JP4935341B2 - 飛行時間型質量分析装置 - Google Patents

飛行時間型質量分析装置 Download PDF

Info

Publication number
JP4935341B2
JP4935341B2 JP2006344370A JP2006344370A JP4935341B2 JP 4935341 B2 JP4935341 B2 JP 4935341B2 JP 2006344370 A JP2006344370 A JP 2006344370A JP 2006344370 A JP2006344370 A JP 2006344370A JP 4935341 B2 JP4935341 B2 JP 4935341B2
Authority
JP
Japan
Prior art keywords
temperature
mass
flight
time
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006344370A
Other languages
English (en)
Other versions
JP2008157671A (ja
Inventor
光夫 北岡
弘人 糸井
一夫 中村
一夫 山内
孝夫 岡戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006344370A priority Critical patent/JP4935341B2/ja
Publication of JP2008157671A publication Critical patent/JP2008157671A/ja
Application granted granted Critical
Publication of JP4935341B2 publication Critical patent/JP4935341B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、内部が真空雰囲気である真空容器内に設置された対象物の温度を推定する温度推定装置、及び、その対象物が質量分析部である飛行時間型質量分析装置に関する。
飛行時間型質量分析装置では、電場によりほぼ同時に加速した各種イオンをフライトチューブ内に形成される飛行空間に導入し、飛行空間中を飛行してイオン検出器に到達するまでの時間(飛行時間)に応じて各種イオンを質量(厳密には質量電荷比m/z)毎に分離する。イオン検出器では到達するイオンの量に応じた検出信号が連続的に得られるから、飛行時間を質量に換算した上で、横軸を質量軸、縦軸を信号強度軸とする質量スペクトルを作成することができる。
上述のような飛行時間型質量分析装置では、フライトチューブの温度が変化することで機械的に膨張又は縮小するとイオンの飛行距離が微妙に変化する。すると、同一質量のイオンにおける飛行時間が変化してしまうため、質量スペクトルの質量軸にずれが生じることになる。そして、フライトチューブの温度変化が大きいと、質量軸のずれが装置に定められた仕様上の質量精度を超えてしまうおそれがある。そのため、従来の飛行時間型質量分析装置では、フライトチューブを内装する真空チャンバを恒温槽(温調筐体)内に設置し、真空チャンバを温調することによりフライトチューブの温度変化を少なくするようにしている(例えば特許文献1、2を参照)。
しかしながら、こうした飛行時間型質量分析装置において、たとえ真空チャンバを温調していたとしても、外気温の急激な変化等によって真空チャンバの温調に乱れが生じ、その結果、質量軸がずれてしまう場合がある。そのため、何らかの方法で質量軸のずれ量を推定し、そのずれ量が許容範囲を超えるような場合にはユーザの注意を喚起する必要がある。
上述のような要因による質量軸のずれ量を推定するのに適切な方法は、フライトチューブ自体の温度をモニタし、そのモニタ値から質量軸のずれ量を推定する方法である。ところが、フライトチューブは通常、電極として高電圧が印加され、且つ、真空チャンバ内の真空雰囲気中に置かれているため、フライトチューブ自体に温度センサを取り付けてその温度をモニタすることは難しい。そこで一般的には、恒温槽内の空気に晒される真空チャンバに温度センサを取り付けてその温度をモニタし、そのモニタ値に基づいて質量軸のずれ量を推定することになる。
しかしながら、真空中では熱が伝わりにくいため、フライトチューブの実際の温度変化は真空チャンバのモニタ温度に対して比較的大きな応答遅れを生じる。そのため、真空チャンバに取り付けた温度センサのモニタ値がフライトチューブの温度であると仮定して質量軸のずれ量を判断すると、誤った判断をする場合がある。その結果、実際には大きな質量ずれが生じている分析結果を精度が高いものとして採用してしまったり、逆に高い精度で質量分析が行われている結果を正しくないものと誤判断して破棄してしまったりする場合があり得る。
特開2004−170155号公報 特開2006−140064号公報
本発明は上記課題を解決するために成されたものであり、その目的とするところは、真空雰囲気中に置かれ、高電圧が印加されたフライトチューブの温度変化の影響による質量スペクトルの質量軸のずれを正確に把握することができる飛行時間型質量分析装置を提供することである。
まず、参考のために、内部が真空雰囲気である真空容器内に設置された対象物の温度を推定する温度推定装置について説明する。この温度推定装置は、
a)前記真空容器の温度を検出する温度検出手段と、
b)前記真空容器から前記対象物への熱的な伝達関数を予め測定した結果を記憶しておく記憶手段と、
c)前記温度検出手段により得られる現時点における前記真空容器の温度と、前記記憶手段に記憶されている伝達関数とを用いて、現時点での前記対象物の温度を推定する推定演算手段と、
を備えることを特徴としている。
前述のように真空中では熱伝導が悪くなるので、真空容器の温度を急激に(例えばステップ状であるとみなせる程度に)変化させたとき、真空中に置かれた対象物の温度の変化はかなり時間遅れを生じ、しかもその温度変化は緩慢になる(或る一定の時定数を持つ)。そこで、予めそのステップ応答を実験的に測定しておき、真空容器から対象物への熱的な伝達関数を求めておく。但し、こうした伝達関数は同一構造の装置における個体差が殆どないので、ステップ応答の測定を装置1台毎に行う必要はなく、標準装置の測定結果を他の装置でも利用することができる。
上記で求めた伝達関数はラプラス変換式となり、これは計算機上(つまり離散系)では、或る時定数を持ったデジタルフィルタ(ローパスフィルタ)として表現することができる。具体的には、実験で求めた伝達関数(ラプラス変換式)を双一次z変換により離散系のパルス伝達関数(z変換式)に変換し、求めたパルス伝達関数の形から、真空容器の温度を入力、対象物の温度を出力、とする離散系の差分方程式を導出する。これにより、真空容器の温度の検出結果から、つまりは対象物自体の温度を直接的に測定することなしに、真空中での熱伝導の悪さを的確に反映した対象物の温度を高い精度で推定することができる。
上記対象物が飛行時間型質量分析装置のフライトチューブである場合、そのフライトチューブの温度変化は質量スペクトルの質量軸のずれとなって現れる。したがって、上記温度推定装置と全く同様の手法を用いて、飛行時間型質量分析装置では質量軸のずれ量を推定することができる。
即ち、上記課題を解決するために成された発明は、内部が真空雰囲気である真空容器内にイオンが飛行する飛行空間を形成する質量分析部及びイオン検出器が設置されて成り、前記飛行空間を飛行することで質量に応じて時間的に分離されたイオンを前記イオン検出器により検出し、その検出信号に基づいて質量軸と強度軸とを有する質量スペクトルを求める飛行時間型質量分析装置において、
a)前記真空容器の温度を検出する温度検出手段と、
b)前記真空容器の温度変化から前記質量分析部の温度変化に起因した質量軸のずれ(変化)への伝達関数を予め測定した結果を記憶しておく記憶手段と、
c)前記温度検出手段により得られる現時点における前記真空容器の温度と、前記記憶手段に記憶されている伝達関数とを用いて、現時点での質量軸のずれの程度を推定する推定演算手段と、
d)前記推定演算手段により推定された質量軸のずれ量が予め定めた許容範囲を超える場合にユーザへの報知を行う報知手段と、
を備えることを特徴としている。
発明に係る飛行時間型質量分析装置では、予め、真空容器の温度を急激に変化させたときの質量分析部(フライトチューブ)の温度のステップ応答を測定する代わりに、質量スペクトルの質量軸のずれ(変化)量のステップ応答を測定する。質量軸のずれ量のステップ応答を求めるには、例えば特定質量のイオンを繰り返し質量分析し、それにより求まる質量を追跡すればよい。なお、イオンの加速電圧などの分析条件が相違すると質量軸のずれ量のステップ応答が変わることが考えられる場合には、各分析条件毎に質量軸のずれ量のステップ応答を求め、これに基づく伝達関数を記憶手段に記憶させておくとよい。
真空容器の温度変化から質量軸の変化への関係を表す伝達関数は、上述した温度推定装置の場合と同様に、或る時定数を持ったデジタルフィルタによるローパスフィルタ(つまりは真空容器の温度を入力、質量軸のずれ(変化)量を出力、とする差分方程式)として表現することができる。これにより、真空容器の温度の検出結果から、つまりはフライトチューブの温度を直接的に測定することなしに、真空中での熱伝導の悪さを的確に反映した質量軸のずれ量を高い精度で推定することができる。
本発明に係る飛行時間型質量分析装置は、上述のように推定演算手段により推定された質量軸のずれ量が予め定めた許容範囲を超える場合にユーザへの報知を行う報知手段をさらに備える構成とする。報知手段としては表示による報知、音による報知などが考えられる。
この構成によれば、温度変化の影響で、分析中に質量スペクトルの質量軸が例えば装置の仕様上の質量精度を逸脱するほどずれた場合に、ユーザはその状況を速やかに認識して、例えば得られた結果を破棄したり、分析を一旦中止したり、或いは装置に不具合がないかどうかチェックしたりする等、適切な対応をとることができる。
発明に係る飛行時間型質量分析装置によれば、真空容器内に設置され、高電圧が印加されたフライトチューブの温度を直接的に測定することなく、その温度変化に起因する質量スペクトルの質量軸のずれの程度を高い精度で以て推定することが可能となる。それによって、常に質量軸のずれが小さい状態での分析結果を得ることができる。また、質量軸が異常にずれた状態である場合に、ユーザがそれを認識して適切に対処することができるようになる。
本発明の一実施例である飛行時間型質量分析装置について図面を参照して説明する。図1は本実施例による飛行時間型質量分析装置の要部の構成図である。
真空チャンバ1は高真空を達成可能なターボ分子ポンプ等の真空ポンプ2により真空排気される。この真空チャンバ1内には、内部に飛行空間4を形成する管状部品であるフライトチューブ3が低熱伝導率材料(例えばセラミックや樹脂等)から成る保持部材9で保持されるように設置されている。即ち、フライトチューブ3は真空中に置かれている。フライトチューブ3の一端(図1では右端)にはリフレクトロン(イオン反射器)7が設置され、他端(図1では左端)にはイオン源5及びイオン加速器6とイオン検出器8とが設置されている。
イオン源5としては従来知られている各種の構成、例えばMALDI(Matrix Assisted Laser Desorption/Ionization)イオン源、ESI/APCI等のLCMSイオン源などのほか、イオンを一旦蓄積してから吐き出すイオントラップなどを用いることもできる。なお、例えばLCMSイオン源など略大気圧下でイオン化を行うものの場合には、イオン源5は真空チャンバ1の外側に設置され、そこで生成されたイオンが真空チャンバ1内に導入されてイオン加速器6により加速される。
真空チャンバ1は恒温槽(温調筐体)10内に収容されており、恒温槽10にはファン11、ヒータ12、槽内の空気の温度を測定する第1温度センサ13、真空チャンバ1の温度を測定する第2温度センサ(本発明における温度検出手段に相当)24等から成る温調装置が設けられている。この温調装置は温調制御部14により、第2温度センサ24の検出温度が所定の目標温度になるように制御される。なお、こうした温調の手法については上記特許文献1に記載されている。
イオン源5、イオン加速器6及びリフレクトロン7は質量分析を行うための分析制御部20により制御される。また、イオン検出器8による検出信号はデータ処理部15に入力され、ここで質量スペクトルが作成される。また、真空チャンバ1の温度を検出するための第2温度センサ24による検出温度は、分析制御部20に含まれる質量ずれ演算部(本発明における推定演算手段に相当)22にも入力されている。質量ずれ演算部22はその検出温度と、伝達関数記憶部(本発明における記憶手段に相当)21に予め格納されている伝達関数を表す差分方程式とを利用して、任意の時点での質量スペクトルの質量軸のずれ量を推定する。異常判定部23はこの推定された質量軸のずれ量を判定し、ずれ量が許容範囲を超えている場合には報知部(本発明における報知手段に相当)25によりユーザに対する注意喚起を行う。報知部25は例えば表示やブザー音の鳴動などによる注意喚起を行うものとすることができる。
なお、分析制御部20やデータ処理部15などの機能の全て又は一部は、装置本体に組み込まれた計算システムのプログラム、又は、パーソナルコンピュータにインストールされた専用のプログラムを実行することで実現するように構成することができる。
上記構成の装置の基本的な質量分析動作は次の通りである。即ち、イオン源5で生成された各種イオンは、イオン加速器6において所定の加速電圧により運動エネルギが与えられ、リフレクトロン7に向けて飛行空間4を飛行する。イオンはリフレクトロン7により形成される傾斜電場によって折り返されて飛行空間4を戻り、イオン検出器8に到達して検出される。イオンが飛行空間4を往復するのに要する時間はイオンの質量(厳密には質量電荷比)に依存するから、各種イオンがほぼ同時にイオン加速器6で加速されて出発すれば、互いに異なる質量を持つイオン同士は時間差をもってイオン検出器8に到達する。イオン検出器8は到達したイオン量(イオン強度)を連続的に検出し、データ処理部15はイオン検出器8で得られる検出信号に基づいて飛行時間を質量に換算し、質量スペクトルを作成する。
フライトチューブ3が熱によって膨張又は収縮すると、イオン加速器6から発しリフレクトロン7で反射されてイオン検出器8に到達するまでの飛行距離が変化してしまう。例えば飛行距離が長くなるとその分だけ飛行時間が長くなるため、同一種のイオンについて求まる質量は質量スペクトルの質量軸上で大きくなる方向にずれる。即ち、質量軸のずれが生じる。この飛行時間型質量分析装置では、真空チャンバ1を恒温槽10内に設置し、真空チャンバ1の温度をできるだけ一定に維持する(温調する)ことでフライトチューブ3の温度変動を抑制している。しかしながら、例えば外気温が大きく変動したりすると、その外乱の影響で真空チャンバ1の温度が変動し、その変動がフライトチューブ3に伝わり、フライトチューブ3の温度変動が質量軸のずれを生じさせる。そこで、この装置では、次のようにして質量スペクトルの質量ずれ量を推定し、そのずれ量が許容範囲(通常は装置の仕様上定められた質量精度で決まる範囲)を超えたときにユーザに対する報知を行うようにしている。
分析制御部20が備える伝達関数記憶部21には、予め測定された、真空チャンバ1の温度変化から質量軸ずれ量への伝達関数が格納される。具体的には、この装置又は同一構成の他の装置を用いて、真空チャンバ1の温調設定値をステップ状に変更することによって、真空チャンバ1の温度をステップ状(に近い形で)変化させ、そのときの質量スペクトルの質量軸のずれ量のステップ応答を測定する。
真空チャンバ1の温度がステップ状に変化した場合、フライトチューブ3は真空中にあるため、真空チャンバ1の温度が上昇してもフライトチューブ3に熱が完全に伝わってその温度が上昇するのには長い時間、通常は2時間以上掛かる。フライトチューブ3の温度が次第に上昇して飛行距離が変化すると、それによって質量スペクトルの質量軸がずれる。この質量軸のずれとフライトチューブ3の温度変化とは相関している。
例えば、通常、真空チャンバ1を40℃に温調する装置の場合、真空チャンバ1の温度を、37℃に安定している状態から40℃へ、又は、40℃に安定している状態から43℃へとステップ状に上昇させる。即ち、図2(a)において、変化前の温度T0が37℃又は40℃、変化後の温度T1は40℃又は43℃である。このとき、同時に所定の期間(つまり、真空チャンバ1の温度が或る温度で安定している状態から他の或る温度へと遷移し安定するまでと、安定してからしばらくの間)、特定質量のイオンの質量分析を繰り返し、データ処理部15において求まる質量の変化を測定することで、図2(b)に示すような質量軸のずれ量のステップ応答h(t)=dm/mmeas(t)を取得する。
真空チャンバ1の温度変化から質量軸ずれ量への伝達関数を、熱的な伝達関数として一般的に用いられるむだ時間と1次遅れ系で近似した場合、伝達関数のパラメータは、むだ時間L(真空チャンバ1の温度が変化した時点から質量軸が変化し始める時点までの遅れ時間)と、温度入力に対する質量ずれ量への変換係数K(真空チャンバ1が温度T0で安定しているときの質量軸のずれを0とした場合、真空チャンバ1の温度が何℃変化したら質量軸が何ppmずれるかを表した変換係数)と、時定数τと、で表すことができる。即ち、伝達関数は次の(1)式で表される。
dM/M(s)=H(s)・X(s)= K・e-Ls・Y(s)=K・e-Ls・G(s)・X(s) …(1)
ここで、X(s)は真空チャンバ1の温度x(t)、dM/M(s)は質量軸のずれ量dm/m(t)を表すラプラス変換式、H(s)はそれらの関係をつなぐ伝達関数を表す。伝達関数をフィルタで表現する場合、Lは単に入力の遅延(ディレイ)、Kは単に温度変化(℃)から質量軸変化(ppm)への変換係数であるので、フィルタとしては、次の(2)式のように、ゲインが1で、時定数τを持つ1次のローパスフィルタG(s)を設計するだけでよく、伝達関数は(3)式で表せる。
G(s)=1/(1+τs) …(2)
H(s)=K・e-Ls・G(s) …(3)
真空チャンバ1の温度X(s)にG(s)を作用させると、質量軸ずれ量と比例関係にある温度変化量Y(s)が得られる。即ち、次の(4)式となる。
Y(s)=G(s)・X(s) …(4)
G(s)は、次の(5)式で表される双1次z変換式によって離散系のG(z)に変換される。
s=(2/T)・(1−z-1)/(1+z-1) …(5)
但し、Tはサンプリング周期である。
このG(z)に、温度から質量ずれへの変換係数K、および遅延Lを作用させたものが、H(s)の離散系表現H(z)である。したがって、次の(6)、(7)式となる。
G(z)=a(1+z-1)/(1+bz-1) …(6)
但し、a=1/(T+2τ)、b=(T−2τ)/(T+2τ)である。
H(z)=K・z-N・G(z) …(7)
但し、NはL/Tの整数部である。
(4)式は離散系表現では次の(8)式となり、この式の形から、真空チャンバ1の(周期T毎の)温度サンプリング(i=1,2,3、…、k−1、k、…)の或る時点kにおける、真空チャンバ1の温度x[k]と、その時点における質量軸ずれ量を表す温度変化量y[k]との関係を、次の(9)式の差分方程式として表すことができる。
Y(z)=G(z)・X(z) …(8)
y[k]=a(x[k]+x[k−1])−by[k−1] …(9)
この差分方程式の入力x[k]の代わりに時間L(=N・T)分だけ遅延させたx(k−N)を入力し、その出力に、温度と質量軸のずれ量との変換係数Kを乗じれば、次の(10)式に示すように、その時点kにおける質量軸のずれ量dm/m[k]を求めることができる。
dm/m[k]= K{a(x[k−N]+x[k−N−1])−by[k−1]} …(10)
上記において、L、K、τの各パラメータは、真空チャンバ1の温度を入力として、これら各パラメータを用いて質量軸のずれ量の予測値を計算し、この計算値(予測値dm/m[k])と、実際に測定した質量軸のずれ量dm/mmeas(t)の差が最小になるように求めることができる。このようにして求めた伝達関数のパラメータ(L、K、τ)が、伝達関数記憶部21に予め記憶される。なお、これらパラメータは本装置を提供するメーカーが予め設定しておけばよいから、この装置を使用するユーザ自身が上記パラメータを求めるための測定を行う必要はない。
この飛行時間型質量分析装置において質量分析を実行する際には、真空チャンバ1に取り付けられた第2温度センサ24による検出温度が連続的に質量ずれ演算部22に与えられる。質量ずれ演算部22は、その温度のモニタ値と伝達関数記憶部21に格納されているパラメータとを用いて、上述したような一連の演算処理を行うことで現時点での質量軸のずれ量を推算することができる。
異常判定部23は時々刻々と得られる質量軸のずれ量の推算値が許容範囲内であるか否かを判定し、許容範囲を超えた場合には報知部25を駆動して、例えば表示によりユーザへの注意喚起を行う。
例えば外気温が急激に変化して恒温槽10内の空気の温度が急激に変化すると、その空気に外面が晒される真空チャンバ1自体の温度も変化する。一方、真空中にあるフライトチューブ3の温度が変化するまでには長い時間遅れがあるが、実際にフライトチューブ3の温度が変化して飛行距離が変化すると質量スペクトルの質量軸がずれることなる。こうした質量軸のずれは上述のように質量ずれ演算部22で推定され、装置の仕様で決まる質量精度を逸脱するほど大きなずれが予測されると、これがユーザに報知されることとなる。そのため、少なくともユーザはそのときに得られた分析結果(質量スペクトル)の質量軸の精度が低いことを認識することができる。
なお、上記実施例は本発明に係る飛行時間型質量分析装置の一例であり、本発明の趣旨の範囲内で適宜、変形、追加を行っても本願特許請求の範囲に包含される。例えば、上記実施例はリフレクトロン型の構成であるが、リニア型でも本発明を適用できることは明らかである。
また上記実施例は、真空中に置かれたフライトチューブ3の温度変化に起因する質量スペクトルの質量軸ずれの量を推定するものであったが、そのフライトチューブ3の温度自体を推定することもできる。その1つの方法としては、真空チャンバ1の温度をステップ状に変化させたときの質量軸のずれ量のステップ応答を予め測定する代わりに、実際にフライトチューブ3の温度のステップ応答を予め測定する。この場合、上記説明中のY(s)をフライトチューブ3の温度を表すラプラス変換式として、真空チャンバ1からフライトチューブ3への熱的な伝達関数G(s)に対応するデジタルフィルタを設計し、そのフィルタのパラメータを伝達関数記憶部21に記憶させればよい。
またフライトチューブ3の温度ではなく、真空雰囲気中に置かれた対象物の温度を同様の方法で推定できることも、上記説明から明らかである。
本発明の一実施例である飛行時間型質量分析装置の要部の構成図。 真空チャンバの温度のステップ状の変化(a)とそれに対する質量スペクトルの質量軸のずれ量のステップ応答(b)の一例を示す図。
符号の説明
1…真空チャンバ
2…真空ポンプ
3…フライトチューブ
4…飛行空間
5…イオン源
6…イオン加速器
7…リフレクトロン
8…イオン検出器
9…保持部材
10…恒温槽(温調筐体)
11…ファン
12…ヒータ
13…第1温度センサ
14…温調制御部
15…データ処理部
20…分析制御部
21…伝達関数記憶部
22…質量ずれ演算部
23…異常判定部
24…第2温度センサ
25…報知部

Claims (1)

  1. 内部が真空雰囲気である真空容器内にイオンが飛行する飛行空間を形成する質量分析部及びイオン検出器が設置されて成り、前記飛行空間を飛行することで質量に応じて時間的に分離されたイオンを前記イオン検出器により検出し、その検出信号に基づいて質量軸と強度軸とを有する質量スペクトルを求める飛行時間型質量分析装置において、
    a)前記真空容器の温度を検出する温度検出手段と、
    b)前記真空容器の温度変化から前記質量分析部の温度変化に起因した質量軸のずれ(変化)への伝達関数を予め測定した結果を記憶しておく記憶手段と、
    c)前記温度検出手段により得られる現時点における前記真空容器の温度と、前記記憶手段に記憶されている伝達関数とを用いて、現時点での質量軸のずれの程度を推定する推定演算手段と、
    d)前記推定演算手段により推定された質量軸のずれ量が予め定めた許容範囲を超える場合にユーザへの報知を行う報知手段と、
    を備えることを特徴とする飛行時間型質量分析装置。
JP2006344370A 2006-12-21 2006-12-21 飛行時間型質量分析装置 Expired - Fee Related JP4935341B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344370A JP4935341B2 (ja) 2006-12-21 2006-12-21 飛行時間型質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344370A JP4935341B2 (ja) 2006-12-21 2006-12-21 飛行時間型質量分析装置

Publications (2)

Publication Number Publication Date
JP2008157671A JP2008157671A (ja) 2008-07-10
JP4935341B2 true JP4935341B2 (ja) 2012-05-23

Family

ID=39658749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344370A Expired - Fee Related JP4935341B2 (ja) 2006-12-21 2006-12-21 飛行時間型質量分析装置

Country Status (1)

Country Link
JP (1) JP4935341B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013293B2 (en) 2007-05-30 2011-09-06 Shimadzu Corporation Time-of-flight mass spectrometer
JP5505224B2 (ja) 2010-09-16 2014-05-28 株式会社島津製作所 飛行時間型質量分析装置
CN104569133B (zh) * 2014-12-31 2017-09-08 聚光科技(杭州)股份有限公司 质谱分析系统及检测方法
US10199207B1 (en) * 2017-09-07 2019-02-05 California Institute Of Technology Determining isotope ratios using mass spectrometry
CN112088420A (zh) * 2018-05-14 2020-12-15 株式会社岛津制作所 飞行时间质谱分析装置
JP6989005B2 (ja) * 2018-05-23 2022-01-05 株式会社島津製作所 飛行時間型質量分析装置
WO2023002282A1 (en) * 2021-07-23 2023-01-26 Dh Technologies Development Pte. Ltd. Preventing errors in processing and interpreting mass spectrometry results

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183802A (ja) * 1997-09-04 1999-03-26 Oki Electric Ind Co Ltd 昇温脱離ガス分析方法および装置
JP2001334141A (ja) * 2000-05-30 2001-12-04 Matsushita Electric Ind Co Ltd 基板処理装置と基板処理方法
US6700118B2 (en) * 2001-08-15 2004-03-02 Agilent Technologies, Inc. Thermal drift compensation to mass calibration in time-of-flight mass spectrometry
JP4576775B2 (ja) * 2001-08-29 2010-11-10 株式会社島津製作所 飛行時間型質量分析装置
JP3659216B2 (ja) * 2001-11-13 2005-06-15 株式会社島津製作所 飛行時間型質量分析装置
JP4222005B2 (ja) * 2002-11-18 2009-02-12 株式会社島津製作所 温調システムを備えた分析装置
JP4403944B2 (ja) * 2004-01-13 2010-01-27 株式会社デンソー 内燃機関の排気浄化装置
JP2005225297A (ja) * 2004-02-12 2005-08-25 Toyota Motor Corp タイヤの温度検出装置
JP4513416B2 (ja) * 2004-05-13 2010-07-28 日産自動車株式会社 触媒温度ないし触媒近傍のガス温度を推定する装置及びその推定方法
US6998607B1 (en) * 2004-08-31 2006-02-14 Thermo Finnigan Llc Temperature compensated time-of-flight mass spectrometer
JP4407486B2 (ja) * 2004-11-12 2010-02-03 株式会社島津製作所 飛行時間型質量分析装置
JP4543213B2 (ja) * 2005-02-25 2010-09-15 独立行政法人産業技術総合研究所 分子配向温度計

Also Published As

Publication number Publication date
JP2008157671A (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4816794B2 (ja) 飛行時間型質量分析装置
JP4935341B2 (ja) 飛行時間型質量分析装置
US6616759B2 (en) Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system therefor
JP6658763B2 (ja) 測定装置の温度変位による測定誤差補正方法及び該方法を用いた質量分析装置
US6700118B2 (en) Thermal drift compensation to mass calibration in time-of-flight mass spectrometry
US20180088088A1 (en) Gas sensor and gas detection method
JP2005535114A5 (ja)
US10340774B2 (en) Temperature estimating device of electric motor
JP6420007B2 (ja) 分析装置及びその制御方法
JP6182052B2 (ja) ガスセンサ使用寿命予測方法およびガス検知装置
JP4407486B2 (ja) 飛行時間型質量分析装置
JP4222005B2 (ja) 温調システムを備えた分析装置
JP3659216B2 (ja) 飛行時間型質量分析装置
US11251030B2 (en) Mass spectrometry apparatus and mass spectrometry method
CN105157866A (zh) 测量电路
JP5740858B2 (ja) 光位相差検出式の物体検知センサ
JP4576775B2 (ja) 飛行時間型質量分析装置
JP2004037139A (ja) 温度計測装置および温度調節器
JP5055157B2 (ja) 質量分析装置
KR20180028127A (ko) 써모커플 센서의 온도 계측 장치 및 그를 이용한 선박 대형 엔진 시운전용 데이터 계측 시스템
US20060108350A1 (en) Analytical device with temperature control system
JP2007255917A (ja) 濃度測定装置
CN111684235A (zh) 温度数据处理方法及装置、测距系统和移动终端
US9070274B2 (en) Method for early detection of cooling-loss events
CN112113562B (zh) 微机电惯性器件的配对筛选方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4935341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees