JP4936660B2 - 機械ベクトルループ抽出のための方法及び装置 - Google Patents

機械ベクトルループ抽出のための方法及び装置 Download PDF

Info

Publication number
JP4936660B2
JP4936660B2 JP2004380333A JP2004380333A JP4936660B2 JP 4936660 B2 JP4936660 B2 JP 4936660B2 JP 2004380333 A JP2004380333 A JP 2004380333A JP 2004380333 A JP2004380333 A JP 2004380333A JP 4936660 B2 JP4936660 B2 JP 4936660B2
Authority
JP
Japan
Prior art keywords
gap
tolerance
loop
dimensions
vector loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004380333A
Other languages
English (en)
Other versions
JP2005216290A (ja
Inventor
ナレンドラ・アマレンドゥ・ソマン
ムラリ・モハン・レディ・ナジェラ
エヌ・デバ・クマー
チャンドラカント・ナイクタリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2005216290A publication Critical patent/JP2005216290A/ja
Application granted granted Critical
Publication of JP4936660B2 publication Critical patent/JP4936660B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35228Automated tolerance chain generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Automatic Assembly (AREA)

Description

本発明は、一般に機械部品の寸法公差に関し、より具体的には、ギャップ公称寸法及びギャップ公差を求めるために、相互作用する機械部品に対するギャップスタックアップ解析を行うための方法及び装置に関する。
機械の作動において、各部品寸法(寸法とは、或る部品のサイズ、形状、又は位置を定義する数値である)及び空間的に対向する部品間の距離(すなわちギャップ)は、効率的且つ信頼性の高い機械運転のために設計公差範囲内に維持されなくてはならない。例えば、航空機エンジンは、約10,000から40,000個の部品を含んでおり、その各々は、部品の幾何学的形状、公称部品寸法、部品公差、及び他の必要な部品特性(例えば、その部品が構成されている材質や引張強度又は硬度などの目に見えない性質)を示す1つ又はそれ以上の二次元図面によって記述される。公差値は、公称部品寸法からの偏差の許容範囲を定めるものである。
各部品は、部品公称寸法及び各寸法に関係する公差への適合性を含む、図面に記載された情報に従って製造される(すなわち各図面は、部品の二次元的表現である)。実寸法が指定公差範囲外である部品は、他の部品と適正に係合又は接続することができないため機械内での使用には好適ではない可能性がある。1つの部品は、複数の公差によって管理することができ、各公差は部品の異なる幾何学的特徴に関係付けられている。例えば、航空機エンジンのガスタービンブレードの図面は、400もの数の寸法公差を含む場合がある。
個々の部品が組み立てられて機械を形成するときには、部品間のギャップ(一般に機械内の2つの平面間又は面間の直線距離として定義される)は、設計限界内に維持されなければならない。公称ギャップ距離は、所望のギャップ開口を表す。ギャップ公差は、公称ギャップ距離からの許容可能な変動範囲を表す。例えば、ガスタービンジェットエンジンにおいては、燃焼ガスは、静止ステータ内に囲まれた回転ロータによって支持される複数のブレードに衝突する。各ロータブレードの先端とステータとの間の指定ギャップ(公称ギャップ距離とこれに関係した公差範囲とによって定義される)を維持することは、エンジンの適正且つ効率的な作動のために必要である。通常、このギャップ公差は、1000分の10インチ単位で測定される。1000分の10インチだけ公差範囲外にあるギャップは、エンジンの燃料効率などの幾つかの重要な作動パラメータに重大な影響を及ぼす可能性がある。
寸法公差スタックアップ解析は、2つの係合又は隣接部品間の寸法及び組立寸法公差を予測するために、例えば機械ギャップの公称寸法及び公差を予測するために所与の機械部品の寸法及び公差を使用するプロセスである。ブレード先端とステータとの間のギャップは、スタックアップ解析されるギャップの1つの実施例である。臨界ギャップは、機械の適正作動を保証するために、機械設計段階の間にスタックアップ解析される。典型的な蒸気タービン内には、タービン性能に影響を及ぼし得る約130から180の臨界ギャップスタックアップが存在する。典型的な航空機エンジンには、2000より多いこうしたスタックアップが存在する。
スタックアップ解析は、品質改善及び機械の製造コストを低減するために重要である。設計技師は、各機械寸法に対して厳しい公差を支持し、製造プロセス中における厳密な寸法管理を要求する。しかし寸法管理は、製造プロセスのコストを増大させる。従って、機械寸法及び各寸法に関係した公差の定量的な解析は、設計及び製造プロセスに重要な洞察を提供し、情報に基づいたこれらの競合する利害間のトレードオフを可能にする。
ギャップスタックアップ解析を行い、これによって所与の機械ギャップの公称ギャップ寸法及びギャップ公差を求めるためには、始めに相互に作用する部品又は係合する部品、並びにギャップすなわちギャップベクトルループを形成するこれらの部品の寸法を識別することが必要である。これらの部品寸法は、1つのループを形成し、該ループは、1つのギャップ面で始まり、対向するギャップ面に到達するまで一連の部品境界を通ってトラバースする。次いで、部品寸法とこのような各ループ部品に関係した部品寸法公差とが結合されて、ギャップ公称寸法及びギャップ公差を与える。
先行技術では、ギャップスタックアップ解析プロセスは手動的に行われる。関心のあるギャップが識別され、ギャップ寸法に影響を及ぼす各部品の図面が読み出される。ギャップに影響を及ぼす公称部品寸法とこのような各寸法に関係した公差とを求めるために、各部品の図面が調べられる。公称部品寸法と部品寸法公差とが記録される。各寸法には、該寸法値がギャップ寸法を増大させるか減少させるかに基づいて、更に乗算係数(典型的には+1又は−1)が割り当てられる。
三次元的ギャップに対する寄与を確定するためには二次元図面に頼る必要があることにより、手動的なギャップスタックアッププロセスは複雑になる。従って、スタックアッププロセスを実行する技師は、正確なスタックアップ測定を行うために、機械とその構成部品の空間的関係にかなり精通していなくてはならない。手動的なスタックアッププロセスは、極めて時間がかかり、通常は1つの機械ギャップの解析のために約10時間から30時間を要する。このプロセスの数字集約的性質は、公差値の2つの隣接する数字の転置などのエラーを起こす傾向があるので、容易に間違いが生じる。また、ベクトルループの正確な抽出は、手動で行うには困難なプロセスである。複数のベクトルループが存在する場合、このプロセスは更に複雑になる。これらの状況においては、技師はこうした複数のベクトルループの存在に気付かない場合もあり、全てのベクトルループの抽出が行われず、不正確なスタックアップ結果が得られることになる。このプロセスが完了すると、ベクトルループ(すなわち、ベクトルループを形成する部品及びこれらの面)及びスタックアップ結果の有効性を確認することが望ましい。しかしながら、別の技師がスタックアップ解析を繰り返すことを除いては、有効性を確認する既知の方法は存在しない。
今日では機械及びこれらの構成部品のほとんどは、公称部品寸法を含むが典型的には公称寸法の公差値は含まない、各部品の三次元画像又はモデルを生成するコンピュータ支援設計(CAD)ソフトウエアを使用して設計される。設計が完了すると、ソフトウエアにより生成された設計データに基づく試作部品から試作機械が組み立てられる。その後、各部品についての二次元図面が作成され、寸法公差が確定されて初めて、技師がスタックアップ解析を行うことができる。しかしながら、二次元図面を作成しスタックアップ解析を行うための時間のかかるプロセスがあったとしても、この解析は、試作部品が試作機械に組み立てられてしまうまでは完了することができない。部品製造及び機械組立中に公差スタックアップ解析が行われないことにより、部品ギャップが公差範囲外にあることに起因して、期待したようには作動しない試作機械が得られる可能性がある。公差範囲外のギャップが発見されると、影響を受ける部品公差を変更しなくてはならず、部品は、補正された公差値に従って作り直されて機械に組み立てられる。設計及び製造サイクル中にこれらの問題を修正することは、製品に好ましくないコストが加わり、設計及び製造サイクルが終わりに近づくにつれて修正コストが増大する。
米国特許6,351,721号公報
本発明は、部品組立体内のギャップの一次元ギャップスタックアップを求める方法を含む。この方法は更に、スタックアップ解析のためのギャップを識別する段階を含み、ギャップを定める第1の面と第2の面とを識別する段階を含み、該部品組立体の第1の部品は第1の面を備え、部品組立体の第2の部品は第2の面を備える。この方法は更に、第1の面から部品組立体を通って第2の面までの複数の要素から構成されるベクトルループを求める段階を含み、該複数の要素はギャップスタックアップを含む。本発明は、部品組立体内のギャップに対して一次元ギャップスタックアップを行うためのコンピュータプログラム製品を更に備え、このコンピュータプログラム製品は、コンピュータプロセッサにより実行するためのプログラムコードを格納する、コンピュータプロセッサにより読取り可能な記憶媒体を備える。プログラムコードは、スタックアップ解析のためのギャップを求めるプログラムコードモジュールと、部品組立体の第1の部品が第1の面を含み、部品組立体の第2の部品が第2の面を含み、該ギャップを定める第1の面と第2の面とを識別するプログラムコードモジュールと、第1の面から部品組立体を通って第2の面までの、ギャップスタックアップを含む複数の要素から構成されるベクトルループを求めるプログラムコードモジュールとを含む。
本発明の上記及び他の特徴は、種々の図面を通して同じ参照符号が同じ部品を表す添付図面で示されるように、以下のより詳細な説明から明らかになるであろう。これらの図面は、必ずしも縮尺通りではなく、本発明の原理を説明することに重点を置いたものである。
本発明による機械又は部品組立体のギャップスタックアップ解析を実行するための特定の方法及び装置を詳細に説明する前に、本発明は、主としてハードウエア要素と工程段階の新規且つ進歩性のある組合せが存在する点に留意されたい。従って、本明細書の記載による恩恵を受ける当業者には容易に明らかである構造的細部に関して開示内容を曖昧化しないように、これらの要素及び段階は、図面において本発明に関連する特定詳細部のみを示した従来の要素及び段階によって表現されている。
公称寸法(公称部品寸法又は公称ギャップ寸法)は、寸法の望ましい値を示している。幾らかの寸法上のばらつきが許容される場合には、プラス及び/又はマイナスの公差値が公称寸法に付随している。従って、測定値は、公称寸法とプラス/マイナス公差として表すことができる。公称寸法値は、測定値の平均値を表しており、その公差は、平均値の標準偏差に関係する。例えば、3.000インチ±0.002インチの部品寸法(左右相称的公差と呼ばれる)は、3.000インチの平均値、+0.002インチの最大公差、及び−0.002インチの最小公差を有する。4.075インチ+0.004インチ及び−0.002インチの部品寸法(左右非相称的公差と呼ばれる)は、4.076インチの平均寸法(公称寸法+正の公差値と公称寸法−負の公差値との平均を求めることによって計算される)、+0.003インチの最大公差、及び−0.003インチの最小公差(寸法公差値を平均することによって求められる)を有する。
本発明のギャップスタックアップ解析は、例えば軸方向、半径方向、及び角度方向である円柱座標で以下に説明される。当業者には理解されるように、本発明の教示はまた、x、y、z軸のデカルト座標系などの他の座標系を使用して行われるスタックアップ解析に適用することができる。
本発明の教示によれば、ギャップスタックアップ解析は、機械設計プロセス中に求められる公称部品寸法及び/又は公差情報を用いて行われる。解析プロセスは、第1の部品の第1のギャップ面と第2の部品の第2のギャップ面とによって定義されるような、関心のある機械ギャップを識別することによって始まり、この場合第1及び第2の面は互いに隔てられた関係にありギャップを形成する。
次に、ギャップベクトルループが求められ、又は抽出される。ベクトルループは、第1のギャップ面上で始まり、第1の部品を貫通して延び、ギャップ寸法/公差に影響を及ぼす全ての組み合わされた部品間でこれらを順次貫通して通り、第2のギャップ面上で終わる。従って、その結果は、ループ要素のリストを含み、各々がベクトルループ・セグメントを含む。ループは、いずれの方向にもトラバースすることができ、すなわち、第1のギャップ面で始まり、第2のギャップ面までループを進める、又は反対方向に進めることができる。
ベクトルループ抽出装置がループを求めた後、ループ内の各部品又は要素及び各部品の公称寸法が識別される。公称ギャップ寸法は、ループ要素間の寸法並びに各ループ要素内の寸法の両方を含む、各ループ要素の公称又は平均部品寸法を組み合わせることによって求められる。ギャップ平均は、重み付けされた公称部品寸法の和として求めることができる(この場合、以下に更に詳細に検討するように、重み値+1又は−1は、ギャップ寸法に対する部品寸法の影響を考慮するものである)。
スタックアップ解析を完了するために、ループ内の各公称部品寸法に関係する公差が求められ、公差値が結合されてギャップ公差を生成する。本発明の一実施形態によれば、ギャップ変動又は公差は、2つの方法の一方又は両方を使用して計算することができる。最悪状況解析においては、最悪状況のギャップ公差を得るために、全ての部品寸法の公差が加算される。或いは、各部品寸法の標準偏差が計算される統計的解析が採用される(標準偏差又はシグマ値と部品公差との間の所与の関係を仮定する場合、典型的には3シグマ値が使用され、すなわち標準偏差=公差/3である)。従って、ギャップの標準偏差は、ベクトルループ内の全ての部品公差の全ての標準偏差の二乗和平方根である。この方法は、二乗和根法と呼ばれる。
好ましい実施形態においては、スタックアップ解析は、コンピュータソフトウエアプログラムによって行われる。一実施形態において、このソフトウエアプログラムは、部品を設計するために使用されるCAD設計パッケージと共に作動する。この場合、本発明は、三次元CADモデルから一次元ベクトルループを抽出してギャップスタックアップを生成する。
更に別の実施形態においては、ベクトルループ抽出結果は、ベクトルループの要素又は部品(例えば、部品番号による)、各ループ要素の公称寸法、及び公称ギャップ寸法を表す重み付けされた公称寸法の和を表示するために表計算ソフトにインポートされる。各ループ要素の寸法公差情報もまた、表計算ソフト内に表示される。
本発明の教示によれば、部品図面の作成及び発行を待つ必要がないので、スタックアップ情報が、先行技術の手作業による方法よりも迅速に求められ、機械設計プロセスでより早く利用可能である。上述のように、ベクトルループ抽出は、CAD設計情報を使用して行うことができる。機械設計者が各公差値を割り当てる度に、これらの公差値は、ギャップ公差を求めるためにスタックアップ解析表計算ソフトに容易にインポートすることができる。有利には、公差スタックアップ結果がギャップ公差又はギャップ寸法に関する潜在的な問題を示す場合、部品寸法を設計段階で変更することができ、最終設計が完了する前に、境界面及び係合面に対するこのような変更の影響を求めることができる。最終図面は、組立体又は部品に対するスタックアップ解析が許容可能であることが確定するまでは発行することはできない。
本発明のベクトルループ抽出装置は、ベクトルループの三次元的表現である可視的表示を提供することができ、設計技師が抽出されたループの有効性を確認することが可能となる。一実施形態においては、ベクトルループは、CADシステムの三次元モデル上に重畳される。手動方法による個別的な二次元図面を調べることによってスタックアップ解析が行われる場合には、このような可視化が不可能であることは明らかである。10,000から40,000個の部品を備えた航空機エンジンなどの特定の機械の多数の部品の場合には、多数のギャップがあり、部品境界及びこれらの空間的関係が複雑であるため、各々のギャップに対する手動ギャップ解析は、事実上不可能である。本発明のベクトルループ抽出装置は、ソフトウエアに実装された場合には、ベクトルループ情報を三次元CAD図面から直接取り出すことからそれほど制限されたものではない。最後に、コンピュータソフトウエアによって行われるスタックアップ解析は、手動的スタックアップ解析を行う技師の経験レベルに基づくものである手動的に行うスタックアップよりもエラーが少ないであろう。
ギャップベクトルループ内の要素は、2つの機械部品間の要素及び1つの機械部品内の要素という2つのタイプの内の一方を含む。これらの両方のループ要素は、関係する公称部品寸法と寸法公差とを有する。一実施形態においては、2つのループ要素タイプは、別個に解析されて寸法/公差を求め、その後該寸法/公差値は結合される。別の実施形態においては、要素が遭遇する部品間及び部品内をループが順次トラバースして、ループトラバースプロセス完了時にギャップ公称寸法及び公差が得られる。
図1は、トレイ14上に配置されたブロック10及び12を示す。ブロック10の隠れた面19とトレイ14の面20との間のギャップAのベクトルループ及びギャップ公称寸法/公差を抽出することが要求される。部品間寸法/公差B(ブロック10の面22とブロック12の隠れた面24との間)及び部品間寸法/公差C(ブロック12の面26とトレイ14の面20との間)は、ベクトルループ内にある。ループ内の部品間寸法/公差は、隠れた面19と面22との間の距離/公差(距離Dとも呼ばれる)と、以下に定義する面32とを含む。
面32は、図2に示すように2つの溝40を含む。(面32は、ブロック12の他の面に対して垂直である必要はなく、垂直の向きは単に例証に過ぎない。)この実施例においては、面42と面44との間の距離を直接定義する寸法/公差がないものとして仮定している。代わりに設計者は、溝幅(図2の寸法EとF)、溝40間の距離G、面42から第1の溝40までの距離H、及び第2の溝40から面44までの距離Jを提供している。
寸法/公差Aのギャップスタックアップを求めるために、寸法/公差D、B、C、E、F、G、H、Jの各々に関係した公称寸法/公差が加算される。この実施例においては、寸法/公差の各々がギャップスタックアップに正の方向で寄与する点に留意されたい。すなわち、D、B、C、E、F、G、H、Jのいずれかの寸法/公差が増大した場合には、これに応じてギャップスタックアップ結果が増大する。同様に、D、B、C、E、F、G、H、Jのいずれかの寸法/公差が減少した場合には、これに応じてギャップスタックアップが減少する。
別の例示的なスタックアップ方法において、図3は、図示のように配向されて接続されているブロック50、52、及び54の側面図を示しており、ロッド56がブロック50からプレート60内の孔を貫通して延びている。ギャップスタックアップ解析法を使用してギャップLの寸法/公差を求める。距離M、N、O、P、Q、R、S、T、Uの各々の公称寸法/公差は、ギャップLの寸法/公差に影響を及ぼす。寸法Tは、ギャップ寸法に逆の(負の)影響を及ぼすことに注目されたい。すなわち、Tの寸法が減少するとギャップLは増大し、Tの寸法が増大するとギャップLは減少する。関心のあるギャップに対するこのような正と負の影響を考慮するために、正の影響を及ぼすギャップ寸法に係数+1が乗算され、負の影響を及ぼすギャップ寸法には係数−1が乗算される。この乗算の結果得られる積(すなわち係数が考慮された寸法)を加算してギャップスタックアップ寸法を得る。
本発明の他の実施形態においては、+1及び−1以外の数値を使用して部品間寸法/公差の変化を表すことができる。例えば、部品が加熱/冷却されると、膨張/収縮作用が部品寸法/公差を変化させる。同様に部品の可撓性及び/又は圧縮性も、+1及び−1以外の係数を使用することによりギャップスタックアップ解析に繰り込むことができる。
図4は、タービンブレード70A、タービンベーン70B、及びケース72を含む航空機エンジンの内部構成部品を示す。軸方向ギャップ74のギャップスタックアップは、ギャップ74を定義するベクトルループ中の寸法/公差を使用して行われる。これらの寸法及び関係する公差は、アルファベット文字M、N、P、R、S、T、U、V、Wによって識別される。各寸法/公差に関係した矢印は、ループを通るトラバースの方向を示す。右を指す矢印は、ギャップスタックアップに正の影響を及ぼす寸法/公差を表す。左を指す矢印を有する寸法/公差は、ギャップスタックアップに負の影響を及ぼす。図4には関心のある寸法/公差が示されているが、実際には、図4に示す部品の各々は、その部品を表す複数の寸法/公差を備えた幾つかの詳細図で記述される。また、図4に示した寸法/公差の或るものは、構成部品間のギャップと部品内の寸法/公差との組合せを表すことができる。例えば、寸法/公差Wは、どの図面においても直接的には参照されず、代わりに、Wは、寸法Wによって識別された距離にわたる部品の寸法及び公差のスタックアップを表す。
上述のように、ギャップ距離の平均値は、ギャップベクトルループ内の各部品又は要素に関係した公称寸法に重み係数を乗算した後合計することによって得られる。更に、ギャップスタックアップ法は、以下に詳細に説明するように、ギャップ公差を生成する。公称部品寸法は測定値の平均値を表し、この平均値に関するばらつきは、指定された公差範囲内でランダムであるので、ギャップスタックアップ法は、統計的に解析することができる。更に、組立体に形成されるときに、個々の機械部品の寸法属性が統計的に累積し、構成部品のばらつきに従ってその組立体の寸法を変化させる。ギャップベクトルループは複数の部品を含むので、確率解析の中心極限定理によれば、ガウス確率分布関数は、ギャップスタックアップ結果を記述する。ガウス確率分布関数は、計算されたギャップ平均値及び標準偏差により定義され、これは以下に更に説明する。
図5のグラフは、1つのそのようなガウス確率分布関数88を示しており、このグラフにおいては、平均値は参照符号90によって識別される。ギャップ最大値92は、ループ要素の上方公差値を合計することによって算出される。ギャップ最小値94は、最小公差値を合計することによって求められる。
ギャップガウス確率分布関数88の変動は、以下のように求めることができる。一実施形態によれば、各正及び負の公差値は、公称寸法値の3つの標準偏差内にあり、すなわち3σであると仮定される。従って、各公差値を3で除算すると、ギャップベクトルループ中の各寸法の標準偏差が得られる。標準偏差は、大きさのみを表すスカラー量であって、符号を含まない。従って標準偏差値は、この値がギャップ寸法を増大又は減少させるかに基づいて変化することはない。各標準偏差値の2乗が合計され、和の平方根が求まる。この結果は、図5に参照符号98で示したギャップの標準偏差である。別の実施形態によれば、ギャップの標準偏差を算出するために、標準偏差と公差値との間の別の関係を仮定することができる。
ギャップ寸法の変動に対する部品公差の寄与は、関心のある部品公差の標準偏差値の2乗をギャップ内の全ての寸法の標準偏差の平方和で除算することによって算出することができる。結果として得られる割合が大きいほど、ギャップ寸法に対するその部品公差の寄与度がより大きい。ギャップ寸法が公差外であることをギャップスタックアップが示す場合には、公差外状態を補正するために、1つ又はそれ以上の部品寸法の平均を調節し、及び/又は最大割合の寄与度を有する公差を詳細に調べるべきである。
図6は、本発明の教示によるベクトルループ抽出装置100を示す。抽出装置100への入力は、CAD設計プログラムからの3次元モデル101と、ベクトルループが抽出されることになる組立体内の構成部品の係合状態とを含む。任意選択的であるが、モデル化された組立体に関係する公差が提供される。この公差値は、ベクトルループ抽出プロセスでは必要とされないが、ギャップスタックアップ解析の完了を確定するプロセスにおいて後で考慮に入れることができる。この公差が提供されない場合には、ベクトルループ抽出装置100は、ループ内の各部品のギャップベクトルループ及び公称寸法を求める。公称寸法は、(上述したように+1又は−1を掛けた後に)合計されてギャップ公称寸法を求め、これはギャップ平均寸法と等価である。ベクトルループ抽出プロセス中に公差情報がない場合には、ギャップの標準偏差を算出することはできない。この計算は、後で公差情報が入手可能になった時に実行することができる。
ループ係数(+1又は−1)は、図示のようにベクトル抽出装置100に提供されるループを通るトラバース方向に基づいて各部品寸法に対して求められる。最後に、関心のあるギャップを定義する面102及び104も、入力として提供される。
ベクトルループ抽出装置100からの出力は、面102から面104までのベクトルループを含む部品又は要素の表示を含む。これらの部品は、モデル部品106の表示画像上に重畳することができる。次に、技師は、ループの各矢印が先行矢印の終端部で始まり、最初と最後の矢印がその部品を定義する2つの面、すなわち、例えば面102及び104上で終端することを確実にするようループ内の寸法を検討することができる。技師はまた、ループの全ての部品寸法をチェックすることもできる。これらの種々の手動によるチェックプロセスは、ループスタックアッププロセスの有効性を確認するのに有用とすることができる。
出力テキストファイル110は、ベクトルループの部品リスト、該ループ内の各部品の公称寸法、該寸法に関係した公差(公差値が3次元モデル内に入力として提供されている場合)、及び各寸法に関係したループ係数を含む。スタックアップ表計算ソフト112は、出力テキストファイル110と上述の種々の統計パラメータとを含む。入手可能なデータ及びユーザの特定出力要求に基づいて他のレポート構成が可能である。
本発明の好ましい実施形態においては、ベクトルループは、部品幾何平面に対する法線がベクトルループの方向と同一直線上にある場合には該部品幾何平面間の寸法/公差のみを含み、又は、ピン/孔の軸線がベクトルループの方向に対して垂直である場合にはピン/孔が係合する部品間の寸法/公差のみを含む。例えば図7において、部品204の平面202と部品208の平面206とは、寸法210を定める。部品204及び208はトレイ211内に配置されている。平面202と206間の境界に対する法線がベクトルループ方向212と同一直線上にあるので、寸法210は、スタックアップ解析内に含まれる。
図8においては、部品222の平面220と部品226の平面224とは、寸法230を定める。部品220及び224に対する法線は、ベクトルループ方向212と同一直線上になく、従って、スタックアップ解析内に含まれない。本発明の別の実施形態においては、寸法230は、ベクトルループ上の角度240の変化の影響を解析することによってスタックアップに含まれる。
図9においては、ピン232を含む部品230は、部品234内に形成された孔236と係合する。ピン232/孔236の軸線240は、ベクトルループの方向に対して垂直であるので、ピン/孔の係合はベクトルループ内に含まれる。
図10は、本発明のベクトルループ抽出に関係するプロセスの流れ図を示す。本発明の実施形態は、これらのプロセスを実施するためのコンピュータ実装プロセス及び装置の形態で具現化することができる。本発明の実施形態はまた、フロッピーディスク(フロッピーは登録商標)、CD−ROM、ハードドライブ、DVD、又は他の任意のコンピュータ可読記憶媒体のような有形媒体内に具現化した命令を含む公知コンピュータ言語のいずれかで記述されたコンピュータプログラムコードの形態で実施することができ、この場合、コンピュータプログラムコードがロードされて汎用又は専用コンピュータによって実行された時に、コンピュータが本発明を実施するための装置となる。更に、本発明の一実施形態は、例えば、記憶媒体内に格納されるか、コンピュータにロードされ及び/又はコンピュータによって実行されるか、或いは電線又はケーブルを通して、もしくは光ファイバを介して、又は電磁放射によってなどの何らかの伝送媒体を介して送信されるかのいずれかのコンピュータプログラムコードの形態で実施することができ、この場合、コンピュータプログラムコードがコンピュータにロードされて該コンピュータによって実行された時、コンピュータが本発明を実施するための装置となる。マイクロプロセッサ上に実装される時には、コンピュータプログラムコードセグメントは、ベクトルループ抽出プロセスを行う一定の機能をマイクロプロセッサに実行させる。
このプロセスは、開始段階300で始まり、組立体401(図11参照)の関心ギャップ400を求めるための段階302に進む。段階304において、ギャップ400を定める2つの対向する面402及び404が識別され、ユーザは、ギャップスタックアップが軸方向で行われるべきか、或いは半径方向で行われるべきかを示す(この選択は、機械の2部品間の一定のピン/孔係合構成に必要である)。段階306において、2つの対向するギャップ面402及び404をそれぞれ含む2つの部品408及び410が確定される。部品408及び410は、始点部品408及び終点部品410と呼ばれる。
段階308によれば、組立体401中の全ての部品が識別されてラベル付けされる(図11のAAからEEまで)。2つの部品が接触する面であり、この接触面に対する法線がギャップ400のベクトルループと同一直線上にある面が識別されて番号が付けられる。全ての他の面は無視される。図12において、関心のある面に1から10の番号が付けられている。
始点部品408から始めて、段階310においては始点部品408(図11においてはAAとも表してある)と接触する全ての部品は、接触面に対する法線がギャップベクトルループ(つまりギャップ400のためのループ)と同一直線上にある場合、2つの文字すなわちAAからBBで識別される。そのように識別された部品は、始点部品408すなわち部品AAの子部品と呼ばれる。逆に、始点部品408は、識別された部品の親部品と呼ばれる。図13を参照すると、ここでは部品AA(始点部品408)の子部品が、BB及びCCとして識別されている。子部品BBと接している始点部品408の面は面2であり、子部品CCと接している始点部品408の面は面3である。
判定段階312において、このプロセスが、始点部品が終点部品と等しいか否か、すなわち完全なベクトルループが始点部品408から終点部品410までトラバースしているか否かを判断する。判定段階312の結果が否である場合には、プロセスは段階314に分岐し、始点部品408の子部品の1つが、プログラムループを通る次の反復のための始点部品として選択される。例えば、段階314において部品BBが選択された場合には、段階310においてどのような接触面も識別されない。次のプログラムループを通る反復は、始点部品408の他の子部品(この場合はCC)を選択して、プロセスは段階310に進む。
プロセスは、判定段階312における判定が肯定になるまで、段階310、314、及び判定段階312を含むループを通って進む。この時点では、部品間の全ての接触面が識別されており、このプロセスは、図13に示すグラフを生成している。始点部品408(AA)から終点部品410(EE)までの全ての部品及びこれらのそれぞれの面はすでに識別されている。
判定段階312からの肯定的判定に応答して実行される段階316において、1つの部品内のベクトルループを生成するためのサブル−チンが実行される。以下に詳細に説明するサブル−チンは、始めに終点部品410(EE)に対して実行される。段階318において、終点部品410に対する親部品が識別される。この実施例においては、部品CCが終点部品410(EE)に対する親部品として識別される。判定段階320は、選択された親部品が始点部品408(AA)であるか否か、換言すればサブル−チンがベクトルループ内の全ての部品に対して実行されたか、すなわち終点部品410(EE)から戻って始点部品408(AA)まで実行されたか否かを判断する。否定的応答の場合には、分岐して段階321に戻り、そこでベクトルループ内の次の親部品が識別されて選択される。例証による第2回目の反復では、部品AAが選択される。段階316において、段階321で選択された部品に対してサブル−チンが実行される。プロセスは、終点部品410(EE)から戻って始点部品408(AA)までサブル−チンが実行を完了するまで、段階316、318、321、及び判定段階320を通るル−ピングを継続する。
判定段階320に戻ると、肯定的判定は、図13のグラフ図においてサブル−チンが始点部品408(AA)を除いた全ての部品に対して実行されたことを示す。判定段階320の肯定的判定分岐から、プロセスは段階322に進み、この段階においてサブル−チンが始点部品408(AA)に対して実行され、終点段階324においてプログラムが終了する。
図10に示すプロセスの出力は、ベクトルループを記述するトリプレットのシーケンスを含む。各トリプレットは、1つの部品記述子(例えば、文字による)及び2つの部品面番号といった3つの要素を含み、第1の面番号が始点面を定義し、第2の面番号が終点面を定義し、すなわち部品は、始点面から終点面までトラバースされる。例えば、次のトリプレットが図13のグラフを記述する。
EE 10、5
CC 5、3
AA 3、1
以下に説明する図14に示すプロセスは、各トリプレット上で動作して、各部品内のベクトルループのセグメントを求める(始点面から終点面まで部品をトラバースする)。種々のループセグメントが順次連結されて、関心のあるギャップに対するベクトルループを形成する。図示した実施形態においては、図14のプロセスは、全てのトリプレットが求められた後、すなわち段階312が肯定的な答を返した後に実行されるものとして示されているが、別の実施形態においては、図14のプロセスは、各トリプレットが求められて次いで連結された後に、各トリプレットに対して実行することができる。
図10のフローチャートにおいて言及したサブル−チンは、図14に示されており、開始段階450で始まる。このサブル−チンが実行される例示的な部品500が、図15に示されており、終点面502及び始点面504、及び双頭矢印506Aから506Jで示された複数の寸法/公差を備える。部品500は、上述の部品トリプレットの1つであって、終点面502と始点面504も同様にトリプレット内に示されている。
段階454において、ギャップベクトルループと同一直線上にある法線を有する部品500の面が識別され、図16に示すように始点面504から始まり終点面502まで番号1から6が付けられている。部品500の他の面は全て無視される。
始点面504(図16においては、面1として示されている)から開始して、段階456において、面1から始まり段階454で番号が付けられた面の1つで終わる寸法/公差が識別される。これらの面は、始点面504の子又は面1の子と呼ばれる。判定段階458は、終点面502が始点面504の子として識別されたか否かを判断する。否定応答は、プロセスを段階456へ戻し、ここで部品500の別の面が選択される。
判定段階458が終点面502に到達したことを表している場合には、判定段階458は肯定応答を返す。この時点で、部品500の関心のある全ての面が識別されたことになる。図16から分かるように、関心のある面には、面2、3、4、5、6、及びこれらの対応する寸法a、b、c、d、eが含まれる。図17のグラフは、識別された面及び識別された寸法/公差を示している。
判定段階458からの肯定応答は、プロセスを段階460に分岐し、ここで終点面502(すなわち終点面6)から始まり、対応する親面及び2つの面間の寸法/公差が識別される。図17によれば、終点面502の親面は面4であって、両面間の寸法/公差はeである。
プロセスは判定段階462に進み、プロセスが終点面6から逆方向に図17のグラフを通ってトラバースするときに始点面504に到達したか否かを判断する。始点面504に到達していない場合には、判定段階462は否定的応答を返し、別の面及び対応する寸法/公差を選択するために段階460にループして戻る。
始点面504に到達した場合には、判定段階462からの判断は肯定である。サブル−チンは段階464で終了し、プロセスは、サブル−チンに入った図10の段階、すなわち段階316又は段階322に戻る。
このように図14のサブル−チンは、図10のプロセスにおいて判断されたベクトルループ部品の各々に関係した寸法/公差を識別し、且つ上述のように+1又は−1を乗算した後に、これらの寸法/公差を各部品面と関係付けてループスタックアップ解析を完了する。図18の段階530は、このプロセスを全体的に示している。段階532によって示されるように、ギャップ公称寸法は上述のように確定される。単純な最悪状況公差合計は計算することができ、或いは上述のような統計解析を実行して、段階534で示すようなギャップ公差を算出することができる。結果として得られるデータは、図6と共に上述したように表計算ソフトに示すことができる。
幾つかのCAD設計パッケージにおいては、設計プロセス中に寸法が変更される場合に、公差が寸法変化を反映して変更されるように、公差値が寸法と関係付けられる。これらの公差は、「モデルベース公差」又は「スマート公差」して知られている。本発明のベクトルループ抽出装置は、このような公差値を受け入れることができる。
上述の各実施形態においては、ギャップ寸法に正又は負の影響を及ぼす寸法を考慮するために、各寸法値に対してループ係数+1又は−1が適用された。他の実施形態においては、部品が受ける条件、例えば部品が或る既知の温度まで加熱される時の作動中の条件を表すために、他のループ係数が使用される。この作動条件を表すギャップ熱解析を行うために、ループ内の各部品は、予想される熱条件に応じたその膨張及び収縮特性を求めるように解析される。次いで適切なループ係数を選択することによって、これらの特性が考慮される。予想される加熱条件に応じて第1の部品の寸法がその公称室温値の1.003倍まで膨張すると仮定すると、第2の部品の寸法は、その公称室温値の1.05倍まで膨張する。ギャップ熱解析を行うために、第1の公称寸法に関係した公差には1.003が乗算され、第2の寸法に関係した公差には1.05が乗算される。各々のギャップループ公差とその熱膨張係数との積が求められ、これらの積が合計され、その結果がギャップ寸法に対するギャップ加熱の影響を示す。公称温度よりも低い部品温度に対して同様な解析を行い、部品の収縮に応じたギャップ特性を求めることができる。
好ましい実施形態を参照しながら本発明を説明してきたが、本発明の範囲から逸脱することなく様々な変更を行うことができ、その各要素を均等な要素で置換え得ることは当業者には理解されるであろう。請求項に示された参照符号は、本発明の範囲を狭めるためのものではなく、本発明の理解を容易にするためのものである。
本発明の教示に従ってギャップスタックアップを求めるのに適した部品の斜視図。 図1の部品の1つの立面図。 本発明に従ってギャップスタックアップを求めるのに適した部品の立面図。 本発明の教示を適用することができる航空機エンジンの内部要素の簡略図。 本発明の教示に従って保証されたギャップスタックアップデータの統計解析結果を示すグラフ。 本発明の教示に従って構成されたベクトルループ抽出装置のための入力及び出力パラメータを示すブロック図。 本発明のベクトルループ抽出装置の幾つかの特徴を説明する機械部品の立面図。 本発明のベクトルループ抽出装置の幾つかの特徴を説明する機械部品の立面図。 本発明のベクトルループ抽出装置の幾つかの特徴を説明する機械部品の立面図。 本発明の教示によるギャップスタックアッププロセスの構成部分を実行するコンピュータプログラムの各段階を説明するためのフロー図。 図10に示すプロセスに従ってギャップスタックアップを求めるための部品の立面図。 図10に示すプロセスに従ってギャップスタックアップを求めるための部品の立面図。 図11に示すプロセスと共に使用するための相互関連部品を示すグラフ図。 本発明の教示によるギャップスタックアッププロセスの構成部分を実行するコンピュータプログラムの各段階を説明するためのフロー図。 図14に示すプロセスに従ってギャップスタックアップを求めるための部品の立面図。 図14に示すプロセスに従ってギャップスタックアップを求めるための部品の立面図。 図14に示すプロセスと共に使用するための部品の境界面を説明するグラフ図。 本発明の教示によるギャップスタックアッププロセスの構成部分を実行するコンピュータプログラムの各段階を説明するためのフロー図。
符号の説明
10 ブロック
12 ブロック
14 トレイ
19 ブロック10の隠れた面
20 トレイ14の面
22 ブロック10の面
24 ブロック12の隠れた面
26 ブロック12の面
30 ブロック10の面
32 ブロック10の面

Claims (1)

  1. 部品組立体内のギャップに対して一次元ギャップスタックアップを行うためのベクトルループ抽出装置であって、
    コンピュータプロセッサにより実行するためのプログラムを格納する、該コンピュータプロセッサにより読取り可能な記憶媒体を備え、
    前記プログラムが、
    スタックアップ解析のためのギャップを求める(302)プログラムコードモジュールと、
    前記部品組立体の第1の部品が第1の面を含み且つ前記部品組立体の第2の部品が第2の面を含み、前記ギャップを定める前記第1の面と前記第2の面とを識別する(310)プログラムコードモジュールと、
    前記第1の面から前記部品組立体を通って前記第2の面までの、前記ギャップスタックアップ(312、314、316、318、320、321)を含む複数の要素から構成されるベクトルループを求め、部品の組み立てを完了する前に公差から外れたギャップと関連して公差値の補正を可能とするプログラムコードモジュールと、
    を含み、
    前記ベクトルループ抽出装置が、さらに、
    前記複数の要素のそれぞれの寸法及び公差の少なくとも1つを求めるプログラムコードモジュールと、
    前記複数の要素のそれぞれに対してギャップ寸法の平均値及び該ギャップ寸法の平均値の標準偏差の少なくとも1つを求めるプログラムコードモジュールと、
    を含み、
    前記ベクトルループは、前記部品組立体の部品の前記ベクトルループが通る平面に対する法線が該ベクトルループの方向と同一直線上にある場合には該部品の平面間の寸法及び公差のみを含み、前記ベクトルループが通る部品のピン及び孔の軸線が該ベクトルループの方向に対して垂直である場合にはピン及び孔が係合する部品間の寸法及び公差のみを含む
    ことを特徴とするベクトルループ抽出装置。
JP2004380333A 2003-12-31 2004-12-28 機械ベクトルループ抽出のための方法及び装置 Expired - Fee Related JP4936660B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/750,492 2003-12-31
US10/750,492 US7289937B2 (en) 2002-11-14 2003-12-31 Method and apparatus for machine vector loop extraction

Publications (2)

Publication Number Publication Date
JP2005216290A JP2005216290A (ja) 2005-08-11
JP4936660B2 true JP4936660B2 (ja) 2012-05-23

Family

ID=34654295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380333A Expired - Fee Related JP4936660B2 (ja) 2003-12-31 2004-12-28 機械ベクトルループ抽出のための方法及び装置

Country Status (4)

Country Link
US (1) US7289937B2 (ja)
EP (1) EP1560092B1 (ja)
JP (1) JP4936660B2 (ja)
DE (1) DE602004019754D1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499815B2 (en) * 2006-11-02 2009-03-03 Honeywell International Inc. Machine radial stack gap generation and clearance management system and method
JP4870581B2 (ja) * 2007-01-16 2012-02-08 株式会社リコー パーツカタログ作成システム、コンピュータが実行するためのプログラム、およびコンピュータが読み取り可能な記録媒体
US20090299687A1 (en) * 2007-08-07 2009-12-03 United Technologies Corporation Reverse engineering disk inspection
US20090295796A1 (en) * 2008-05-29 2009-12-03 Brown Clayton D Method of updating a model
FR2960180B1 (fr) * 2010-05-21 2012-06-15 Soc Tech Michelin Dispositif d'ajustement d'un front de nappe
JP5986378B2 (ja) * 2011-12-28 2016-09-06 キヤノン株式会社 情報処理装置
JP6233038B2 (ja) * 2014-01-16 2017-11-22 富士通株式会社 組立歩留予測装置、組立歩留予測プログラムおよび組立歩留予測方法
GB201418349D0 (en) * 2014-10-16 2014-12-03 Rolls Royce Plc Virtual component alignment
US10957116B2 (en) * 2018-09-07 2021-03-23 The Boeing Company Gap detection for 3D models

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239557A (ja) * 1987-03-27 1988-10-05 Hitachi Ltd Cad装置
US5581466A (en) * 1994-05-12 1996-12-03 Texas Instruments Incorporated Tolerance analysis system and method
US5949693A (en) * 1996-09-06 1999-09-07 Tandler; William Computer aided design (CAD) system for automatically constructing datum reference frame (DRF) and feature control frame (FCF) for machine part
US6351721B1 (en) * 1999-06-22 2002-02-26 General Electric Company Method and system for turbine clearance measurement analysis
JP2001202393A (ja) * 2000-01-21 2001-07-27 Mitsubishi Electric Corp 部品接続関係抽出方法及び部品接続関係抽出装置
JP2002082995A (ja) * 2000-09-07 2002-03-22 Hitachi Ltd 情報処理装置およびそれにより実行されるプログラムが格納された記録媒体
JP4681155B2 (ja) * 2001-06-22 2011-05-11 富士通株式会社 組立公差解析装置、その方法、プログラム、及び記録媒体
US7024263B2 (en) * 2002-07-25 2006-04-04 Drake Jr Paul J Mechanical tolerance method
US6826510B2 (en) * 2002-11-14 2004-11-30 General Electric Company Method, system and computer product for performing geometric dimension and tolerance stack-up analysis

Also Published As

Publication number Publication date
EP1560092A2 (en) 2005-08-03
JP2005216290A (ja) 2005-08-11
US20060253269A9 (en) 2006-11-09
US20050149298A1 (en) 2005-07-07
US7289937B2 (en) 2007-10-30
EP1560092B1 (en) 2009-03-04
DE602004019754D1 (de) 2009-04-16
EP1560092A3 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
US9704293B2 (en) Finite element mesh customisation
Yuan et al. Efficient computational techniques for mistuning analysis of bladed discs: a review
Lange et al. Impact of manufacturing variability on multistage high-pressure compressor performance
RU2433470C1 (ru) Система и способ поддержки проектирования изделий
US20160246287A1 (en) Probabilistic evaluation of turbomachinery design to predict high cycle fatigue failure
WO2019209410A1 (en) Refinement of finite element model of integrally bladed disk
JP6889558B2 (ja) 有効流れ面積を確定するための走査されたベーンの使用
JP4936660B2 (ja) 機械ベクトルループ抽出のための方法及び装置
EP3979120A2 (en) Probabilistic fatigue and blend limit assessment and visualization methods for airfoils
Dawes et al. Reducing bottlenecks in the CAD-to-mesh-to-solution cycle time to allow CFD to participate in design
Kaszynski et al. Experimental validation of a mesh quality optimized morphed geometric mistuning model
Hohl et al. A method to reduce the energy localization in mistuned bladed disks by application-specific blade pattern arrangement
Bunnell et al. Rapid visualization of compressor blade finite element models using surrogate modeling
Brown et al. Surrogate modeling of manufacturing variation effects on unsteady interactions in a transonic turbine
Hancock et al. Reducing shock interactions in transonic turbine via three-dimensional aerodynamic shaping
Brown et al. Emulation of as-manufactured transonic rotor airfoil modal behavior and the significance of frequency veering
Brown Reduced order modeling methods for turbomachinery design
US9127553B2 (en) Method, systems, and apparatuses for transition piece contouring
JP2003186920A (ja) メッシュ生成方法、メッシュ生成装置、コンピュータプログラム、及び記録媒体
Brown et al. Emulation of frequency and mode shape variation of as-manufactured airfoils with eigenvalue veering and crossing
Maywald et al. Prediction of Geometrically Induced Localization Effects Using a Subset of Nominal System Modes
Burlaka et al. Axial Compressor Map Generation Leveraging Autonomous Self-Training AI
Ouellet et al. A preliminary design system for turbine discs
Diermeier et al. Application of an Advanced Meta Model Selection Algorithm on the Sensitivity Analysis of a Cooled Turbine Blade
Martin et al. Automated mode identification of airfoil geometries to be used in an optimization process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100928

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110421

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees