JP4934954B2 - Heat sink and semiconductor device provided with heat sink - Google Patents

Heat sink and semiconductor device provided with heat sink Download PDF

Info

Publication number
JP4934954B2
JP4934954B2 JP2004301763A JP2004301763A JP4934954B2 JP 4934954 B2 JP4934954 B2 JP 4934954B2 JP 2004301763 A JP2004301763 A JP 2004301763A JP 2004301763 A JP2004301763 A JP 2004301763A JP 4934954 B2 JP4934954 B2 JP 4934954B2
Authority
JP
Japan
Prior art keywords
plate
heat sink
semiconductor light
light emitting
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004301763A
Other languages
Japanese (ja)
Other versions
JP2006019676A (en
Inventor
隆史 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2004301763A priority Critical patent/JP4934954B2/en
Publication of JP2006019676A publication Critical patent/JP2006019676A/en
Application granted granted Critical
Publication of JP4934954B2 publication Critical patent/JP4934954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、半導体発光素子や半導体受光素子、又は半導体デバイス等の発熱体の放熱に用いられるヒートシンク、並びにこれを備えた半導体装置に関するものである。   The present invention relates to a heat sink used for radiating heat from a heating element such as a semiconductor light emitting element, a semiconductor light receiving element, or a semiconductor device, and a semiconductor device including the heat sink.

上記半導体デバイス等の発熱体の放熱に用いられるヒートシンクにおける一般的な冷却手段としては、受動的冷却手段と能動的冷却手段とに分けることができる。例えば、前者は熱容量の大きなヒートシンクを用いることで発熱体の放熱を行うものであり、後者は発熱体を実装するヒートシンク内に冷却水を流して熱を奪い取るといった手段である。近年、更なる高出力化や高輝度化等が要求される半導体装置においては、効率よく冷却ができる能動的冷却手段の採用が好まれている。   General cooling means in a heat sink used for heat dissipation of a heating element such as the semiconductor device can be divided into passive cooling means and active cooling means. For example, the former uses a heat sink having a large heat capacity to dissipate heat from the heat generating element, and the latter is a means for removing heat by flowing cooling water into the heat sink on which the heat generating element is mounted. In recent years, the use of active cooling means capable of efficient cooling is favored in semiconductor devices that require higher output and higher brightness.

前記受動的冷却手段を用いた半導体装置として、例えば赤外帯域の半導体レーザアレイで1〜数十ワット(W)もの光出力が得られている。ここで、半導体レーザアレイとは、単一半導体結晶上に複数の共振器が配列されたアレイ、もしくは分離された複数の半導体結晶上にぞれぞれ共振器が配列されたアレイのことを示す。   As a semiconductor device using the passive cooling means, for example, an optical output of 1 to several tens of watts (W) is obtained with a semiconductor laser array in an infrared band. Here, the semiconductor laser array indicates an array in which a plurality of resonators are arranged on a single semiconductor crystal, or an array in which resonators are arranged on a plurality of separated semiconductor crystals. .

また前記半導体レーザアレイをスタック構造とすることによって、数十〜数キロワット(W)もの光出力が得られている。このようなスタック構造をした半導体装置に用いられている冷却手段が能動的冷却手段である。例えば、ヒートシンク内に水路を設け、半導体レーザアレイの直下を冷却する技術が提案されている。水路内において、加圧された流体が発熱体の直下に吹き付けられるように水路を細めた複数の微細孔が設けられている。この微細孔から流体を勢いよく半導体レーザアレイの直下に吹き付けることで、熱伝達効率を向上させる(特許文献1)。   Further, by making the semiconductor laser array into a stack structure, an optical output of several tens to several kilowatts (W) is obtained. The cooling means used in the semiconductor device having such a stack structure is the active cooling means. For example, a technique has been proposed in which a water channel is provided in a heat sink to cool a portion directly below the semiconductor laser array. In the water channel, a plurality of fine holes are provided which narrow the water channel so that pressurized fluid is sprayed directly under the heating element. Heat transfer efficiency is improved by spraying fluid from the fine holes directly under the semiconductor laser array (Patent Document 1).

前記半導体装置の構造は、半導体レーザ等の発熱体の放熱面に対し、流体がほぼ直角に当たるように水路が設計されている。   In the structure of the semiconductor device, the water channel is designed so that the fluid is substantially perpendicular to the heat radiating surface of a heating element such as a semiconductor laser.

特開平8−139479号公報Japanese Patent Laid-Open No. 8-139479

前記能動的冷却方式の一例として示した半導体レーザ等は、発熱体の放熱面に対して流体(冷却媒体)がほぼ直角に当たるように水路を設計することにより、ヒートシンク内壁面における摩擦抵抗を限りなく小さくした点に特徴がある。すなわち、流体(冷却媒体)と放熱面とが接する部位には、摩擦抵抗を引き起こす一種の皮膜が形成されており、該皮膜を皮膜面に対して垂直な方向から冷却水を勢い良く吹き付けることにより皮膜を破壊して、冷却効率を効率良く向上するものである。   The semiconductor laser or the like shown as an example of the active cooling method has an extremely low frictional resistance on the inner wall surface of the heat sink by designing a water channel so that the fluid (cooling medium) is substantially perpendicular to the heat radiating surface of the heating element. Characterized by the small size. That is, a kind of film that causes frictional resistance is formed at the portion where the fluid (cooling medium) and the heat radiating surface are in contact with each other. By blowing the cooling water from the direction perpendicular to the film surface, It destroys the film and improves the cooling efficiency efficiently.

しかしながら、LEDや面発光レーザ等の面発光装置は、マトリクス状に実装することによりその機能を発揮するものである。即ち、LEDや面発光レーザ等の面発光装置を複数個組み合わせて高出力の発光装置を作ろうとすれば、複数の面発光装置をマトリクス状に実装する必要がある。これらの面発光装置は各々が発熱体であるため、各面発光装置に対して効率の高い冷却を行う必要がある。ところが、前記水路構造を適用した場合、放熱面に垂直な方向から流体(冷却媒体)が吹き付けられる部位は限られているため、このような部位を面発光装置毎に多数形成するためには水路が複雑化してしまい、面発光装置の高密度な実装が妨げられてしまうという問題があった。   However, surface emitting devices such as LEDs and surface emitting lasers exhibit their functions by being mounted in a matrix. That is, if a high output light emitting device is to be produced by combining a plurality of surface emitting devices such as LEDs and surface emitting lasers, it is necessary to mount a plurality of surface emitting devices in a matrix. Since each of these surface light emitting devices is a heating element, it is necessary to cool each surface light emitting device with high efficiency. However, when the water channel structure is applied, there are only a limited number of parts to which fluid (cooling medium) is sprayed from the direction perpendicular to the heat radiating surface. However, there is a problem that the high-density mounting of the surface light emitting device is hindered.

そこで本発明は、上記問題に鑑み、十分な冷却機能を有するヒートシンク、及びこのようなヒートシンクを備えた半導体装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a heat sink having a sufficient cooling function and a semiconductor device including such a heat sink.

また本発明は、放熱面と流体(冷却媒体)の流れる方向とが平行な位置関係にある場合や、流体(冷却媒体)の流れる方向と平行な面上に発熱体を1以上実装してある場合においても十分な冷却機能を有するヒートシンク、及びこのようなヒートシンクを備えた半導体装置を提供することを目的とする。   In the present invention, one or more heating elements are mounted on a surface parallel to the direction in which the heat radiation surface and the fluid (cooling medium) flow or in the direction in which the fluid (cooling medium) flows. It is an object of the present invention to provide a heat sink having a sufficient cooling function even in cases, and a semiconductor device provided with such a heat sink.

本発明のヒートシンクは、発熱体が熱的に接続される第1の面を有する第1の板状部材と、該第1の板状部材の第2の面と接続される第2の板状部材とから成る積層板状部材に、流体が供給される供給口と、該供給口と連通し流体が排出される排出口とを備えたヒートシンクにおいて、前記第1の板状部材の第2の面には凹凸を有する。   The heat sink of the present invention has a first plate-like member having a first surface to which a heating element is thermally connected, and a second plate-like shape connected to the second surface of the first plate-like member. In a heat sink comprising a laminated plate-like member comprising a member and a supply port through which fluid is supplied and a discharge port through which the fluid is discharged, the second plate of the first plate member is provided. The surface has irregularities.

前記第1の板状部材における第2の面に凹凸を有することで、同一領域での流体が流れる表面積を大きくすることができる。即ち、第1の板状部材の第2の面に形成された凸部は放熱フィンのような役割を果たすようになる。また流体は、段差がある面を進行するため直線的に進行するのみならず、進行方向や進行速度を変化させながら進むことになる。そのため発熱体からの熱を効率よく冷却することができる。またヒートシンクの薄型化や小型化を優先するために供給口の径を小さくした場合であっても十分な冷却機能を有する。   By providing irregularities on the second surface of the first plate member, the surface area through which fluid flows in the same region can be increased. That is, the convex part formed in the 2nd surface of the 1st plate-shaped member comes to play a role like a radiation fin. Further, the fluid travels not only in a straight line because it travels on a surface having a step, but also travels while changing the traveling direction and traveling speed. Therefore, the heat from the heating element can be efficiently cooled. Moreover, even when the diameter of the supply port is reduced in order to give priority to thinning and downsizing of the heat sink, it has a sufficient cooling function.

ここで、前記第1の板状部材が、発熱体と接続しているとは、直接的に接しているものに限定されず、熱的に接続していればよい。つまり、第1の板状部材と発熱体との間には熱輸送経路が形成されていればよく、例えば共晶材料を一層又は多層で介している構成としても構わない。また、前記流体とは、冷却媒体であって、純水や低融点液体等である。   Here, the fact that the first plate-like member is connected to the heating element is not limited to the one that is in direct contact, and may be connected thermally. That is, it is sufficient that a heat transport path is formed between the first plate-like member and the heating element. For example, a configuration in which a eutectic material is interposed in one layer or multiple layers may be employed. The fluid is a cooling medium such as pure water or a low melting point liquid.

また、本発明のヒートシンクにおいて、前記凹凸は、発熱体の接続領域に対向した領域に形成することが好ましい。これにより、流体と接する放熱面積を例えば2倍以上に広げ、第2の面における熱密度(熱流の密度)を下げることができるので効率よく冷却することが出来る。   In the heat sink of the present invention, it is preferable that the unevenness is formed in a region facing the connection region of the heating element. As a result, the heat dissipation area in contact with the fluid can be increased, for example, by a factor of two or more, and the heat density (heat flow density) on the second surface can be lowered, so that cooling can be performed efficiently.

また、本発明のヒートシンクにおいて、前記第1の板状部材の、第2の面に形成される凹凸は、段差が10μm以上500μm以下であることが好ましい。凹凸構造は、板状部材に水路を形成するのと同時にケミカルエッチング等によって形成するが、加工精度の都合上10μm以上とするのが好ましい。また、エッチングによって削り出した量が流体の流量を決めるため、上記範囲が500μmより高ければ、実質的に冷却に寄与しない流体が存在することになり、しかも過剰な流体を循環させるために、圧力が必要以上に上がってしまい、効率的ではない。そのため、前記段差は500μm以下であることが好ましい。   In the heat sink of the present invention, it is preferable that the unevenness formed on the second surface of the first plate member has a step of 10 μm or more and 500 μm or less. The concavo-convex structure is formed by chemical etching or the like at the same time as forming the water channel in the plate-like member, but is preferably 10 μm or more for convenience of processing accuracy. In addition, since the amount cut out by etching determines the flow rate of the fluid, if the above range is higher than 500 μm, there will be a fluid that does not substantially contribute to cooling, and in order to circulate the excess fluid, Is unnecessarily efficient. Therefore, the step is preferably 500 μm or less.

前記凹凸の段差は100μm以上300μm以下であることがより好ましい。該範囲で段差を形成することにより、更に効率よくヒートシンクを冷却することが出来る。   More preferably, the uneven step is 100 μm or more and 300 μm or less. By forming the step in this range, the heat sink can be cooled more efficiently.

また、本発明のヒートシンクは、発熱体が熱的に接続される第1の面を有する第1の板状部材と、該第1の板状部材の第2の面と接続される第2の板状部材とから成る積層板状部材に、流体が供給される供給口と、該供給口と連通し流体が排出される排出口とを備えたヒートシンクにおいて、前記第1の板状部材は、第1の面における発熱体の接触面積(a)に対して、発熱体の接触領域に対向した第2の面における表面積(b)が大きいことを特徴とする。本件発明者は、放熱面から放熱される熱輸送において、発熱体からの熱はヒートシンク内を厚さ方向に45°の角度で広がりながら第1の板状部材における第2の面まで伝わる温度分布を確認している。このため発熱体である面発光装置等を高密度に実装すると、隣接する発熱体から生じた熱が第1の板状部材の厚さ方向に伝わる間に重なり合って熱干渉を起こし、局所的に大きな熱が発生することになる。従って、発熱体である面発光装置等を高密度に実装した場合、各面発光装置に流すことができる投入電力は低く制限されてしまう。しかしながら本件発明によれば、そのような高密度実装した半導体装置において、上記構成のような放熱面を確保することで、許容される投入電力を格段に上げることができる。ここで、投入電力とは、面発光装置等の半導体素子に流す電流量と印加電圧の積であり、その投入電力を素子の投影面積で割った値を熱密度と称する。本件発明によれば、例えば熱密度2W/mm以上となるような投入電力を許容することができる。尚、高密度実装とは、発熱体同士の間隔を発熱体の幅より狭くした実装形態であって、該発熱体の数量は3個以上とする。 Further, the heat sink of the present invention includes a first plate member having a first surface to which the heating element is thermally connected, and a second plate connected to the second surface of the first plate member. In the heat sink having a supply port through which fluid is supplied to a laminated plate member made of a plate member, and a discharge port through which fluid is discharged, the first plate member is The surface area (b) of the second surface facing the contact area of the heating element is larger than the contact area (a) of the heating element on the first surface. In the heat transport radiated from the heat radiating surface, the present inventor has a temperature distribution in which heat from the heating element is transmitted to the second surface of the first plate member while spreading in the heat sink at an angle of 45 ° in the thickness direction. Have confirmed. For this reason, when a surface light emitting device or the like, which is a heating element, is mounted at a high density, the heat generated from the adjacent heating elements overlaps while transferring in the thickness direction of the first plate-like member, causing thermal interference, and locally A big heat will be generated. Therefore, when a surface light emitting device or the like, which is a heating element, is mounted with high density, the input power that can be supplied to each surface light emitting device is limited to a low level. However, according to the present invention, in such a high-density mounted semiconductor device, the allowable input power can be remarkably increased by securing the heat dissipation surface as described above. Here, the input power is the product of the amount of current passed through a semiconductor element such as a surface light emitting device and the applied voltage, and a value obtained by dividing the input power by the projected area of the element is referred to as heat density. According to the present invention, it is possible to allow the input power to have a heat density of 2 W / mm 2 or more, for example. The high-density mounting is a mounting form in which the interval between the heating elements is narrower than the width of the heating elements, and the number of the heating elements is three or more.

また、本発明のヒートシンクにおける前記第1の面における発熱体の接触面積(a)と、第2の面における発熱体の接触領域に対向した第2の面における表面積(b)との比が、0.2≦(a/b)<1であることが好ましい。更に好ましくは、上記範囲は0.2≦(a/b)<0.5とする。第2の面における表面積(b)が、第1の面における発熱体の接触面積(a)の5倍より大きくすると、かなりの加工精度が要求されることになる。しかしながら、上記範囲であれば、冷却効率をより向上することができる。   Further, the ratio of the contact area (a) of the heating element on the first surface of the heat sink of the present invention to the surface area (b) of the second surface facing the contact area of the heating element on the second surface is: It is preferable that 0.2 ≦ (a / b) <1. More preferably, the range is 0.2 ≦ (a / b) <0.5. If the surface area (b) on the second surface is larger than five times the contact area (a) of the heating element on the first surface, considerable processing accuracy is required. However, if it is the said range, cooling efficiency can be improved more.

また、前記第1の板状部材における第1の面と前記発熱体とは共晶材料を介して接続することが好ましい。これにより、発熱体に熱的ダメージを与えない低温で発熱体と板状部材とを貼り合わせることが可能になる。また板状部材に対する微細加工を容易に保持することができ、熱変形を抑制するばかりでなく薄型化を容易に実現でき、熱抵抗を低減できる。   Further, it is preferable that the first surface of the first plate-like member and the heating element are connected via a eutectic material. As a result, the heating element and the plate-like member can be bonded together at a low temperature that does not cause thermal damage to the heating element. Moreover, the fine processing with respect to a plate-shaped member can be easily hold | maintained, not only can a thermal deformation be suppressed, but thickness reduction can be implement | achieved easily and thermal resistance can be reduced.

また、前記第1の板状部材における第2の面と前記第2の板状部材とも共晶材料を介して接続することが好ましい。各板状部材を貼り合わせる接着部材として共晶材料を使用することにより、板状部材を比較的低温で貼り合わせることが可能になる。板状部材に対する微細加工を容易に保持することができ、薄型化を容易に実現でき、熱抵抗を低下することができる。   The second surface of the first plate member and the second plate member are preferably connected via a eutectic material. By using a eutectic material as an adhesive member for bonding the plate members, the plate members can be bonded at a relatively low temperature. Fine processing on the plate-like member can be easily held, thinning can be easily realized, and thermal resistance can be reduced.

また本発明の半導体装置は、前記ヒートシンクと、半導体から成る発熱体とを備えたことを特徴とする半導体装置である。このようなヒートシンクを用いることで発熱体の素子特性の熱劣化を防ぐことが可能となり、信頼性に優れた半導体装置を提供することができる。   According to another aspect of the present invention, there is provided a semiconductor device comprising the heat sink and a heating element made of a semiconductor. By using such a heat sink, it becomes possible to prevent thermal deterioration of element characteristics of the heating element, and a semiconductor device having excellent reliability can be provided.

本発明の半導体装置は、前記第1の板状部材における第1の面上に1以上が実装されて成ることが好ましい。前記第1の板状部材の第2の面上に形成された凹凸によって、該第2の面における熱密度が低下する。そのため、発熱体の自己発熱による光出力の低下を抑制することが可能となり、複数の発熱体を高密度実装することができる。   It is preferable that one or more semiconductor devices of the present invention are mounted on the first surface of the first plate member. The unevenness formed on the second surface of the first plate-like member decreases the heat density on the second surface. Therefore, it is possible to suppress a decrease in light output due to self-heating of the heating element, and a plurality of heating elements can be mounted at high density.

また、本発明発光装置において、前記発熱体が半導体発光素子であることが好ましい。半導体発光素子は熱特性が敏感であるため熱による劣化が著しい。特に半導体レーザ(LD)やLEDは発熱量が大きい.しかしながら、本発明のヒートシンクを搭載することで高密度実装かつ高出力化が実現できる。また、半導体発光素子の中でも窒化物半導体発光素子は発熱量が多いため、本発明のヒートシンクを搭載することは特に有効である。   In the light emitting device of the present invention, it is preferable that the heating element is a semiconductor light emitting element. Semiconductor light-emitting elements are sensitive to thermal characteristics, so that deterioration due to heat is significant. In particular, semiconductor lasers (LD) and LEDs generate a large amount of heat. However, high-density mounting and high output can be realized by mounting the heat sink of the present invention. Of the semiconductor light emitting elements, the nitride semiconductor light emitting element generates a large amount of heat, so that it is particularly effective to mount the heat sink of the present invention.

また、本発明のヒートシンクは、前記板状部材を各々貼り合わせる工程において、一方の板状部材の表面側に接着部材を形成し、他方の板状部材の貼り合わせ面に金属膜を形成した後、貼り合わせることができる。接着部材のみならず金属膜を形成することによって接着部材の濡れ性を高め、板状部材同士の密着性を高めることによって冷却材の漏れ問題等の信頼性をさらに高めることが出来る。   In the heat sink of the present invention, in the step of bonding the plate-shaped members, an adhesive member is formed on the surface side of one plate-shaped member, and a metal film is formed on the bonding surface of the other plate-shaped member. Can be pasted together. By forming the metal film as well as the adhesive member, the wettability of the adhesive member can be improved, and the reliability of the leakage of the coolant can be further improved by improving the adhesion between the plate-like members.

また、本発明のヒートシンクは、前記共晶材料がAuSn、AuSi、SnAgBi、SnAgCu、SnAgBiCu、SnCu、SnBi、PbSn、Inからなる群から選択される少なくとも1種を含む接着材料であることを特徴とする。濡れ性・密着性の観点からこれらの接着材料が好適である。本発明のヒートシンクの製造方法としては、前記共晶材料の張り合わせ温度を500℃以下とすることが好ましい。この温度範囲でヒートシンクを製造することにより著しく熱変形が改善される。   In the heat sink of the present invention, the eutectic material is an adhesive material containing at least one selected from the group consisting of AuSn, AuSi, SnAgBi, SnAgCu, SnAgBiCu, SnCu, SnBi, PbSn, and In. To do. These adhesive materials are preferable from the viewpoint of wettability and adhesion. As a manufacturing method of the heat sink of the present invention, it is preferable that the eutectic material bonding temperature is 500 ° C. or less. The heat distortion is remarkably improved by manufacturing the heat sink in this temperature range.

本発明の構成により、例えば、ヒートシンクに窒化物半導体から成るLEDを10個以上で高密度実装することを可能とし、更にはCW駆動で連続発光するワット光源が得られる。また、本発明のヒートシンクに高出力面発光半導体レーザを1以上実装することにより、熱量の大きな窒化物半導体レーザであっても、CW駆動で連続発振する小型なワット光源が得られる。また本発明のヒートシンクであれば、半導体発光素子を1以上実装したワット光源自身を複数個配列することも可能となり、さらに高出力な光源を得ることができる。   According to the configuration of the present invention, for example, it is possible to mount 10 or more LEDs made of nitride semiconductor on a heat sink at a high density, and further, a watt light source that continuously emits light by CW driving can be obtained. Further, by mounting one or more high-power surface emitting semiconductor lasers on the heat sink of the present invention, a small watt light source that continuously oscillates with CW drive can be obtained even with a nitride semiconductor laser having a large heat quantity. In addition, the heat sink of the present invention makes it possible to arrange a plurality of watt light sources each having one or more semiconductor light emitting elements mounted thereon, thereby obtaining a light source with higher output.

本発明のヒートシンクは、面発光半導体レーザおよび高輝度LEDなどで特に有効であるが、発熱を伴うあらゆる半導体デバイスに対し適用できるヒートシンクとして用いることもできる。   The heat sink of the present invention is particularly effective for a surface emitting semiconductor laser and a high-intensity LED, but can also be used as a heat sink applicable to any semiconductor device that generates heat.

以下、図面に基づいて、本発明を実施するための形態を説明する。
図1は本発明のヒートシンクを備えた半導体装置を示す模式的断面図である。図1の半導体装置は、第1の板状部材2と第2の板状部材3によって構成されたヒートシンクを有しており、発熱体であるLEDチップ1を第1の板状部材2上に実装している。第1の板状部材2と第2の板状部材3との間には冷却用流体を流す流路12が形成されている。第2の板状部材3は流体の供給口36aと排出口36bとを備えている。第1の板状部材2の上面には、LEDチップ1の実装領域を除いて絶縁性部材4が形成されており、その絶縁性部材4の上に金属部材5が形成されている。第1の板状部材2と金属部材5は絶縁性部材4によって電気的に絶縁されている。発熱体であるLEDチップ1は、その上面に形成されたn側電極が金属部材5とワイヤーで接続されている。一方、LEDチップ1のp側電極は、LEDチップ1の底面に形成されており、第1の板状部材2に接続されている。金属部材5の上には、さらに金属製のキャップ溶接部材6が電気的に接続するように形成されている。また、第1の板状部材2と第2の板状部材3も電気的に接続されている。電源8は、キャップ溶接部材6と第2の板状部材3に接続される。電気的接続経路としては、発熱体1を介して第1の板状部材2と金属部材5とが接続されている。即ち、第2の板状部材3と第1の板状部材2とがLEDチップ1のp側電極に電流を流すリードの役割を果たし、金属製のキャップ溶接部材6と金属部材5とがLEDチップ1のn側電極に電流を流すリードの役割を果たしている。また金属部材5上のキャップ溶接部材6には、さらにLEDチップ1を保護するためのカバーであるキャップ7が形成されている。キャップ7にはLEDチップ1の発光を観測できるように窓部が形成され、透光性の窓部材9が嵌め込まれている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a semiconductor device provided with a heat sink of the present invention. The semiconductor device of FIG. 1 has a heat sink composed of a first plate-like member 2 and a second plate-like member 3, and an LED chip 1 that is a heating element is placed on the first plate-like member 2. Implemented. Between the first plate-like member 2 and the second plate-like member 3, a flow path 12 for flowing a cooling fluid is formed. The second plate-like member 3 includes a fluid supply port 36a and a discharge port 36b. An insulating member 4 is formed on the upper surface of the first plate-like member 2 except for the mounting region of the LED chip 1, and a metal member 5 is formed on the insulating member 4. The first plate member 2 and the metal member 5 are electrically insulated by the insulating member 4. The LED chip 1 that is a heating element has an n-side electrode formed on the upper surface thereof connected to the metal member 5 by a wire. On the other hand, the p-side electrode of the LED chip 1 is formed on the bottom surface of the LED chip 1 and is connected to the first plate-like member 2. On the metal member 5, a metal cap welding member 6 is further formed so as to be electrically connected. The first plate member 2 and the second plate member 3 are also electrically connected. The power source 8 is connected to the cap welding member 6 and the second plate member 3. As an electrical connection path, the first plate member 2 and the metal member 5 are connected via the heating element 1. That is, the second plate-like member 3 and the first plate-like member 2 serve as a lead for passing a current to the p-side electrode of the LED chip 1, and the metal cap welding member 6 and the metal member 5 are connected to the LED. It plays the role of a lead for passing a current to the n-side electrode of the chip 1. The cap welding member 6 on the metal member 5 is further formed with a cap 7 that is a cover for protecting the LED chip 1. A window portion is formed in the cap 7 so that light emission of the LED chip 1 can be observed, and a translucent window member 9 is fitted therein.

図2は、図1に示す半導体装置の構造を模式的に示す斜視図である。尚、図面の簡単のため、金属部材5、キャップ溶接部材6及びキャップ7は省略している。図2に示すように、第1の板状部材2の上に円形の窓部を有する絶縁性部材4が形成されており、その円形の窓部4aから第1の板状部材2が露出している。この円形の窓部4aの内側がLEDチップ1の実装領域となっており、窓部4a内に複数(図2では21個)のLEDチップ1が正方マトリックス状に配置されている。尚、正方マトリックス状とは、個々のLEDチップが碁盤目状に配列している状態を差し、配列全体が矩形でなくても良い。本実施の形態によれば、以下に説明する水冷構造によって高い冷却効率を実現できるため、発熱体であるLEDチップ1は、LEDチップ同士の間隔11を狭く制限した高密度実装とすることができる。   FIG. 2 is a perspective view schematically showing the structure of the semiconductor device shown in FIG. In addition, the metal member 5, the cap welding member 6, and the cap 7 are abbreviate | omitted for the simplicity of drawing. As shown in FIG. 2, an insulating member 4 having a circular window portion is formed on the first plate-like member 2, and the first plate-like member 2 is exposed from the circular window portion 4a. ing. The inside of the circular window 4a is a mounting area for the LED chip 1, and a plurality (21 in FIG. 2) of LED chips 1 are arranged in a square matrix in the window 4a. The square matrix shape refers to a state in which individual LED chips are arranged in a grid pattern, and the entire arrangement may not be rectangular. According to the present embodiment, since a high cooling efficiency can be realized by the water cooling structure described below, the LED chip 1 that is a heating element can be a high-density mounting in which the distance 11 between the LED chips is limited. .

図3は、本実施の形態に係る半導体装置のヒートシンクの構成を模式的に示す断面図である。尚、本図面では便宜のため個々の部材を分離して示している。ヒートシンクは、第1の板状部材2と第2の板状部材3によって構成されている。第1の板状部材2は、第1の面21と第2の面22を有しており、第2の板状部材3は、第1の面31と第2の面32を有している。発熱体であるLEDチップ1は、第1の板状部材2の第1の面21の上に実装されている。第1の板状部材2の第2の面22と第2の板状部材3の第1の面31とは互いに対向しており、これら2面に挟まれた部分が冷却用流体が流れる流路となる。図3に部分拡大図で示すように、第1の板状部材2の第2の面22には、複数の凸部25が形成されている。この凸部25により冷却用流体と第1の板状部材2との接触面積が増加し、LEDチップ1から第1の板状部材2に伝わった熱が効率良く放散される。また、第1の板状部材2に形成された凸部25は、冷却用流体の進行方向や進行速度を変化させる役割を果たし、このことによっても放熱効率が向上する。ヒートシンクを構成する板状部材は熱伝導性のよい部材とすることが好ましい。好ましくは、銅(Cu)を母材とした銅系薄板材料である。最も好ましくは無酸素銅である。尚、後述するように板状部材同士の接合を共晶材によって行えば、板状部材の材料選択の自由度が増す。特に、金を含む金属材料によって板状部材の貼り合わせ面全面を覆い、その金を含む金属材料の少なくとも一方を低融点(例えば融点500℃以下)の共晶材とすれば、冷却材に対する腐食性も考慮する必要がなくなるため、板状部材の材料選択の自由度が一層増す。従って、板状部材(特に第1の板状部材)の材料として、その上に実装する半導体素子の基板材料と熱膨張係数が略同一の材料を用いることも可能となり、それによって半導体素子の実装時に半導体素子に加わる歪みを低減することができる。例えば、半導体素子がCuW等から成る支持基板上に形成されている場合には、第1の板状部材を同じCuWによって構成し、その貼り合わせ面(=第2の面)を金を含む金属材料(Au、AuSn、AuSi又はこれらの積層体等)で覆えば良い。   FIG. 3 is a cross-sectional view schematically showing the configuration of the heat sink of the semiconductor device according to the present embodiment. In the drawing, individual members are shown separately for convenience. The heat sink is constituted by a first plate member 2 and a second plate member 3. The first plate member 2 has a first surface 21 and a second surface 22, and the second plate member 3 has a first surface 31 and a second surface 32. Yes. The LED chip 1 that is a heating element is mounted on the first surface 21 of the first plate-like member 2. The second surface 22 of the first plate-like member 2 and the first surface 31 of the second plate-like member 3 are opposed to each other, and the portion sandwiched between these two surfaces flows the cooling fluid. It becomes a road. As shown in a partially enlarged view in FIG. 3, a plurality of convex portions 25 are formed on the second surface 22 of the first plate-like member 2. The convex portion 25 increases the contact area between the cooling fluid and the first plate-like member 2, and the heat transferred from the LED chip 1 to the first plate-like member 2 is efficiently dissipated. Moreover, the convex part 25 formed in the 1st plate-shaped member 2 plays the role which changes the advancing direction and advancing speed of the cooling fluid, and also heat dissipation efficiency improves by this. The plate member constituting the heat sink is preferably a member having good thermal conductivity. Preferably, it is a copper-based thin plate material using copper (Cu) as a base material. Most preferred is oxygen-free copper. As will be described later, if the plate members are joined to each other with a eutectic material, the degree of freedom in selecting the material of the plate members is increased. In particular, if the entire bonding surface of the plate-like member is covered with a metal material containing gold and at least one of the metal materials containing gold is a eutectic material having a low melting point (for example, a melting point of 500 ° C. or less), corrosion on the coolant is caused. Since there is no need to consider the property, the degree of freedom in selecting the material for the plate-like member is further increased. Therefore, it is possible to use a material having substantially the same thermal expansion coefficient as the substrate material of the semiconductor element mounted thereon as the material of the plate-like member (particularly the first plate-like member), thereby mounting the semiconductor element. Sometimes, strain applied to the semiconductor element can be reduced. For example, when the semiconductor element is formed on a support substrate made of CuW or the like, the first plate member is made of the same CuW, and the bonding surface (= second surface) is a metal containing gold. It may be covered with a material (Au, AuSn, AuSi, or a laminate thereof).

第1の板状部材2の第2の面22に凸部25が形成された結果、凹凸パターンが形成されている。本実施の形態では、凸部25が平面視で円形(即ち、円柱状)である場合を例に説明するが、凹凸のパターン形状は、縞状、矩形状、ストライプ形状、格子形状等としても良い。第1の板状部材2の第2の面22に形成される凹凸は、段差が好ましくは10μm以上500μm以下、より好ましくは100μm以上300μm以下とすることが望ましい。   As a result of the convex portions 25 being formed on the second surface 22 of the first plate-like member 2, a concave / convex pattern is formed. In the present embodiment, the case where the convex portion 25 is circular (that is, cylindrical) in plan view will be described as an example. However, the uneven pattern shape may be a stripe shape, a rectangular shape, a stripe shape, a lattice shape, or the like. good. The unevenness formed on the second surface 22 of the first plate-like member 2 has a step of preferably 10 μm or more and 500 μm or less, more preferably 100 μm or more and 300 μm or less.

また、本発明のヒートシンクにおいて、第1の板状部材の第1の面における発熱体の接触面積(a)と、第2の面における発熱体の接触領域に対向した第2の面における表面積(b)との比を、好ましくは0.2≦(a/b)<1、更に好ましくは、0.2≦(a/b)<0.5とする。この条件を満たすヒートシンクとするためには、第1の板状部材2の第2の面22に凹凸を形成すれば良い。また発熱体であるLEDチップ1のチップサイズは□100μm〜□10mm程度である。従って、そのような発熱体1が複数個形成された第1の面に対向した第2の面に凹凸を形成する場合、第2の面に形成される凹部及び/又は凸部のサイズは幅を10μm以上1000μm以下とすることが好ましい。   In the heat sink of the present invention, the contact area (a) of the heating element on the first surface of the first plate member and the surface area (second surface) of the second surface facing the contact area of the heating element on the second surface ( The ratio to b) is preferably 0.2 ≦ (a / b) <1, and more preferably 0.2 ≦ (a / b) <0.5. In order to obtain a heat sink that satisfies this condition, it is only necessary to form irregularities on the second surface 22 of the first plate-like member 2. The chip size of the LED chip 1 that is a heating element is about □ 100 μm to □ 10 mm. Therefore, when the unevenness is formed on the second surface facing the first surface on which a plurality of such heating elements 1 are formed, the size of the concave portion and / or the convex portion formed on the second surface is the width. Is preferably 10 μm or more and 1000 μm or less.

第1の板状部材2と第2の板状部材3の好ましい形態について図4乃至6を参照しながら説明する。図4(a)〜(c)は、第1の板状部材2の好ましい形態を示し、図5(a)〜(c)は、第2の板状部材3の好ましい形態を示す。また、図6(a)及び(b)は、図4と図5に示す板状部材を組み合わせた状態を示す。   A preferred form of the first plate member 2 and the second plate member 3 will be described with reference to FIGS. 4A to 4C show a preferable form of the first plate-like member 2, and FIGS. 5A to 5C show a preferable form of the second plate-like member 3. Moreover, Fig.6 (a) and (b) show the state which combined the plate-shaped member shown to FIG. 4 and FIG.

まず、第1の板状部材2の好ましい形態について説明する。図4(a)〜(c)に示すように、第1の板状部材2の第2の面22略中央には、冷却用流体の流路を形成するための円形凹部24が形成されている。本実施の形態では、円形凹部24の深さが冷却用流体を流す流路の高さに一致する。そこで円形凹部24の深さは10μm以上500μm以下、より好ましくは100μm以上300μm以下とすることが望ましい。これは流路の高さが低すぎては、加工が困難であるばかりでなく冷却水が流路を流れる際の抵抗が大きくなるからであり、逆に流路の高さが高すぎては、放熱面である凹部24の底面から遠く離れた位置にも冷却用流体が流れることになり、冷却に寄与しない流体を過剰に循環させることになるからである。   First, the preferable form of the 1st plate-shaped member 2 is demonstrated. As shown in FIGS. 4A to 4C, a circular recess 24 for forming a flow path for the cooling fluid is formed at the approximate center of the second surface 22 of the first plate-like member 2. Yes. In the present embodiment, the depth of the circular recess 24 matches the height of the flow path through which the cooling fluid flows. Therefore, the depth of the circular recess 24 is preferably 10 μm or more and 500 μm or less, more preferably 100 μm or more and 300 μm or less. This is because if the height of the flow path is too low, not only is the processing difficult, but also the resistance when cooling water flows through the flow path increases, and conversely, if the height of the flow path is too high, This is because the cooling fluid flows also at a position far from the bottom surface of the recess 24, which is a heat radiating surface, and the fluid that does not contribute to cooling is excessively circulated.

また、円形凹部24の底面には、放熱フィンとなる凸部25が規則的に配列されている。個々の凸部25の高さは、円形凹部24の深さと同じか、それよりも低くすることが好ましい。本実施の形態では、凸部25の高さを円形凹部24の深さ(=流路の高さ)と同じにしている。こうすれば、第1の板状部材2と第2の板状部材3を張り合わせた際に凸部25が支柱としての役割を果たし、ヒートシンクの機械的な強度が向上する。その際、凸部25の上面を第2の板状部材3の表面と接合すれば、第1の板状部材2と第2の板状部材3の接合面積が増し、ヒートシンクの機械的強度が一層向上する。一方、凸部25の高さを円形凹部24の深さ(=流路の高さ)よりも低くすれば、凸部25の上面も冷却用の流体に接触することになり、放熱効率が向上する。尚、凸部25を第2の板状部材3の第1の面31に形成し、凸部25の上面を第1の板状部材2の第2の面22と貼り合わせることも可能である。その場合、凸部25は第1の板状部材2の第2の面22と熱的及び機械的に一体化しているため、第1の板状部材2の第2の面22に凸部形成されたとみることができる。第1の板状部材2の4隅には螺子穴23が形成されている。   Further, on the bottom surface of the circular concave portion 24, convex portions 25 serving as heat radiating fins are regularly arranged. It is preferable that the height of each convex portion 25 is the same as or lower than the depth of the circular concave portion 24. In the present embodiment, the height of the convex portion 25 is the same as the depth of the circular concave portion 24 (= the height of the flow path). If it carries out like this, when the 1st plate-shaped member 2 and the 2nd plate-shaped member 3 are bonded together, the convex part 25 will play the role as a support | pillar, and the mechanical strength of a heat sink will improve. In that case, if the upper surface of the convex part 25 is joined with the surface of the 2nd plate-shaped member 3, the joining area of the 1st plate-shaped member 2 and the 2nd plate-shaped member 3 will increase, and the mechanical strength of a heat sink will be increased. Further improvement. On the other hand, if the height of the convex portion 25 is made lower than the depth of the circular concave portion 24 (= the height of the flow path), the upper surface of the convex portion 25 will also come into contact with the cooling fluid, improving the heat dissipation efficiency. To do. It is also possible to form the convex portion 25 on the first surface 31 of the second plate-like member 3 and to bond the upper surface of the convex portion 25 to the second surface 22 of the first plate-like member 2. . In that case, since the convex portion 25 is thermally and mechanically integrated with the second surface 22 of the first plate-like member 2, the convex portion is formed on the second surface 22 of the first plate-like member 2. Can be seen. Screw holes 23 are formed in the four corners of the first plate-like member 2.

次に、第2の板状部材3の好ましい形態について説明する。図5(a)乃至(c)に示すように、第2の板状部材3には流体を供給するための貫通穴である供給口36a及び流体を排出するための貫通穴である排出口36bが形成されている。また、第2の板状部材の第1の面31には、供給口36aから第2の板状部材3の中央に向かって略扇状に広がる扇状凹部34aが形成されており、冷却用流体を供給口36aから流路の入口に導くガイド部を構成している。尚、扇状凹部34aの板状部材中央に近い周縁37aは円弧状となっており、図4に示した円形凹部24の周縁24aと共に流路の入口を構成する。また、扇状凹部34aの底面には、複数の支持柱35aが形成されている。支持柱35aは、流体の流れる方向に一致するよう放射状に配列されている。また、支持柱35aは、その上面が第2の板状部材の第1の面31と面一になる高さを有しており、第1の板状部材2と第2の板状部材3を貼り合せる際の接合面となる。このような支持柱35aを形成することにより、ヒートシンクの機械的強度が向上すると共に、冷却用流体が流路全体に均一に流れやすくなる。   Next, the preferable form of the 2nd plate-shaped member 3 is demonstrated. As shown in FIGS. 5A to 5C, the second plate-like member 3 has a supply port 36a that is a through hole for supplying fluid and a discharge port 36b that is a through hole for discharging fluid. Is formed. Further, the first surface 31 of the second plate-shaped member is formed with a fan-shaped concave portion 34a that extends in a substantially fan shape from the supply port 36a toward the center of the second plate-shaped member 3, so that the cooling fluid can be supplied. A guide portion that leads from the supply port 36a to the inlet of the flow path is configured. The peripheral edge 37a near the center of the plate-like member of the fan-shaped recess 34a has an arc shape, and constitutes the inlet of the flow path together with the peripheral edge 24a of the circular recess 24 shown in FIG. A plurality of support pillars 35a are formed on the bottom surface of the fan-shaped recess 34a. The support pillars 35a are arranged radially so as to coincide with the direction in which the fluid flows. Further, the support column 35a has a height such that the upper surface thereof is flush with the first surface 31 of the second plate member, and the first plate member 2 and the second plate member 3 have the same height. It becomes a joint surface when bonding. By forming such a support column 35a, the mechanical strength of the heat sink is improved, and the cooling fluid can easily flow uniformly in the entire flow path.

また、排出口36bについても同様の構造が形成されている。即ち、排出口36bから板状部材の中央に向かって略扇状に広がる扇状凹部34bが形成されており、冷却用流体を流路の出口から排出口36bに導く導入ガイド部を構成している。尚、扇状凹部34bの板状部材中央に近い周縁37bは円弧状となっており、図4に示した円形凹部24の周縁24bと共に流路の出口を構成する。また、扇状凹部34bの底面には、複数の支持柱35bが形成されている。尚、第2の板状部材3の4隅には螺子穴33が形成されており、第2の板状部材2の4隅に設けられた螺子穴23と一致させることで、板状部材同士の位置合わせを可能にしている。   The discharge port 36b has a similar structure. That is, a fan-shaped recess 34b is formed that extends in a fan shape from the discharge port 36b toward the center of the plate-like member, and constitutes an introduction guide portion that guides the cooling fluid from the outlet of the flow path to the discharge port 36b. The peripheral edge 37b near the center of the plate-like member of the fan-shaped recess 34b has an arc shape, and constitutes the outlet of the flow path together with the peripheral edge 24b of the circular recess 24 shown in FIG. A plurality of support pillars 35b are formed on the bottom surface of the fan-shaped recess 34b. In addition, screw holes 33 are formed at the four corners of the second plate-like member 3, and the plate-like members are made to coincide with the screw holes 23 provided at the four corners of the second plate-like member 2. It is possible to align.

これらの第1の板状部材2と第2の板状部材3を組み合わせると図6(a)及び(b)に示すような形態となる。図6(a)及び(b)に示すように、第1の板状部材2の第2の面22に形成された円形凹部24は、第2の板状部材の第1の面31との間に円形の冷却用流路を形成する。この円形の冷却用流路の入口13は、第2の板状部材3に形成された扇状凹部34aの円弧状の周縁部37aと、第1の板状部材2の円形凹部24の周縁部24aとの間に形成されており、円弧状の形状を有する。同様に、円形の冷却用流路の出口14は、第2の板状部材3に形成された扇状凹部34bの円弧状の周縁部37bと、第1の板状部材2の円形凹部24の周縁部24bとの間に形成されており、円弧状の形状を有する。尚、当然ながら円弧状の周縁部37a又は37bは、第1の板状部材2の円形凹部24の周縁部24a又は24bよりも内側に位置するよう形成されている。また、第2の板状部材3に形成された扇状凹部34aは、第1の板状部材の第2の面32との間に、供給口36aから流路の入口13に冷却用流体を導くガイドを形成する。同様に、第2の板状部材3に形成された扇状凹部34bは、第1の板状部材の第2の面22との間に、流路の出口14から排出口36bに冷却用流体を導くガイドを形成する。   When these 1st plate-shaped members 2 and 2nd plate-shaped members 3 are combined, it will become a form as shown to Fig.6 (a) and (b). As shown in FIGS. 6A and 6B, the circular recess 24 formed in the second surface 22 of the first plate-like member 2 is in contact with the first surface 31 of the second plate-like member. A circular cooling channel is formed between them. The inlet 13 of the circular cooling flow path has an arc-shaped peripheral edge 37a of the fan-shaped recess 34a formed in the second plate-like member 3 and a peripheral edge 24a of the circular recess 24 of the first plate-like member 2. And has an arc shape. Similarly, the outlet 14 of the circular cooling flow path includes the arc-shaped peripheral edge 37b of the fan-shaped concave portion 34b formed in the second plate-shaped member 3 and the peripheral edge of the circular concave portion 24 of the first plate-shaped member 2. It is formed between the portions 24b and has an arc shape. Naturally, the arc-shaped peripheral edge portion 37 a or 37 b is formed so as to be located inside the peripheral edge portion 24 a or 24 b of the circular recess 24 of the first plate-like member 2. Further, the fan-shaped recess 34a formed in the second plate-shaped member 3 guides the cooling fluid from the supply port 36a to the inlet 13 of the flow path between the fan-shaped recess 34a and the second surface 32 of the first plate-shaped member. Form a guide. Similarly, the fan-shaped recess 34b formed in the second plate-like member 3 allows the cooling fluid to flow from the outlet 14 of the flow path to the discharge port 36b between the second surface 22 of the first plate-like member. Form a guiding guide.

図6に示すヒートシンクにおいて冷却用流体の流れは次のようになる。まず、供給口36aから導入された冷却用流体は、扇状凹部34aによって構成されたガイドに沿って広がりながらヒートシンク中央に向かって流れる。そして、扇状凹部34aの周縁部37aに到達すると、扇状凹部34aの周縁部37aと円形凹部24の周縁部24aによって形成された流路の入口13に流れ込む。ここで流路の入口13は円弧状であるため、ヒートシンクの中央に向かう流れの一部は、ヒートシンクの周辺部に回り込みながら流路に進入することになる。従って、冷却用流体が流路全体に均一に流れやすくなると共に、冷却用流体の水圧分布が流体の流れに対して垂直な等高線を形成し易くなる。従って、平面的な広がりを有する流路全体に渡って均一な冷却効果を得ることができ、実装したLEDチップ1の熱による特性ばらつきを抑制することができる。   In the heat sink shown in FIG. 6, the flow of the cooling fluid is as follows. First, the cooling fluid introduced from the supply port 36a flows toward the center of the heat sink while spreading along the guide formed by the fan-shaped recess 34a. Then, when reaching the peripheral edge 37 a of the fan-shaped recess 34 a, it flows into the inlet 13 of the flow path formed by the peripheral edge 37 a of the fan-shaped recess 34 a and the peripheral edge 24 a of the circular recess 24. Here, since the inlet 13 of the flow path has an arc shape, a part of the flow toward the center of the heat sink enters the flow path while going around the periphery of the heat sink. Therefore, the cooling fluid can easily flow uniformly in the entire flow path, and the water pressure distribution of the cooling fluid can easily form a contour line perpendicular to the fluid flow. Therefore, a uniform cooling effect can be obtained over the entire flow path having a planar spread, and variation in characteristics due to heat of the mounted LED chip 1 can be suppressed.

そして冷却用流路の入口13から流入した流体は、凸部25によってS字状に迂回を繰り返しながら流路の出口14に向かう。即ち、凸部25は、流路の入口13の中央から出口14の中央に向かって最も近接する凸部25同士を順次結んだ線分が屈曲を繰り返すよう互いにずれて配置されているため、凸部25にぶつかった流体はS字状に迂回を繰り返しながら流路を流れることになる。換言すれば、凸部25の2次元配列を流路の入り口から第1列、第2列、・・第n列とみたときに、第n列目の凸部25の配列は、第(n−1)列目の凸部25の配列から半ピッチ分だけ上下にずれて配置されている。これにより各凸部25は、近接する4つの凸部のつくる正方形の中心に位置する配置となる。このように流体がS字状に迂回を繰り返しながら流れるように凸部25を配置することにより、冷却用流体と第1の板状部材との間の熱交換が促進され、放熱効果が一層高くなる。   Then, the fluid flowing in from the inlet 13 of the cooling channel is directed to the outlet 14 of the channel while repeatedly detouring in an S shape by the convex portion 25. That is, the convex portions 25 are arranged so as to be shifted from each other so that the line segments sequentially connecting the convex portions 25 that are closest to the center of the outlet 14 toward the center of the outlet 14 are repeatedly bent. The fluid that collides with the portion 25 flows through the flow path while being repeatedly detoured in an S shape. In other words, when the two-dimensional array of the convex portions 25 is regarded as the first column, the second column,..., The n-th column from the entrance of the flow path, the arrangement of the convex portions 25 in the n-th column is (n -1) It is arranged so as to be shifted up and down by a half pitch from the arrangement of the convex portions 25 in the row. Thereby, each convex part 25 becomes arrangement | positioning located in the center of the square which four convex parts which adjoin. Thus, by arranging the convex portion 25 so that the fluid flows while repeating the detour in an S shape, heat exchange between the cooling fluid and the first plate-like member is promoted, and the heat dissipation effect is further enhanced. Become.

こうして流路を流れた冷却用流体は、流路出口14に到達すると扇状凹部34bによって構成されたガイドを通じて排出口36bから排出される。ここで流路の出口14は円弧状であるため、流路の周辺部から流れてきた流体は出口14の中央に向かって回り込みながら流れ出ることになる。従って、先と同様に、冷却用流体が流路全体に均一に流れやすくなると共に、冷却用流体の水圧分布が流体の流れに対して垂直な等高線を形成し易くなる。従って、平面的な広がりを有する流路全体に渡って均一な放熱効果を得ることができ、実装したLEDチップ1の熱による特性ばらつきを抑制することができる。尚、板状部材に形成される流路形状は図4、図5の形状に限定されるものではない。   When the cooling fluid that has flowed through the flow path reaches the flow path outlet 14, it is discharged from the discharge port 36b through the guide formed by the fan-shaped recess 34b. Here, since the outlet 14 of the flow path has an arc shape, the fluid flowing from the peripheral portion of the flow path flows out while wrapping toward the center of the outlet 14. Therefore, as before, the cooling fluid can easily flow uniformly in the entire flow path, and the water pressure distribution of the cooling fluid can easily form contour lines perpendicular to the fluid flow. Therefore, a uniform heat dissipation effect can be obtained over the entire flow path having a planar spread, and variations in characteristics due to heat of the mounted LED chip 1 can be suppressed. Note that the shape of the flow path formed in the plate-like member is not limited to the shape shown in FIGS.

本実施の形態において、流路内に形成する凸部25は発熱体であるLEDチップ1に対して特定の位置に配置することが好ましい。図7(a)及び(b)は、LEDチップ1が正方マトリックス状に配列されている場合におけるLEDチップ1と凸部25の位置関係を示す模式図である。前述の通り、LEDチップ等の発熱体からの発熱は、放熱面から放熱される熱輸送においてヒートシンク内を厚さ方向に45°の角度で広がりながら伝わる。即ち、図7(b)に示すように、LEDチップ1で発生した熱は、第1の板状部材2を板厚方向に進行する際に45°の角度で広がりながら進行する。このためLEDチップ1等を、例えばチップ同士の間隔がチップ幅以下(より具体的には、チップ幅の半分以下)であるような高い密度で実装すると、隣接する2つのLEDチップで生じた熱が第1の板状部材の厚さ方向に伝わる間に重なり合って熱干渉を起こし、LEDチップ1同士の間隔11に相当する位置で相対的に熱密度が高くなる。そこで複数ある凸部25の少なくとも一部は、LEDチップ1同士の間隔11に相当する位置に形成することが望ましい。何故なら凸部25を形成すれば、その部分における熱密度を下げることができるからである。即ち、凸部25を形成すると、第1の板状部材2の単位投影面積あたりの表面積は大きくなるため、冷却用流体と接する面(=第1の板状部材2の第2の面22)における熱密度を下げることができる。従って、LEDチップ等の発熱体となる半導体素子を高密度に実装し、互いに熱干渉を起こす場合であっても、熱分布を抑制して高効率な冷却ができる。   In this Embodiment, it is preferable to arrange | position the convex part 25 formed in a flow path in a specific position with respect to the LED chip 1 which is a heat generating body. FIGS. 7A and 7B are schematic views showing the positional relationship between the LED chip 1 and the convex portion 25 when the LED chips 1 are arranged in a square matrix. As described above, heat generated from a heating element such as an LED chip is transmitted while spreading in the thickness direction at an angle of 45 ° in the heat sink in heat transport radiated from the heat radiating surface. That is, as shown in FIG. 7B, the heat generated in the LED chip 1 travels while spreading at an angle of 45 ° when traveling through the first plate-like member 2 in the plate thickness direction. For this reason, when the LED chips 1 and the like are mounted at such a high density that, for example, the distance between the chips is not more than the chip width (more specifically, not more than half the chip width), the heat generated by the two adjacent LED chips is generated. Are overlapped with each other in the thickness direction of the first plate member to cause thermal interference, and the heat density becomes relatively high at a position corresponding to the distance 11 between the LED chips 1. Therefore, it is desirable to form at least a part of the plurality of convex portions 25 at a position corresponding to the interval 11 between the LED chips 1. This is because if the convex portion 25 is formed, the heat density in that portion can be lowered. That is, when the convex portion 25 is formed, the surface area per unit projected area of the first plate-like member 2 is increased, so that the surface in contact with the cooling fluid (= the second surface 22 of the first plate-like member 2). The heat density in can be lowered. Therefore, even when semiconductor elements serving as heating elements such as LED chips are mounted with high density and cause thermal interference with each other, heat distribution can be suppressed and highly efficient cooling can be performed.

また、同様の理由から、各LEDチップ1の略中央に相当する位置にも凸部25を形成することが望ましい。何故なら、LEDチップ等の半導体発光素子は、一般に素子の中心部で大きな発熱を示すからである。そこで本実施の形態では、図7(a)に示すように、凸部25をLEDチップ1の中央と四隅に配置するように形成している。LEDチップ1の四隅に形成された凸部25は、LEDチップ1同士の間隔11上に中心を有するように配置されている。即ち、あるLEDチップ1の四隅に形成される凸部25は、隣接する3つのLEDチップ1にも跨って形成されている。このように凸部25を配置することにより、LEDチップ1自身の内部で生じる熱分布と、LEDチップ1同士の熱干渉によって起きる熱分布の両方を抑制して効果的な放熱を行うことができる。尚、矩形のLEDチップ1の四隅に凸部25を形成する代わりに、矩形のLEDチップ1の各辺の中央に凸部25を配置しても良い。その場合は隣接する2つのLEDチップ1で1つの凸部25を共有することになる。尚、この場合も凸部25の中心をLEDチップ同士の間隔11上に配置することが好ましい。   For the same reason, it is desirable to form the convex portion 25 at a position corresponding to the approximate center of each LED chip 1. This is because semiconductor light emitting devices such as LED chips generally generate a large amount of heat at the center of the device. Therefore, in the present embodiment, as shown in FIG. 7A, the convex portions 25 are formed so as to be arranged at the center and the four corners of the LED chip 1. The convex portions 25 formed at the four corners of the LED chip 1 are arranged so as to have a center on the space 11 between the LED chips 1. That is, the convex portions 25 formed at the four corners of a certain LED chip 1 are also formed across three adjacent LED chips 1. By disposing the convex portions 25 in this way, it is possible to effectively dissipate heat while suppressing both the heat distribution generated inside the LED chip 1 itself and the heat distribution caused by the thermal interference between the LED chips 1. . Instead of forming the convex portions 25 at the four corners of the rectangular LED chip 1, the convex portions 25 may be arranged at the center of each side of the rectangular LED chip 1. In that case, one convex portion 25 is shared by two adjacent LED chips 1. In this case as well, it is preferable to arrange the center of the convex portion 25 on the space 11 between the LED chips.

ヒートシンクを構成する板状部材同士は、共晶材料にて貼り合わせることが好ましい。板状部材同士を共晶材料で貼り合わせることにより、第1の板状部材2から第2の板状部材3への熱伝導と電気伝導を良好にすると共に、冷却用流体の漏れがなく、耐熱性の高い接合が可能となる。第1の板状部材2と第2の板状部材の間の熱伝導が良好であれば、これらの組み合わせによってヒートシンクを構成する上で有利である。また、第1の板状部材2と第2の板状部材の間の電気伝導が良好であれば、これらの組み合わせによって構成したヒートシンクを半導体チップへのリードとする際に有利である。   The plate-like members constituting the heat sink are preferably bonded with a eutectic material. By laminating the plate-like members with eutectic material, the heat conduction and electrical conduction from the first plate-like member 2 to the second plate-like member 3 are improved, and there is no leakage of cooling fluid, Bonding with high heat resistance is possible. If the heat conduction between the first plate-like member 2 and the second plate-like member is good, it is advantageous to configure a heat sink by combining these. Moreover, if the electrical conduction between the first plate-like member 2 and the second plate-like member is good, it is advantageous when a heat sink constituted by these combinations is used as a lead to the semiconductor chip.

また、共晶材料は貼り合わせ面の全面、即ち、第1の板状部材2の第2の面22と第2の板状部材3の第1の面31の全面に形成することが好ましい。これにより共晶材料によって板状部材の表面を流体による腐食等から保護することができる。例えば、板状部材としては熱伝導率の高い銅等を用いることが好ましいが、銅は冷却水によって電解腐食等を起こしやすい。従って、板状部材の貼り合わせ面の全面を耐食性の高い共晶部材(例えば、Auを含む合金等)で覆うことにより、信頼性の高いヒートシンクとすることができる。また、一方の板状部材の表面を共晶材料で覆い、他方の板状部材の貼り合わせ面側に金属膜を形成する構成とすることもできる。つまり、板状部材に金属膜を形成することによって、板状部材の表面を保護すると共に共晶材料との接続を容易にすることができる。共晶材料としては、AuSn、AuSi、SnAgBi、SnAgCu、SnAgBiCu、SnCu、SnBi、PbSn、Inからなる群から選択される少なくとも1種を含む接着部材であることが好ましい。金属膜は接着部材である共晶材料との関係で濡れ性が良好な金属であれば特に限定されない。好ましい組み合わせとしては、共晶材料としてAuを含む合金(例えば、AuSn)を用い、金属膜としてAuもしくはAuを含む積層体を用いることができる。   The eutectic material is preferably formed on the entire bonding surface, that is, on the entire second surface 22 of the first plate member 2 and the first surface 31 of the second plate member 3. As a result, the surface of the plate-like member can be protected from corrosion due to fluid by the eutectic material. For example, although it is preferable to use copper or the like having high thermal conductivity as the plate-like member, copper is likely to cause electrolytic corrosion or the like by cooling water. Therefore, a highly reliable heat sink can be obtained by covering the entire bonding surface of the plate-like member with a eutectic member having high corrosion resistance (for example, an alloy containing Au). Moreover, it can also be set as the structure which covers the surface of one plate-shaped member with a eutectic material, and forms a metal film in the bonding surface side of the other plate-shaped member. That is, by forming a metal film on the plate-like member, the surface of the plate-like member can be protected and connection with the eutectic material can be facilitated. The eutectic material is preferably an adhesive member containing at least one selected from the group consisting of AuSn, AuSi, SnAgBi, SnAgCu, SnAgBiCu, SnCu, SnBi, PbSn, and In. The metal film is not particularly limited as long as the metal film has good wettability in relation to the eutectic material as an adhesive member. As a preferred combination, an alloy containing Au (e.g., AuSn) as a eutectic material and a laminate including Au or Au as a metal film can be used.

また、本発明のヒートシンクは、2以上の発熱体1をアレイ状に実装することができる。本発明のヒートシンクを用いることにより、発熱体を複数実装しても十分な放熱を確保すると共に、冷却材などの流れ込みや、それによる板状部材のはがれ等を抑制することができる。またヒートシンクの同一面上に形成されるアレイ状の発熱体は電気的に並列、及び/又は直列に接続されていてもよい。   In addition, the heat sink of the present invention can mount two or more heating elements 1 in an array. By using the heat sink of the present invention, it is possible to secure sufficient heat dissipation even when a plurality of heating elements are mounted, and to suppress the flow of a coolant or the like, and the peeling off of the plate-like member caused thereby. Moreover, the arrayed heating elements formed on the same surface of the heat sink may be electrically connected in parallel and / or in series.

さらに、発熱体は第1導電型層と第2導電型層とを有する半導体素子であることが好ましい。第1導電型がn型の場合、第2導電型はp型となる。またこの逆でもよい。本実施の形態では、第1の導電型層がヒートシンクに電気的に接続され、第2導電型層がヒートシンク上に絶縁膜を介して形成された金属部材に電気的に接続されている。   Furthermore, the heating element is preferably a semiconductor element having a first conductivity type layer and a second conductivity type layer. When the first conductivity type is n-type, the second conductivity type is p-type. The reverse is also possible. In the present embodiment, the first conductivity type layer is electrically connected to the heat sink, and the second conductivity type layer is electrically connected to a metal member formed on the heat sink via an insulating film.

本発明において発熱体である半導体素子は、窒化物半導体素子であることが好ましい。窒化物半導体素子としては、全部を窒化物半導体で構成することもでき、部分的に窒化物半導体以外の材料で構成することもできる。窒化物半導体としては、GaN、AlN、InN、あるいはこれらの混晶であるInAlGa1−X−YN(0≦X、0≦Y、X+Y≦1)からなる半導体を用いることができる。またこれに加えて、III族元素としてBを用いることもでき、V族元素としてNの一部をP、Asで置換することもできる。前記窒化物半導体を積層した窒化物半導体層には活性層を有し、該活性層は単一(SQW)又は多重量子井戸構造(MQW)とする。 In the present invention, the semiconductor element which is a heating element is preferably a nitride semiconductor element. The nitride semiconductor element can be entirely composed of a nitride semiconductor, or can be partially composed of a material other than a nitride semiconductor. As the nitride semiconductor, a semiconductor made of GaN, AlN, InN, or a mixed crystal of In X Al Y Ga 1- XYN (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is used. it can. In addition to this, B can be used as a group III element, and a part of N can be substituted with P and As as a group V element. The nitride semiconductor layer in which the nitride semiconductors are stacked has an active layer, and the active layer has a single (SQW) or multiple quantum well structure (MQW).

前記窒化物半導体の成長方法としては、特に限定されないが、MOVPE(有機金属気相成長法)、MOCVD(有機金属化学気相成長法)、HVPE(ハイドライド気相成長法)、MBE(分子線エピタキシー法)など、窒化物半導体の成長方法として知られている全ての方法を好適に用いることができる。特に、MOCVDは結晶性良く成長させることができるので好ましい。   The growth method of the nitride semiconductor is not particularly limited, but MOVPE (metal organic chemical vapor deposition), MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy). Any method known as a method for growing a nitride semiconductor can be suitably used. In particular, MOCVD is preferable because it can be grown with good crystallinity.

窒化物半導体層の電極形成面を光取り出し面とする構成にしても良いし、窒化物半導体層を積層した基板側を光取り出し面としても良い。窒化物半導体層を積層した基板側を光り取り出し面とする場合、窒化物半導体素子の電極を形成した面を除いて保護膜を形成し、窒化物半導体層の上に形成された電極と外部電極等とをメタライズ層(バンプ)によって接続するフェイスダウン構造とすることが好ましい。基板側を光取り出し面とすることで光取り出し効率が向上する。   The electrode forming surface of the nitride semiconductor layer may be a light extraction surface, or the substrate side on which the nitride semiconductor layer is stacked may be the light extraction surface. When the substrate side on which the nitride semiconductor layer is stacked is used as the light extraction surface, a protective film is formed except for the surface on which the electrode of the nitride semiconductor element is formed, and the electrode formed on the nitride semiconductor layer and the external electrode And the like are preferably connected to each other by a metallized layer (bump). The light extraction efficiency is improved by using the substrate side as the light extraction surface.

本発明における窒化物半導体素子は、支持基板上に導電層とp電極を介してp型窒化物半導体層、活性層、n型窒化物半導体層を有し、その上にn電極を形成した構成とすることもできる。該窒化物半導体素子はp電極とn電極が窒化物半導体層を挟んで向かい合う対向電極構造とするものである。この場合には、前記窒化物半導体素子は、n電極側が光取り出し面となる。窒化物半導体(特にGaN系半導体)はn型層の抵抗が低いため、n電極のサイズを小さくできる。光の取り出し効率の向上はn電極を小さくすることで光を遮る領域を低減できるからである。   The nitride semiconductor device in the present invention has a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer on a support substrate via a conductive layer and a p-electrode, and an n-electrode is formed thereon. It can also be. The nitride semiconductor element has a counter electrode structure in which a p electrode and an n electrode face each other with a nitride semiconductor layer interposed therebetween. In this case, the nitride semiconductor device has a light extraction surface on the n-electrode side. Nitride semiconductors (particularly GaN-based semiconductors) can reduce the size of the n-electrode because the resistance of the n-type layer is low. This is because the light extraction efficiency can be improved by reducing the n-electrode to reduce the light blocking area.

更にはチップ化した発熱体である窒化物半導体素子の近傍に蛍光体を樹脂と混合させて形成することで、高出力の白色発光素子を得ることがでる。前記蛍光体の一例を以下に示す。緑色系発光蛍光体としては、SrAl:Eu、YSiO:Ce,Tb、MgAl1119:Ce,Tb、SrAl1225:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Ga:Euがある。また、青色系発光蛍光体としてはSr(POCl:Eu、(SrCaBa)(POCl:Eu、(BaCa)(POCl:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Cl:Eu,Mn、(Mg、Ca、Sr、Baのうち少なくとも1以上)(POCl:Eu,Mnがある。さらに、赤色系発光蛍光体としてはYS:Eu、LaS:Eu、Y:Eu、GdS:Euがある。特にYAGを含有させることで、白色光を発光することができ、照明用光源など用途も格段に広がる。YAGは、(Y1−xGd(Al1−yGa12:R(Rは、Ce、Tb、Pr、Sm、Eu、Dy、Hoから選ばれる少なくとも1以上である。0<R<0.5である。)。本実施の形態において、赤味を帯びた光を発光する蛍光体として、特に窒化物系蛍光体を使用するが、本発明においては、上述したYAG系蛍光体と赤色系の光を発光可能な蛍光体とを備える発光装置とすることも可能である。このような赤色系の光を発光可能な蛍光体は、波長が400〜600nmの光によって励起されて発光する蛍光体である。このようにYAG系蛍光体とともに赤色系の光を発光可能な蛍光体を使用することにより発光装置の演色性を向上させることが可能である。以上のような蛍光体を選択することで、種々の発光波長を持った光取り出し効率の高い発光素子を得ることができる。 Furthermore, a high-output white light-emitting element can be obtained by forming a phosphor in the vicinity of a nitride semiconductor element, which is a chip-like heating element, by mixing with a resin. An example of the phosphor is shown below. Examples of the green light-emitting phosphor include SrAl 2 O 4 : Eu, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, Sr 7 Al 12 O 25 : Eu, (Mg, Ca, Sr, Ba And at least one of them) Ga 2 S 4 : Eu. Further, as blue light emitting phosphors, Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, Ca , Sr, Ba) 2 B 5 O 9 Cl: Eu, Mn, (Mg, Ca, Sr, Ba, at least one) (PO 4 ) 6 Cl 2 : Eu, Mn. Furthermore, red light emitting phosphors include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, and Gd 2 O 2 S: Eu. In particular, by containing YAG, white light can be emitted, and uses such as a light source for illumination are greatly expanded. YAG is, (Y 1-x Gd x ) 3 (Al 1-y Ga y) 5 O 12: is R (R is, Ce, Tb, Pr, Sm , Eu, Dy, at least 1 or more selected from Ho 0 <R <0.5.) In the present embodiment, a nitride-based phosphor is particularly used as a phosphor that emits reddish light. However, in the present invention, red light can be emitted from the YAG-based phosphor described above. It is also possible to provide a light emitting device including a phosphor. Such a phosphor that can emit red light is a phosphor that emits light when excited by light having a wavelength of 400 to 600 nm. Thus, by using a phosphor capable of emitting red light together with a YAG phosphor, it is possible to improve the color rendering properties of the light emitting device. By selecting the phosphor as described above, a light emitting element having various light emission wavelengths and high light extraction efficiency can be obtained.

また、本発明の半導体装置は、例えば図8に示すように、ヒートシンク40を備えており、外側表面に設けられた供給口42及び排出口44を通じてヒートシンク40内部を冷却材が流れる構造となっている。発熱体である半導体素子46から発生した熱は、ヒートシンク40内を流れる冷却材によって好適に放熱される。ヒートシンク40は、例えば2以上の板状部材を貼り合わせて形成された積層板状部材であり、共晶材や濡れ性のよい金属膜を設けて強固に接着されているのでヒートシンク110内部で冷却水が漏れるということはない。また、本発明の発熱体を半導体発光素子、特に半導体レーザとすれば、500nm以下の短波長領域においてレーザ発振する高出力のレーザ光源装置を得ることが可能となる。また本実施の形態は、発熱体が発光ダイオードや受光素子等である場合にも適用可能であることは言うまでもない。   Further, for example, as shown in FIG. 8, the semiconductor device of the present invention includes a heat sink 40, and has a structure in which a coolant flows through the heat sink 40 through a supply port 42 and a discharge port 44 provided on the outer surface. Yes. Heat generated from the semiconductor element 46 that is a heating element is suitably dissipated by the coolant flowing in the heat sink 40. The heat sink 40 is a laminated plate member formed by bonding two or more plate members, for example, and has a eutectic material or a metal film having good wettability and is firmly bonded. There is no leakage of water. If the heating element of the present invention is a semiconductor light emitting element, particularly a semiconductor laser, it is possible to obtain a high-power laser light source device that performs laser oscillation in a short wavelength region of 500 nm or less. Needless to say, this embodiment can also be applied to the case where the heating element is a light emitting diode, a light receiving element or the like.

本発明の実施形態により構成される半導体装置の一例としては、LED光源のユニットモジュール光源装置がある(図8)。該光源装置の外形は、ヒートシンク40とそれを固定する固定冶具50と螺子48とから形成される。また、ヒートシンク40と固定冶具50との間には、ヒートシンク40の供給口及び排出口と、固定冶具50の供給口42及び排出口44とを水漏れなく連結させるための部材を用いても良い。この部材は,例えば樹脂であってもよく金属であってもよい。また、前記LED光源のユニットモジュール光源装置の外観は図8に示すような4角形でもよく、また図9に示すように3角形でも良い.なお、図8及び9において、電源からの電力供給配線は省略している.   As an example of the semiconductor device configured according to the embodiment of the present invention, there is a unit module light source device of an LED light source (FIG. 8). The outer shape of the light source device is formed of a heat sink 40, a fixing jig 50 for fixing the heat sink 40, and a screw 48. Further, a member for connecting the supply port and the discharge port of the heat sink 40 and the supply port 42 and the discharge port 44 of the fixing jig 50 without water leakage may be used between the heat sink 40 and the fixing jig 50. . This member may be, for example, a resin or a metal. The appearance of the unit light source device of the LED light source may be a quadrangular shape as shown in FIG. 8, or a triangular shape as shown in FIG. 8 and 9, the power supply wiring from the power source is omitted.

また、前記構成から成るLED光源のユニットモジュール光源装置を配列させて、超高出力化モジュール光源装置を構成することが出来る。図10には超高出力化モジュール光源装置を示す。図10に示すように、例えばLED光源のユニットモジュール光源装置52の外観が4角形の場合は、光源装置52をアレイ状もしくはマトリクス状に配列させることにより、更なる高出力光源を構成することが出来る。この場合、ユニットモジュール光源装置52の冷却材の供給口及び排出口は、ユニットモジュール光源装置52同士の間で直列又は並列に連通させることが好ましい。即ち、ユニットモジュール光源装置52の間で供給口同士又は排出口同士を連通させても良い。また、これに代えて、あるユニットモジュール光源装置52の排出口を次のユニットモジュール光源装置の供給口に接続し、これを繰り返しても良い。また前記LED光源のユニットモジュール光源装置52の外観が3角形の場合は、図11に示すように、3角形の辺同士が重なるように順次円環状に配列することにより、全体として多角形となるように配置しても良い。こうした配列を採用することにより、小面積でありながら更なる高出力化を図った光源を構成することが出来る。なお、超高出力化モジュール光源装置は、それを構成するユニットモジュール光源装置間の供給口及び排出口とを水漏れなく連結させるための部材を用いても良い。この部材は、例えば樹脂や金属である。これにより、アレイ状またはマトリクス状または円形状に配列されてなる水路の直列結合において、高い水圧が必要になった場合であったとしても水漏れを防ぐことが可能となる。   Moreover, the unit light source device of the LED light source which consists of the said structure can be arranged, and an ultra high output module light source device can be comprised. FIG. 10 shows an ultrahigh power module light source device. As shown in FIG. 10, for example, when the appearance of the unit light source device 52 of the LED light source is a quadrangular shape, a further high output light source can be configured by arranging the light source devices 52 in an array or matrix. I can do it. In this case, it is preferable that the coolant supply port and the discharge port of the unit module light source device 52 communicate in series or in parallel between the unit module light source devices 52. That is, the supply ports or the discharge ports may be communicated between the unit module light source devices 52. Alternatively, the discharge port of a certain unit module light source device 52 may be connected to the supply port of the next unit module light source device and this may be repeated. Further, when the appearance of the unit module light source device 52 of the LED light source is a triangle, as shown in FIG. 11, the unit is formed into a polygon as a whole by sequentially arranging in an annular shape so that the sides of the triangle overlap each other. You may arrange as follows. By adopting such an arrangement, it is possible to configure a light source that has a small area and further increases the output. The ultra-high power module light source device may use a member for connecting the supply port and the discharge port between the unit module light source devices constituting the ultra-high output module light source device without water leakage. This member is, for example, resin or metal. This makes it possible to prevent water leakage even when a high water pressure is required in the serial connection of water channels arranged in an array, a matrix, or a circle.

以下に本発明の実施例を示すが、本発明は当然これに限定されるものではない。
厚みで200μmの無酸素銅からなる第1の板状部材及び第2の板状部材を、図4、図5に示すように加工を施す。第1の板状部材には螺子穴を四方に形成し、発熱体を形成する第1の面に対向した第2の面には凹凸加工をしている(図4)。第2の板状部材にも螺子穴を四方に形成し、また流体を導入する供給口と排出口を形成する(図5)。これらの部材の形成面には、Au層、及び/又はAuSn層を形成する。その後、Nガス雰囲気中にて300℃〜400℃の熱処理を施し貼り合わせて積層板状部材を形成する。この積層板状部材には発熱体をAuSn等の接着部材を使用して実装する。このとき、銅薄板に施すAuSnの共晶温度に比べ、発熱体を実装する際に用いるAuSnの共晶温度が低くなるよう、AuSn重量比を制御しておくことで、発熱体を接合する際のヒートシンクの剥離を抑制できる。このような発熱体を形成したヒートシンクは、水冷冶具に実装して流体として例えば純水等を循環させてもヒートシンクから流体が漏れることはない。
Examples of the present invention are shown below, but the present invention is not limited to these examples.
The first plate member and the second plate member made of oxygen-free copper having a thickness of 200 μm are processed as shown in FIGS. The first plate-like member is formed with screw holes in four directions, and the second surface opposite to the first surface forming the heating element is processed to be uneven (FIG. 4). The second plate member is also formed with screw holes on all sides, and a supply port and a discharge port for introducing fluid are formed (FIG. 5). An Au layer and / or an AuSn layer is formed on the formation surface of these members. Thereafter, a heat treatment at 300 ° C. to 400 ° C. is performed in an N 2 gas atmosphere and bonded to form a laminated plate member. A heating element is mounted on the laminated plate member using an adhesive member such as AuSn. At this time, when joining the heating elements by controlling the AuSn weight ratio so that the eutectic temperature of AuSn used for mounting the heating element is lower than the eutectic temperature of AuSn applied to the copper thin plate. Peeling of the heat sink can be suppressed. A heat sink in which such a heating element is formed is mounted on a water-cooled jig and fluid does not leak from the heat sink even when pure water or the like is circulated as a fluid.

[実施例1]
ケミカルエッチング等により前記第1の板状部材の第2の面に、凹凸構造を施して積層板状部材を形成してなるヒートシンクにおいて、該ヒートシンク上に□1mmの窒化物半導体から成るLED素子を21個実装し、開口径で8mm程度のLED光源を試作した。前記凹凸は凹部の幅200μm、深さ200μmであって、凸部の幅を800μmである。このLED光源を構成する21素子中の平均的な1素子のI−L特性と,従来受動的冷却手段により得られる1素子のIL特性を調べたところ、図12に示すように、○点で示す受動的冷却手段では0.3A〜0.5Aからリニアリティが崩れる。これに対して、本実施例である能動的冷却手段においては、実線で示すようにLED素子が21個実装された半導体装置であっても0.5A以上にも及ぶリニアリティがとれていることが確認できた。また、図13に示すように,該□1mmのLED素子を21実装した半導体装置から5Wattを超える光出力が得られた。素子間隔が200μm程度であって熱干渉を考慮したとしても、このような高密度実装でありながらリニアリティが良好な高輝度LED光源が得られた。
[Example 1]
In a heat sink in which a concavo-convex structure is formed on the second surface of the first plate member by chemical etching or the like to form a laminated plate member, an LED element made of a 1 mm nitride semiconductor is formed on the heat sink. Twenty-one LED light sources with an opening diameter of about 8 mm were fabricated. The unevenness has a recess width of 200 μm and a depth of 200 μm, and the protrusion width is 800 μm. As a result of examining the average IL characteristic of one element among the 21 elements constituting the LED light source and the IL characteristic of one element obtained by the conventional passive cooling means, as shown in FIG. In the passive cooling means shown, the linearity is broken from 0.3A to 0.5A. On the other hand, in the active cooling means according to this embodiment, as shown by the solid line, even a semiconductor device having 21 LED elements mounted has a linearity of 0.5 A or more. It could be confirmed. Further, as shown in FIG. 13, a light output exceeding 5 Watts was obtained from the semiconductor device on which 21 pieces of the 1 mm LED elements were mounted. Even if the element spacing is about 200 μm and thermal interference is taken into consideration, a high-intensity LED light source with good linearity despite such high-density mounting was obtained.

[実施例2]
本発明のヒートシンクに、前記LED素子を21個実装してなる半導体装置において、流体として循環冷却媒体である純水(温度25℃,流量0.4L/minの条件)を循環させて定電流駆動させた。その結果を図14、15に示す。
前記半導体装置は、純水(温度25℃,流量0.4L/minの条件)を循環させ,電流10.5A(1素子当たりの投入電流は0.5A)で定電流駆動させた(図14)。比較例となる受動的冷却方法では、点線で示すように1素子に0.5A投入した場合には、100時間経過後には出力が約10%低下することが推測されるが、本発明の能動的冷却手段を用いたヒートシンクに実装させた場合、発熱体であるLED素子の間隔が200μmと高密度実装でありながらも100時間後の劣化はほとんど観測できなかった。このときの熱密度は約2Watt/mmであるが、3Wattを超える光出力が得られた。
[Example 2]
In a semiconductor device in which 21 LED elements are mounted on the heat sink of the present invention, constant water drive is performed by circulating pure water (condition of temperature 25 ° C., flow rate 0.4 L / min) as a circulating cooling medium as a fluid. I let you. The results are shown in FIGS.
The semiconductor device was circulated with pure water (conditions at a temperature of 25 ° C. and a flow rate of 0.4 L / min) and was driven at a constant current with a current of 10.5 A (an input current per element was 0.5 A) (FIG. 14). ). In the passive cooling method as a comparative example, when 0.5 A is input to one element as indicated by a dotted line, it is estimated that the output decreases by about 10% after 100 hours. When mounted on a heat sink using a static cooling means, degradation after 100 hours could hardly be observed even though the interval between the LED elements as the heating elements was 200 μm and the mounting was high density. The heat density at this time was about 2 Watt / mm 2 , but an optical output exceeding 3 Watt was obtained.

[実施例3]
また、本発明のヒートシンクにLED素子を21実装してなる半導体装置において、純水(温度25℃,流量0.4L/minの条件)を循環させ、電流20A(1素子当たりの投入電流は0.95A)で定電流駆動させた(図15)。受動的冷却方法では、1素子に1A投入した場合、10時間経過後には出力が約15%低下することが推測されるが、本発明の能動的冷却手段を用いたヒートシンクに実装させた場合、素子間隔が200μmと高密度実装でありながらも、10時間後の劣化はほとんど観測できなかった。このときの熱密度は約5Watt/mmであるが、5Wattを超える光出力が得られた。
[Example 3]
Further, in a semiconductor device in which 21 LED elements are mounted on the heat sink of the present invention, pure water (temperature 25 ° C., flow rate 0.4 L / min) is circulated, and current 20 A (input current per element is 0). .95A) and driven at a constant current (FIG. 15). In the passive cooling method, when 1 A is input to one element, it is estimated that the output is reduced by about 15% after 10 hours. However, when mounted on a heat sink using the active cooling means of the present invention, Although the element spacing was 200 μm and high-density mounting, almost no deterioration after 10 hours could be observed. The heat density at this time was about 5 Watt / mm 2 , but an optical output exceeding 5 Watt was obtained.

[実施例4]
ヒートシンクに発熱体がマトリクス状に実装されたもの(以下、「系」という。)が、真空断熱空間に置かれており、ヒートシンク内に25℃の冷却水が循環していると仮定してシミュレーションを行った。シミュレーション結果を図16に示す。図16(a)は、凸部を発熱体の中央と四隅に配置し、凸部の径を相対的に大きく設定したヒートシンクを用いたシミュレーションである(以下、単に「系(a)」という。)。図16(b)は、凸部を発熱体の中央に配置し、凸部の径を相対的に小さく設定したヒートシンクを用いたシミュレーションである(以下、単に「系(b)」という。)。図16(c)は、凸部が全くないように設定したヒートシンクを用いたシミュレーションである(以下、単に「系(c)」という)。
[Example 4]
A simulation is performed on the assumption that a heating element mounted in a matrix on a heat sink (hereinafter referred to as “system”) is placed in a vacuum insulation space, and cooling water at 25 ° C. circulates in the heat sink. Went. The simulation result is shown in FIG. FIG. 16A is a simulation using a heat sink in which convex portions are arranged at the center and four corners of the heating element and the diameter of the convex portions is set relatively large (hereinafter simply referred to as “system (a)”). ). FIG. 16B is a simulation using a heat sink in which the convex portion is arranged at the center of the heating element and the diameter of the convex portion is set to be relatively small (hereinafter simply referred to as “system (b)”). FIG. 16C is a simulation using a heat sink set so as not to have any protrusions (hereinafter simply referred to as “system (c)”).

図16(a)〜(c)において、破線は冷却用流体の水圧分布を示す等高線である。図16(a)〜(c)に示すように、系(c)より系(b)、系(b)より系(a)の方が、冷却用流体の水圧分布が流体の流れに対して垂直な等高線を形成しやすくなり、冷却用流体が流路全体に均一に流れやすくなる。これにより、系(a)のように凸部を設定したヒートシンクを用いた発光装置は、熱による特性ばらつきが抑制されることがわかる。 In FIGS. 16A to 16C, the broken lines are contour lines showing the water pressure distribution of the cooling fluid. As shown in FIGS. 16A to 16C, the water pressure distribution of the cooling fluid in the system (b) is higher than that in the system (c), and in the system (a) compared with the system (b). It becomes easy to form a vertical contour line, and it becomes easy for the cooling fluid to flow uniformly in the entire flow path. Thereby, it can be seen that the light-emitting device using the heat sink with the convex portion set as in the system (a) suppresses variation in characteristics due to heat.

また、シミュレーションでは、25℃の冷却水を絶えず循環させているので、系の最低温度が25℃以上となるならばヒートシンクに熱が蓄熱される。すなわち実際には、系外部の材料へ放熱されるためパッケージの温度が上昇することが推測できる。図17及び18は、系(a)〜(c)の最低温度、最高温度と冷却水の流量の関係を示すグラフである。ここで系の「最低温度」とは、系中で一番低い温度を指し、「最高温度」とは、系中で一番高い温度、すなわち発熱体自身の温度を指す。図17及び図18に示すように、系(a)のように凸部を設定したヒートシンクを用いた発光装置は、冷却水の流量が小さい場合でも、系の最低温度及び最高温度が低く維持されており、系外部の材料への熱の流出を抑制して熱平衡状態に導くことが可能である。 In the simulation, since the cooling water at 25 ° C. is continuously circulated, heat is stored in the heat sink if the minimum temperature of the system is 25 ° C. or higher. That is, it can be estimated that the temperature of the package rises because the heat is radiated to the material outside the system. 17 and 18 are graphs showing the relationship between the minimum and maximum temperatures of the systems (a) to (c) and the flow rate of the cooling water. Here, the “minimum temperature” of the system refers to the lowest temperature in the system, and the “maximum temperature” refers to the highest temperature in the system, that is, the temperature of the heating element itself. As shown in FIG. 17 and FIG. 18, the light emitting device using the heat sink with the convex portions set as in the system (a) maintains the minimum temperature and the maximum temperature of the system low even when the flow rate of the cooling water is small. Therefore, it is possible to suppress the outflow of heat to the material outside the system and lead to a thermal equilibrium state.

また、系の最高温度から計算される熱抵抗と流量の関係を図19に示す。系(a)のように凸部を設定したヒートシンクを用いた発光装置は、流量0.3〜0.7L/minにおいて0.5℃/Watt以下という熱抵抗を得ることができる。これは、非常に凝縮された熱密度の高い熱量を排熱することができることを表す。従って、本実施例の系(a)のような構成を持つ発光装置とすることで、100Wattを超える電力を連続的に投入しても素手で持つことが可能である高出力な発光装置とすることができる。 FIG. 19 shows the relationship between the thermal resistance calculated from the maximum temperature of the system and the flow rate. A light emitting device using a heat sink with convex portions set as in the system (a) can obtain a thermal resistance of 0.5 ° C./Watt or less at a flow rate of 0.3 to 0.7 L / min. This represents that a highly condensed heat density having a high heat density can be exhausted. Therefore, a light-emitting device having the configuration as in the system (a) of this embodiment can be a high-power light-emitting device that can be held with bare hands even when power exceeding 100 Watts is continuously applied. be able to.

本発明は、半導体発光素子や半導体受光素子、又は半導体デバイス等の発熱体を形成したヒートシンク、並びにこれを備えた半導体装置として用いることができる。   The present invention can be used as a heat sink in which a heating element such as a semiconductor light emitting element, a semiconductor light receiving element, or a semiconductor device is formed, and a semiconductor device including the heat sink.

図1は、本発明の半導体装置の構成を説明する模式的断面図である。FIG. 1 is a schematic cross-sectional view illustrating a configuration of a semiconductor device of the present invention. 図2は、本発明の半導体装置の構成を、金属キャップ等を省略して示した模式的斜視図である。FIG. 2 is a schematic perspective view showing the configuration of the semiconductor device of the present invention with the metal cap and the like omitted. 図3は、本発明のヒートシンク構造を説明する模式的断面図である。FIG. 3 is a schematic cross-sectional view illustrating the heat sink structure of the present invention. 図4(a)〜(c)は、本発明の第1の板状部材の一例を模式的に示す斜視図、平面図及び断面図である。4A to 4C are a perspective view, a plan view, and a cross-sectional view schematically showing an example of the first plate-like member of the present invention. 図5(a)〜(c)は、本発明の第2の板状部材の一例を模式的に示す斜視図、平面図及び断面図である。FIGS. 5A to 5C are a perspective view, a plan view, and a cross-sectional view schematically showing an example of the second plate-like member of the present invention. 図6(a)及び(b)は、図4及び図5に示した板状部材を組み合わせた様子を示す平面図及び断面図である。FIGS. 6A and 6B are a plan view and a cross-sectional view showing a state where the plate-like members shown in FIGS. 4 and 5 are combined. 図7(a)及び(b)は、半導体素子と流路内の凸部の位置関係を模式的に示す平面図及び断面図である。7A and 7B are a plan view and a cross-sectional view schematically showing the positional relationship between the semiconductor element and the convex portions in the flow path. 図8は、本発明の実施形態により構成されるLED光源のユニットモジュール光源装置を説明する図である。FIG. 8 is a diagram illustrating an LED light source unit module light source device configured according to an embodiment of the present invention. 図9は、本発明の実施形態により構成されるLED光源のユニットモジュール光源装置を説明する図である。FIG. 9 is a diagram illustrating an LED light source unit module light source device configured according to an embodiment of the present invention. 図10は、本発明の実施形態により構成されるLED光源の超高出力化モジュール光源装置を説明する図である。FIG. 10 is a diagram illustrating an ultra-high output module light source device for an LED light source configured according to an embodiment of the present invention. 図11は、本発明の実施形態により構成されるLED光源の超高出力化モジュール光源装置を説明する図である。FIG. 11 is a diagram illustrating an ultra-high output module light source device for an LED light source configured according to an embodiment of the present invention. 図12は、本発明の実施形態によってなされた能動的冷却手段によるLED素子のIL特性と,受動的冷却手段によるLED素子のIL特性の相対比較を示す図である。FIG. 12 is a diagram showing a relative comparison between the IL characteristic of the LED element by the active cooling means and the IL characteristic of the LED element by the passive cooling means made according to the embodiment of the present invention. 図13は、本発明の実施形態によって高輝度化されたLED光源のIL特性である。FIG. 13 shows the IL characteristics of the LED light source with high brightness according to the embodiment of the present invention. 図14は、本発明の実施形態によって高輝度化されたLED光源のCW−ACC駆動試験と,受動的冷却手段によるLED1素子のCW−ACC駆動試験から予測される劣化曲線との比較を示す図である。FIG. 14 is a diagram showing a comparison between a CW-ACC drive test of an LED light source with high brightness according to an embodiment of the present invention and a deterioration curve predicted from a CW-ACC drive test of a single LED element using passive cooling means. It is. 図15は、本発明の実施形態によって高輝度化されたLED光源のCW−ACC駆動試験と,受動的冷却手段によるLED1素子のCW−ACC駆動試験から予測される劣化曲線との比較を示す図である。FIG. 15 is a diagram showing a comparison between a CW-ACC drive test of an LED light source with high brightness according to an embodiment of the present invention and a deterioration curve predicted from a CW-ACC drive test of a single LED element using passive cooling means. It is. 図16(a)〜(c)は、本発明の実施例4における系(a)〜(c)を示す模式平面図である。FIGS. 16A to 16C are schematic plan views showing the systems (a) to (c) in Example 4 of the present invention. 図17は、本発明の実施例4における系(a)〜(c)の最低温度と冷却水流量の関係を示すグラフである。FIG. 17 is a graph showing the relationship between the minimum temperature of the systems (a) to (c) and the cooling water flow rate in Example 4 of the present invention. 図18は、本発明の実施例4における系(a)〜(c)の最高温度と冷却水流量の関係を示すグラフである。FIG. 18 is a graph showing the relationship between the maximum temperature of the systems (a) to (c) and the coolant flow rate in Example 4 of the present invention. 図19は、本発明の実施例4における系(a)〜(c)の熱抵抗と冷却水流量の関係を示すグラフである。FIG. 19 is a graph showing the relationship between the thermal resistance of the systems (a) to (c) and the coolant flow rate in Example 4 of the present invention.

符号の説明Explanation of symbols

1、10・・・発熱体
2・・・第1の板状部材
3・・・第2の板状部材


DESCRIPTION OF SYMBOLS 1,10 ... Heat generating body 2 ... 1st plate-shaped member 3 ... 2nd plate-shaped member


Claims (19)

発熱体である複数のLEDチップが該LEDチップの幅よりも狭い間隔をおいて配列し、熱的に接続される第1の面を有する第1の板状部材と、該第1の板状部材の第2の面と接続される第2の板状部材とから成る積層板状部材に、流体が供給される供給口と、該供給口と連通し流体が排出される排出口とを備えたヒートシンクにおいて、
前記第1の板状部材の第2の面には凹凸を有し、
前記凹凸の凸部は、少なくとも一部が前記LEDチップ同士の間隔に相当する位置に形成され、
前記第2の板状部材は、前記供給口及び前記排出口から前記第2の板状部材の中央に向かって扇状に広がった扇状凹部と、該扇状凹部の底面に前記流体の流れる方向に放射状に配列された支持柱とを有し、前記支持柱が前記第1の板状部材との接合面となることを特徴とするヒートシンク。
A plurality of LED chips, which are heating elements , are arranged with a space narrower than the width of the LED chips, and have a first plate member having a first surface that is thermally connected, and the first plate shape A laminated plate-like member comprising a second plate-like member connected to the second surface of the member includes a supply port through which fluid is supplied and a discharge port through which the fluid is discharged. In the heat sink
The second surface of the first plate member has irregularities,
The concave and convex portions are formed at positions corresponding at least to the distance between the LED chips,
The second plate-shaped member has a fan-shaped recess extending in a fan shape from the supply port and the discharge port toward the center of the second plate-shaped member, and a radial direction in a direction in which the fluid flows on the bottom surface of the fan-shaped recess. A heat sink, wherein the support column serves as a joint surface with the first plate member.
前記凹凸は、発熱体の接続領域に対向した第2の面に有することを特徴とする請求項1に記載のヒートシンク。   The heat sink according to claim 1, wherein the unevenness is provided on a second surface facing a connection region of the heating element. 前記凹凸は、段差が10μm以上500μm以下であることを特徴とする請求項1又は2に記載のヒートシンク。   The heat sink according to claim 1, wherein the unevenness has a step of 10 μm to 500 μm. 発熱体である複数のLEDチップが該LEDチップの幅よりも狭い間隔をおいて配列し、熱的に接続される第1の面を有する第1の板状部材と、該第1の板状部材の第2の面と接続される第2の板状部材とから成る積層板状部材に、流体が供給される供給口と、該供給口と連通し流体が排出される排出口とを備えたヒートシンクにおいて、
前記第1の板状部材の第2の面には凹凸を有し、
前記凹凸の凸部は、少なくとも一部が前記LEDチップ同士の間隔に相当する位置に形成され、
前記第2の板状部材は、前記供給口及び前記排出口から前記第2の板状部材の中央に向かって扇状に広がった扇状凹部と、該扇状凹部の底面に前記流体の流れる方向に放射状に配列された支持柱とを有し、前記支持柱が前記第1の板状部材との接合面となり、
前記第1の板状部材は、第1の面における発熱体の接触面積(a)に対して、発熱体の接触領域に対向した第2の面における表面積(b)が大きいことを特徴とするヒートシンク。
A plurality of LED chips, which are heating elements , are arranged with a space narrower than the width of the LED chips, and have a first plate member having a first surface that is thermally connected, and the first plate shape A laminated plate-like member comprising a second plate-like member connected to the second surface of the member includes a supply port through which fluid is supplied and a discharge port through which the fluid is discharged. In the heat sink
The second surface of the first plate member has irregularities,
The concave and convex portions are formed at positions corresponding at least to the distance between the LED chips,
The second plate-shaped member has a fan-shaped recess extending in a fan shape from the supply port and the discharge port toward the center of the second plate-shaped member, and a radial direction in a direction in which the fluid flows on the bottom surface of the fan-shaped recess. And the support column becomes a joint surface with the first plate member,
The first plate-like member has a larger surface area (b) on the second surface facing the contact area of the heating element than the contact area (a) of the heating element on the first surface. heatsink.
前記第1の面における発熱体の接触面積(a)と、第2の面における発熱体の接触領域に対向した第2の面における表面積(b)との比が、0.2≦(a/b)<1であることを特徴とする請求項4に記載のヒートシンク。   The ratio between the contact area (a) of the heating element on the first surface and the surface area (b) on the second surface facing the contact area of the heating element on the second surface is 0.2 ≦ (a / The heat sink according to claim 4, wherein b) <1. 前記第1の板状部材における第1の面と前記発熱体とは共晶材料を介して接続されていることを特徴とする請求項1乃至5のいずれかに記載のヒートシンク。   The heat sink according to any one of claims 1 to 5, wherein the first surface of the first plate member and the heating element are connected via a eutectic material. 前記第1の板状部材における第2の面と前記第2の板状部材とは共晶材料を介して接続されていることを特徴とする請求項1乃至5のいずれかに記載のヒートシンク。   The heat sink according to any one of claims 1 to 5, wherein the second surface of the first plate member and the second plate member are connected via a eutectic material. 請求項1乃至7のいずれかに記載のヒートシンクと、半導体から成る発熱体とを備えたことを特徴とする半導体装置。   8. A semiconductor device comprising the heat sink according to claim 1 and a heating element made of a semiconductor. 前記発熱体は、前記第1の板状部材における第1の面上に1以上が実装されて成ることを特徴とする請求項8に記載の半導体装置。   9. The semiconductor device according to claim 8, wherein one or more of the heat generating elements are mounted on a first surface of the first plate member. 前記発熱体が半導体発光素子であることを特徴とする請求項8又は9に記載の半導体装置。   The semiconductor device according to claim 8, wherein the heating element is a semiconductor light emitting element. 第1の面を有する第1の板状部材と、該第1の板状部材の第2の面と接続される第2の板状部材とから成る積層板状部材に、冷却用流体が供給される供給口と、前記冷却用流体を流す流路と、前記冷却用流体が排出される排出口とを備えたヒートシンクと、前記第1の板状部材の前記第1の面上に1次元又は2次元状に配列するように実装された複数の窒化物半導体発光素子とを備え、前記窒化物半導体発光素子同士の間隔が前記窒化物半導体素子の幅よりも狭い半導体発光装置であって、
前記流路内において前記第1の板状部材の表面に複数の凸部が形成され、前記凸部の少なくとも一部が前記窒化物半導体素子同士の間隔に相当する位置に形成され、
前記第2の板状部材は、前記供給口及び前記排出口から前記第2の板状部材の中央に向かって扇状に広がった扇状凹部と、該扇状凹部の底面に前記流体の流れる方向に放射状に配列された支持柱とを有し、前記支持柱が前記第1の板状部材との接合面となることを特徴とする半導体発光装置。
A cooling fluid is supplied to a laminated plate-shaped member including a first plate-shaped member having a first surface and a second plate-shaped member connected to the second surface of the first plate-shaped member. On the first surface of the first plate-like member, a heat sink comprising a supply port to be supplied, a flow path for flowing the cooling fluid, and a discharge port for discharging the cooling fluid. Or a plurality of nitride semiconductor light emitting devices mounted so as to be two-dimensionally arranged, and a space between the nitride semiconductor light emitting devices is narrower than the width of the nitride semiconductor device ,
A plurality of convex portions are formed on the surface of the first plate-shaped member in the flow path, and at least a part of the convex portions is formed at a position corresponding to the interval between the nitride semiconductor elements,
The second plate-shaped member has a fan-shaped recess extending in a fan shape from the supply port and the discharge port toward the center of the second plate-shaped member, and a radial direction in a direction in which the fluid flows on the bottom surface of the fan-shaped recess. A semiconductor light emitting device, wherein the support pillar is a joint surface with the first plate member.
前記複数の凸部は、前記流路の入口から出口に向かって最も近接する凸部同士を順次結んだ線分が屈曲を繰り返すよう互いにずれて配置されたことを特徴とする請求項11に記載の半導体発光装置。   The plurality of convex portions are arranged so as to be shifted from each other so that a line segment sequentially connecting the convex portions closest to each other from the inlet to the outlet of the flow path repeatedly bends. Semiconductor light emitting device. 前記複数の凸部の少なくとも一部は、前記半導体発光素子の間に中心が位置するように形成されたことを特徴とする請求項11又は12に半導体発光装置。   13. The semiconductor light emitting device according to claim 11, wherein at least a part of the plurality of convex portions is formed so that a center is located between the semiconductor light emitting elements. 前記複数の凸部の少なくとも一部は、前記半導体発光素子の略中央に中心が位置するように形成されたことを特徴とする請求項11乃至13のいずれか1項に記載の半導体発光装置。   14. The semiconductor light emitting device according to claim 11, wherein at least a part of the plurality of convex portions is formed so that a center is positioned at substantially the center of the semiconductor light emitting element. 前記複数の凸部が各半導体発光素子の略中央と頂点付近とに配置されたことを特徴とする請求項11乃至14のいずれか1項に記載の半導体発光装置。   The semiconductor light emitting device according to any one of claims 11 to 14, wherein the plurality of convex portions are arranged at approximately the center and near the apex of each semiconductor light emitting element. 前記凸部の上面が対向する板状部材に接合されたことを特徴とする請求項11乃至15のいずれか1項に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 11, wherein an upper surface of the convex portion is bonded to an opposing plate member. 前記流路が平面視で略円形又は略楕円形であることを特徴とする請求項1乃至16のいずれか1項に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the flow path is substantially circular or substantially elliptical in plan view. 前記流路の入口及び/又は出口が円弧状であることを特徴とする請求項1乃至17のいずれか1項に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein an inlet and / or an outlet of the flow path are arcuate. 前記板状部材の貼り合わせ面が、Auを含む金属材料によって覆われていることを特徴とする請求項1乃至18のいずれか1項に記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein a bonding surface of the plate-like member is covered with a metal material containing Au.
JP2004301763A 2003-10-15 2004-10-15 Heat sink and semiconductor device provided with heat sink Expired - Lifetime JP4934954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301763A JP4934954B2 (en) 2003-10-15 2004-10-15 Heat sink and semiconductor device provided with heat sink

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003355399 2003-10-15
JP2003355399 2003-10-15
JP2004163491 2004-06-01
JP2004163491 2004-06-01
JP2004301763A JP4934954B2 (en) 2003-10-15 2004-10-15 Heat sink and semiconductor device provided with heat sink

Publications (2)

Publication Number Publication Date
JP2006019676A JP2006019676A (en) 2006-01-19
JP4934954B2 true JP4934954B2 (en) 2012-05-23

Family

ID=35793621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301763A Expired - Lifetime JP4934954B2 (en) 2003-10-15 2004-10-15 Heat sink and semiconductor device provided with heat sink

Country Status (1)

Country Link
JP (1) JP4934954B2 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8224639B2 (en) * 2004-03-29 2012-07-17 Sony Computer Entertainment Inc. Methods and apparatus for achieving thermal management using processing task scheduling
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
KR100820529B1 (en) 2006-05-11 2008-04-08 엘지이노텍 주식회사 Lighting apparatus and manufacturing method thereof, surface lighting apparatus
JP5239151B2 (en) 2006-12-07 2013-07-17 コニカミノルタエムジー株式会社 Inkjet recording device
TW200830584A (en) * 2007-01-12 2008-07-16 Tai Sol Electronics Co Ltd Combined assembly of LED and liquid/gas phase heat dissipation device
TW200830583A (en) * 2007-01-12 2008-07-16 Tai Sol Electronics Co Ltd Combined assembly of LED and liquid/gas phase heat dissipation device
JP2009010047A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Light source using light emitting diode
JP2009038255A (en) * 2007-08-02 2009-02-19 San Ei Giken Inc Light source
JP4479839B2 (en) * 2007-08-10 2010-06-09 パナソニック電工株式会社 Package and semiconductor device
US8044428B2 (en) 2007-08-10 2011-10-25 Panasonic Electric Works SUNX Co., Ltd. Package and semiconductor device for preventing occurrence of false connection
US8242595B2 (en) 2007-08-10 2012-08-14 Panasonic Electric Works SUNX Co., Ltd. Heatsink and semiconductor device with heatsink
JP4407764B2 (en) * 2007-08-10 2010-02-03 パナソニック電工株式会社 Heat sink and semiconductor device provided with heat sink
JP4856030B2 (en) * 2007-09-06 2012-01-18 パナソニック電工Sunx株式会社 Light source device
GB0809650D0 (en) * 2008-05-29 2008-07-02 Integration Technology Ltd LED Device and arrangement
KR20100116883A (en) * 2009-04-23 2010-11-02 아이피씨코리아 주식회사 Light emitting device
US8632196B2 (en) 2010-03-03 2014-01-21 Cree, Inc. LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
JP5677795B2 (en) * 2010-09-27 2015-02-25 パナソニック デバイスSunx株式会社 LED unit
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
JP2013074226A (en) * 2011-09-29 2013-04-22 Kyocera Corp Light irradiation module and printer
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
US8928256B2 (en) * 2013-04-26 2015-01-06 Phoseon Technology, Inc. Method and system for light array thermal slope detection
WO2014177616A1 (en) * 2013-05-02 2014-11-06 Koninklijke Philips N.V. Cooling device for cooling a laser arrangement and laser system comprising cooling devices
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
JP2018006418A (en) * 2016-06-28 2018-01-11 富士ゼロックス株式会社 Laser element unit, irradiation device and image formation device
JP6736651B2 (en) * 2018-12-27 2020-08-05 浜松ホトニクス株式会社 Cooling unit, objective lens module, semiconductor inspection device, semiconductor inspection method
DE102019200478A1 (en) * 2019-01-16 2020-07-16 Heraeus Noblelight Gmbh LIGHT SOURCE WITH AT LEAST ONE FIRST LIGHT-EMITTING SEMICONDUCTOR COMPONENT, A FIRST CARRIER ELEMENT AND A DISTRIBUTION ELEMENT
CN114122242B (en) * 2022-01-25 2022-05-13 宏齐光电子(深圳)有限公司 Packaging structure based on flip LED chip
WO2024004655A1 (en) * 2022-06-29 2024-01-04 ローム株式会社 Cooler and cooling structure for semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307040A (en) * 1996-05-15 1997-11-28 Hitachi Ltd Semiconductor device, inverter, and manufacture of semiconductor device
JP3643328B2 (en) * 2001-08-21 2005-04-27 ファナック株式会社 Two-dimensional LD array light emitting device

Also Published As

Publication number Publication date
JP2006019676A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP4934954B2 (en) Heat sink and semiconductor device provided with heat sink
CN100472823C (en) Light-emitting device
US9673363B2 (en) Reflective mounting substrates for flip-chip mounted horizontal LEDs
EP1733439B1 (en) Nitride based led with a p-type injection region
US8362502B2 (en) Solid-state light source
US7880181B2 (en) Light emitting diode with improved current spreading performance
KR100568269B1 (en) GaN LED for flip-chip bonding and manufacturing method therefor
US9660153B2 (en) Gap engineering for flip-chip mounted horizontal LEDs
US7994524B1 (en) Vertically structured LED array light source
US20110133224A1 (en) Thermally optimised led chip-on-board module
JP2006313907A (en) Heat radiating structural body and light emitting assembly equipped therewith
JPWO2013150715A1 (en) Semiconductor laser device and manufacturing method thereof
KR20150022771A (en) Light emitting device comprising chip-on-board package substrate and method for manufacturing same
US20220045253A1 (en) Light emitting diode packages
JP2006012916A (en) Light emitting device
JP5282605B2 (en) Semiconductor laser device and manufacturing method thereof
US11894499B2 (en) Lens arrangements for light-emitting diode packages
US20050286592A1 (en) Semiconductor laser array device
JP3237794U (en) High luminous flux laser based white light source
JP4543651B2 (en) Heat sink and light source device having heat sink
KR100777291B1 (en) Led having lateral structure
JPH1027926A (en) Photo-semiconductor device
US20230387356A1 (en) Light-emitting diode packages with lead frame structures for flip-chip mounting of light-emitting diode chips
US20240162393A1 (en) Light source module
US10825974B2 (en) Light-emitting diode package and method of manufacture

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4934954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250