JP4936286B2 - Inner diameter measuring device - Google Patents

Inner diameter measuring device Download PDF

Info

Publication number
JP4936286B2
JP4936286B2 JP2007157858A JP2007157858A JP4936286B2 JP 4936286 B2 JP4936286 B2 JP 4936286B2 JP 2007157858 A JP2007157858 A JP 2007157858A JP 2007157858 A JP2007157858 A JP 2007157858A JP 4936286 B2 JP4936286 B2 JP 4936286B2
Authority
JP
Japan
Prior art keywords
inner diameter
light
optical path
light beam
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007157858A
Other languages
Japanese (ja)
Other versions
JP2008309645A (en
Inventor
弘一 松本
亜紀子 平井
薫 佐々木
正敏 荒井
信之 大澤
徹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tokyo Seimitsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2007157858A priority Critical patent/JP4936286B2/en
Publication of JP2008309645A publication Critical patent/JP2008309645A/en
Application granted granted Critical
Publication of JP4936286B2 publication Critical patent/JP4936286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、円筒状の被測定物の内径を測定する内径測定装置に関し、特に、白色干渉を用いた内径測定装置に関する。   The present invention relates to an inner diameter measuring apparatus that measures the inner diameter of a cylindrical object to be measured, and more particularly to an inner diameter measuring apparatus that uses white interference.

従来より、円筒状の部品を、非接触で精密に測定する方法として、白色干渉の原理を用いた方法が提案されている。例えば、白色干渉を用いて、シリンダの内径を測定するための干渉計が知られている(非特許文献1参照)。非特許文献1に記載された干渉計では、白色光源から放射された光を、コリメータで平行光とし、シリンダ内に配置されたハーフミラーで二つの光束に分割する。そして、それらの光束は、シリンダの内面または平面鏡で反射された後、例えばシリンダの内径の2倍に相当する光路差を生じて再度ハーフミラーで結合されてシリンダ内から出射する。そして、シリンダ内から出射した光束を、別途設けられた干渉計で再度二つの光束に分割し、シリンダ内で生じた光路差と略等しい光路差を生じさせることにより、白色干渉縞を生じさせる。白色干渉縞は、シリンダ内で生じた光路差と干渉計側で生じさせた光路差とが等しい場合に最大振幅を有するので、干渉計側で生じさせた二つの光束の光路差を測定することにより、正確にシリンダの内径を測定することができる。   Conventionally, a method using the principle of white interference has been proposed as a method for accurately measuring a cylindrical part in a non-contact manner. For example, an interferometer for measuring the inner diameter of a cylinder using white interference is known (see Non-Patent Document 1). In the interferometer described in Non-Patent Document 1, light emitted from a white light source is converted into parallel light by a collimator and divided into two light beams by a half mirror arranged in a cylinder. Then, the light beams are reflected by the inner surface of the cylinder or the plane mirror, and then, for example, an optical path difference corresponding to twice the inner diameter of the cylinder is generated, coupled again by the half mirror, and emitted from the cylinder. Then, the light beam emitted from the cylinder is again divided into two light beams by an interferometer provided separately, and an optical path difference substantially equal to the optical path difference generated in the cylinder is generated, thereby generating white interference fringes. Since the white interference fringe has the maximum amplitude when the optical path difference generated in the cylinder is equal to the optical path difference generated on the interferometer side, measure the optical path difference between the two light beams generated on the interferometer side. Thus, the inner diameter of the cylinder can be accurately measured.

植木、大岩、「シリンダの内径測定用干渉計」、計量研究所報告、昭和63年1月、第37巻、第1号、p.53-57Ueki, Oiwa, "Interferometer for measuring inner diameter of cylinder", Report of Metrology Institute, January 1988, Vol. 37, No. 1, p.53-57

ところで、近年の微細加工技術の進展により、内径が非常に小さい、場合によっては、内径が1mm以下しかない部品が様々な製品に使用されるに至っている。このような部品についても、加工精度の確認などのために、内径を精度良く計測することについての要望がある。このような要望に応えるために、上記の干渉計を用いて円筒状の部品の内径を測定しようとすれば、その内径よりも小さいハーフミラーを使用することが必要となる。さらに、ハーフミラーをその部品の円筒内部に位置固定するために、ハーフミラーの保持用部材もその円筒内部に配置することが必要となる。しかし、ハーフミラー及びその保持用部材を小型化するには限界があるため、内径があまりに小さくなると、ハーフミラー及びその保持用部材を円筒内部に配置することが困難となる。そのため、このような内径の小さい部品の内径寸法を精度良く測定することは困難であった。   By the way, due to the recent progress in microfabrication technology, parts having an extremely small inner diameter, and in some cases having an inner diameter of only 1 mm or less have been used for various products. For such parts, there is a demand for measuring the inner diameter with high accuracy in order to confirm processing accuracy. In order to meet such a demand, if it is going to measure the internal diameter of a cylindrical component using said interferometer, it will be necessary to use a half mirror smaller than the internal diameter. Furthermore, in order to fix the position of the half mirror inside the cylinder of the component, it is necessary to arrange the holding member of the half mirror inside the cylinder. However, since there is a limit to downsizing the half mirror and its holding member, if the inner diameter becomes too small, it becomes difficult to dispose the half mirror and its holding member inside the cylinder. For this reason, it has been difficult to accurately measure the inner diameter of a component having such a small inner diameter.

上記の問題点に鑑み、本発明の目的は、白色干渉を用いた円筒状の被測定物の内径寸法測定において、小さな内径を有する被測定物についても内径を測定可能な内径測定装置を提供することにある。   In view of the above problems, an object of the present invention is to provide an inner diameter measuring apparatus capable of measuring an inner diameter of a measured object having a small inner diameter in measuring the inner diameter of a cylindrical measured object using white interference. There is.

本発明の一つの実施態様によれば、円筒状の被測定物の内径寸法を測定する内径測定装置が提供される。係る内径測定装置は、白色光源と、白色光源から放射された光を、前記被測定物に向かう第1の光束と第2の光束に分岐し、第1の光束を被測定物で反射させて第2の光束との間に被測定物の内径に対応する第1の光路差を生じさせ、第1の光束と第2の光束を一つの光束に合わせて出射させる光導波路素子と、位置が固定された固定鏡と、光路に沿って移動可能な移動鏡とを有する干渉計であって、光導波路素子から出射した光束を、固定鏡に向かう第3の光束と、移動鏡に向かう第4の光束に分岐して、第3の光束と第4の光束との間に第2の光路差を生じさせる干渉計と、第3の光束と第4の光束を受光し、第1の光路差と第2の光路差とが略等しい場合に生じる干渉信号を検出し、その干渉信号に対応する信号を出力する検出器と、干渉信号の最大値に対応する移動鏡の位置を測定し、その位置から第2の光路差を計算することにより、被測定物の内径の測定値を求めるコントローラと、を有することを特徴とする。   According to one embodiment of the present invention, an inner diameter measuring device for measuring an inner diameter dimension of a cylindrical object to be measured is provided. The inner diameter measuring apparatus splits the white light source and the light emitted from the white light source into a first light beam and a second light beam directed to the object to be measured, and reflects the first light beam by the object to be measured. An optical waveguide element that causes a first optical path difference corresponding to the inner diameter of the object to be measured between the second light flux and emits the first light flux and the second light flux according to one light flux; An interferometer having a fixed mirror that is fixed and a movable mirror that is movable along the optical path, wherein the light beam emitted from the optical waveguide element is converted into a third light beam that is directed to the fixed mirror and a fourth beam that is directed to the movable mirror. An interferometer that branches into a first light beam and causes a second light path difference between the third light beam and the fourth light beam, and receives the third light beam and the fourth light beam, and receives the first light path difference. And a detector for detecting an interference signal generated when the second optical path difference is substantially equal to the second optical path difference and outputting a signal corresponding to the interference signal; A controller for measuring the inner diameter of the object to be measured by measuring the position of the movable mirror corresponding to the maximum value of the interference signal and calculating the second optical path difference from the position. .

また、本発明によれば、光導波路素子は、上記の第1の光束が通る第1の導波路と、上記の第2の光束が通る第2の導波路と、光導波路素子に近接して設けられた参照鏡とを有し、第1の導波路は、白色光源から放射された光を被測定物の第1の内面へ導くように形成された導波路と、その第1の内面で反射された光を、第1の内面と対向する被測定物の第2の内面へ導くように形成された導波路と、その第2の内面で反射された光を、光導波路素子の出射口まで導くように形成された導波路とからなり、第2の導波路は、白色光源から放射された光を参照鏡へ導くように形成されることが好ましい。   According to the invention, the optical waveguide element is provided in the vicinity of the first waveguide through which the first light flux passes, the second waveguide through which the second light flux passes, and the optical waveguide element. A reference mirror provided, and the first waveguide is formed of a waveguide formed to guide the light emitted from the white light source to the first inner surface of the object to be measured, and the first inner surface of the waveguide. A waveguide formed so as to guide the reflected light to the second inner surface of the object to be measured facing the first inner surface, and the light reflected by the second inner surface as the exit port of the optical waveguide element The second waveguide is preferably formed to guide the light emitted from the white light source to the reference mirror.

さらに、本発明によれば、光導波路素子は、フォトニック結晶導波路素子であることが好ましい。   Furthermore, according to the present invention, the optical waveguide element is preferably a photonic crystal waveguide element.

さらに、本発明によれば、光導波路素子は、その一部分が被測定物の円筒外に位置するように配置され、かつ、内径測定装置は、被測定物の円筒外に位置する光導波路素子の一部分を把持して前記光導波路素子を固定する保持用部材を有することが好ましい。   Further, according to the present invention, the optical waveguide element is arranged such that a part thereof is located outside the cylinder of the object to be measured, and the inner diameter measuring device is an optical waveguide element located outside the cylinder of the object to be measured. It is preferable to have a holding member for holding a part and fixing the optical waveguide element.

さらに、本発明による内径測定装置は、被測定物を基準用被測定物として求めた干渉信号の最大値に対応する第2の光路差である基準光路差と、その基準用被測定物の内径とを記憶した記憶部を有し、かつ、コントローラは、被測定物について測定した干渉信号の最大値に対応する第2の光路差と、基準光路差との差を求め、その差の半分を基準用被測定物の内径に加えた値を、被測定物の内径とすることが好ましい。
なお、上記の各実施態様において、白色光源とは、可視光域において広帯域発光する光源に限られず、所定の波長を中心波長とした一定の波長帯域の光を放射する光源をいう。
Furthermore, the inner diameter measuring apparatus according to the present invention includes a reference optical path difference that is a second optical path difference corresponding to the maximum value of the interference signal obtained by using the object to be measured as a reference object to be measured, and the inner diameter of the reference object to be measured. And the controller obtains a difference between the second optical path difference corresponding to the maximum value of the interference signal measured for the object to be measured and the reference optical path difference, and calculates half of the difference. The value added to the inner diameter of the reference object is preferably the inner diameter of the object to be measured.
In each of the above embodiments, the white light source is not limited to a light source that emits light in a broad band in the visible light range, but a light source that emits light in a certain wavelength band with a predetermined wavelength as a center wavelength.

また、本発明の他の実施態様によれば、円筒状の被測定物の内径寸法を測定する内径測定装置が提供される。係る内径測定装置は、白色光源と、位置が固定された参照鏡と光路に沿って移動可能な移動鏡とを有する干渉計であって、白色光源から放射された光を、参照鏡に向かう第1の光束と、移動鏡に向かう第2の光束に分岐して、第1の光束と第2の光束との間に第1の光路差を生じさせる干渉計と、干渉計から出射された第1の光束及び第2の光束を、被測定物に向かう第3の光束と第4の光束に分岐し、第3の光束を被測定物で反射させて第4の光束との間に被測定物の内径に対応する第2の光路差を生じさせ、第1の光束と第2の光束を一つの光束に合わせて出射させる光導波路素子と、第3の光束と第4の光束を受光し、第1の光路差と第2の光路差とが略等しい場合に生じる干渉信号を検出し、干渉信号に対応する信号を出力する検出器と、干渉信号の最大値に対応する移動鏡の位置を測定し、その位置から第1の光路差を計算することにより、被測定物の内径を求めるコントローラとを有する。   According to another embodiment of the present invention, an inner diameter measuring device for measuring an inner diameter dimension of a cylindrical object to be measured is provided. The inner diameter measuring apparatus is an interferometer having a white light source, a reference mirror whose position is fixed, and a movable mirror that can move along the optical path. The inner diameter measuring device transmits light emitted from the white light source toward the reference mirror. An interferometer for branching into a first light beam and a second light beam directed toward the movable mirror to produce a first optical path difference between the first light beam and the second light beam, and a first light beam emitted from the interferometer The first light beam and the second light beam are branched into a third light beam and a fourth light beam that are directed toward the object to be measured, and the third light beam is reflected by the object to be measured and is measured between the fourth light beam and the fourth light beam. An optical waveguide element that generates a second optical path difference corresponding to the inner diameter of the object and emits the first and second luminous fluxes in accordance with one luminous flux, and receives the third and fourth luminous fluxes. Detecting an interference signal generated when the first optical path difference and the second optical path difference are substantially equal, and outputting a signal corresponding to the interference signal When the position of the moving mirror corresponding to the maximum value of the interference signal is measured by calculating the first optical path difference from that position, and a controller for determining the inner diameter of the object.

本発明によれば、白色干渉を用いた円筒状の被測定物の内径寸法測定において、小さな内径を有する被測定物についても内径を測定可能な内径測定装置を提供することが可能となった。   ADVANTAGE OF THE INVENTION According to this invention, it became possible to provide the internal diameter measuring apparatus which can measure an internal diameter also about the to-be-measured object which has a small internal diameter in the internal-diameter dimension measurement of the cylindrical to-be-measured object using white interference.

以下、本発明を、リングゲージ、シリンダなど、円筒状の被測定物の内径を計測する内径測定装置に適用した実施の形態を、図を参照しつつ説明する。
本発明を適用した内径測定装置は、白色光源からの光を、被測定物の略中心に配置した光導波路素子に入射させる。その光導波路素子は、被測定物の内径に応じて定まる光路差を有する二つの光束を生成するように、入射した光を分岐させる二つの導波路を有する。導波路の一方は、被測定物の内面に向かい、導波路の他方は、参照鏡に向かうように形成される。そして、それぞれの導波路を通った光束を、一つに合わせて出射させ、干渉計に入射させる。干渉計では、上記光路差とほぼ等しい光路差を生じる二つの光路に光束を分割して干渉させることにより、白色干渉縞を生じさせる。そして、検出器で白色干渉縞の最大信号値を検出して干渉計の二つの光路間の光路差を測定し、予め内径の分かっているマスタについて求めたその光路差と比較することにより、被測定物の内径を求める。
Hereinafter, embodiments in which the present invention is applied to an inner diameter measuring device that measures the inner diameter of a cylindrical object to be measured, such as a ring gauge and a cylinder, will be described with reference to the drawings.
The inner diameter measuring apparatus to which the present invention is applied causes light from a white light source to enter an optical waveguide element disposed substantially at the center of the object to be measured. The optical waveguide element has two waveguides that branch incident light so as to generate two light beams having optical path differences determined according to the inner diameter of the object to be measured. One of the waveguides is formed to face the inner surface of the object to be measured, and the other of the waveguides is formed to face the reference mirror. Then, the light beams that have passed through the respective waveguides are emitted together and incident on the interferometer. In the interferometer, white interference fringes are generated by splitting the light beam into two optical paths that cause an optical path difference substantially equal to the optical path difference to cause interference. Then, the maximum signal value of the white interference fringes is detected by the detector, the optical path difference between the two optical paths of the interferometer is measured, and compared with the optical path difference obtained for the master whose inner diameter is known in advance. Obtain the inner diameter of the workpiece.

図1は、本発明を適用した内径測定装置1の概略構成を示す図である。内径測定装置1は、白色光源2と、被測定物の内径に応じて定まる光路差を有する二つの光束を生じさせる光導波路素子3と、光導波路素子3で生じた光路差と同程度の光路差を生じさせて白色干渉縞を発生させる干渉計4と、干渉計4で発生した干渉縞を検出する検出器5と、各部の制御及び検出された干渉縞から被測定物の内径を求めるコントローラ6を有する。さらに、内径測定装置1は、白色光源2からの光を光導波路素子3に伝える光ファイバ7と、光導波路素子3から出射した光を干渉計4へ伝える光ファイバ8を有する。   FIG. 1 is a diagram showing a schematic configuration of an inner diameter measuring apparatus 1 to which the present invention is applied. The inner diameter measuring device 1 includes a white light source 2, an optical waveguide element 3 that generates two light fluxes having an optical path difference determined according to the inner diameter of the object to be measured, and an optical path that is similar to the optical path difference generated in the optical waveguide element 3. An interferometer 4 that generates a white interference fringe by generating a difference, a detector 5 that detects the interference fringe generated by the interferometer 4, and a controller that determines the inner diameter of the object to be measured from the control of each part and the detected interference fringe 6. Further, the inner diameter measuring apparatus 1 includes an optical fiber 7 that transmits light from the white light source 2 to the optical waveguide element 3, and an optical fiber 8 that transmits light emitted from the optical waveguide element 3 to the interferometer 4.

白色光源2は、コヒーレンス長が短く、広帯域な波長の光を放射可能な光源である。白色光源2として、例えば、LED、SLD(スーパールミネッセントダイオード)、SOA(Semiconductor Optical Amplifier)光源、ASE(Amplified Spontaneous Emission)光源などを用いることができる。また、白色光源2から出射される光の中心波長は、例えば750nm、1300nm、1550nmなどに設定することができる。本実施形態では、白色光源2として、中心波長1550nmの赤外LEDを用いた。   The white light source 2 is a light source that has a short coherence length and can emit light having a broad wavelength. As the white light source 2, for example, an LED, an SLD (super luminescent diode), an SOA (Semiconductor Optical Amplifier) light source, an ASE (Amplified Spontaneous Emission) light source, or the like can be used. The center wavelength of the light emitted from the white light source 2 can be set to 750 nm, 1300 nm, 1550 nm, and the like, for example. In the present embodiment, an infrared LED having a center wavelength of 1550 nm is used as the white light source 2.

図2に、光導波路素子3の概略側面断面図を示す。光導波路素子3では、XYZステージ14の上に配置された被測定物10の内径に応じて定まる光路差を有する二つの光束B1、B2を生成する。そのために、白色光源2から放射された光は、第1の光ファイバ7、コリメータレンズ11及びウェッジプリズム12を経て光導波路素子3に導かれる。なお、コリメータレンズ11は、入射した光を平行光とする。そして、ウェッジプリズム12は、コリメータレンズ11を経て入射した平行光の位置を調整して出射する。そして、ウェッジプリズム12から出射した光は、被測定物10の内径の略中心に配置された光導波路素子3に入射する。   FIG. 2 shows a schematic side cross-sectional view of the optical waveguide element 3. In the optical waveguide element 3, two light beams B1 and B2 having an optical path difference determined according to the inner diameter of the DUT 10 arranged on the XYZ stage 14 are generated. For this purpose, the light emitted from the white light source 2 is guided to the optical waveguide element 3 through the first optical fiber 7, the collimator lens 11 and the wedge prism 12. The collimator lens 11 makes incident light parallel light. The wedge prism 12 adjusts the position of the parallel light incident through the collimator lens 11 and emits it. Then, the light emitted from the wedge prism 12 is incident on the optical waveguide element 3 disposed at the approximate center of the inner diameter of the DUT 10.

以下、光導波路素子3について図2を参照しつつ詳細に説明する。光導波路素子3は、光束B1を被測定物10に導く第1〜第3の導波路31〜33と、光束B2を光導波路素子3の側面に設けられた参照鏡38に導く第4の導波路34と、被測定物10で反射された光束B1及び参照鏡38で反射された光束B2を光導波路素子3の外へ導く第5の導波路35を有する。第1の導波路31は、光導波路素子3の上面に設けられた入射口30に入射した光を、被測定物10の内面S1へと導く。そのために、第1の導波路31は、入射口30からほぼ垂直に下方へ向けて形成される。そして、光導波路素子3の下部で湾曲し、ほぼ水平方向を向いて、光導波路素子3の下方の側面に設けられた第1の出入射口36に連結される。第2の導波路32は、内面S1で反射され、光導波路素子3の第1の出入射口36を経て再入射した光を、被測定物10の内面S1と反対側の内面S2へ導く。そのために、第2の導波路32は、ほぼ水平に形成され、第1の導波路31と途中で分岐して、第1の出入射口36に対して光導波路素子3の反対側の側面に設けられた第2の出入射口37に連結される。第3の導波路33は、内面S2で反射され、光導波路素子3の第2の出入射口37を経て三度入射した光を、第1の導波路31へ導く。そのために、第3の導波路33は、第2の導波路32と途中で分岐して湾曲し、ほぼ垂直に向いたところで第1の導波路31と合流する。   Hereinafter, the optical waveguide element 3 will be described in detail with reference to FIG. The optical waveguide element 3 includes first to third waveguides 31 to 33 that guide the light beam B1 to the DUT 10 and a fourth guide that guides the light beam B2 to the reference mirror 38 provided on the side surface of the optical waveguide element 3. A waveguide 34 and a fifth waveguide 35 that guides the light beam B 1 reflected by the DUT 10 and the light beam B 2 reflected by the reference mirror 38 to the outside of the optical waveguide element 3 are provided. The first waveguide 31 guides the light incident on the incident port 30 provided on the upper surface of the optical waveguide element 3 to the inner surface S <b> 1 of the DUT 10. For this purpose, the first waveguide 31 is formed downward substantially perpendicularly from the entrance 30. Then, it is curved at the lower part of the optical waveguide element 3, is directed substantially in the horizontal direction, and is connected to the first entrance / exit port 36 provided on the lower side surface of the optical waveguide element 3. The second waveguide 32 guides the light reflected by the inner surface S1 and re-entered through the first entrance / exit port 36 of the optical waveguide element 3 to the inner surface S2 opposite to the inner surface S1 of the object to be measured 10. Therefore, the second waveguide 32 is formed substantially horizontally, branches in the middle of the first waveguide 31, and on the side surface opposite to the optical waveguide element 3 with respect to the first entrance / exit port 36. It is connected to the provided second exit / incident port 37. The third waveguide 33 guides the light reflected by the inner surface S <b> 2 and incident three times through the second exit / incident port 37 of the optical waveguide element 3 to the first waveguide 31. Therefore, the third waveguide 33 is branched and curved in the middle of the second waveguide 32, and merges with the first waveguide 31 when it is substantially perpendicular.

第4の導波路34は、被測定物10の内面S1、S2で反射された光束B1との光路差を有する参照光束B2を生成するために、第3の導波路33が第1の導波路31と合流するところよりも、入射口30に近い位置で、第1の導波路31から下方に向かって分岐し、光導波路素子3の側面に近接して設けられた参照鏡38へ向かう。また、第5の導波路35は、光束B1及びB2を一つに合わせて出射口39へ導く。そのため、第5の導波路35は、第3の導波路33が第1の導波路31から分岐する点よりも入射口30に近い位置で、第1の導波路31から上方に向かって分岐し、光導波路素子3の側面に設けられた出射口39に連結される。   The fourth waveguide 34 generates the reference light beam B2 having an optical path difference from the light beam B1 reflected by the inner surfaces S1 and S2 of the DUT 10, so that the third waveguide 33 is the first waveguide. Branches downward from the first waveguide 31 at a position closer to the entrance 30 than where it joins 31, and travels toward a reference mirror 38 provided close to the side surface of the optical waveguide element 3. Further, the fifth waveguide 35 guides the light beams B1 and B2 to the emission port 39 together. Therefore, the fifth waveguide 35 branches upward from the first waveguide 31 at a position closer to the entrance 30 than the point where the third waveguide 33 branches from the first waveguide 31. The optical waveguide element 3 is connected to an emission port 39 provided on the side surface.

ここで、被測定物10の内面S1、S2で反射され、出射口39から出射する光束B1の経路と、参照鏡38で反射され、出射口39から出射する光束B2の経路についてまとめる。光束B1は、入射口30に入射した後、第1の導波路31を通って第1の出入射口36から出射する。そして、被測定物10の内面S1で反射される。内面S1で反射された光束B1は、再度第1の出入射口36を経て光導波路素子3に入射し、第2の導波路32を直進する。その後、第2の出入射口37から出射して、被測定物10の内面S2で再び反射される。その反射後、第2の出入射口37を経て光導波路素子3に三度入射し、第3の導波路33を通って第1の導波路31に戻り、上方へ向けて進む。そして、第5の導波路35へ分岐して、出射口39へと進む。
一方、光束B2は、入射口30に入射した後、第1の導波路31を通り、途中で分岐して第4の導波路34を進む。そして参照鏡38で反射され、第4の導波路34を逆方向に進む。その後、第1の導波路31から第5の導波路35を経て、出射口39へと至る。
光束B1と光束B2とは、第5の導波路35で合わさって、光導波路素子3から出射する。光束B1と光束B2は、光導波路素子3から出射した後、集光レンズ13を経て集光されて、光ファイバ8に入射する。
Here, the path of the light beam B1 reflected by the inner surfaces S1 and S2 of the DUT 10 and emitted from the emission port 39 and the path of the light beam B2 reflected by the reference mirror 38 and emitted from the emission port 39 will be summarized. The light beam B <b> 1 enters the incident port 30, and then exits from the first exit / incident port 36 through the first waveguide 31. Then, the light is reflected by the inner surface S1 of the DUT 10. The light beam B <b> 1 reflected by the inner surface S <b> 1 enters the optical waveguide device 3 again through the first exit / incident port 36, and travels straight through the second waveguide 32. Thereafter, the light exits from the second exit / incident port 37 and is reflected again by the inner surface S <b> 2 of the DUT 10. After the reflection, the light enters the optical waveguide element 3 three times through the second exit / incident port 37, returns to the first waveguide 31 through the third waveguide 33, and proceeds upward. Then, it branches to the fifth waveguide 35 and proceeds to the emission port 39.
On the other hand, the light beam B <b> 2 enters the incident port 30, passes through the first waveguide 31, branches in the middle, and travels through the fourth waveguide 34. Then, the light is reflected by the reference mirror 38 and proceeds through the fourth waveguide 34 in the reverse direction. Thereafter, the first waveguide 31 passes through the fifth waveguide 35 and reaches the emission port 39.
The light beam B1 and the light beam B2 are combined in the fifth waveguide 35 and emitted from the optical waveguide element 3. The light beams B <b> 1 and B <b> 2 are emitted from the optical waveguide element 3, condensed through the condenser lens 13, and enter the optical fiber 8.

このとき、光束B1とB2との間に生じる光路差は、被測定物10の内径Dに応じて定まる。このことは、光導波路素子3内では、光束B1が通る導波路の長さと光束B2が通る導波路の長さは、光導波路素子3の製造時点で定まり、光束B1とB2の光路差は、光導波路素子3の第1の出入射口36と被測定物10の内面S1との距離、及び光導波路素子3の第2の出入射口37と被測定物10の内面S2との距離に応じて変化することから、明らかである。   At this time, the optical path difference generated between the light beams B1 and B2 is determined according to the inner diameter D of the DUT 10. This means that in the optical waveguide element 3, the length of the waveguide through which the light beam B1 passes and the length of the waveguide through which the light beam B2 passes are determined at the time of manufacturing the optical waveguide element 3, and the optical path difference between the light beams B1 and B2 is Depending on the distance between the first entrance / exit port 36 of the optical waveguide element 3 and the inner surface S1 of the object to be measured 10 and the distance between the second exit / incident port 37 of the optical waveguide element 3 and the inner surface S2 of the object 10 to be measured. It is clear from the change.

なお、図2に示すように、第1の出入射口36及び第2の出入射口37から出射する光束の拡散を抑制し、再度光導波路素子3に入射する光の集光効率を上げるために、それらの出入射口に凸レンズL1、L2を設けてもよい。
また、光導波路素子3を、図2におけるその垂直方向の長さが被測定物10の同方向(すなわち、軸方向)の長さよりも大きくなるように作製した。そして、光導波路素子3の上側部分が、被測定物10の円筒内部から突出するように、光導波路素子3を配置した。そして、光導波路素子3を、被測定物10の円筒内部から突出した部分で、光導波路素子3を把持するように構成された保持用部材16により固定した。このように光導波路素子3を作製・配置することにより、被測定物10の円筒内部には、光導波路素子3以外のものを挿入する必要がなくなる。そのため、本発明に係る内径測定装置1は、被測定物10の内径が小さい場合でも、その内径寸法を測定することができる。
As shown in FIG. 2, in order to suppress the diffusion of the light beams emitted from the first exit / incident port 36 and the second exit / incident port 37, the light collection efficiency of the light incident on the optical waveguide element 3 again is increased. In addition, convex lenses L1 and L2 may be provided at the exit and entrance.
Further, the optical waveguide element 3 was fabricated such that the length in the vertical direction in FIG. 2 was larger than the length in the same direction (that is, the axial direction) of the DUT 10. Then, the optical waveguide element 3 was arranged so that the upper part of the optical waveguide element 3 protruded from the inside of the cylinder of the DUT 10. Then, the optical waveguide element 3 was fixed by a holding member 16 configured to hold the optical waveguide element 3 at a portion protruding from the inside of the cylinder of the DUT 10. By producing and arranging the optical waveguide element 3 in this way, it is not necessary to insert anything other than the optical waveguide element 3 inside the cylinder of the DUT 10. Therefore, the inner diameter measuring apparatus 1 according to the present invention can measure the inner diameter dimension even when the inner diameter of the DUT 10 is small.

なお、本実施形態では、光導波路素子3を、光学プラスチックなどからなり、全反射を利用して導波路内を伝播させる光導波路素子として形成した。しかし、光導波路素子3を他の光学材料、例えば石英ガラスなどで形成してもよい。また、光導波路素子3をフォトニック結晶を用いて形成してもよい。白色光源2からの光に対してフォトニックバンドギャップを持つように導波路の壁面を形成したフォトニック結晶を用いることにより、通常の全反射を利用した光導波路素子と比較して、導波路の湾曲部分の曲率半径を小さくすることができるので、光導波路素子3をより小さくすることができる。   In the present embodiment, the optical waveguide element 3 is made of an optical plastic or the like, and is formed as an optical waveguide element that propagates in the waveguide using total reflection. However, the optical waveguide element 3 may be formed of another optical material such as quartz glass. Further, the optical waveguide element 3 may be formed using a photonic crystal. By using a photonic crystal in which the wall surface of the waveguide is formed so as to have a photonic band gap with respect to the light from the white light source 2, compared with an optical waveguide device using general total reflection, Since the curvature radius of the curved portion can be reduced, the optical waveguide element 3 can be further reduced.

なお、XYZステージ14は、被測定物10の軸方向(すなわち、図2における垂直方向)、被測定物10の軸方向に直交する円筒断面内で第2の導波路32に平行な方向及び第2の導波路32に垂直な方向の3方向に移動可能であり、ステージコントローラ15により駆動される。またステージコントローラ15は、コントローラ6と電気的に接続され、コントローラ6によって制御される。そして、ステージコントローラ15は、コントローラ6からの制御信号に基づいてXYZステージ14を駆動し、光導波路素子3と被測定物10の位置関係を調節する。   Note that the XYZ stage 14 has an axial direction of the device under test 10 (that is, a vertical direction in FIG. 2), a direction parallel to the second waveguide 32 in the cylindrical cross section perpendicular to the axial direction of the device under test 10 and the first direction. It can move in three directions perpendicular to the two waveguides 32 and is driven by the stage controller 15. The stage controller 15 is electrically connected to the controller 6 and controlled by the controller 6. Then, the stage controller 15 drives the XYZ stage 14 based on the control signal from the controller 6 to adjust the positional relationship between the optical waveguide element 3 and the device under test 10.

図3に、干渉計4の概略構成図を示す。光ファイバ8から出射した光束B1及びB2は、干渉計4のコリメータレンズ41を経て、平行光となる。そして、ビームスプリッタ42へ入射する。光束B1及びB2は、ビームスプリッタ42で反射されて第1の光路へ向かう光束B11、B21と、ビームスプリッタ42を透過して第2の光路へ向かう光束B12、B22に分岐する。なお、光束B11は、光導波路素子3から出射した光束B1のうち、干渉計4の第1の光路へ向かう光束を表し、光束B21は、光導波路素子3から出射した光束B2のうち、干渉計4の第1の光路へ向かう光束を表す。同様に、光束B12は、光導波路素子3から出射した光束B1のうち、干渉計4の第2の光路へ向かう光束を表し、光束B22は、光導波路素子3から出射した光束B2のうち、干渉計4の第2の光路へ向かう光束を表す。   FIG. 3 shows a schematic configuration diagram of the interferometer 4. The light beams B1 and B2 emitted from the optical fiber 8 pass through the collimator lens 41 of the interferometer 4 and become parallel light. Then, the light enters the beam splitter 42. The light beams B1 and B2 are reflected by the beam splitter 42 and branched into light beams B11 and B21 that travel toward the first optical path, and light beams B12 and B22 that pass through the beam splitter 42 and travel toward the second optical path. The light beam B11 represents the light beam B1 emitted from the optical waveguide element 3 and travels toward the first optical path of the interferometer 4, and the light beam B21 represents the interferometer among the light beam B2 emitted from the optical waveguide element 3. 4 represents a light beam traveling toward the first optical path 4. Similarly, the light beam B12 represents the light beam B1 emitted from the optical waveguide element 3 and directed to the second optical path of the interferometer 4, and the light beam B22 represents the interference light beam B2 emitted from the optical waveguide element 3. This represents the light flux toward the second optical path in total.

第1の光路には、位置が固定された参照鏡43が設置される。そして、第1の光路へ向かう光束B11、B21は、参照鏡43で反射されてビームスプリッタ42へ戻り、その一部はビームスプリッタ42を透過して検出器5へ向かう。一方、第2の光路には、その光路に沿って移動可能な移動鏡44が設けられる。そして、第2の光路へ向かう光束B12、B22は、移動鏡44で反射されてビームスプリッタ42へ戻り、その一部はビームスプリッタ42で反射されて、B11、B21とともに検出器5へ向かう。   A reference mirror 43 whose position is fixed is installed in the first optical path. The light beams B <b> 11 and B <b> 21 going to the first optical path are reflected by the reference mirror 43 and return to the beam splitter 42, and part of the light passes through the beam splitter 42 and goes to the detector 5. On the other hand, a movable mirror 44 that is movable along the optical path is provided in the second optical path. Then, the light beams B12 and B22 traveling toward the second optical path are reflected by the moving mirror 44 and returned to the beam splitter 42. A part of the light beams B12 and B22 are reflected by the beam splitter 42 and travel to the detector 5 together with B11 and B21.

移動鏡44は、支持部材45に取り付けられる。そして、移動鏡44及び支持部材45は、移動範囲が狭いものの、移動鏡44の位置の微調整が可能なピエゾ微動ステージ46の上に設置される。また、移動鏡44及び支持部材45は、ピエゾ微動ステージ46とともに、移動範囲が相対的に大きく、移動鏡44の位置を大まかに決定する粗動ステージ47上に設置される。ピエゾ微動ステージ46及び粗動ステージ47は、それぞれピエゾコントローラ51及びステージコントローラ52と電気的に接続される。そして、ピエゾ微動ステージ46及び粗動ステージ47は、ピエゾコントローラ51及びステージコントローラ52からの制御信号に基づいて、移動鏡44を第2の光路に沿って移動させる。   The movable mirror 44 is attached to the support member 45. The movable mirror 44 and the support member 45 are installed on a piezo fine movement stage 46 that can finely adjust the position of the movable mirror 44 although the movement range is narrow. The movable mirror 44 and the support member 45 are installed on a coarse movement stage 47 that, together with the piezo fine movement stage 46, has a relatively large movement range and roughly determines the position of the movement mirror 44. The piezo fine movement stage 46 and the coarse movement stage 47 are electrically connected to the piezo controller 51 and the stage controller 52, respectively. Then, the piezo fine movement stage 46 and the coarse movement stage 47 move the movable mirror 44 along the second optical path based on control signals from the piezo controller 51 and the stage controller 52.

また、支持部材45の背面には、コーナーキューブ48が取り付けられる。さらに、支持部材45よりも後方(すなわち、支持部材45を中心として、ビームスプリッタ42の反対側)には、移動鏡44の位置計測用干渉計49が設置される。そして、位置計測用干渉計49は、コーナーキューブ48へ向けて照射され、コーナーキューブ48で反射されて位置計測用干渉計49に戻ってきたコヒーレント光と、参照光との間で観測される干渉縞の移動本数を計数することにより、移動鏡44の移動量を計測することができる。
なお、移動鏡44を移動させつつ、その移動の間に連続的に干渉信号を測定する場合には、ピエゾ微動ステージ46及びピエゾコントローラ51を省略してもよい。
A corner cube 48 is attached to the back surface of the support member 45. Further, an interferometer 49 for measuring the position of the movable mirror 44 is installed behind the support member 45 (that is, on the opposite side of the beam splitter 42 with the support member 45 as the center). The position measurement interferometer 49 is irradiated to the corner cube 48, reflected by the corner cube 48 and returned to the position measurement interferometer 49, and interference observed between the reference light and the reference light. The amount of movement of the movable mirror 44 can be measured by counting the number of moving stripes.
If the interference signal is continuously measured during the movement while moving the movable mirror 44, the piezo fine movement stage 46 and the piezo controller 51 may be omitted.

検出器5は、検出した光量を電気信号として出力するものである。検出器5として、例えば、フォトダイオード、CCDまたはC−MOSなどの半導体検出素子を使用することができる。本実施形態では、検出器5として、CCD素子を2次元アレイ状に並べたものを用いた。
また、検出器5は、コントローラ6と電気的に接続され、検出した光量に対応する電気信号を、コントローラ6へ送信する。
The detector 5 outputs the detected light quantity as an electrical signal. As the detector 5, for example, a semiconductor detection element such as a photodiode, CCD, or C-MOS can be used. In this embodiment, a detector in which CCD elements are arranged in a two-dimensional array is used as the detector 5.
The detector 5 is electrically connected to the controller 6 and transmits an electrical signal corresponding to the detected light amount to the controller 6.

コントローラ6は、いわゆるPCで構成され、電気的に書き換え可能な不揮発性メモリ、磁気ディスク、光ディスク及びそれらの読取装置等からなる記憶部と、RS232C、イーサネット(登録商標)などの通信規格にしたがって構成された電子回路及びデバイスドライバなどのソフトウェアからなる通信部を有する。
さらにコントローラ6は、図示していないCPU,ROM,RAM及びその周辺回路と、CPU上で実行されるコンピュータプログラムによって実現される機能モジュールとして、検出された光量及び移動鏡44の位置に基づいて、被測定物10の内径Dを求めたり、位置計測用干渉計49、ピエゾコントローラ51、ステージコントローラ52及び検出器5など、コントローラ6に接続された機器を制御する制御部とを有する。
The controller 6 is configured by a so-called PC, and is configured in accordance with a communication unit such as RS232C and Ethernet (registered trademark), and a storage unit including an electrically rewritable nonvolatile memory, a magnetic disk, an optical disk, and a reading device thereof. A communication unit including software such as an electronic circuit and a device driver.
Further, the controller 6 is a functional module realized by a CPU, ROM, RAM and its peripheral circuits (not shown) and a computer program executed on the CPU, based on the detected light quantity and the position of the movable mirror 44. It has a control unit for obtaining an inner diameter D of the device under test 10 and for controlling devices connected to the controller 6 such as a position measuring interferometer 49, a piezo controller 51, a stage controller 52, and a detector 5.

以下、内径測定装置1による被測定物10の内径を測定する動作について説明する。
白色光源2からの光は、コヒーレンス長が短いため、光路差がほぼ等しい場合にのみ干渉縞を生じる。ここで、干渉計4の第1の光路における、ビームスプリッタ42から参照鏡43までの距離がL1であり、第2の光路における、ビームスプリッタ42から移動鏡44までの距離がL2であるとすると、第3の光束と第4の光束との間に、光路差ΔL=2(L2−L1)が生じる(ただし、L2>L1とする)。このとき、光路差ΔLと、光束B1とB2の間に生じた光路差が等しければ、光導波路素子3において、被測定物10の内面S1、S2で反射された光束B1のうち、干渉計4において、第1の光路を通った光束B11と、光導波路素子3において参照鏡38で反射された光束B2のうち、干渉計4において、第2の光路を通った光束B22との光路差が0となる。そのため、最大の干渉信号を観測することができる。そして、干渉計4で生じた光路差ΔLと光束B1とB2との間に生じた光路差との差が大きくなるにつれて、干渉信号の大きさは急激に低下する。また、光束B1とB2との間に生じた光路差に関しては、上述したように、光導波路素子3内の導波路で生じる光路差は常に一定となるため、光導波路素子3の第1の出入射口36と被測定物10の内面S1との距離及び光導波路素子3の第2の出入射口37と被測定物10の内面S2との距離の2倍に比例して変動する(なお、2倍となるのは、光束B1は出入射口36と内面S1との間、及び出入射口37と内面S2との間を往復するためである)。そこで、予め内径が分かっている基準品をマスタ(その内径をDmとする)として用い、そのマスタについて上記の光束B1とB2の光路差ΔLm(以下、基準光路差という)を求めておく。このとき、任意の被測定物10について、干渉信号が最大となるときの干渉計4で生じる光路差ΔLと、基準光路差ΔLmとの差の1/2が、被測定物10の内径Dとマスタの内径Dmとの差となる。そこで、光路差ΔLを測定し、基準光路差ΔLmとの差の1/2をマスタの内径Dmに加えることにより、被測定物10の内径Dを求めることができる。
Hereinafter, an operation for measuring the inner diameter of the DUT 10 by the inner diameter measuring apparatus 1 will be described.
Since the light from the white light source 2 has a short coherence length, interference fringes are generated only when the optical path differences are substantially equal. Here, it is assumed that the distance from the beam splitter 42 to the reference mirror 43 in the first optical path of the interferometer 4 is L1, and the distance from the beam splitter 42 to the moving mirror 44 in the second optical path is L2. An optical path difference ΔL = 2 (L2−L1) occurs between the third light flux and the fourth light flux (where L2> L1). At this time, if the optical path difference ΔL and the optical path difference generated between the light beams B1 and B2 are equal, the interferometer 4 out of the light beams B1 reflected by the inner surfaces S1 and S2 of the DUT 10 in the optical waveguide element 3. In the interferometer 4, the optical path difference between the light beam B11 passing through the first optical path and the light beam B2 reflected by the reference mirror 38 in the optical waveguide element 3 is 0. It becomes. Therefore, the maximum interference signal can be observed. Then, as the difference between the optical path difference ΔL generated in the interferometer 4 and the optical path difference generated between the light beams B1 and B2 increases, the magnitude of the interference signal rapidly decreases. In addition, regarding the optical path difference generated between the light beams B1 and B2, as described above, since the optical path difference generated in the waveguide in the optical waveguide element 3 is always constant, the first output of the optical waveguide element 3 is constant. It fluctuates in proportion to twice the distance between the entrance 36 and the inner surface S1 of the object to be measured 10 and the distance between the second exit / incident port 37 of the optical waveguide element 3 and the inner surface S2 of the object to be measured 10 (note that (Because the light beam B1 reciprocates between the exit / injection port 36 and the inner surface S1 and between the exit / injection port 37 and the inner surface S2). Therefore, a reference product whose inner diameter is known in advance is used as a master (whose inner diameter is Dm), and the optical path difference ΔLm between the light beams B1 and B2 (hereinafter referred to as a reference optical path difference) is obtained for the master. At this time, for an arbitrary object to be measured 10, ½ of the difference between the optical path difference ΔL generated in the interferometer 4 when the interference signal is maximum and the reference optical path difference ΔLm is the inner diameter D of the object 10 to be measured. It becomes a difference from the inner diameter Dm of the master. Therefore, the inner diameter D of the object to be measured 10 can be obtained by measuring the optical path difference ΔL and adding ½ of the difference from the reference optical path difference ΔLm to the inner diameter Dm of the master.

また、移動鏡44をビームスプリッタ42に近づけていくと、第3の光束と第4の光束との間に生じる光路差ΔL=2(L1−L2)が、光束B1のうち、第2の干渉計4において第2の光路を通った光束B12と、光束B2のうち、第2の干渉計4において第1の光路を通った光束B21との光路差が0となったところでも、干渉縞を観測することができる(ただし、L1>L2である)。そこで、光束B11と光束B22との間で生じる干渉信号が最大となる移動鏡44の位置と、光束B12と光束B21との間で生じる干渉信号が最大となる移動鏡44の位置との差を2で割った値を、上記のΔLとすることができる。   When the moving mirror 44 is moved closer to the beam splitter 42, the optical path difference ΔL = 2 (L1−L2) generated between the third light flux and the fourth light flux is the second interference in the light flux B1. Even when the optical path difference between the light beam B12 passing through the second optical path in the total 4 and the light beam B21 passing through the first optical path in the second interferometer 4 among the light beams B2 is 0, interference fringes are generated. Can be observed (where L1> L2). Therefore, the difference between the position of the moving mirror 44 at which the interference signal generated between the light beams B11 and B22 is maximized and the position of the moving mirror 44 at which the interference signal generated between the light beams B12 and B21 is maximized. The value divided by 2 can be used as the above ΔL.

図4に、被測定物10の内径Dを測定する際の内径測定装置1の動作フローチャートを示す。
事前準備として、マスタの内径Dmと、及びマスタを内径測定装置1に設置して、干渉計4で白色干渉信号の最大振幅を測定したときの、干渉計4で生じる光路差(すなわち、基準光路差ΔLm)を求め、コントローラの記憶部に記憶しておく。なお、マスタについては、比較的大きな内径、例えば、直径数mm〜10数mm程度の内径を有するものでもよい。そのため、マスタの内径Dmは、公知の接触式の内径寸法測定装置、あるいは、上記の非特許文献1に記載された干渉計などを用いて測定しておけばよい。
測定を開始すると、まず初期化手順として、移動鏡44の基準位置、すなわち、干渉計4の第1の光路と第2の光路間の光路差が0となる移動鏡44の位置を決定する(ステップS101)。そのために、内径測定装置1に、被測定物10を設置せず、干渉計4で干渉縞の検出される位置を求める。このとき、被測定物10の内面で反射される光束は存在しないから、光導波路素子3から出射する光束は、全てB2となる。そのため、干渉計4では、第1の光路におけるビームスプリッタ42から参照鏡43までの距離L1と、第2の光路におけるビームスプリッタ42から移動鏡44までの距離L2との差が0のとき、干渉信号は最大となる。そこで、コントローラ6は、移動鏡44を移動させて、複数の測定点で検出器5で検出される光量を観測し、検出光量が最大、すなわち、干渉信号が最大値となる位置を見つける。そして、コントローラ6は、干渉信号が最大値となったときの移動鏡44の位置を、位置計測用干渉計49から受信し、L1=L2となる位置P1として、コントローラ6の記憶部に記憶する。
FIG. 4 shows an operation flowchart of the inner diameter measuring apparatus 1 when measuring the inner diameter D of the DUT 10.
As an advance preparation, the inner diameter Dm of the master and the optical path difference (that is, the reference optical path) generated in the interferometer 4 when the master is installed in the inner diameter measuring apparatus 1 and the maximum amplitude of the white interference signal is measured by the interferometer 4. The difference ΔLm) is obtained and stored in the storage unit of the controller. The master may have a relatively large inner diameter, for example, an inner diameter of about several mm to several tens mm. Therefore, the inner diameter Dm of the master may be measured using a known contact-type inner diameter dimension measuring device or the interferometer described in Non-Patent Document 1 above.
When the measurement is started, first, as an initialization procedure, the reference position of the movable mirror 44, that is, the position of the movable mirror 44 at which the optical path difference between the first optical path and the second optical path of the interferometer 4 becomes 0 is determined ( Step S101). Therefore, the position where the interference fringes are detected by the interferometer 4 is obtained without installing the DUT 10 in the inner diameter measuring device 1. At this time, since there is no light beam reflected from the inner surface of the DUT 10, all the light beams emitted from the optical waveguide element 3 are B2. Therefore, in the interferometer 4, when the difference between the distance L1 from the beam splitter 42 to the reference mirror 43 in the first optical path and the distance L2 from the beam splitter 42 to the moving mirror 44 in the second optical path is zero, the interferometer 4 The signal is maximized. Therefore, the controller 6 moves the movable mirror 44, observes the light amount detected by the detector 5 at a plurality of measurement points, and finds the position where the detected light amount is maximum, that is, the interference signal is maximum. The controller 6 receives the position of the movable mirror 44 when the interference signal reaches the maximum value from the position measurement interferometer 49 and stores it in the storage unit of the controller 6 as a position P1 where L1 = L2. .

次に、内径測定装置1に、被測定物10を設置し、光導波路素子3を被測定物10の円筒内部に配置する。このとき、上述したように、白色干渉縞は、光束B1とB2との間に生じる光路差と、ΔL=2(L2−L1)がほぼ等しい位置でのみ観測される。そこで、コントローラ6は、ステージコントローラ52を通じて粗動ステージ47を駆動し、干渉計4の移動鏡44を白色干渉縞が観測されるようになるまで後退させる。そして、コントローラ6は、上記と同様に、移動鏡44を移動させて、複数の測定点で検出器5で検出される光量の増減を調べ、出力信号値の最大値、すなわち干渉信号の最大値を求める(ステップS102)。出力信号が最大となったときの移動鏡44の位置P2を、位置計測用干渉計49から受信する(ステップS103)。そして、コントローラ6は、記憶部からL1=L2のときの移動鏡44の位置P1を読み出してP2−P1の値を計算し、光路差ΔL=2(L2−L1)を求める(ステップS104)。干渉計4で生じる光路差が求まると、コントローラ6は、記憶部から、マスタについて測定した基準光路差ΔLm及びマスタの内径Dmを読み出す(ステップS105)。そして、被測定物10について求めた光路差ΔLと、基準光路差ΔLmとの差(ΔL−ΔLm)を求める(ステップS106)。最後に、コントローラ6は、その差の1/2、すなわち(ΔL−ΔLm)/2を、マスタの内径Dmに加えた値を、被測定物10の内径D(=Dm+(ΔL−ΔLm)/2)とする(ステップS107)。   Next, the device under test 10 is installed in the inner diameter measuring device 1, and the optical waveguide element 3 is placed inside the cylinder of the device under test 10. At this time, as described above, the white interference fringes are observed only at a position where ΔL = 2 (L2−L1) is substantially equal to the optical path difference generated between the light beams B1 and B2. Therefore, the controller 6 drives the coarse movement stage 47 through the stage controller 52 and moves the moving mirror 44 of the interferometer 4 backward until white interference fringes are observed. Then, similarly to the above, the controller 6 moves the movable mirror 44 to check increase / decrease in the amount of light detected by the detector 5 at a plurality of measurement points, and the maximum value of the output signal value, that is, the maximum value of the interference signal. Is obtained (step S102). The position P2 of the movable mirror 44 when the output signal becomes maximum is received from the position measurement interferometer 49 (step S103). Then, the controller 6 reads the position P1 of the movable mirror 44 when L1 = L2 from the storage unit, calculates the value P2-P1, and obtains the optical path difference ΔL = 2 (L2-L1) (step S104). When the optical path difference generated in the interferometer 4 is obtained, the controller 6 reads out the reference optical path difference ΔLm measured for the master and the inner diameter Dm of the master from the storage unit (step S105). Then, a difference (ΔL−ΔLm) between the optical path difference ΔL obtained for the DUT 10 and the reference optical path difference ΔLm is obtained (step S106). Finally, the controller 6 adds a value obtained by adding 1/2 of the difference, that is, (ΔL−ΔLm) / 2 to the inner diameter Dm of the master, to the inner diameter D (= Dm + (ΔL−ΔLm) / 2) (step S107).

なお、ステップS101で移動鏡44の基準位置P1を測定する代わりに、上記のように、移動鏡44を参照鏡43よりもビームスプリッタ42に近づけて、光束B12と光束B21との間で生じる干渉信号が最大となる移動鏡44の位置P3を求めてもよい。そして、(P2−P3)/2の値を計算し、その値をΔLとしてもよい。基準位置P1で観測される干渉信号の強度と、位置P2で観測される干渉信号の強度は、大きく異なる。一方、位置P2で観測される干渉信号と、位置P3で観測される干渉信号とは、ほぼ同程度の強度となる。そのため、位置P2と位置P3の差に基づいて被測定物10の内径Dを求める場合、基準位置P1と位置P2の差に基づいて内径Dを求める場合よりも、検出器5の受光量の変化に対する出力信号の変化を大きくすることができるので、干渉信号が最大値となる移動鏡44の位置をより正確に特定することができる。   Instead of measuring the reference position P1 of the movable mirror 44 in step S101, as described above, the movable mirror 44 is moved closer to the beam splitter 42 than the reference mirror 43, and interference occurs between the light beams B12 and B21. The position P3 of the movable mirror 44 that maximizes the signal may be obtained. Then, the value of (P2−P3) / 2 is calculated, and the value may be ΔL. The intensity of the interference signal observed at the reference position P1 is greatly different from the intensity of the interference signal observed at the position P2. On the other hand, the interference signal observed at the position P2 and the interference signal observed at the position P3 have substantially the same intensity. Therefore, when the inner diameter D of the DUT 10 is determined based on the difference between the position P2 and the position P3, the change in the amount of light received by the detector 5 is greater than when the inner diameter D is determined based on the difference between the reference position P1 and the position P2. Therefore, the position of the movable mirror 44 where the interference signal becomes the maximum value can be specified more accurately.

以上説明してきたように、本発明を適用した内径測定装置1は、被測定物10の円筒内部に、被測定物10の円筒内部の直径の両端に位置する内面S1、S2を経由する光束が通るように形成された導波路と、参照鏡38で反射される光束が通るように形成された導波路とを有する光導波路素子3のみを配置することで、被測定物10の内径に応じた光路差を有する二つの光束を生成する。そのため、内径測定装置1は、被測定物10の内径が小さい場合でも、その内径寸法を正確に測定することができる。   As described above, in the inner diameter measuring apparatus 1 to which the present invention is applied, the light flux passing through the inner surfaces S1 and S2 positioned at both ends of the diameter inside the cylinder of the object to be measured 10 is present inside the cylinder of the object to be measured 10. By arranging only the optical waveguide element 3 having the waveguide formed so as to pass through and the waveguide formed so that the light beam reflected by the reference mirror 38 can pass therethrough, it corresponds to the inner diameter of the object to be measured 10. Two light fluxes having an optical path difference are generated. Therefore, the inner diameter measuring device 1 can accurately measure the inner diameter dimension even when the inner diameter of the DUT 10 is small.

なお、本発明は、上記の実施形態に限定されるものではない。
図5に、本発明の内径測定装置において、上記の光導波路素子3の代わりに使用可能な光導波路素子3’の概略側面断面図を示す。図5では、簡単化のために、被測定物10を配置するXYZステージ14などは省略し、光導波路素子3’と被測定物10のみを図示する。図5に示すように、この光導波路素子3’では、白色光源2からの光を被測定物10の内面S1に導く導波路31と、被測定物10の内面S1とS2を結ぶ導波路32とを結合させず、完全に別個の経路となるように形成される。同様に、導波路32と、被測定物10の内面S2で反射され、再度光導波路素子3に入射した光を導く導波路33も、完全に別個の経路となるように形成される。導波路31又は導波路32から出射する光は、完全な平行光ではなく、拡散光となるので、このように導波路を形成しても、内面S1又はS2で反射された光の一部は導波路32又は導波路33に入射する。そのため、このような光導波路素子3’も、被測定物10の内径Dに対応する光路差を有する二つの光束を生じさせることができる。この場合、被測定物10の内面S1で反射された光をより多く集光できるように、導波路32の内面S1に対向する側の入射口の径を、導波路31の出射口よりも大きくしてもよい。同様に、被測定物10の内面S2で反射された光をより多く集光できるように、導波路33の内面S2に対向する入射口の径を、導波路32の出射口よりも大きくしてもよい。
In addition, this invention is not limited to said embodiment.
FIG. 5 shows a schematic side cross-sectional view of an optical waveguide element 3 ′ that can be used in place of the optical waveguide element 3 in the inner diameter measuring apparatus of the present invention. In FIG. 5, for simplification, the XYZ stage 14 on which the device under test 10 is arranged is omitted, and only the optical waveguide element 3 ′ and the device under test 10 are illustrated. As shown in FIG. 5, in this optical waveguide element 3 ′, a waveguide 31 that guides light from the white light source 2 to the inner surface S1 of the device under test 10 and a waveguide 32 that connects the inner surfaces S1 and S2 of the device under test 10 are shown. And are formed to be completely separate paths. Similarly, the waveguide 33 and the waveguide 33 that guides the light reflected by the inner surface S2 of the DUT 10 and incident on the optical waveguide element 3 again are formed to be completely separate paths. Since the light emitted from the waveguide 31 or the waveguide 32 is not completely parallel light but diffused light, even if the waveguide is formed in this way, a part of the light reflected by the inner surface S1 or S2 is The light enters the waveguide 32 or the waveguide 33. Therefore, such an optical waveguide element 3 ′ can also generate two light beams having an optical path difference corresponding to the inner diameter D of the DUT 10. In this case, the diameter of the entrance that faces the inner surface S1 of the waveguide 32 is larger than that of the exit of the waveguide 31 so that more light reflected by the inner surface S1 of the DUT 10 can be collected. May be. Similarly, the diameter of the entrance facing the inner surface S2 of the waveguide 33 is made larger than that of the exit of the waveguide 32 so that more light reflected by the inner surface S2 of the device under test 10 can be collected. Also good.

さらに、図6に、本発明の内径測定装置に使用可能な別の光導波路素子3”の概略側面断面図を示す。図6でも、簡単化のために、被測定物10を配置するXYZステージ14などは省略し、光導波路素子3”と被測定物10のみを図示する。図6に示す光導波路素子3”は、導波路32の途中にアイソレータIを設け、参照鏡38及び参照鏡38へ向かう導波路34をなくしたものである。ここで、アイソレータIは、被測定物10の内面S1からS2へ向かう方向の光しか通さないようにするものである。この場合、参照鏡38で反射される光束の代わりに、導波路31を通り、第1の出入射口36で端面反射されて、再度導波路31を経由して、導波路35から出射される光束を、光束B2として用いることができる。   Further, FIG. 6 shows a schematic side cross-sectional view of another optical waveguide element 3 ″ that can be used in the inner diameter measuring apparatus of the present invention. In FIG. 6 as well, for the sake of simplification, an XYZ stage in which the DUT 10 is arranged. 14 and the like are omitted, and only the optical waveguide element 3 ″ and the DUT 10 are shown. The optical waveguide element 3 ″ shown in FIG. 6 is obtained by providing an isolator I in the middle of the waveguide 32 and eliminating the reference mirror 38 and the waveguide 34 directed to the reference mirror 38. Here, the isolator I is a device under test. Only light in the direction from the inner surface S1 to S2 of the object 10 is allowed to pass, in this case, instead of the light beam reflected by the reference mirror 38, it passes through the waveguide 31 and passes through the first entrance / exit port 36. Thus, the light beam reflected by the end face and emitted from the waveguide 35 via the waveguide 31 again can be used as the light beam B2.

また、上記の実施形態の測定装置において、干渉計をフィゾー型の干渉計としてもよい。
さらに、光導波路素子3側に配置された白色光源と、干渉計4側に配置された検出器を入れ替えてもよい。この場合、干渉計4側で予め被測定物の測定対象寸法に相当する光路差を有する二つの光束を発生させ、それらの光束を光ファイバを通じて光導波路素子3側へ送る。そして、光導波路素子3では、受け取った二つの光束を、被測定物10の内面S1、S2で反射される光束と参照鏡で反射される二つの光束にさらに分割し、それらを一つに合わせて検出器で検出することにより、白色干渉縞を観察する。この場合も、干渉計4側で発生させた光路差を測定することにより、被測定物10の内径Dを求めることができる。
以上のように、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
In the measurement apparatus of the above embodiment, the interferometer may be a Fizeau interferometer.
Furthermore, the white light source arranged on the optical waveguide element 3 side and the detector arranged on the interferometer 4 side may be interchanged. In this case, two light beams having an optical path difference corresponding to the measurement target dimension of the object to be measured are generated in advance on the interferometer 4 side, and these light beams are sent to the optical waveguide element 3 side through the optical fiber. In the optical waveguide element 3, the two received light beams are further divided into a light beam reflected by the inner surfaces S1 and S2 of the object to be measured 10 and a two light beams reflected by the reference mirror, and these are combined into one. The white interference fringes are observed by detecting with a detector. Also in this case, the inner diameter D of the DUT 10 can be obtained by measuring the optical path difference generated on the interferometer 4 side.
As described above, various modifications can be made within the scope of the present invention according to the embodiment to be implemented.

本発明を適用した内径測定装置の概略構成図である。It is a schematic block diagram of the internal diameter measuring apparatus to which this invention is applied. 内径測定装置を構成する光導波路素子の概略側面断面図である。It is a schematic sectional side view of the optical waveguide element which comprises an internal diameter measuring apparatus. 内径測定装置を構成する干渉計の概略構成図である。It is a schematic block diagram of the interferometer which comprises an internal diameter measuring apparatus. 内径測定装置の動作フローチャートである。It is an operation | movement flowchart of an internal diameter measuring apparatus. 光導波路素子の他の実施形態の概略側面断面図である。It is a schematic sectional side view of other embodiment of an optical waveguide device. 光導波路素子の他の実施形態の概略側面断面図である。It is a schematic sectional side view of other embodiment of an optical waveguide device.

符号の説明Explanation of symbols

1 内径測定装置
10 被測定物
2 白色光源
3、3’、3” 光導波路素子
4 干渉計
5 検出器
6 コントローラ
11 コリメータレンズ
12 ウェッジプリズム
13 集光レンズ
14 XYZステージ
15 ステージコントローラ
16 保持用部材
30 入射口
31〜35 導波路
36、37 出入射口
38、43 参照鏡
39 出射口
44 移動鏡
45 支持部材
46 ピエゾ微動ステージ
47 粗動ステージ
48 コーナーキューブ
49 位置計測用干渉計
51 ピエゾコントローラ
52 ステージコントローラ
7,8 光ファイバ
DESCRIPTION OF SYMBOLS 1 Inner diameter measuring apparatus 10 Object to be measured 2 White light source 3, 3 ', 3 "Optical waveguide element 4 Interferometer 5 Detector 6 Controller 11 Collimator lens 12 Wedge prism 13 Condensing lens 14 XYZ stage 15 Stage controller 16 Holding member 30 Entrance 31-35 Waveguide 36, 37 Exit entrance 38, 43 Reference mirror 39 Exit 44 Moving mirror 45 Support member 46 Piezo fine movement stage 47 Coarse movement stage 48 Corner cube 49 Position measurement interferometer 51 Piezo controller 52 Stage controller 7,8 Optical fiber

Claims (6)

円筒状の被測定物の内径寸法を測定する内径測定装置であって、
白色光源と、
前記白色光源から放射された光を、前記被測定物に向かう第1の光束と第2の光束に分岐し、該第1の光束を前記被測定物で反射させて該第2の光束との間に前記被測定物の内径に対応する第1の光路差を生じさせ、該第1の光束と該第2の光束を一つの光束に合わせて出射させる光導波路素子と、
位置が固定された固定鏡と、光路に沿って移動可能な移動鏡とを有する干渉計であって、前記光導波路素子から出射した光束を、該固定鏡に向かう第3の光束と、該移動鏡に向かう第4の光束に分岐して、該第3の光束と該第4の光束との間に第2の光路差を生じさせる干渉計と、
前記第3の光束と前記第4の光束を受光し、前記第1の光路差と前記第2の光路差とが略等しい場合に生じる干渉信号を検出し、該干渉信号に対応する信号を出力する検出器と、
前記干渉信号の最大値に対応する前記移動鏡の位置を測定し、該位置から前記第2の光路差を計算することにより、前記被測定物の内径を求めるコントローラと、
を有することを特徴とする内径測定装置。
An inner diameter measuring device for measuring an inner diameter dimension of a cylindrical object to be measured,
A white light source,
The light emitted from the white light source is branched into a first light beam and a second light beam that are directed toward the object to be measured, and the first light beam is reflected by the object to be measured, and the second light beam An optical waveguide element that causes a first optical path difference corresponding to the inner diameter of the object to be measured between them, and emits the first light flux and the second light flux according to one light flux;
An interferometer having a fixed mirror whose position is fixed and a movable mirror movable along the optical path, wherein the light beam emitted from the optical waveguide element is converted into a third light beam directed to the fixed mirror and the movement An interferometer that diverges into a fourth light beam directed to the mirror and produces a second optical path difference between the third light beam and the fourth light beam;
The third light beam and the fourth light beam are received, an interference signal generated when the first optical path difference and the second optical path difference are substantially equal is detected, and a signal corresponding to the interference signal is output. A detector to
A controller that determines the inner diameter of the object to be measured by measuring the position of the movable mirror corresponding to the maximum value of the interference signal and calculating the second optical path difference from the position;
An inner diameter measuring device comprising:
前記光導波路素子は、前記第1の光束が通る第1の導波路と、前記第2の光束が通る第2の導波路と、前記光導波路素子に近接して設けられた参照鏡とを有し、
前記第1の導波路は、前記白色光源から放射された光を前記被測定物の第1の内面へ導くように形成された導波路と、該第1の内面で反射された光を、該第1の内面と対向する前記被測定物の第2の内面へ導くように形成された導波路と、該第2の内面で反射された光を、前記光導波路素子の出射口まで導くように形成された導波路とからなり、
前記第2の導波路は、前記白色光源から放射された光を前記参照鏡へ導くように形成される、請求項1に記載の内径測定装置。
The optical waveguide element includes a first waveguide through which the first light flux passes, a second waveguide through which the second light flux passes, and a reference mirror provided in the vicinity of the optical waveguide element. And
The first waveguide includes a waveguide formed to guide the light emitted from the white light source to the first inner surface of the object to be measured, and the light reflected by the first inner surface. A waveguide formed to guide the second inner surface of the object to be measured facing the first inner surface, and the light reflected by the second inner surface to guide the output port of the optical waveguide element. Consisting of a formed waveguide,
The inner diameter measuring apparatus according to claim 1, wherein the second waveguide is formed to guide light emitted from the white light source to the reference mirror.
前記光導波路素子は、フォトニック結晶導波路素子である、請求項1または2に記載の内径測定装置。   The inner diameter measuring apparatus according to claim 1, wherein the optical waveguide element is a photonic crystal waveguide element. 前記光導波路素子は、その一部分が前記被測定物の円筒外に位置するように配置され、かつ、前記内径測定装置は、前記被測定物の円筒外に位置する前記光導波路素子の一部分を把持して前記光導波路素子を固定する保持用部材を有する、請求項1〜3の何れか一項に記載の内径測定装置。   The optical waveguide element is arranged so that a part thereof is located outside the cylinder of the object to be measured, and the inner diameter measuring device grips a part of the optical waveguide element located outside the cylinder of the object to be measured. The inner diameter measuring device according to claim 1, further comprising a holding member that fixes the optical waveguide element. 前記被測定物を基準用被測定物として求めた前記干渉信号の最大値に対応する前記第2の光路差である基準光路差と、該基準用被測定物の内径とを記憶した記憶部をさらに有し、かつ、
前記コントローラは、前記被測定物について測定した前記干渉信号の最大値に対応する前記第2の光路差と、前記基準光路差との差を求め、該差の半分を前記基準用被測定物の内径に加えた値を、前記被測定物の内径とする、請求項1〜4の何れか一項に記載の内径測定装置。
A storage unit that stores a reference optical path difference that is the second optical path difference corresponding to the maximum value of the interference signal obtained by using the measurement object as a reference measurement object, and an inner diameter of the reference measurement object; And have
The controller obtains a difference between the second optical path difference corresponding to the maximum value of the interference signal measured for the measurement object and the reference optical path difference, and halves the difference of the reference measurement object. The inner diameter measuring device according to any one of claims 1 to 4, wherein a value added to the inner diameter is an inner diameter of the object to be measured.
円筒状の被測定物の内径寸法を測定する内径測定装置であって、
白色光源と、
位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する干渉計であって、前記白色光源から放射された光を、該参照鏡に向かう第1の光束と、該移動鏡に向かう第2の光束に分岐して、該第1の光束と該第2の光束との間に第1の光路差を生じさせる干渉計と、
前記干渉計から出射された前記第1の光束及び第2の光束を、前記被測定物に向かう第3の光束と第4の光束に分岐し、該第3の光束を前記被測定物で反射させて該第4の光束との間に前記被測定物の内径に対応する第2の光路差を生じさせ、該第1の光束と該第2の光束を一つの光束に合わせて出射させる光導波路素子と、
前記第3の光束と前記第4の光束を受光し、前記第1の光路差と前記第2の光路差とが略等しい場合に生じる干渉信号を検出し、該干渉信号に対応する信号を出力する検出器と、
前記干渉信号の最大値に対応する前記移動鏡の位置を測定し、該位置から前記第1の光路差を計算することにより、前記被測定物の内径を求めるコントローラと、
を有することを特徴とする内径測定装置。
An inner diameter measuring device for measuring an inner diameter dimension of a cylindrical object to be measured,
A white light source,
An interferometer having a reference mirror having a fixed position and a movable mirror movable along an optical path, wherein the light emitted from the white light source is directed to the first light flux toward the reference mirror, and the movement An interferometer that branches into a second light beam directed to the mirror to produce a first optical path difference between the first light beam and the second light beam;
The first light beam and the second light beam emitted from the interferometer are branched into a third light beam and a fourth light beam directed to the object to be measured, and the third light beam is reflected by the object to be measured. Then, a second optical path difference corresponding to the inner diameter of the object to be measured is generated between the fourth light flux and the first light flux and the second light flux are emitted in accordance with one light flux. A waveguide element;
The third light beam and the fourth light beam are received, an interference signal generated when the first optical path difference and the second optical path difference are substantially equal is detected, and a signal corresponding to the interference signal is output. A detector to
A controller that determines the inner diameter of the object to be measured by measuring the position of the movable mirror corresponding to the maximum value of the interference signal and calculating the first optical path difference from the position;
An inner diameter measuring device comprising:
JP2007157858A 2007-06-14 2007-06-14 Inner diameter measuring device Active JP4936286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157858A JP4936286B2 (en) 2007-06-14 2007-06-14 Inner diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157858A JP4936286B2 (en) 2007-06-14 2007-06-14 Inner diameter measuring device

Publications (2)

Publication Number Publication Date
JP2008309645A JP2008309645A (en) 2008-12-25
JP4936286B2 true JP4936286B2 (en) 2012-05-23

Family

ID=40237376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157858A Active JP4936286B2 (en) 2007-06-14 2007-06-14 Inner diameter measuring device

Country Status (1)

Country Link
JP (1) JP4936286B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684884B2 (en) * 1986-08-14 1994-10-26 オムロン株式会社 Waveguide optical displacement sensor
JPH02167411A (en) * 1988-12-21 1990-06-27 Sumitomo Electric Ind Ltd Method for measuring distance between parallel planes
EP0415579A1 (en) * 1989-08-30 1991-03-06 Renishaw plc Touch probe
DE4204521C1 (en) * 1992-02-15 1993-06-24 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH07190714A (en) * 1993-12-24 1995-07-28 Olympus Optical Co Ltd Interferometer
JP3354675B2 (en) * 1993-12-27 2002-12-09 オリンパス光学工業株式会社 Circumferential surface shape measurement method
JP2000266513A (en) * 1999-03-15 2000-09-29 Toyo Commun Equip Co Ltd Optical waveguide type position detecting sensor
JP3520327B2 (en) * 2000-10-03 2004-04-19 独立行政法人産業技術総合研究所 Length information transmission method
JP2004347425A (en) * 2003-05-21 2004-12-09 Mitsutoyo Corp Measuring method of distance change between two faces and device
CA2511960C (en) * 2003-08-12 2009-11-17 Bussan Nanotech Research Institute, Inc. Detection apparatus, optical path length measuring apparatus, device for measurement, method for evaluating optical member, and method for detecting change in temperature
US7259862B2 (en) * 2004-09-20 2007-08-21 Opsens Inc. Low-coherence interferometry optical sensor using a single wedge polarization readout interferometer

Also Published As

Publication number Publication date
JP2008309645A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
KR101495670B1 (en) Surface sensing device with optical monitoring system
JP5403972B2 (en) Dimension measuring device
KR100486937B1 (en) A concave ended interferometric Optical Fiber Sensor for Displacement measurement of Cantilever Probe of Atomic Force Microscope
US20110304854A1 (en) Instantaneous, phase measuring interferometer apparatus and method
JP5207959B2 (en) Dimension measuring device
JP6071042B2 (en) Dimension measuring device
US20120044503A1 (en) Shape measuring method and shape measuring apparatus
EP2718666A1 (en) Coupled multi-wavelength confocal systems for distance measurements
JP2013083581A (en) Measuring device
CN104508421B (en) Optical measuring probe and the method for optical measurement for interior diameter and overall diameter
JP5765584B2 (en) Shape measuring device
WO2004029543A3 (en) Interferometric measuring device
KR101628761B1 (en) surface shape measuring appatstus using asymmetric interferometer
JP4936286B2 (en) Inner diameter measuring device
KR20210029136A (en) Temperature measurement sensor, temperature measurement system, and temperature measurement method
JP4998738B2 (en) Dimension measuring apparatus and dimension measuring method
JP2019148479A (en) Location detection device and shape detection device
JP5366112B2 (en) Inner diameter measuring device
US20160153771A1 (en) Shape Measuring Device
JP2019086297A (en) Measurement device and drive device
JP4936287B2 (en) Inner diameter measuring device
KR20120043526A (en) Visibility enhanced low coherence interferometer
JP2008309652A (en) Dimension measuring device and dimension measuring method
JP3795976B2 (en) Non-contact temperature measuring device
JP6571352B2 (en) Optical coherence tomography system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250