KR20120043526A - Visibility enhanced low coherence interferometer - Google Patents

Visibility enhanced low coherence interferometer Download PDF

Info

Publication number
KR20120043526A
KR20120043526A KR1020100104862A KR20100104862A KR20120043526A KR 20120043526 A KR20120043526 A KR 20120043526A KR 1020100104862 A KR1020100104862 A KR 1020100104862A KR 20100104862 A KR20100104862 A KR 20100104862A KR 20120043526 A KR20120043526 A KR 20120043526A
Authority
KR
South Korea
Prior art keywords
unit
light
reflected
visibility
reference plane
Prior art date
Application number
KR1020100104862A
Other languages
Korean (ko)
Other versions
KR101282932B1 (en
Inventor
진종한
김재완
강주식
김종안
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020100104862A priority Critical patent/KR101282932B1/en
Publication of KR20120043526A publication Critical patent/KR20120043526A/en
Application granted granted Critical
Publication of KR101282932B1 publication Critical patent/KR101282932B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02024Measuring in transmission, i.e. light traverses the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0245Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using an optical amplifier of light, e.g. doped fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • G01N33/4836Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures using multielectrode arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/30Grating as beam-splitter

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Optics & Photonics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)

Abstract

PURPOSE: A visibility enhanced low coherence interferometer is provided to improve the visibility because reference light signal and reflected light signal individually reflected from a reference surface and measuring surface are formed to be the same or similar. CONSTITUTION: A visibility enhanced low coherence interferometer comprises a main optical source unit(20), a light splitting unit(30), a reference surface reflection unit, a measuring surface reflection unit(50), an optical detecting unit(60), an optical axis micro moving unit(70), and an auxiliary light source unit(80). The main optical source unit projects multi-wavelength light. The light splitting unit divides a light signal into two. The reference and measuring surface reflection units respectively reflect the light signals divided by the light splitting unit to each measuring surface of measuring objects. The light detecting unit observes the interference by gathering the reflected lights from the reference and measuring surface reflection units. The auxiliary light source unit amplifies weak reflected light so that the visibility is uniformly maintained. The optical axis micro moving unit minutely transfers the reference surface of a reference surface reflection unit or a measuring surface of the measuring surface reflection unit to an optical axial direction.

Description

가시도 향상 저결맞음 간섭계{Visibility Enhanced Low Coherence Interferometer}Visibility Enhanced Low Coherence Interferometer

본 발명은 가시도 향상 저결맞음 간섭계에 관한 것으로, 더 상세하게는 백색광(다파장)을 이용하여 유체 내에 있거나 반투명 바이오샘플 등 저반사율물질의 결맞음에 의한 단차 측정시 반사광의 광량을 주입잠금기법에 의해 위상 왜곡없이 증폭하여 기준면과 측정면에서 각각 반사된 기준광신호와 반사광신호를 동일 또는 유사하게 하여 가시도를 향상시킨 가시도 향상 저결맞음 간섭계에 관한 것이다.
The present invention relates to a visibility-improved low coherence interferometer, and more specifically, to the injection locking method by using the white light (multi-wavelength) in the injection lock method to measure the amount of reflected light when measuring the step difference due to coherence of low reflectivity materials, such as in a fluid or semi-transparent biosample The present invention relates to a visibility enhancement low coherence interferometer that amplifies without phase distortion and improves visibility by equally or similarly reflecting a reference light signal and a reflected light signal reflected from a reference plane and a measurement plane, respectively.

안정화된 레이저를 이용한 광간섭계는 길이 표준에 소급하여 빛의 속도에 기인하여 측정할 수 있다. 측정 분해능을 nm 이하로 얻을 수 있기 때문에 초정밀 측정이 요구되는 많은 응용 분야에 적용할 수 있다. Optical interferometers using a stabilized laser can be measured due to the speed of light retrospectively to the length standard. The measurement resolution can be obtained below nm, making it suitable for many applications requiring ultra-precision measurements.

상기 광간섭계는 가장 정확한 측정 기법 중의 하나이지만, 유리판, 컬러 필터, 거친면을 갖는 시편, 액체에 잠긴 세포나 분자 등으로 실생활에 흔하게 볼 수 있는 물질인 저반사율 물질에 대해서는 실질적인 측정어려움이 남아있다.Although the optical interferometer is one of the most accurate measurement techniques, it is difficult to measure a material with low reflectivity, which is commonly seen in real life by glass plates, color filters, specimens with rough surfaces, cells or molecules submerged in liquids, etc. .

신뢰성 있는 측정을 위해서는 간섭 무늬의 가시도가 충분히 좋아 수취한 간섭 무늬를 해석하는데 전혀 무리가 없어야 하지만, 저반사율 물질을 측정하는 경우에는 측정면에서 반사되는 빛의 강도가 아주 적어 급격히 가시도가 나빠지게 된다. 이는 기준면과 측정면에서 반사되어 나오는 빛의 강도가 같을 때 최대 가시도를 얻을 수 있는데 저반사율 물질은 반사 빛이 작기 때문에 가시도가 나빠지는 것이다 For reliable measurement, the visibility of interference fringes should be good enough to analyze the received interference fringes. However, when measuring low reflectance materials, the intensity of light reflected from the measurement surface is very small, resulting in rapid visibility. Will fall out. This means that maximum visibility can be obtained when the intensity of light reflected from the reference plane and the measurement plane is the same, but low reflectance material has poor visibility due to the small reflected light.

이런 가시도 저하를 막기 위해 측정면에서 반사되어 나온 빛의 강도를 기준면에서 반사되어 나온 빛의 강도와 일치하도록 증폭시켜주거나, 기준면에서 반사된 빛의 강도를 조절하여 측정면에서 반사되어 나온 빛의 강도와 같도록 만들어주는 방법을 사용할 수 있으나 이 역시 가시도 향상은 제한적으로 이루어지고 있다. To prevent this loss of visibility, amplify the intensity of light reflected from the measurement plane to match the intensity of light reflected from the reference plane, or adjust the intensity of light reflected from the reference plane to adjust the intensity of light reflected from the measurement plane. You can use a method to make it equal to the intensity, but there is a limited improvement in visibility.

상기 후자는 기준면과 측정면으로 분할되는 빛의 량 중 측정면으로 90% 이상의 빛이 진행되도록 하여 반사되는 빛 량을 증가시키는 방법이다. 그러나 이러한 방법은 측정면의 상태에 따라서 간섭계의 측정면 및 기준면에서 나오는 빛의 양을 매번 조절해야하는 번거로움은 물론이고, 측정할 수 있는 임계 광량보다 작을 경우 측정 자체가 불가능할 수가 있어 적용하는데 제한을 받는 단점이 있다.The latter is a method of increasing the amount of reflected light by allowing more than 90% of the light to proceed to the measurement plane of the amount of light divided into the reference plane and the measurement plane. However, this method is not only troublesome to adjust the amount of light emitted from the measuring plane and the reference plane of the interferometer every time depending on the state of the measuring plane, but also the measurement itself may be impossible when the amount of light is less than the threshold of measurement. There are drawbacks to receiving.

이와같이 분할된 두 광의 광량차이에 의해 가시도가 나빠지는 문제점은 생물의 광학단층활영에 사용되는 백색광을 주광으로 사용하는 저결맞음 간섭계에서도 나타나고 있다.The problem of poor visibility due to the difference in light quantity of the two split light beams has also been shown in low coherence interferometers using white light as the main light, which is used for the optical tomography of living organisms.

예컨대 저결맞음 간섭계는 단파장 광원보다는 넓은 주파수 영역으로 인한 짧은 가간섭거리를 활용한 백색광(다파장)을 주광원으로 사용하여 주로 생물의 광학단층촬영에 사용되고 있다. 상기 저결맞음 간섭계는 측정면 또는 기준면을 광축방향으로 정밀하게 이송시키면서 얻어진 간섭무늬의 정점을 검출하여 미세표면의 삼차원 형상측정이 이루어지도록 한다. For example, low coherence interferometers are mainly used for optical tomography of living organisms by using white light (multi-wavelength) utilizing short interference distance due to wide frequency range as a main light source rather than short wavelength light source. The low coherence interferometer detects the vertices of the interference fringe obtained by precisely transferring the measurement plane or the reference plane in the optical axis direction so that three-dimensional shape measurement of the microsurface is performed.

그러나 앞서 서술한 바와같이 측정대상인 바이오샘플이 대부분 반투명물질 이어서 반사되는 광량이 극히 미약하여 가시도 저하로 측정대상이 한정되었다. However, as described above, most of the biosamples to be measured are semi-transparent materials, and thus the amount of reflected light is extremely small.

이에 백색광을 사용하면서 반투명물질의 가시도를 향상시켜 단층촬영의 정밀도를 향상시킬 수 있는 장치에 대한 연구가 필요한 실정이다.
Therefore, it is necessary to study a device that can improve the accuracy of tomography by improving the visibility of semi-transparent materials while using white light.

이에 본 발명의 가시도 향상 저결맞음 간섭계는,The visibility improvement low coherence interferometer of the present invention,

측정면 또는 기준면을 가변하여 단층촬영이 이루어질 때 반사광이 nW 수준의 아주 작은 광량을 가져도 이차광원(보조광원)을 이용한 주입잠금기법에 의해 위상 또는 시간의 특성 변화없이 증폭이 이루어지도록 함으로써 측정면에서 반사되어 나온 광량과 기준면에서 반사되어 나온 광량을 일치 또는 유사하게 하여 가시도 향상시키는 것을 목적으로 한다.
When tomography is performed by varying the measurement plane or reference plane, even if the reflected light has a very small light quantity of nW level, the amplification is performed without changing the phase or time characteristics by the injection locking method using the secondary light source (auxiliary light source). The purpose of the present invention is to improve visibility by matching or making the amount of light reflected by the light reflected from the reference plane equal or similar.

상기 과제를 해소하기 위한 본 발명의 가시도 향상 저결맞음 간섭계는,Visibility improvement low coherence interferometer of the present invention for solving the above problems,

다파장 광을 조사하는 주광원부와; 상기 조사된 광신호를 두 개로 분할하는 광분할부와; 상기 광분할부에 의해 분리된 광신호를 각각 기준면과 측정대상물의 측정면에 반사시키는 기준면반사부 및 측정면반사부와; 상기 기준면반사부 및 측정면반사부에서 반사된 광신호를 합광하여 간섭이 이루어지도록 하고 이를 관찰하는 광검출부와; 상기 기준면반사부의 기준면 또는 측정면반사부의 측정면을 광축방향으로 미세이동시키는 광축미세이동부와; 상기 반사광을 주입잠금을 통하여 증폭시키는 보조광원부;를 포함하여 구성된다. A main light source unit for irradiating multi-wavelength light; An optical splitter dividing the irradiated optical signal into two; A reference plane reflecting unit and a measuring plane reflecting unit for reflecting the optical signal separated by the light splitting unit to the reference plane and the measurement plane of the measurement object, respectively; A photodetector configured to combine the optical signals reflected by the reference plane reflector and the measurement plane reflector so that interference is observed and observe the interference; An optical axis fine moving unit for finely moving the reference plane or the measurement plane of the reference plane reflection unit in the optical axis direction; And an auxiliary light source unit for amplifying the reflected light through the injection lock.

상기 보조광원부는 기준면반사부 또는 측정면반사부 중 어느 일측에 설치되어 측정면반사부에서 반사된 반사광신호 또는 기준면반사부에서 반사된 기준광신호를 증폭시키거나,The auxiliary light source unit is installed on either side of the reference plane reflection unit or the measurement plane reflection unit to amplify the reflected light signal reflected from the measurement plane reflection unit or the reference light signal reflected from the reference plane reflection unit,

기준면반사부과 측정면반사부에 각각 설치되어 측정면반사부에서 반사된 반사광신호과 기준면반사부에서 반사된 기준광신호 중 약한 반사광을 증폭시키도록 할 수 있다.
Each of the reference plane reflector and the measurement plane reflector may be installed to amplify the weakly reflected light of the reflected light signal reflected from the measurement plane reflector and the reference light signal reflected from the reference plane reflector.

이상에서 상세히 기술한 바와 같이 본 발명의 가시도 향상 저결맞음 간섭계는,As described in detail above, the visibility enhancement low coherence interferometer of the present invention,

백색광(다파장)을 이용하여 유체 내에 있거나 반투명 바이오샘플 등 저반사율물질의 결맞음에 의한 단차 측정시 반사광의 광량을 주입잠금기법에 의해 위상 왜곡없이 증폭하여 기준면과 측정면에서 각각 반사된 기준광신호와 반사광신호를 동일 또는 유사하게 하여 가시도를 향상시킨 가시도 향상 저결맞음 간섭계의 제공이 가능하게 된 것이다.
When measuring the level difference due to coherence of low reflectance materials such as semi-transparent biosample using white light (multi-wavelength), the amount of reflected light is amplified without phase distortion by injection locking method, and the reference light signal reflected from the reference plane and the measurement plane, respectively It is possible to provide a visibility enhancement low coherence interferometer with the same or similar reflected light signal.

도 1은 본 발명의 실시예에 따른 가시도 향상 저결맞음 간섭계를 도시한 구성도.
도 2 내지 도 3은 본 발명의 다른 실시예에 따른 가시도 향상 저결맞음 간섭계를 도시한 구성도.
1 is a block diagram showing a visibility enhancement low coherence interferometer according to an embodiment of the present invention.
2 to 3 is a block diagram showing a visibility enhancement low coherence interferometer according to another embodiment of the present invention.

이하에서는 본 발명을 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with the accompanying drawings.

도 1은 본 발명의 실시예에 의해 가시도 향상 저결맞음 간섭계를 도시한 구성도이다. 참고한 바와같이 본 발명에 따른 가시도 향상 저결맞음 간섭계는 다파장 광을 조사하는 주광원부(20)와, 상기 조사된 광신호를 두 개로 분할하는 광분할부(30), 상기 광분할부에 의해 분리된 광신호를 각각 기준면(41)과 측정대상물의 측정면(51)에 반사시키는 기준면반사부(40) 및 측정면반사부(50)와, 상기 기준면반사부 및 측정면반사부에서 반사된 광신호를 합광하여 간섭이 이루어지도록 하고 이를 관찰하는 광검출부(60), 상기 기준면반사부의 기준면 또는 측정면반사부의 측정면을 광축방향으로 미세이동시키는 광축미세이동부(70)와, 상기 반사광을 광증폭(optical amplificaiont)을 통하여 증폭시키는 보조광원부(80);를 포함하여 구성된다.1 is a block diagram showing a visibility-enhanced low coherence interferometer according to an embodiment of the present invention. As described, the visibility enhancement low coherence interferometer according to the present invention is separated by a main light source unit 20 for irradiating multi-wavelength light, an optical splitter 30 for dividing the irradiated optical signal into two, and the light splitter The light reflected from the reference plane reflecting unit 40 and the measuring plane reflecting unit 50, and the reference plane reflecting unit and the measuring plane reflecting unit, respectively, reflecting the reflected optical signal to the reference plane 41 and the measurement plane 51 of the measurement object. The optical detection unit 60, the optical axis micro-movement unit 70, which finely moves the reference plane or the measurement plane of the measurement plane reflection unit in the optical axis direction to observe the interference by synthesizing the signal, and optically amplifies the reflected light. and an auxiliary light source unit 80 for amplifying through an optical amplificaiont.

상기 주광원부(20)는 다파장광을 조사하는 백색광을 사용하고, 광분할부(30)는 2ㅧ2 커플러를 사용하며, 광검출부(60)로는 PD(photo detector)를 사용한다.The main light source unit 20 uses white light for irradiating multi-wavelength light, the light splitting unit 30 uses a 2 ㅧ 2 coupler, and uses a photo detector (PD) as the photo detector 60.

상기 백색광인 주광원부(20)에서 조사된 광은 광분할부(30)에서 분할되어 각각 기준면반사부와 측정면반사부로 입사된다. The light irradiated from the main light source unit 20, which is the white light, is split in the light splitter 30 and is incident to the reference plane reflecting unit and the measurement plane reflecting unit, respectively.

상기 기준면반사부(40)와 측정면반사부(50)는 통상적인 렌즈와 기준면(기준미러;41) 또는 측정면(측정대상;51)를 포함하는 것으로, 기준면반사부로 입사된 광은 기준면(41)에 반사되어 입사된 방향으로 되돌림하고, 측정면반사부로 입사된 광은 측정대상인 반투명 바이오샘플의 측정면(51)에 반사되어 되돌림한다. The reference plane reflection unit 40 and the measurement plane reflection unit 50 include a conventional lens and a reference plane (reference mirror; 41) or a measurement plane (measurement object; 51), and the light incident on the reference plane reflection unit is a reference plane ( 41), the light is reflected back to the incident direction, and the light incident on the measuring surface reflecting portion is reflected back to the measuring surface 51 of the translucent biosample to be measured.

상기 기준면(41)에 반사된 기준광신호와, 상기 측정면(51)에 반사된 반사광신호는 광분할부(30)로 되돌림되며, 상기 광분할부에서는 기준광신호와 반사광신호가 서로 간섭되어 광검출부(PD;60)에서 간섭신호를 관찰하도록 한다. The reference light signal reflected by the reference plane 41 and the reflected light signal reflected by the measurement plane 51 are returned to the light splitter 30. In the light splitter, the reference light signal and the reflected light signal interfere with each other and the photodetector PD. 60) to observe the interference signal.

이러한 과정에서 상기 기준면반사부의 기준면(41) 또는 측정면반사부의 측정면(51)은 광축방향으로 미세이동시키는 광축미세이동부(70)가 설치되어 기준면 또는 측정면 중 어느 일측을 광축방향으로 이동시켜 이동거리마다 간섭범위를 확인하여 형상측정이 이루어지도록 한다.In this process, the reference plane 41 of the reference plane reflection unit or the measurement plane 51 of the measurement plane reflection unit is provided with an optical axis micro-movement unit 70 for finely moving in the optical axis direction to move one side of the reference plane or the measurement plane in the optical axis direction. Check the interference range for each moving distance to make shape measurement.

상기 광축미세이동부는 PZT, LM가이드 또는 미세조절나사를 마이크로모터, 모터 등의 동력수단에 의해 광축방향으로 구동시키는 전자제어에 의한 자동이동이 이루어지도록 하거나, 미세조절나사를 직접 회전시켜 수동으로 광축이동이 이루어지게 하는 등 통상적인 방법이 적용될 수 있다. The optical axis micro-movement unit enables automatic movement by electronic control to drive the PZT, LM guide or fine adjustment screw in the direction of the optical axis by power means such as a micromotor or a motor, or manually rotates the fine adjustment screw by rotating the fine adjustment screw directly. Conventional methods may be applied, such as to allow movement.

이와같은 작동에 의해 반투명 바이오샘플인 저반사물질의 단층측정(형상측정)은 반사되는 광량이 미약하기 때문에 이를 증폭시키는 수단으로 보조광원부(80)가 더 사용된다.In this operation, tomography (shape measurement) of the low-reflective material, which is a semi-transparent biosample, is because the amount of reflected light is weak, and the auxiliary light source unit 80 is further used as a means for amplifying it.

상기 보조광원부(80)는 주광원부와 동일한 넓은 파장을 증폭시킬 수 있는 광섬유증폭기(EDFA; Er-doped fiber amplifier) 또는 이와 같은 광증폭기를 사용할 수 있다. 이때 상기 보조광원부는 주입잠금에 의해 반사된 광신호를 위상 왜곡없이 증폭 또은 왜곡된 위상을 보상할 수 있도록 한다.The auxiliary light source unit 80 may use an optical fiber amplifier (EDFA; Er-doped fiber amplifier) or the like that can amplify the same wide wavelength as the main light source. In this case, the auxiliary light source unit can compensate for the amplified or distorted phase of the optical signal reflected by the injection lock without phase distortion.

이러한 보조광원부(80)는 도 2에 도시된 바와같이 기준면반사부(40) 측만(또는 측정면반사부 측에만 설치; 미도시)에 설치되어 기준면(41)에 반사된 기준광신호를 증폭하거나, 도 3에 도시된 바와같이 기준면반사부(40)와 측정면반사부(50) 측 모두에 설치되어 기준면에 반사된 기준광신호와 측정면에 반사된 반사광신호 중 약한 신호를 증폭시켜 두 신호가 동일 또는 유사한 광량을 갖도록 한다. As shown in FIG. 2, the auxiliary light source unit 80 is installed only on the reference plane reflection unit 40 (or only on the measurement plane reflection unit; not shown) to amplify the reference light signal reflected on the reference plane 41, or As shown in FIG. 3, both signals are identical by amplifying a weak signal among the reference light signal reflected on the reference plane and the reflected light signal reflected on the measurement plane, provided at both the reference plane reflection unit 40 and the measurement plane reflection unit 50. Or similar light quantity.

상기 보조광원부(80)는 광검출부(60)에 의해 전류제어가 이루어지도록 한다. 이 때 제어는 되돌림 제어(feedback control)에 의해 가시도가 일정하게 유지되도록 할 수 있으며, 이러한 제어는 제어부에 의해 자동으로 이루어지거나, 사용자가 임의로 설정되도록 할 수 있다.
The auxiliary light source unit 80 allows current control by the photodetector 60. At this time, the control may be made to maintain a constant visibility by the feedback control (feedback control), this control can be made automatically by the control unit, or the user can be set arbitrarily.

아울러 상기 보조광원부(80)는 서큘레이터에 의해 반사된 광이 기준면반사부 또는 측정면반사부의 입사라인과 별도의 진행되도록 할 수 있다. In addition, the auxiliary light source unit 80 may allow the light reflected by the circulator to proceed separately from the incident line of the reference plane reflection unit or the measurement plane reflection unit.

예컨대 도 1을 참조한 바와같이 2개의 서큘레이터인 제1서큘레이터(93)와 제2세큘레이터(94)를 측정면반사부 측에 설치하여 입사관신호진행라인(91)에서 반사광신호진행라인(92)이 분기되도록 하고, 분기된 반사광신호진행라인(92)에 보조광원부(80)가 설치되도록 한 것이다. 상기 2개의 서큘레이터(93,94)에 의해 반사광신호진행라인이 연결되면 측정면에서 반사된 반사광신호는 제1서큘레이터(93)에서 진행방향이 반사광신호진행라인(92)으로 변경되어 진행되고, 보조광원부(80)에서 주입잠금에 의해 위상왜곡없이 증폭이 이루어진 다음 제2서큘레이터(94)에서 입사관신호진행라인(91)을 따라 되돌림 진행되어 광분할부(30)에서 기준면에서 반사된 기준광신호와 합쳐서 간섭이 이루어지게 된다. For example, as shown in FIG. 1, two circulators, a first circulator 93 and a second circulator 94, are provided on the measurement surface reflector side, and the incident light signal progress line 91 is reflected from the incident light signal progress line 91. 92 is branched, and the auxiliary light source unit 80 is installed in the branched reflected light signal progress line 92. When the reflected light signal progress lines are connected by the two circulators 93 and 94, the reflected light signal reflected from the measurement surface is changed from the first circulator 93 to the reflected light signal progress line 92. After the amplification is performed by the injection light in the auxiliary light source unit 80 without phase distortion, the second circulator 94 proceeds to return along the incident tube signal progress line 91 to reflect the reference light reflected from the reference plane by the light splitter 30. The interference is combined with the signal.

상기 간섭은 광검출부(60)에서 관찰되며, 반사광신호와 기준광신호가 유사한 광량을 갖기 때문에 좋은 가시도를 제공한다. The interference is observed in the photodetector 60 and provides good visibility since the reflected light signal and the reference light signal have similar amounts of light.

아울러 광축미세이동부(70)에 의해 기준면(41) 또는 측정면(51)을 미세 이동시키고 상기 과정을 통해 측정이 이루어지며, 상기 반사광신호와 기준광신호의 광량 차이가 발생되면 광검출부(60)에서는 보조광원부(80)로의 전류를 제어하여 증폭되는 광량을 조절해 두 신호의 광량을 유사하게 하는 것이다. 이 때 제어는 되돌림 제어(feedback control)에 의해 가시도가 일정하게 유지되도록 할 수 있으며, 이러한 제어는 제어부에 의해 자동으로 이루어지거나, 사용자가 임의로 설정되도록 할 수 있다.In addition, the reference axis 41 or the measurement plane 51 is moved finely by the optical axis micro-movement unit 70 and the measurement is made through the above process. When the difference in the amount of light between the reflected light signal and the reference light signal is generated, the light detector 60 By controlling the current to the auxiliary light source unit 80 to adjust the amount of light amplified to make the light amount of the two signals to be similar. At this time, the control may be made to maintain a constant visibility by the feedback control (feedback control), this control can be made automatically by the control unit, or the user can be set arbitrarily.

상기 서큘레이터(93,94)는 도시된 바와 같이 2개를 설치하는 것 이외에 1개 또는 다수개가 설치될 수 있는 등 사용환경에 따라 설치갯수가 가변될 수 있다
The circulators 93 and 94 may have a variable number of installations depending on the use environment, such as one or a plurality of circulators, in addition to two.

10 : 가시도 향상 저결맞음 간섭계
20 : 주광원부
30 : 광분할부
40 : 기준면반사부
41 : 기준면
50 : 측정면반사부
51 : 측정면
60 : 광검출부
70 : 광축미세이동부
80 : 보조광원부
91 : 입사광신호진행라인 92 : 반사광신호진행라인
93 : 제1서큘레이터 94 : 제2서큘레이터
10: Improved visibility Low coherence interferometer
20: main light source
30: light splitting part
40: reference plane reflecting unit
41: reference plane
50: measuring surface reflector
51: measuring surface
60: light detector
70: optical axis fine moving part
80: auxiliary light source
91: incident light signal progress line 92: reflected light signal progress line
93: first circulator 94: second circulator

Claims (3)

다파장 광을 조사하는 주광원부(20)와;
상기 조사된 광신호를 두 개로 분할하는 광분할부(30)와;
상기 광분할부에 의해 분리된 광신호를 각각 기준면과 측정대상물의 측정면에 반사시키는 기준면반사부(40) 및 측정면반사부(50)와;
상기 기준면반사부 및 측정면반사부에서 반사된 광신호를 합광하여 간섭이 이루어지도록 하고 이를 관찰하는 광검출부(60)와;
상기 기준면반사부의 기준면 또는 측정면반사부의 측정면을 광축방향으로 미세이동시키는 광축미세이동부(70)와;
상기 반사광을 주입잠금을 통하여 증폭시키는 보조광원부(80);를 포함하여 구성되는 것을 특징으로 하는 가시도 향상 저결맞음 간섭계.
A main light source unit 20 for irradiating multi-wavelength light;
An optical splitter 30 dividing the irradiated optical signal into two;
A reference plane reflecting unit 40 and a measuring plane reflecting unit 50 for reflecting the optical signal separated by the light splitting unit to the reference plane and the measurement plane of the measurement object, respectively;
A light detector 60 for combining the optical signals reflected by the reference plane reflector and the measurement plane reflector to perform interference and observing the interference;
An optical axis fine moving unit 70 for finely moving the reference plane or the measurement plane of the reference plane reflection unit in the optical axis direction;
And an auxiliary light source unit (80) for amplifying the reflected light through an injection lock.
제1항에 있어서,
상기 보조광원부(80)는 기준면반사부(40)와 측정면반사부(50) 중 어느 일측 또는 양측 모두에 설치되어 측정면반사부에서 반사된 반사광신호 또는 기준면반사부에서 반사된 기준광신호를 증폭시키는 것을 특징으로 하는 가시도 향상 저결맞음 간섭계.
The method of claim 1,
The auxiliary light source unit 80 is installed on either or both sides of the reference plane reflection unit 40 and the measurement plane reflection unit 50 to amplify the reflected light signal reflected from the measurement plane reflection unit or the reference light signal reflected by the reference plane reflection unit. Improved visibility Low coherence interferometer, characterized in that.
제 1항에 있어서,
상기 보조광원부(80)는 광검출부에 의해 얻어진 가시도가 일정하게 유지되도록 되돌림 제어(feedback control)가 이루어지도록 한 것을 특징으로 하는 가시도 향상 저결맞음 간섭계.
The method of claim 1,
The auxiliary light source unit (80) is a visibility enhancement low coherence interferometer, characterized in that the feedback control is carried out so that the visibility obtained by the light detector is kept constant.
KR1020100104862A 2010-10-26 2010-10-26 Visibility Enhanced Low Coherence Interferometer KR101282932B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100104862A KR101282932B1 (en) 2010-10-26 2010-10-26 Visibility Enhanced Low Coherence Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100104862A KR101282932B1 (en) 2010-10-26 2010-10-26 Visibility Enhanced Low Coherence Interferometer

Publications (2)

Publication Number Publication Date
KR20120043526A true KR20120043526A (en) 2012-05-04
KR101282932B1 KR101282932B1 (en) 2013-07-05

Family

ID=46263683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100104862A KR101282932B1 (en) 2010-10-26 2010-10-26 Visibility Enhanced Low Coherence Interferometer

Country Status (1)

Country Link
KR (1) KR101282932B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417663B1 (en) * 2013-07-12 2014-07-11 한양대학교 산학협력단 Recognition probe of fingerprint based on low coherence interferometer and recognition apparatus of fingerprint having the same
KR20200066079A (en) * 2018-11-30 2020-06-09 한국전자통신연구원 Apparatus and Method of Microbiome Analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125162A (en) 2018-04-27 2019-11-06 주식회사 인포웍스 System for Frequency Modulated Continuous Wave LiDAR using Coherent method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50308223D1 (en) 2002-04-18 2007-10-31 Haag Ag Streit MEASUREMENT OF OPTICAL PROPERTIES
US7636166B2 (en) 2006-01-23 2009-12-22 Zygo Corporation Interferometer system for monitoring an object
JP2010085148A (en) 2008-09-30 2010-04-15 Nec Corp Minute displacement measuring device, minute displacement measuring method, and minute displacement measuring program
KR20100073703A (en) * 2008-12-23 2010-07-01 광주과학기술원 Optical coherence tomography system and sample measurements method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417663B1 (en) * 2013-07-12 2014-07-11 한양대학교 산학협력단 Recognition probe of fingerprint based on low coherence interferometer and recognition apparatus of fingerprint having the same
KR20200066079A (en) * 2018-11-30 2020-06-09 한국전자통신연구원 Apparatus and Method of Microbiome Analysis

Also Published As

Publication number Publication date
KR101282932B1 (en) 2013-07-05

Similar Documents

Publication Publication Date Title
US5804813A (en) Differential confocal microscopy
US20070229853A1 (en) Nanometer contact detection method and apparatus for precision machining
CN107407798B (en) Microscope system with automatic focus adjustment by low coherence interferometry
KR20120029329A (en) Measuring method of refractive index and measuring apparatus of refractive index
JP2001141652A (en) Method and apparatus for simultaneous measurement of refractive index and thickness of object to be measured by light interference method
JP2010169496A (en) Refractive index measuring instrument
WO2013091584A1 (en) Method and device for detecting defects in substrate
EP2998693B1 (en) Surface-geometry measurement method and device used therein
JP2006250826A (en) Measuring element, processing device and measuring method, and measuring element of refractive index
US7079256B2 (en) Interferometric optical apparatus and method for measurements
CN105674902A (en) Mirror surface clearance measurement device and measurement method for optical lens assembly
WO2012170275A1 (en) Coupled multi-wavelength confocal systems for distance measurements
KR20200125149A (en) Apparatus for monitoring three-dimensional shape of target object capable of auto focusing in real time
KR101282932B1 (en) Visibility Enhanced Low Coherence Interferometer
US4361402A (en) Apparatus for determining the refractive-index profile of optical fibers
CN111964580B (en) Device and method for detecting position and angle of film based on optical lever
KR100978397B1 (en) System for analyzing plasma density
US20120316830A1 (en) Coupled multi-wavelength confocal systems for distance measurements
CN109443240A (en) A kind of laser triangulation optical measurement instrument and method based on intermediary layer scattering
US20120314200A1 (en) Coupled multi-wavelength confocal systems for distance measurements
US9476693B2 (en) Optical property measurement apparatus and optical property measurement method
JP2005106706A (en) Instrument and method for measuring refractive index and thickness
CN105841720B (en) Use the optical fiber white light interference (FBG) demodulator of two parallel reflective faces
KR101267879B1 (en) Visibility Enhanced Interferometer
AU2020101629A4 (en) A reflective-transmissive enhanced phase microscopy imaging measurement system based on an F-P interferometer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180625

Year of fee payment: 6