iron is formed by electrolytic plating, as shown in Patent Document 2, a plurality of nickel electrodes are arranged in the plating solution, and the torque sensor shaft body is arranged at the center between them. A magnetostrictive film made of an alloy of nickel and iron is formed on the surface of the torque sensor shaft main body by arranging and supplying a nickel electrode as a positive electrode and a shaft as a negative electrode and energizing between them.

図14は、そのように磁歪膜を電解メッキで形成する場合の電流密度(電流値〔A〕をシャフトのメッキ部表面積〔dm〕で除した値)と、磁歪膜に析出されるニッケル組成(残りは鉄成分)との関係を示したもので、直径が8〔mm〕のシャフトに、20〔mm〕の長さ範囲で、電流密度別に、それぞれ磁歪膜の厚みが15〔μm〕になるように時間を調整して、電解メッキしたときのものである。 FIG. 14 shows the current density (the value obtained by dividing the current value [A] by the surface area [dm 2 ] of the shaft) and the nickel composition deposited on the magnetostrictive film when the magnetostrictive film is formed by electrolytic plating. (Remaining iron component). The shaft is 8 [mm] in diameter, the length is 20 [mm], and the magnetostrictive film thickness is 15 [μm] for each current density. The time is adjusted so that the electrolytic plating is performed.

この図14で明らかなように、電流密度が大きくなると、ニッケル成分が減少(鉄成分が増加)し、ある電流密度より大きいと、ニッケル成分は飽和する傾向にあることが分かる。
又、図15は、電流密度と磁歪膜の厚みとの関係を示したもので、上述と同じトルクセンサシャフト本体に対して、電流密度別に、それぞれ45〔分〕の時間で電解メッキを行って磁歪膜を形成したときのものである。これにより、磁歪膜の厚みは、電流密度にほゞ比例する関係にあることが分かる。
As is apparent from FIG. 14, when the current density increases, the nickel component decreases (the iron component increases), and when the current density exceeds a certain current density, the nickel component tends to saturate.
FIG. 15 shows the relationship between the current density and the thickness of the magnetostrictive film. The same torque sensor shaft body as described above was subjected to electrolytic plating for 45 minutes for each current density. This is when a magnetostrictive film is formed. Thus, it can be seen that the thickness of the magnetostrictive film is in a relationship that is approximately proportional to the current density.

磁歪膜は、組成だけでなく、厚みも均一であることが重要であり、厚みが部分的に変化することにより、トルクセンサ特性の直線性の悪化や、出力の変動、温度特性などに影響する。従来、この解決手段の一つとして、前記メッキ液中の複数のニッケル電極間のほゞ中央に配置したトルクセンサシャフト本体を回転させたり、上下に揺動させたりして、磁歪膜の均一化を図っていた。   It is important that the magnetostrictive film not only has a uniform composition but also a uniform thickness. When the thickness partially changes, the linearity of the torque sensor characteristics, output fluctuation, temperature characteristics, etc. are affected. . Conventionally, as one of the solutions, the magnetostrictive film is made uniform by rotating or swinging up and down the torque sensor shaft body arranged at the center between the plurality of nickel electrodes in the plating solution. I was trying.

しかし、それは1本ずつのシャフトにしかメッキを施すことができないものであり、多量に生産するためには、メッキ装置を多数備える必要があって、製造設備費用が高額になる。又、メッキ装置の設置場所も広く必要であることから、多大な製造コストが発生する。
それに対して、特許文献3に示されている、複数本の被処理体を円周上に均等間隔に配置し、この被処理体を円周に沿って周回移動させると共に、被処理体自体も回転させながら、被処理体にメッキを施すものでは、複数本ずつの生産ができるため、メッキ装置を多数備える必要がなく、製造コスト上、有利である。
However, it can only plate one shaft at a time, and in order to produce in large quantities, it is necessary to provide a large number of plating apparatuses, which increases the cost of manufacturing equipment. In addition, the installation location of the plating apparatus is widely required, so that a great production cost is generated.
On the other hand, as shown in Patent Document 3, a plurality of objects to be processed are arranged on the circumference at equal intervals, the objects to be processed are moved around the circumference, and the objects to be processed themselves are also included. In the case where the object to be treated is plated while being rotated, a plurality of pieces can be produced, so that it is not necessary to provide many plating apparatuses, which is advantageous in terms of manufacturing cost.

しかしながら、複数本の被処理体であるトルクセンサシャフトについて、それとニッケル電極との各間に流れる電流が、各部の接触抵抗の違いなどにより、均等となりにくく、その各間に流れる電流密度が相違する。このため、前述のように、メッキされる磁歪膜の組成と膜厚がトルクセンサシャフトごとに異なるものとなり、その結果、トルクセンサの特性や精度にばらつきを生じやすい。   However, the current flowing between each of the torque sensor shafts, which are a plurality of workpieces, and the nickel electrode is difficult to be uniform due to the difference in the contact resistance of each part, and the current density flowing between each of them is different. . For this reason, as described above, the composition and thickness of the magnetostrictive film to be plated are different for each torque sensor shaft, and as a result, the characteristics and accuracy of the torque sensor are likely to vary.

本発明は上述の事情に鑑みてなされたものであり、従ってその目的は、磁歪式トルクセンサシャフトを複数本ずつ、磁歪膜の組成や膜厚を均一にして製造できる磁歪式トルクセンサシャフトの製造装置を提供するにある。 The present invention has been made in view of the above-described circumstances, and therefore the object thereof is to produce a magnetostrictive torque sensor shaft capable of producing a plurality of magnetostrictive torque sensor shafts with a uniform composition and thickness of the magnetostrictive film. to provide a ZoSo location.

本発明の磁歪式トルクセンサシャフトの製造装置においては、トルクセンサシャフト本体の表面に磁歪膜を電解メッキにより設ける装置において、主軸と、この主軸の周囲に具えられた複数個のトルクセンサシャフト本体支持部と、このトルクセンサシャフト本体支持部を前記主軸を中心に周回移動させると共に、トルクセンサシャフト本体支持部を回転させる回転機構と、前記主軸に前記トルクセンサシャフト本体支持部の個数に対応して複数具えられた回転電極と、前記トルクセンサシャフト本体支持部のそれぞれに具えられて、前記主軸の回転電極に接続された回転電極と、前記トルクセンサシャフト本体支持部の全部に対向して配置された共通のメッキ電極と、正と負の出力端子を具え、その正の出力端子を前記メッキ電極に接続し、負の出力端子を前記主軸の回転電極に接続して設けた定電流回路とを具備し、その定電流回路は、前記トルクセンサシャフト本体支持部の個数に対応して複数具えられ、それぞれ、電源に接続されて、前記主軸の各回転電極と前記メッキ電極との間に流れる電流により発生する電圧と基準の電圧とを比較演算して、その差に応じた電流を前記主軸の各回転電極と前記メッキ電極との間に流すことにより、前記主軸の各回転電極と前記メッキ電極との間に定電流を流すように構成したことを特徴とする。 In the magnetostrictive torque sensor shaft manufacturing apparatus of the present invention, in the apparatus in which a magnetostrictive film is provided on the surface of the torque sensor shaft main body by electrolytic plating, the main shaft and a plurality of torque sensor shaft main bodies provided around the main shaft are supported. Corresponding to the number of torque sensor shaft main body support portions, and a rotation mechanism for rotating the torque sensor shaft main body support portion around the main shaft and rotating the torque sensor shaft main body support portion. A plurality of rotating electrodes provided in each of the torque sensor shaft main body support portions, the rotation electrodes connected to the rotation electrodes of the main shaft, and the torque sensor shaft main body support portions are arranged opposite to each other. A common plating electrode and positive and negative output terminals, and the positive output terminal is connected to the plating electrode. A constant current circuit provided with a negative output terminal connected to the rotating electrode of the main shaft, and a plurality of the constant current circuits are provided corresponding to the number of torque sensor shaft body support portions, And a reference voltage is compared with a voltage generated by a current flowing between each rotating electrode of the main shaft and the plating electrode, and a current corresponding to the difference is compared with each rotating electrode of the main shaft. wherein by flowing between the plating electrode, characterized in that it is configured to flow a constant current between the plating electrode and the rotary electrode of the main shaft.

上記構成の磁歪式トルクセンサシャフトの製造装置によれば、複数本ずつの磁歪式トルクセンサシャフトの生産ができるため、メッキ装置を多数備える必要がなく、製造コスト上、有利である。又、トルクセンサシャフト本体を要するに公転、自転させると共に、トルクセンサシャフト本体1本ごとの定電流回路にてトルクセンサシャフト本体とメッキ電極との間に給電する電解メッキをして、上記複数本のトルクセンサシャフト本体の各表面にそれぞれ磁歪膜を設けるのであるから、トルクセンサシャフト本体とメッキ電極との各間に流れる電流が、各部の接触抵抗の違いや、トルクセンサシャフト本体の個体抵抗の違いなどがあっても均等となり、その各間に流れる電流密度が一定となる。よって、メッキされる磁歪膜の組成と膜厚も均一化し、トルクセンサの特性や精度を良好に確保できる。 According to manufacturing ZoSo location of the magnetostrictive torque sensor shaft having the above structure, since it is produced in the magnetostrictive torque sensor shaft are provided in plurality, there is no need to provide a large number of plating apparatus, the manufacturing cost is advantageous. In addition, the torque sensor shaft main body is revolved and rotated, and electrolytic plating is performed to supply power between the torque sensor shaft main body and the plating electrode in a constant current circuit for each torque sensor shaft main body. Since the magnetostrictive film is provided on each surface of the torque sensor shaft body, the current flowing between the torque sensor shaft body and the plating electrode causes differences in contact resistance between parts and differences in individual resistance of the torque sensor shaft body. Etc., and the current density flowing between them is constant. Therefore, the composition and film thickness of the magnetostrictive film to be plated are made uniform, and the characteristics and accuracy of the torque sensor can be ensured satisfactorily.

以下、本発明の一実施例(一実施形態)につき、図1ないし図12を参照して説明する。
まず、図6には、トルクセンサ1の全体構造を示しており、中央に磁歪式トルクセンサシャフト2を有している。この磁歪式トルクセンサシャフト2は、ステンレス鋼など金属にて円柱状に形成したトルクセンサシャフト本体3と、これの図中左右方向の中間部の近接した二箇所の表面に設けた磁歪膜4から成っており、その詳細は後述する。
Hereinafter, an embodiment (one embodiment) of the present invention will be described with reference to FIGS.
First, FIG. 6 shows the overall structure of the torque sensor 1, which has a magnetostrictive torque sensor shaft 2 in the center. The magnetostrictive torque sensor shaft 2 includes a torque sensor shaft main body 3 formed in a cylindrical shape with a metal such as stainless steel, and a magnetostrictive film 4 provided on two adjacent surfaces in the middle portion in the horizontal direction in the drawing. Details thereof will be described later.

磁歪式トルクセンサシャフトの上記磁歪膜4を設けた部分の外周囲には、それぞれ検出コイル5をボビン6に巻装した状態で配設している。ボビン6には、導電材から成る2本の接続ピン7を挿通して固着しており、この接続ピン7のボビン6内側部分に、検出コイル5の各端部を接続している。   A detection coil 5 is wound around a bobbin 6 on the outer periphery of the portion of the magnetostrictive torque sensor shaft where the magnetostrictive film 4 is provided. Two connection pins 7 made of a conductive material are inserted into and fixed to the bobbin 6, and each end of the detection coil 5 is connected to the inside of the bobbin 6 of the connection pin 7.

トルクセンサシャフト本体3の磁歪膜4を設けた部分の両側には、軸受8をそれぞれ装着し、これらの両軸受8からボビン6にかけて、フレーム9を被装している。このフレーム9の図中左側部の外側には、各種電気部品10を実装した中継用基板11を装着しており、この中継用基板11に、フレーム9から突出させた前記接続ピン7の先端部を挿通させて半田付け等により接続している。   Bearings 8 are mounted on both sides of the portion of the torque sensor shaft body 3 where the magnetostrictive film 4 is provided, and a frame 9 is mounted from both the bearings 8 to the bobbin 6. A relay substrate 11 on which various electrical components 10 are mounted is attached to the outside of the left side portion of the frame 9 in the drawing, and the tip end portion of the connection pin 7 protruding from the frame 9 is mounted on the relay substrate 11. Are connected by soldering or the like.

なお、中継用基板11に実装した各種電気部品10は、検出コイル5と協働して、磁歪式トルクセンサシャフトに作用したトルクを検出するもので、磁歪式トルクセンサシャフトに作用したトルクにより及ぶ応力で磁歪膜4の透磁率が変化することに応じ、その透磁率変化を検出することで、磁歪式トルクセンサシャフトに作用したトルクを検出するようになっている。   The various electrical components 10 mounted on the relay substrate 11 detect the torque acting on the magnetostrictive torque sensor shaft in cooperation with the detection coil 5 and are covered by the torque acting on the magnetostrictive torque sensor shaft. The torque acting on the magnetostrictive torque sensor shaft is detected by detecting the change in the magnetic permeability according to the change in the magnetic permeability of the magnetostrictive film 4 due to the stress.

ここで、磁歪式トルクセンサシャフト2につき、図7及び図8を参照して詳述するに、この磁歪式トルクセンサシャフト2は、トルクセンサシャフト本体3の前記二箇所の表面部に、例えば転造法にて凹条部12と凸条部13とを交互に形成し、その外周面(トルクセンサシャフト本体3の表面)に例えばニッケルと鉄との合金から成る磁歪膜4を電解メッキにて形成している。凹条部12と凸条部13のパターンは、磁歪式トルクセンサシャフト2に作用するトルクによる応力が磁歪膜4に効果的に及ぶように軸方向に対して傾斜状、特には応力が磁歪膜4に最も有効に及ぶように約45度角の傾斜状に延びるように形成しており、更に、図中左側の凹条部12及び凸条部13と右側の凹条部12及び凸条部13とでは、その傾斜の方向を逆にしていて、図中左側の磁歪膜4と右側の磁歪膜4とで反対の応力が及ぶようにしている。   Here, the magnetostrictive torque sensor shaft 2 will be described in detail with reference to FIGS. 7 and 8. The magnetostrictive torque sensor shaft 2 is, for example, rolled onto the two surface portions of the torque sensor shaft body 3. By forming the concave stripes 12 and the convex stripes 13 alternately, a magnetostrictive film 4 made of an alloy of nickel and iron, for example, is formed on the outer peripheral surface (surface of the torque sensor shaft body 3) by electrolytic plating. Forming. The pattern of the concave stripe portion 12 and the convex stripe portion 13 is inclined with respect to the axial direction so that the stress due to the torque acting on the magnetostrictive torque sensor shaft 2 is effectively applied to the magnetostrictive film 4, and in particular, the stress is magnetostrictive film. 4 is formed so as to extend at an angle of about 45 degrees so as to be most effective at 4, and further, the left ridge 12 and ridge 13 and the right ridge 12 and ridge in the drawing. 13, the direction of the inclination is reversed so that the opposite stress is exerted on the left magnetostrictive film 4 and the right magnetostrictive film 4 in the figure.

図1は、上記磁歪式トルクセンサシャフト2を製造する装置を示しており、中央に主軸14を有している。主軸14の上部には上部回転支持体15を取付け、下部に下部回転支持体16を取付けている。これらの回転支持体15,16間には、主軸14の周囲円周上に均等間隔に位置して、複数(図2に示す例では4本)の前記トルクセンサシャフト本体3を、それぞれトルクセンサシャフト本体支持部17,18によって支持するようにしており、又、その支持状態で、トルクセンサシャフト本体3は、前記磁歪膜4を設ける部分以外の部分がマスク部材19,20よってマスキングされるようになっている。   FIG. 1 shows an apparatus for manufacturing the magnetostrictive torque sensor shaft 2 having a main shaft 14 in the center. An upper rotary support 15 is attached to the upper part of the main shaft 14, and a lower rotary support 16 is attached to the lower part. A plurality of (four in the example shown in FIG. 2) torque sensor shaft bodies 3 are arranged between the rotation supports 15 and 16 at equal intervals on the circumference of the main shaft 14, respectively. The torque sensor shaft body 3 is supported by the shaft body support portions 17 and 18, and the portions other than the portion where the magnetostrictive film 4 is provided are masked by the mask members 19 and 20 in the supported state. It has become.

上記トルクセンサシャフト本体支持部17,18の周囲には、それらトルクセンサシャフト本体支持部17,18の全部に対向して、換言すれば、メッキするトルクセンサシャフト本体3の全部に対向して、円筒状を成す共通のメッキ電極21を配設しており、このメッキ電極21とトルクセンサシャフト本体支持部17,18の全部(トルクセンサシャフト本体3の全部)を、全部のマスク部材19,20と共に、メッキ槽22内のメッキ液23中に配置するようにしている。なお、メッキ電極21は、この場合、ニッケル電極である。   Around the torque sensor shaft main body support portions 17 and 18, the torque sensor shaft main body support portions 17 and 18 are opposed to all of the torque sensor shaft main body support portions 17 and 18. A common plating electrode 21 having a cylindrical shape is disposed, and the plating electrode 21 and the torque sensor shaft main body support portions 17 and 18 (all of the torque sensor shaft main body 3) are connected to all the mask members 19 and 20. At the same time, it is arranged in the plating solution 23 in the plating tank 22. In this case, the plating electrode 21 is a nickel electrode.

そして、図示はしないが、上記の構造に対しては、モータを駆動源に、そのほかギヤ伝動機構等を有して成る回転機構が設けられ、この回転機構により、図2に矢印A,Bで示すように、上記トルクセンサシャフト本体支持部17,18(トルクセンサシャフト本体3)を主軸14を中心にその周囲円周上を周回移動(公転)させると共に、トルクセンサシャフト本体支持部17,18自体を回転(自転)させるようにしている。
なお、主軸14の回転速度に対して、トルクセンサシャフト本体支持部17,18の回転速度はそれの非整数倍としており、それによって、それらの回転が同期することを避け、後述する電解メッキがより均一に行われるようにしている。
Although not shown, the above structure is provided with a rotation mechanism having a motor as a drive source and a gear transmission mechanism and the like. By this rotation mechanism, arrows A and B in FIG. As shown in the figure, the torque sensor shaft body support portions 17 and 18 (torque sensor shaft body 3) are moved around the circumference of the main shaft 14 (revolution) and the torque sensor shaft body support portions 17 and 18 are rotated. It is designed to rotate (spin) itself.
Note that the rotational speed of the torque sensor shaft main body support portions 17 and 18 is a non-integer multiple of the rotational speed of the main shaft 14, thereby avoiding that their rotations are synchronized, and electrolytic plating described later is performed. It is done more uniformly.

一方、上部回転支持体15(ひいては主軸14)には、上記トルクセンサシャフト本体3の個数に対応して、複数のリング状を成す固定電極24を設けると共に、この固定電極24にそれぞれ接する回転電極25を設けており、それに対して、トルクセンサシャフト本体支持部17には、それぞれ回転電極25に接続される回転電極26を設け、それらによって、上述のように公転、自転をするトルクセンサシャフト本体支持部17(トルクセンサシャフト本体3)に給電をするようにしている。   On the other hand, the upper rotating support 15 (and thus the main shaft 14) is provided with a plurality of ring-shaped fixed electrodes 24 corresponding to the number of the torque sensor shaft bodies 3, and the rotating electrodes in contact with the fixed electrodes 24, respectively. 25, and the torque sensor shaft main body support portion 17 is provided with a rotation electrode 26 connected to the rotation electrode 25, respectively, and thereby the torque sensor shaft main body that revolves and rotates as described above. Electric power is supplied to the support portion 17 (torque sensor shaft body 3).

上記の給電するについては、前記トルクセンサシャフト本体3の個数に対応して、複数すなわちトルクセンサシャフト本体3の1本ごとに定電流回路27を設けており、その定電流回路27は正(+)の出力端子28と負(−)の出力端子29とを具え、そのうちの正の出力端子28を前記メッキ電極21に接続し、負の出力端子29を前記上部回転支持体15(主軸14)の各固定電極24にそれぞれ接続し、ひいては前記回転電極25にそれぞれ接続している。従って又、負の出力端子29は前記回転電極26を介してトルクセンサシャフト本体3に接続されるようになっており、その結果、正の出力端子28から、メッキ電極21−メッキ液23−トルクセンサシャフト本体3−トルクセンサシャフト本体支持部17−回転電極26−回転電極25−固定電極24−負の出力端子29と、電流を流すようにしている。   For the above power feeding, a constant current circuit 27 is provided for each of the plurality of torque sensor shaft bodies 3 corresponding to the number of the torque sensor shaft bodies 3, and the constant current circuits 27 are positive (+ ) Output terminal 28 and negative (-) output terminal 29, of which positive output terminal 28 is connected to the plating electrode 21, and the negative output terminal 29 is connected to the upper rotary support 15 (main shaft 14). The fixed electrodes 24 are connected to the rotating electrodes 25, respectively. Accordingly, the negative output terminal 29 is connected to the torque sensor shaft main body 3 through the rotating electrode 26. As a result, from the positive output terminal 28, the plating electrode 21-plating solution 23-torque. Sensor shaft main body 3-torque sensor shaft main body support portion 17-rotating electrode 26-rotating electrode 25-fixed electrode 24-negative output terminal 29, and a current flow.

図3は、上記定電流回路27の1つを代表で詳細に示している。この図3で、Eは例えば直流12〔V〕の主電源を示しており、これに上記正の出力端子28を接続している。それに対して、負の出力端子29は増幅素子であるnpn形トランジスタ30のコレクタcに接続している。
トランジスタ30のエミッタeには電流検出素子である抵抗31を接続しており、この抵抗31に、前記正の出力端子28と負の出力端子29との間に上述のように流れる電流に応じた電圧が発生し、その電圧信号をフィルタ回路32を介して比較演算素子33の負側端子34に入力するようにしている。
FIG. 3 shows one of the constant current circuits 27 as a representative in detail. In FIG. 3, E indicates a main power source of DC 12 [V], for example, to which the positive output terminal 28 is connected. On the other hand, the negative output terminal 29 is connected to the collector c of the npn transistor 30 which is an amplifying element.
A resistor 31 that is a current detection element is connected to the emitter e of the transistor 30, and the resistor 31 corresponds to the current that flows between the positive output terminal 28 and the negative output terminal 29 as described above. A voltage is generated, and the voltage signal is input to the negative terminal 34 of the comparison operation element 33 via the filter circuit 32.

比較演算素子33の正側端子35には、電流設定手段である可変抵抗36と固定抵抗37とにより形成される設定電流値相当(基準)の電圧信号を、抵抗38を介して入力するようにしており、この正側端子35の入力と先の負側端子34の入力とで比較演算素子33が比較演算をして、その入力差に応じた出力電流を抵抗39を介して前記トランジスタ30のベースbに与える。それによって、前記正の出力端子28と負の出力端子29との間には、上記入力差に応じた電流がトランジスタ30のコレクタcとエミッタeとの間を通じて流れるようになっており、かくして、前記正の出力端子28と負の出力端子29との間に上記可変抵抗36と固定抵抗37とにより設定した定電流が流れるようにしている。   A voltage signal corresponding to a set current value (reference) formed by a variable resistor 36 and a fixed resistor 37 as current setting means is input to the positive terminal 35 of the comparison operation element 33 via a resistor 38. The comparison operation element 33 performs a comparison operation between the input of the positive terminal 35 and the input of the previous negative terminal 34, and an output current corresponding to the input difference is supplied to the transistor 30 via the resistor 39. To base b. Thereby, a current corresponding to the input difference flows between the positive output terminal 28 and the negative output terminal 29 between the collector c and the emitter e of the transistor 30, and thus, A constant current set by the variable resistor 36 and the fixed resistor 37 flows between the positive output terminal 28 and the negative output terminal 29.

図4は、上記定電流回路27の機能効果を示しており、同図の(a)に示すように、両出力端子28,29間にかかる電圧には、固定電極24や回転電極25,26の接触部の接触抵抗の違いや、トルクセンサシャフト本体3の個体抵抗の違いなどにより、変化が起きるものの、両出力端子28,29間に流れる電流は、同図の(b)に示すように、一定となる。
なお、図5は、上記定電流回路27を用いずに、同部分に一定の電圧を印加した場合の電流を示しており,時間の経過と共に電流値が変動していることが分かる。
FIG. 4 shows the functional effect of the constant current circuit 27. As shown in FIG. 4A, the voltage applied between the output terminals 28 and 29 includes the fixed electrode 24 and the rotating electrodes 25 and 26, respectively. The current flowing between the output terminals 28 and 29 is as shown in (b) of the figure, although the change occurs due to the difference in contact resistance between the contact portions of the torque sensor shaft and the individual resistance of the torque sensor shaft body 3. , Become constant.
FIG. 5 shows the current when a constant voltage is applied to the same portion without using the constant current circuit 27, and it can be seen that the current value fluctuates with the passage of time.

従って、上記構成のものの場合、トルクセンサシャフト本体支持部17,18に支持された複数のトルクセンサシャフト本体3がメッキ液23中で主軸14の周囲を公転しつつ自転する状況で、メッキ電極21と全トルクセンサシャフト本体3との間を含む、定電流回路27の正の出力端子28と負の出力端子29との間にそれぞれ定電流が流れるものであり、かくして、トルクセンサシャフト本体3のマスキングされた部分以外の部分が電解メッキされ、磁歪膜4が形成される。   Therefore, in the case of the above-described configuration, the plating electrode 21 is in a situation where the plurality of torque sensor shaft bodies 3 supported by the torque sensor shaft body support portions 17 and 18 rotate while revolving around the main shaft 14 in the plating solution 23. Constant current flows between the positive output terminal 28 and the negative output terminal 29 of the constant current circuit 27 including the space between the torque sensor shaft body 3 and the entire torque sensor shaft body 3. Parts other than the masked part are electroplated to form the magnetostrictive film 4.

よって、上記構成のものの場合、複数本ずつの磁歪式トルクセンサシャフト2の生産ができるものであり、メッキ装置を多数備える必要がないので、製造コスト上、有利である。又、トルクセンサシャフト本体3を公転、自転させると共に、トルクセンサシャフト本体3の1本ごとの定電流回路27にてトルクセンサシャフト本体3とメッキ電極21との間に給電する電解メッキをして、複数本のトルクセンサシャフト本体3の各表面にそれぞれ磁歪膜を設けるのであるから、トルクセンサシャフト本体3とメッキ電極21との各間に流れる電流が、固定電極24や回転電極25,26の接触部の接触抵抗の違いや、トルクセンサシャフト本体3の個体抵抗の違いなどがあっても均等となり、その各間に流れる電流密度が一定となる。よって、メッキされる磁歪膜4の組成と膜厚も全トルクセンサシャフト本体3について均一化し、トルクセンサ1の特性や精度を良好に確保できる。   Therefore, in the case of the above configuration, a plurality of magnetostrictive torque sensor shafts 2 can be produced, and it is not necessary to provide many plating apparatuses, which is advantageous in terms of manufacturing cost. The torque sensor shaft body 3 is revolved and rotated, and electroplating is performed to supply power between the torque sensor shaft body 3 and the plating electrode 21 by a constant current circuit 27 for each torque sensor shaft body 3. Since the magnetostrictive film is provided on each surface of the plurality of torque sensor shaft bodies 3, the current flowing between the torque sensor shaft body 3 and the plating electrode 21 is applied to the fixed electrode 24 and the rotating electrodes 25 and 26. Even if there is a difference in the contact resistance of the contact portion or a difference in the individual resistance of the torque sensor shaft body 3, the current density flowing between them becomes constant. Therefore, the composition and film thickness of the magnetostrictive film 4 to be plated are made uniform for all the torque sensor shaft bodies 3, and the characteristics and accuracy of the torque sensor 1 can be ensured satisfactorily.

図9は、上記構成のものの効果を示しており、(a)に磁歪膜4のニッケル組成の変動度合を、(b)に磁歪膜4の膜厚の変動度合を示している。ともに、設定値どおりのもの(変動値「0」)のものが多くて、均一度が高い。これに対して、定電流回路27を用いない従来のものでは、図10の(a)、(b)に示すように、磁歪膜4のニッケル組成の変動度合(a)、並びに磁歪膜4の膜厚の変動度合(b)は、ともに、設定値どおりのもの(変動値「0」)のものが少なくて、均一度が低い。   FIG. 9 shows the effect of the configuration described above. FIG. 9A shows the degree of fluctuation of the nickel composition of the magnetostrictive film 4 and FIG. 9B shows the degree of fluctuation of the film thickness of the magnetostrictive film 4. In many cases, the set values are as many as possible (variation value “0”), and the uniformity is high. On the other hand, in the conventional device not using the constant current circuit 27, as shown in FIGS. 10 (a) and 10 (b), the variation degree (a) of the nickel composition of the magnetostrictive film 4 and the magnetostrictive film 4 The film thickness variation degree (b) is low as the set value (variation value “0”) is low, and the uniformity is low.

又、図11も、上記構成のものの効果を示しており、上記磁歪膜4を有する磁歪式トルクセンサシャフト2を使用したトルクセンサ1の、シャフト回転に対する出力変動の様子を示していて、複数(一例として3個)のサンプルについて、出力変動が少ないことが分かる。これにより、トルクセンサ1の特性や精度を良好に確保できる。それに対して、定電流回路27を用いないで製造した従来のものでは、図12に示すように、複数(一例として5個)のサンプルについて、出力変動が多いことが分かる。これでは、トルクセンサの特性や精度を良好に確保することはできない。
なお、本発明は上記し且つ図面に示した実施例にのみ限定されるものではなく、特に磁歪膜の具体的材料その他の点につき、要旨を逸脱しない範囲内で適宜変更して実施し得る。
FIG. 11 also shows the effect of the configuration described above, and shows how the torque sensor 1 using the magnetostrictive torque sensor shaft 2 having the magnetostrictive film 4 changes in output with respect to shaft rotation. It can be seen that the output fluctuation is small for 3 samples as an example. Thereby, the characteristics and accuracy of the torque sensor 1 can be ensured satisfactorily. On the other hand, in the conventional device manufactured without using the constant current circuit 27, as shown in FIG. 12, it can be seen that there are many output fluctuations for a plurality of samples (for example, five samples). In this case, the characteristics and accuracy of the torque sensor cannot be ensured satisfactorily.
It should be noted that the present invention is not limited only to the embodiment described above and shown in the drawings, and in particular, the specific materials and other points of the magnetostrictive film can be appropriately changed and implemented without departing from the scope of the invention.

本発明の一実施例を示す製造装置の概略的構成図Schematic configuration diagram of a manufacturing apparatus showing an embodiment of the present invention 図1のX−X線に沿う断面図Sectional drawing which follows the XX line of FIG. 定電流回路の電気回路図Electric circuit diagram of constant current circuit 定電流回路の機能効果を示す図The figure which shows the functional effect of the constant current circuit 従来のものの図4(b)相当図Fig. 4 (b) equivalent of the conventional one トルクセンサの断面図Cross section of torque sensor 磁歪式トルクセンサシャフトの磁歪膜部分の側面図Side view of magnetostrictive film part of magnetostrictive torque sensor shaft 図7のY−Y線に沿う拡大断面図FIG. 7 is an enlarged sectional view taken along line YY in FIG. 本発明の効果を示す図The figure which shows the effect of this invention 従来のものの図9相当図Figure 9 equivalent to the conventional one 本発明の異なる効果を示す図The figure which shows the different effect of this invention 従来のものの図11相当図Figure 11 equivalent figure of the conventional one 磁歪材の組成と飽和磁歪定数との関係を示す図Diagram showing the relationship between magnetostrictive material composition and saturation magnetostriction constant 磁歪膜形成の際の電流密度と磁歪膜のニッケル組成との関係を示す図The figure which shows the relationship between the current density at the time of magnetostrictive film formation and the nickel composition of a magnetostrictive film 磁歪膜形成の際の電流密度と磁歪膜の厚みとの関係を示す図The figure which shows the relationship between the current density at the time of magnetostrictive film formation and the thickness of a magnetostrictive film

符号の説明Explanation of symbols

図面中、1はトルクセンサ、2は磁歪式トルクセンサシャフト、3はトルクセンサシャフト本体、4は磁歪膜、14は主軸、17はトルクセンサシャフト本体支持部、21はメッキ電極、25,26は回転電極、27は定電流回路、28は正の出力端子、29は負の出力端子、30はトランジスタ(増幅素子)、31は抵抗(電流検出素子)、33は比較演算素子、37は可変抵抗(電流設定手段)を示す。   In the drawings, 1 is a torque sensor, 2 is a magnetostrictive torque sensor shaft, 3 is a torque sensor shaft body, 4 is a magnetostrictive film, 14 is a main shaft, 17 is a torque sensor shaft body support, 21 is a plated electrode, and 25 and 26 are Rotating electrode, 27 is a constant current circuit, 28 is a positive output terminal, 29 is a negative output terminal, 30 is a transistor (amplifying element), 31 is a resistance (current detection element), 33 is a comparison operation element, and 37 is a variable resistance (Current setting means) is shown.

Claims (1)

トルクセンサシャフト本体の表面に磁歪膜を電解メッキにより設ける装置において、
主軸と、
この主軸の周囲に均等間隔で具えられた複数個のトルクセンサシャフト本体支持部と、
このトルクセンサシャフト本体支持部を前記主軸を中心に周回移動させると共に、トルクセンサシャフト本体支持部を回転させる回転機構と、
前記主軸に前記トルクセンサシャフト本体支持部の個数に対応して複数具えられた回転電極と、
前記トルクセンサシャフト本体支持部のそれぞれに具えられて、前記主軸の回転電極に接続された回転電極と、
前記トルクセンサシャフト本体支持部の全部に対向して配置された共通のメッキ電極と、
正と負の出力端子を具え、その正の出力端子を前記メッキ電極に接続し、負の出力端子を前記主軸の回転電極に接続して設けた定電流回路とを具備し、
その定電流回路は、前記トルクセンサシャフト本体支持部の個数に対応して複数具えられ、それぞれ、電源に接続されて、前記主軸の各回転電極と前記メッキ電極との間に流れる電流により発生する電圧と基準の電圧とを比較演算して、その差に応じた電流を前記主軸の各回転電極と前記メッキ電極との間に流すことにより、前記主軸の各回転電極と前記メッキ電極との間に定電流を流すように構成したことを特徴とする磁歪式トルクセンサシャフトの製造装置
In an apparatus for providing a magnetostrictive film on the surface of the torque sensor shaft body by electrolytic plating,
The spindle,
A plurality of torque sensor shaft body support portions provided at equal intervals around the main shaft;
A rotation mechanism for rotating the torque sensor shaft body support portion around the main shaft and rotating the torque sensor shaft body support portion;
A plurality of rotating electrodes provided corresponding to the number of the torque sensor shaft main body support portions on the main shaft;
A rotation electrode provided in each of the torque sensor shaft body support portions and connected to the rotation electrode of the main shaft;
A common plating electrode disposed to face all of the torque sensor shaft body support,
Comprising a positive and negative output terminal, a positive current terminal connected to the plating electrode, and a constant current circuit provided with a negative output terminal connected to the rotating electrode of the main shaft,
A plurality of the constant current circuits are provided corresponding to the number of the torque sensor shaft main body support portions, and each is connected to a power source and is generated by a current flowing between each rotating electrode of the main shaft and the plating electrode. By comparing and calculating a voltage and a reference voltage, and passing a current according to the difference between each rotating electrode of the main shaft and the plating electrode, between the rotating electrode of the main shaft and the plating electrode An apparatus for manufacturing a magnetostrictive torque sensor shaft, characterized in that a constant current is allowed to flow through .
JP2007108234A 2007-04-17 2007-04-17 Magnetostrictive torque sensor shaft manufacturing equipment Expired - Fee Related JP4936969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108234A JP4936969B2 (en) 2007-04-17 2007-04-17 Magnetostrictive torque sensor shaft manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108234A JP4936969B2 (en) 2007-04-17 2007-04-17 Magnetostrictive torque sensor shaft manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2008267865A JP2008267865A (en) 2008-11-06
JP4936969B2 true JP4936969B2 (en) 2012-05-23

Family

ID=40047581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108234A Expired - Fee Related JP4936969B2 (en) 2007-04-17 2007-04-17 Magnetostrictive torque sensor shaft manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4936969B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184847B2 (en) 2015-06-23 2019-01-22 Yamaha Hatsudoki Kabushiki Kaisha Magnetostrictive sensor, magnetic structure and production method thereof, motor drive device provided with magnetostrictive sensor, and motor assisted bicycle
US10281346B2 (en) 2015-10-01 2019-05-07 Yamaha Hatsudoki Kabushiki Kaisha Magnetostrictive sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866437B2 (en) 2009-04-17 2012-02-01 本田技研工業株式会社 Magnetostrictive torque sensor and manufacturing method thereof
JP7293765B2 (en) * 2018-07-24 2023-06-20 富士フイルムビジネスイノベーション株式会社 Plating equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644499A (en) * 1987-06-25 1989-01-09 Hikifune Kk Method and device for rotary plating
JPH0233267A (en) * 1988-07-22 1990-02-02 Canon Inc Video camera
DE3831989A1 (en) * 1988-09-21 1990-03-29 Bosch Gmbh Robert Device for the injection of fuel into the combustion chamber of an internal combustion engine with self-ignition
JP2002082000A (en) * 2000-09-07 2002-03-22 Tdk Corp Magnetostrictive stress sensor and method for manufacturing the same
JP2004035982A (en) * 2002-07-05 2004-02-05 Furukawa Electric Co Ltd:The Electroplating method for optical fiber
JP2004117177A (en) * 2002-09-26 2004-04-15 Toshiba Corp Torque sensor and manufacturing method therefor
JP2007024641A (en) * 2005-07-14 2007-02-01 Honda Motor Co Ltd Magnetostrictive torque sensor and formation method of magnetostrictive film thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184847B2 (en) 2015-06-23 2019-01-22 Yamaha Hatsudoki Kabushiki Kaisha Magnetostrictive sensor, magnetic structure and production method thereof, motor drive device provided with magnetostrictive sensor, and motor assisted bicycle
US10502646B2 (en) 2015-06-23 2019-12-10 Yamaha Hatsudoki Kabushiki Kaisha Magnetostrictive sensor, magnetic structure and production method thereof, motor drive device provided with magnetostrictive sensor, and motorassisted bicycle
US10281346B2 (en) 2015-10-01 2019-05-07 Yamaha Hatsudoki Kabushiki Kaisha Magnetostrictive sensor

Also Published As

Publication number Publication date
JP2008267865A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4936969B2 (en) Magnetostrictive torque sensor shaft manufacturing equipment
JP2019056716A (en) Magnetostrictive sensor, magnetic structure and its manufacturing method, motor drive unit having magnetostrictive sensor, and motor-assisted bicycle
EP1130362A2 (en) Magnetic encoder and method of manufacturing same
EP2746756A2 (en) Sensor device for detecting fluid properties
DE112016003891T5 (en) engine
US8329005B2 (en) Barrel plating apparatus
US11492717B2 (en) Manufacturing apparatus of electrolytic copper foil
JP3431007B2 (en) Barrel plating equipment
US7267016B2 (en) Sensitized ring for use with a sensor
DE4138844A1 (en) Arrangement for monitoring tyre state and wheel rotation parameters - has encoding element mounted on wheel hub contg. multiple magnetic ring and microcoil
JP3793863B2 (en) Manufacturing method of stator unit of magnetic bearing
JP3684658B2 (en) Magnetoresistive element and manufacturing method thereof
JP2010053389A (en) Plating treatment apparatus
US615940A (en) wright
JP2006029517A (en) Bearing with sensor
JP4622834B2 (en) Rotating barrel plating equipment
JP4097090B2 (en) Barrel plating apparatus and electronic component manufacturing method using the same
JP2002097591A (en) Method for manufacturing metal powder
JPH05230691A (en) Power feeder for full-surface plating device
JP2001152396A (en) Semiconductor manufacturing apparatus, and semiconductor manufacturing method
WO2022075157A1 (en) Motor
JP2005200691A (en) Electroplating apparatus and electroplating method using it
JPH039846Y2 (en)
JP2006274363A (en) Cathode for manufacturing metallic fiber and metallic fiber manufacturing apparatus
JPH0455789A (en) Chip detector with printed board electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees