JP4933305B2 - Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method - Google Patents

Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method Download PDF

Info

Publication number
JP4933305B2
JP4933305B2 JP2007045294A JP2007045294A JP4933305B2 JP 4933305 B2 JP4933305 B2 JP 4933305B2 JP 2007045294 A JP2007045294 A JP 2007045294A JP 2007045294 A JP2007045294 A JP 2007045294A JP 4933305 B2 JP4933305 B2 JP 4933305B2
Authority
JP
Japan
Prior art keywords
differential pressure
pressure
guiding tube
dispersion
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007045294A
Other languages
Japanese (ja)
Other versions
JP2007292733A (en
Inventor
匠 橋詰
徹也 涌井
隼一 栄野
宣夫 宮地
義敬 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007045294A priority Critical patent/JP4933305B2/en
Priority to CN2007101516629A priority patent/CN101256106B/en
Priority to US11/861,215 priority patent/US7650245B2/en
Publication of JP2007292733A publication Critical patent/JP2007292733A/en
Application granted granted Critical
Publication of JP4933305B2 publication Critical patent/JP4933305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、導圧管の詰まり、特に管路を流れる流体の差圧を計測する差圧伝送器における導圧管の詰まりを検出する導圧管詰まり検出装置及び導圧管詰まり検出方法に関する。  The present invention relates to a pressure guiding tube clogging detecting apparatus and a pressure guiding tube clogging detecting method for detecting clogging of a pressure guiding tube, in particular, clogging of a pressure guiding tube in a differential pressure transmitter for measuring a differential pressure of a fluid flowing in a pipe line.

周知のように、差圧伝送器とは、流体の配管に設けられたオリフィスの前段(高圧側)と後段(低圧側)との差圧を、当該オリフィスの前段及び後段に配置された導圧管を介して伝達される圧力に基づいて計測するものである。このような差圧伝送器において導圧管に詰まりが生じた場合、正確に差圧を計測することが困難となる。よって、上記導圧管の詰まりを検出することは、流体管理の観点から非常に重要である。以下、従来行なわれていた導圧管詰まりの検出方法の一例について説明する。   As is well known, a differential pressure transmitter is a pressure guiding pipe arranged in the upstream and downstream of the orifice, by providing the differential pressure between the upstream (high pressure side) and the downstream (low pressure side) of the orifice provided in the fluid piping. It measures based on the pressure transmitted through this. In such a differential pressure transmitter, when the pressure guiding tube is clogged, it is difficult to accurately measure the differential pressure. Therefore, detecting clogging of the pressure guiding tube is very important from the viewpoint of fluid management. Hereinafter, an example of a conventional method for detecting clogging of a pressure guiding tube will be described.

正常時(つまり導圧管に詰まりがない状態)において、差圧伝送器から時系列的に得られる差圧データをDps(i)とすると、差圧揺動Fdps(i)は下記(1)式で表される。なお、下記(1)式において、Dps(i)は差圧データの今回値、Dps(i-1)は差圧データの前回値である。一方、差圧揺動Fdps(i)の分散(2乗平均値)Vasは、下記(2)式で表される。なお、Nは差圧データDps(i)の全サンプル数である。以下、このVasを基準揺動分散という。このような正常時における基準揺動分散Vasを実運転の最初の段階に予め求めておく。  When the differential pressure data obtained in time series from the differential pressure transmitter is Dps (i) under normal conditions (that is, the pressure guiding tube is not clogged), the differential pressure fluctuation Fdps (i) is expressed by the following equation (1). It is represented by In the following equation (1), Dps (i) is the current value of the differential pressure data, and Dps (i-1) is the previous value of the differential pressure data. On the other hand, the variance (root mean square value) Vas of the differential pressure fluctuation Fdps (i) is expressed by the following equation (2). N is the total number of samples of the differential pressure data Dps (i). Hereinafter, this Vas is referred to as reference fluctuation dispersion. The reference fluctuation dispersion Vas in such a normal state is obtained in advance at the first stage of actual operation.

Figure 0004933305
Figure 0004933305

次に、プラントの実運転時において、導圧管の診断時期が到来する毎に、差圧伝送器から時系列的に得られる差圧データDp(i)を用いて、上記と同様に差圧揺動Fdp(i)及び差圧揺動の分散Vaを求める。なお、実運転時における差圧揺動Fdp(i)、差圧揺動の分散Vaの算出式は上記(1)及び(2)式と同様である。  Next, in the actual operation of the plant, every time when the pressure guiding tube diagnosis time comes, the differential pressure fluctuation is obtained in the same manner as described above by using the differential pressure data Dp (i) obtained in time series from the differential pressure transmitter. Dynamic Fdp (i) and differential pressure fluctuation variance Va are obtained. The calculation formulas of the differential pressure fluctuation Fdp (i) and the variance Va of the differential pressure fluctuation during actual operation are the same as the above formulas (1) and (2).

そして、このように導圧管の診断時期に求めた差圧揺動の分散Vaと、上記のように予め求めておいた基準揺動分散Vasとの比率D=√(Va/Vas)を算出する。導圧管の詰まり状態に応じて、差圧揺動の分散Vaが変化するため、上記比率Dの変化によって導圧管の詰まりを検出することができる。例えば、高圧側及び低圧側導圧管の両方が詰まった場合、差圧揺動の分散Vaは小さくなる(比率Dも小さくなる)。また、高圧側もしくは低圧側導圧管の片方が詰まっている場合、差圧揺動の分散Vaは大きくなる(比率Dも大きくなる)。さらに、導圧管が正常な場合、差圧揺動の分散Vaは基準揺動分散Vasに近い値となるため、比率Dは「1」に近い値となる。従って、比率Dと所定の閾値とを比較することにより、高圧側及び低圧側導圧管の両方が詰まっているのか、片方が詰まっているのか、または正常なのかを判断することができる。  Then, a ratio D = √ (Va / Vas) between the variance Va of the differential pressure fluctuation obtained at the time of diagnosis of the pressure guiding tube and the reference fluctuation dispersion Vas obtained in advance as described above is calculated. . Since the dispersion Va of the differential pressure fluctuation changes according to the clogged state of the pressure guiding tube, the clogging of the pressure guiding tube can be detected by the change in the ratio D. For example, when both the high-pressure side and the low-pressure side pressure guiding tube are clogged, the variance Va of the differential pressure fluctuation is small (the ratio D is also small). In addition, when one of the high pressure side or low pressure side pressure guiding tubes is clogged, the variance Va of the differential pressure fluctuation increases (the ratio D also increases). Further, when the pressure guiding tube is normal, the differential pressure fluctuation dispersion Va is close to the reference fluctuation dispersion Vas, and thus the ratio D is close to “1”. Therefore, by comparing the ratio D with a predetermined threshold value, it can be determined whether both the high-pressure side and the low-pressure side pressure guiding tube are clogged, one of them is clogged, or normal.

なお、差圧揺動を求める場合、上記(1)式に代えて上記(3)式を用いても良い。例えば、(1)式を用いると、差圧に過渡的な変化(上昇または下降)が生じた場合、その過渡的変化成分が揺動として表れてしまうという問題があった。そこで、(3)式を用いることにより、上記のように差圧に過渡的な変化が生じた場合であっても、その過渡的変化成分を除去することができ、真の揺動成分のみを捉えることができる(下記特許文献2参照)。
特開2004−132817号公報 特開2004−294175号公報
When obtaining the differential pressure fluctuation, the above equation (3) may be used instead of the above equation (1). For example, when the equation (1) is used, when a transient change (increase or decrease) occurs in the differential pressure, the transient change component appears as oscillation. Therefore, by using the expression (3), even if a transient change occurs in the differential pressure as described above, the transient change component can be removed, and only the true oscillation component is obtained. (See Patent Document 2 below).
JP 2004-132817 A JP 2004-294175 A

ところで、差圧揺動の分散は導圧管の詰まり状態に応じて変化するだけでなく、流体の流量の影響も受けて変化する。従って、上記基準揺動分散Vasは、ある一定の流量条件下における実験値であるため、実運転時に流量が増減した場合、導圧管の詰まり状態が同じであっても比率Dの値が変化してしまう。すなわち、流体の流量に応じて閾値または基準揺動分散Vasの設定値を変更する必要があるため、オペレータの作業負荷が増大してしまい、また、例えば上記のような設定値の変更を自動化した場合、装置コストの増大を招くという問題があった。   By the way, the dispersion of the differential pressure fluctuation not only changes according to the clogged state of the pressure guiding tube, but also changes due to the influence of the fluid flow rate. Accordingly, since the reference fluctuation dispersion Vas is an experimental value under a certain flow rate condition, when the flow rate increases or decreases during actual operation, the value of the ratio D changes even if the pressure guiding tube is clogged. End up. That is, it is necessary to change the set value of the threshold value or the reference fluctuation dispersion Vas in accordance with the flow rate of the fluid, which increases the operator's work load. For example, the change of the set value as described above is automated. In this case, there has been a problem that the cost of the apparatus is increased.

本発明は、このような事情に鑑みてなされたものであり、流体の流量に影響されることなく、正確に導圧管の詰まり状態を検出することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to accurately detect the clogged state of a pressure guiding tube without being affected by the flow rate of a fluid.

上記課題を解決するために、本発明では、導圧管詰まり検出装置に係る第1の解決手段として、高圧側導圧管を介して伝達される高圧側圧力と、低圧側導圧管を介して伝達される低圧側圧力とに基づいて流体の差圧を検出し、当該差圧の時系列データを出力する差圧検出手段と、前記差圧の時系列データに基づいて差圧揺動を算出する差圧揺動算出手段と、
前記差圧揺動の分散を算出する揺動分散算出手段と、当該揺動分散算出手段によって算出した差圧揺動の分散と、予め高圧側導圧管及び低圧側導圧管の正常時に求めた差圧揺動の分散との分散比率を算出する分散比率算出手段と、前記差圧検出手段から出力される差圧の時系列データと、予め前記正常時に求めた差圧の時系列データとに基づいて、前記流体の流量変化に起因する前記分散比率の変化を抑制する補正値を算出し、当該補正値により前記分散比率を補正する分散比率補正手段と、当該分散比率補正手段によって補正された前記分散比率に基づいて前記高圧側導圧管及び低圧側導圧管の詰まりを判定する詰まり判定手段とを備えることを特徴とする。
In order to solve the above-mentioned problem, in the present invention, as a first solving means related to a pressure guiding tube clogging detection apparatus, a high pressure side pressure transmitted through a high pressure side pressure guiding tube and a low pressure side pressure guiding tube are transmitted. A differential pressure detecting means for detecting a differential pressure of the fluid based on the low-pressure side pressure and outputting time-series data of the differential pressure; and a difference for calculating a differential pressure fluctuation based on the time-series data of the differential pressure Pressure fluctuation calculating means;
The fluctuation dispersion calculating means for calculating the dispersion of the differential pressure fluctuation, the dispersion of the differential pressure fluctuation calculated by the fluctuation dispersion calculating means, and the difference obtained in advance when the high pressure side pressure guiding tube and the low pressure side pressure guiding tube are normal. Based on dispersion ratio calculation means for calculating a dispersion ratio with respect to dispersion of pressure fluctuation, differential pressure time series data output from the differential pressure detection means, and differential pressure time series data obtained in advance during normal operation Calculating a correction value for suppressing a change in the dispersion ratio caused by a change in the flow rate of the fluid, and correcting the dispersion ratio by the correction value; and the correction corrected by the dispersion ratio correction means And clogging determining means for determining clogging of the high-pressure side pressure guiding tube and the low-pressure side pressure guiding tube based on a dispersion ratio.

また、本発明では、導圧管詰まり検出装置に係る第2の解決手段として、上記第1の解決手段において、前記分散比率補正手段は、前記正常時に予め求めた差圧の時系列データの平均値Adpsと、前記差圧検出手段から出力される差圧の時系列データの平均値Adpとの比率Adps/Adpを補正値として算出し、前記補正値を前記分散比率に乗算することで当該分散比率を補正することを特徴とする。  In the present invention, as the second solving means relating to the pressure guiding tube blockage detecting device, in the first solving means, the dispersion ratio correcting means is an average value of time series data of the differential pressure obtained in advance at the normal time. The ratio Adps / Adp between Adps and the average value Adp of the time series data of the differential pressure output from the differential pressure detecting means is calculated as a correction value, and the dispersion ratio is multiplied by the dispersion ratio. It is characterized by correcting.

また、本発明では、導圧管詰まり検出装置に係る第3の解決手段として、上記第1または第2の解決手段において、前記差圧検出手段は、検出した差圧と所定の閾値とを比較し、当該閾値より大きい差圧の時系列データを出力し、前記正常時に予め求められた差圧の時系列データは、前記所定の閾値より大きい値であり、前記正常時に予め求められた差圧揺動の分散は、当該正常時に予め求められた前記所定の閾値より大きい差圧の時系列データに基づいて算出されたものであることを特徴とする。  In the present invention, as a third solving means relating to the pressure guiding tube blockage detecting device, in the first or second solving means, the differential pressure detecting means compares the detected differential pressure with a predetermined threshold value. The time-series data of the differential pressure larger than the threshold is output, and the time-series data of the differential pressure obtained in advance at the normal time is a value larger than the predetermined threshold, and the differential pressure fluctuation obtained in advance at the normal time. The dispersion of the motion is calculated based on time-series data of a differential pressure larger than the predetermined threshold obtained in advance at the normal time.

また、本発明では、導圧管詰まり検出装置に係る第4の解決手段として、上記第1〜第3のいずれかの解決手段において、前記差圧揺動算出手段は、前記差圧の時系列データにおける今回値Dp(i)、前回値Dp(i-1)、前々回値Dp(i-2)からなる下記(11)式、(12)式または(13)式のいずれかを用いて差圧揺動Fdp(i)を算出することを特徴とする。  In the present invention, as the fourth solving means related to the pressure guiding tube blockage detecting device, in any one of the first to third solving means, the differential pressure fluctuation calculating means includes the time series data of the differential pressure. The differential pressure using one of the following formulas (11), (12) or (13) consisting of the current value Dp (i), the previous value Dp (i-1), and the previous value Dp (i-2) The fluctuation Fdp (i) is calculated.

Figure 0004933305
Figure 0004933305

一方、本発明では、導圧管詰まり検出方法に係る第1の解決手段として、高圧側導圧管を介して伝達される高圧側圧力と、低圧側導圧管を介して伝達される低圧側圧力とに基づいて流体の差圧を検出し、当該差圧の時系列データを取得する第1ステップと、前記差圧の時系列データに基づいて差圧揺動を算出する第2ステップと、前記差圧揺動の分散を算出する第3ステップと、当該第3ステップにて算出した差圧揺動の分散と、予め高圧側導圧管及び低圧側導圧管の正常時に求めた差圧揺動の分散との分散比率を算出する第4ステップと、前記第1ステップにて取得された差圧の時系列データと、予め前記正常時に求めた差圧の時系列データとに基づいて、前記流体の流量変化に起因する前記分散比率の変化を抑制する補正値を算出する第5ステップと、前記補正値に基づいて前記分散比率を補正する第6ステップと、当該第6ステップによって補正された前記分散比率に基づいて前記高圧側導圧管及び低圧側導圧管の詰まりを判定する第7ステップとを有することを特徴とする。  On the other hand, in the present invention, as a first solving means related to the pressure guiding tube clogging detection method, the high pressure side pressure transmitted through the high pressure side pressure guiding tube and the low pressure side pressure transmitted through the low pressure side pressure guiding tube. A first step of detecting a differential pressure of the fluid on the basis of the fluid pressure and acquiring time-series data of the differential pressure; a second step of calculating a differential pressure fluctuation based on the time-series data of the differential pressure; and the differential pressure A third step for calculating the dispersion of the oscillation, a variance of the differential pressure oscillation calculated in the third step, and a variance of the differential pressure oscillation obtained in advance when the high-pressure side impulse line and the low-pressure side impulse line are normal. The flow rate change of the fluid based on the fourth step of calculating the dispersion ratio, the time-series data of the differential pressure obtained in the first step, and the time-series data of the differential pressure obtained in advance at the normal time Calculating a correction value for suppressing a change in the dispersion ratio caused by A step of correcting the dispersion ratio based on the correction value, and a step of determining clogging of the high-pressure side pressure guiding tube and the low-pressure side pressure guiding tube based on the dispersion ratio corrected by the sixth step. And 7 steps.

本発明によれば、流体の流量変化に起因する分散比率の変化を抑制するような補正値を求め、当該補正値によって分散比率を補正することにより、流体の流量に影響されることなく、正確に導圧管の詰まり状態を検出することが可能である。  According to the present invention, a correction value that suppresses a change in the dispersion ratio due to a change in the flow rate of the fluid is obtained, and the dispersion ratio is corrected by the correction value, so that it is accurate without being affected by the fluid flow rate. In addition, it is possible to detect the clogged state of the pressure guiding tube.

以下、図面を参照して、本発明の一実施形態について説明する。
〔第1実施形態〕
図1は第1実施形態における導圧管詰まり検出装置の構成概略図である。なお、本導圧管詰まり検出装置は、プラント等の流体の配管1に設けられたオリフィス2の前段(高圧側)と後段(低圧側)とに配設された高圧側導圧管3及び低圧側導圧管4の詰まりを検出するものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a pressure guiding tube clogging detection apparatus according to the first embodiment. This pressure guiding tube clogging detection apparatus is composed of a high pressure side pressure guiding tube 3 and a low pressure side guiding tube disposed in a front stage (high pressure side) and a rear stage (low pressure side) of an orifice 2 provided in a fluid pipe 1 of a plant or the like. The clogging of the pressure tube 4 is detected.

図1に示すように、本導圧管詰まり検出装置は、差圧伝送器(差圧検出手段)5、差圧揺動算出部6、揺動分散算出部7、分散比率算出部8、分散比率補正部9、詰まり判定部10、表示部11及び記憶部12から構成されている。  As shown in FIG. 1, the pressure guiding tube clogging detection apparatus includes a differential pressure transmitter (differential pressure detection means) 5, a differential pressure fluctuation calculation section 6, a fluctuation dispersion calculation section 7, a dispersion ratio calculation section 8, a dispersion ratio. The correction unit 9 includes a clogging determination unit 10, a display unit 11, and a storage unit 12.

差圧伝送器5は、高圧側導圧管3を介して伝達される高圧側圧力と、低圧側導圧管4を介して伝達される低圧側圧力とに基づいて流体の差圧を検出し、当該差圧を示す時系列データである差圧データDp(i)を差圧揺動算出部6及び分散比率補正部9に出力する。差圧揺動算出部6は、上記差圧伝送器5から時系列的に得られる差圧データDp(i)に基づいて、下記(4)式から差圧揺動Fdp(i)を算出し、当該差圧揺動Fdp(i)を揺動分散算出部7に出力する。なお、下記(4)式において、Dp(i)は差圧データの今回値、Dp(i-1)は差圧データの前回値である。  The differential pressure transmitter 5 detects the differential pressure of the fluid based on the high pressure side pressure transmitted through the high pressure side pressure guiding tube 3 and the low pressure side pressure transmitted through the low pressure side pressure guiding tube 4, Differential pressure data Dp (i), which is time-series data indicating the differential pressure, is output to the differential pressure fluctuation calculating unit 6 and the dispersion ratio correcting unit 9. The differential pressure fluctuation calculation unit 6 calculates the differential pressure fluctuation Fdp (i) from the following equation (4) based on the differential pressure data Dp (i) obtained from the differential pressure transmitter 5 in time series. The differential pressure fluctuation Fdp (i) is output to the fluctuation dispersion calculating unit 7. In the following equation (4), Dp (i) is the current value of the differential pressure data, and Dp (i-1) is the previous value of the differential pressure data.

Figure 0004933305
Figure 0004933305

揺動分散算出部7は、上記差圧揺動算出部6から得られる差圧揺動Fdp(i)の分散Va(2乗平均値)を下記(5)式に基づいて算出し、当該差圧揺動分散Vaを分散比率算出部8に出力する。なお、Nは差圧データDp(i)の全サンプル数である。分散比率算出部8は、上記揺動分散算出部7から得られる差圧揺動分散Vaと、記憶部12に予め記憶されている、高圧側導圧管3及び低圧側導圧管4の正常時における基準揺動分散Vasとの分散比率Dを下記(6)式から算出し、当該分散比率Dを分散比率補正部9に出力する。  The fluctuation dispersion calculation unit 7 calculates the variance Va (root mean square value) of the differential pressure fluctuation Fdp (i) obtained from the differential pressure fluctuation calculation unit 6 based on the following equation (5), and the difference The pressure fluctuation dispersion Va is output to the dispersion ratio calculation unit 8. N is the total number of samples of the differential pressure data Dp (i). The dispersion ratio calculation unit 8 is configured so that the differential pressure fluctuation dispersion Va obtained from the fluctuation dispersion calculation unit 7 and the high pressure side pressure guiding pipe 3 and the low pressure side pressure guiding pipe 4 stored in advance in the storage unit 12 are normal. The dispersion ratio D with respect to the reference fluctuation dispersion Vas is calculated from the following equation (6), and the dispersion ratio D is output to the dispersion ratio correction unit 9.

Figure 0004933305
Figure 0004933305

分散比率補正部9は、差圧伝送器5から時系列的に得られる差圧データDp(i)に基づいて、下記(7)式から差圧データ平均値Adpを算出する一方、記憶部12に予め記憶されている、高圧側導圧管3及び低圧側導圧管4の正常時における差圧データ平均値(基準差圧平均値)Adpsと、上記のように算出した差圧データ平均値Adpとの比率を補正値k(=Adps/Adp)として算出する。なお、この補正値kは、配管1を流れる流体の流量変化に起因する分散比率Dの変化を抑制するための補正値である。分散比率補正部9は、下記(8)式に示すように、分散比率補正部9から得られる分散比率Dに上記補正値kを乗算することで補正分散比率Dcompを算出し、当該補正分散比率Dcompを詰まり判定部10に出力する。  The dispersion ratio correction unit 9 calculates the differential pressure data average value Adp from the following equation (7) based on the differential pressure data Dp (i) obtained from the differential pressure transmitter 5 in time series, while the storage unit 12 The differential pressure data average value (reference differential pressure average value) Adps when the high pressure side pressure guiding tube 3 and the low pressure side pressure guiding tube 4 are normal, and the differential pressure data average value Adp calculated as described above are stored in advance. Is calculated as a correction value k (= Adps / Adp). The correction value k is a correction value for suppressing a change in the dispersion ratio D caused by a change in the flow rate of the fluid flowing through the pipe 1. The dispersion ratio correction unit 9 calculates the corrected dispersion ratio Dcomp by multiplying the dispersion ratio D obtained from the dispersion ratio correction unit 9 by the correction value k as shown in the following equation (8), and the corrected dispersion ratio Dcomp is output to the clogging determination unit 10.

Figure 0004933305
Figure 0004933305

詰まり判定部10は、上記補正分散比率Dcompと所定の閾値とを比較することにより、高圧側導圧管及び低圧側導圧管の詰まり状態を判定し、当該判定結果を表示部11に出力する。表示部11は、例えば液晶表示装置であり、上記詰まり判定部10による判定結果を表示する。記憶部12は、高圧側導圧管3及び低圧側導圧管4の正常時における基準揺動分散Vasと、基準差圧平均値Adpsとを予め記憶している。  The clogging determination unit 10 determines the clogged state of the high pressure side pressure guiding tube and the low pressure side pressure guiding tube by comparing the corrected dispersion ratio Dcomp and a predetermined threshold value, and outputs the determination result to the display unit 11. The display unit 11 is a liquid crystal display device, for example, and displays the determination result by the clogging determination unit 10. The storage unit 12 stores in advance the reference fluctuation dispersion Vas and the reference differential pressure average value Adps when the high-pressure side impulse line 3 and the low-pressure side impulse line 4 are normal.

次に、このように構成された本導圧管詰まり検出装置の動作について説明する。
<基準揺動分散Vas及び基準差圧平均値Adpsの設定>
まず、高圧側導圧管3及び低圧側導圧管4の正常時(つまり導圧管に詰まりがない状態)において、差圧伝送器5から時系列的に得られる差圧データに基づいて、基準揺動分散Vasと、基準差圧平均値Adpsとを実運転の最初の段階に予め求め、記憶部12に記憶しておく必要がある。具体的には、正常時、一定流量条件下において、差圧伝送器5から時系列的に得られる差圧データをDps(i)とすると、差圧揺動Fdps(i)は上記(1)式で表される。一方、差圧揺動Fdps(i)の分散(基準揺動分散)Vasは、上記(2)式で表される。また、基準差圧平均値Adpsは、下記(9)式で表される。これら(1)(2)(9)式に基づいて、基準揺動分散Vas及び基準差圧平均値Adpsを求め、予め記憶部12に記憶しておく。
Next, the operation of the pressure guiding tube clogging detection apparatus configured as described above will be described.
<Setting of reference fluctuation dispersion Vas and reference differential pressure average value Adps>
First, when the high pressure side pressure guiding tube 3 and the low pressure side pressure guiding tube 4 are normal (that is, the pressure guiding tube is not clogged), based on the differential pressure data obtained from the differential pressure transmitter 5 in time series, the reference oscillation is performed. The variance Vas and the reference differential pressure average value Adps must be obtained in advance in the first stage of actual operation and stored in the storage unit 12. Specifically, when the differential pressure data obtained in time series from the differential pressure transmitter 5 under normal conditions and a constant flow rate is Dps (i), the differential pressure fluctuation Fdps (i) is the above (1). It is expressed by a formula. On the other hand, the dispersion (reference fluctuation dispersion) Vas of the differential pressure fluctuation Fdps (i) is expressed by the above equation (2). The reference differential pressure average value Adps is represented by the following equation (9). Based on these equations (1), (2), and (9), the reference fluctuation dispersion Vas and the reference differential pressure average value Adps are obtained and stored in the storage unit 12 in advance.

Figure 0004933305
Figure 0004933305

<実運転時における詰まり判定動作>
図2は、プラントの実運転時における導圧管詰まり判定動作のフローチャート図である。なお、図2に示す動作フローは、導圧管の診断時期が到来する毎に行なわれるものである。まず、差圧伝送器5は、高圧側導圧管3を介して伝達される高圧側圧力と、低圧側導圧管4を介して伝達される低圧側圧力とに基づいて流体の差圧を検出し、当該差圧を示す差圧データDp(i)を差圧揺動算出部6及び分散比率補正部9に出力する(ステップS1)。そして、差圧揺動算出部6は、上記差圧伝送器5から時系列的に得られる差圧データDp(i)に基づいて、上記(4)式から差圧揺動Fdp(i)を算出し、当該差圧揺動Fdp(i)を揺動分散算出部7に出力する(ステップS2)。
<Clogging judgment operation during actual operation>
FIG. 2 is a flowchart of the pressure guiding tube clogging determining operation during the actual operation of the plant. In addition, the operation | movement flow shown in FIG. 2 is performed whenever the diagnosis time of a pressure guiding tube comes. First, the differential pressure transmitter 5 detects the differential pressure of the fluid based on the high pressure side pressure transmitted through the high pressure side pressure guiding tube 3 and the low pressure side pressure transmitted through the low pressure side pressure guiding tube 4. Then, the differential pressure data Dp (i) indicating the differential pressure is output to the differential pressure fluctuation calculating unit 6 and the dispersion ratio correcting unit 9 (step S1). Then, the differential pressure fluctuation calculation unit 6 calculates the differential pressure fluctuation Fdp (i) from the above equation (4) based on the differential pressure data Dp (i) obtained from the differential pressure transmitter 5 in time series. The differential pressure fluctuation Fdp (i) is calculated and outputted to the fluctuation dispersion calculating section 7 (step S2).

次に、揺動分散算出部7は、上記差圧揺動算出部6から得られる差圧揺動Fdp(i)の分散Vaを下記(5)式に基づいて算出し、当該差圧揺動分散Vaを分散比率算出部8に出力する(ステップS3)。そして、分散比率算出部8は、上記揺動分散算出部7から得られる差圧揺動分散Vaと、記憶部12に予め記憶されている、高圧側導圧管3及び低圧側導圧管4の正常時における基準揺動分散Vasとの分散比率Dを上記(6)式から算出し、当該分散比率Dを分散比率補正部9に出力する(ステップS4)。  Next, the fluctuation dispersion calculating unit 7 calculates the variance Va of the differential pressure fluctuation Fdp (i) obtained from the differential pressure fluctuation calculating unit 6 based on the following equation (5), and the differential pressure fluctuation is calculated. The variance Va is output to the variance ratio calculation unit 8 (step S3). Then, the dispersion ratio calculation unit 8 is configured so that the differential pressure fluctuation dispersion Va obtained from the fluctuation dispersion calculation unit 7 and the normality of the high-pressure side impulse line 3 and the low-pressure side impulse line 4 stored in the storage unit 12 in advance. The dispersion ratio D with respect to the reference fluctuation dispersion Vas at the time is calculated from the above equation (6), and the dispersion ratio D is output to the dispersion ratio correction unit 9 (step S4).

続いて、分散比率補正部9は、差圧伝送器5から時系列的に得られる差圧データDp(i)に基づいて、上記(7)式から差圧データ平均値Adpを算出する(ステップS5)。そして、分散比率補正部9は、記憶部12に予め記憶されている、高圧側導圧管3及び低圧側導圧管4の正常時における基準差圧平均値Adpsと上記差圧データ平均値Adpとの比率を補正値k(=Adps/Adp)として算出する(ステップS6)。さらに、分散比率補正部9は、上記(8)式に示すように、分散比率補正部9から得られる分散比率Dに上記補正値kを乗算することで補正分散比率Dcompを算出し、当該補正分散比率Dcompを詰まり判定部10に出力する(ステップS7)。  Subsequently, the dispersion ratio correction unit 9 calculates the differential pressure data average value Adp from the above equation (7) based on the differential pressure data Dp (i) obtained from the differential pressure transmitter 5 in time series (step) S5). Then, the dispersion ratio correction unit 9 stores the reference differential pressure average value Adps and the differential pressure data average value Adp when the high pressure side pressure guiding tube 3 and the low pressure side pressure guiding tube 4 are normal stored in the storage unit 12 in advance. The ratio is calculated as a correction value k (= Adps / Adp) (step S6). Furthermore, the dispersion ratio correction unit 9 calculates the corrected dispersion ratio Dcomp by multiplying the dispersion ratio D obtained from the dispersion ratio correction unit 9 by the correction value k as shown in the above equation (8), and the correction The dispersion ratio Dcomp is output to the clogging determination unit 10 (step S7).

ところで、上述したように、差圧揺動の分散は導圧管の詰まり状態に応じて変化するだけでなく、流体の流量の影響も受けて変化する。例えば、流量が増大すると、差圧揺動分散Vaが大きくなるため、分散比率Dも大きくなる。一方、流量が増大すると、差圧が大きくなる、つまり差圧データ平均値Adpも大きくなるため、補正値kは小さくなる。このように、補正値kは、配管1を流れる流体の流量変化に起因する分散比率Dの変化を抑制するような値になる。従って、上記(8)式から得られる補正分散比率Dcompは、分散比率Dに対する流量変化の影響が補正された値となる。  By the way, as described above, the dispersion of the differential pressure fluctuation not only changes according to the clogged state of the pressure guiding tube but also changes due to the influence of the flow rate of the fluid. For example, when the flow rate increases, the differential pressure fluctuation dispersion Va increases, and the dispersion ratio D also increases. On the other hand, when the flow rate increases, the differential pressure increases, that is, the differential pressure data average value Adp also increases, so the correction value k decreases. Thus, the correction value k is a value that suppresses a change in the dispersion ratio D caused by a change in the flow rate of the fluid flowing through the pipe 1. Therefore, the corrected dispersion ratio Dcomp obtained from the equation (8) is a value in which the influence of the flow rate change on the dispersion ratio D is corrected.

次に、詰まり判定部10は、上記補正分散比率Dcompと所定の閾値とを比較することにより、高圧側導圧管3及び低圧側導圧管4の詰まり状態を判定し、当該判定結果を表示部11に出力する(ステップS8)。判定方法については、従来と同様であるので詳細な説明は省略するが、例えば、上記補正分散比率Dcompと第1の閾値(例えば3)及び第2の閾値(例えば0.3)とを比較し、補正分散比率Dcomp≧第1の閾値の場合、高圧側導圧管3もしくは低圧側導圧管4の片方が詰まっていると判定し、また、補正分散比率Dcomp≦第2の閾値の場合、高圧側導圧管3及び低圧側導圧管4の両方が詰まっていると判定し、また、第2の閾値<補正分散比率Dcomp<第1の閾値の場合、正常と判定する。そして、表示部11は、上記詰まり判定部10による詰まり判定結果に基づいて、高圧側導圧管3及び低圧側導圧管4の詰まり状態を表示する。  Next, the clogging determination unit 10 determines the clogged state of the high pressure side pressure guiding tube 3 and the low pressure side pressure guiding tube 4 by comparing the corrected dispersion ratio Dcomp and a predetermined threshold value, and displays the determination result on the display unit 11. (Step S8). Since the determination method is the same as that of the prior art, a detailed description thereof will be omitted. However, for example, the corrected dispersion ratio Dcomp is compared with the first threshold (for example, 3) and the second threshold (for example, 0.3). When the corrected dispersion ratio Dcomp ≧ first threshold value, it is determined that one of the high pressure side pressure guiding tube 3 or the low pressure side pressure guiding tube 4 is clogged, and when the corrected dispersion ratio Dcomp ≦ second threshold value, It is determined that both the pressure guiding tube 3 and the low pressure side pressure guiding tube 4 are clogged, and when the second threshold value <corrected dispersion ratio Dcomp <the first threshold value, it is determined as normal. The display unit 11 displays the clogged state of the high-pressure side pressure guiding tube 3 and the low-pressure side pressure guiding tube 4 based on the clogging determination result by the clogging determining unit 10.

以上のように、本第1実施形態の導圧管詰まり検出装置によれば、配管1を流れる流体の流量変化に起因する分散比率Dの変化を抑制するような補正値kを求め、当該補正値kによって分散比率Dを補正することにより、流体の流量に影響されることなく、正確に導圧管の詰まり状態を検出することが可能である。よって、流体の流量に応じて閾値または基準揺動分散Vasの設定値を変更する必要がないため、オペレータの作業負荷の増大を防ぎ、また、上記のような設定値の変更を自動化する必要がないため、装置コストの増大を防止することができる。   As described above, according to the pressure guiding tube blockage detecting device of the first embodiment, the correction value k that suppresses the change in the dispersion ratio D caused by the change in the flow rate of the fluid flowing through the pipe 1 is obtained, and the correction value By correcting the dispersion ratio D by k, it is possible to accurately detect the clogged state of the pressure guiding tube without being affected by the flow rate of the fluid. Therefore, it is not necessary to change the set value of the threshold value or the reference fluctuation dispersion Vas in accordance with the flow rate of the fluid. Therefore, it is necessary to prevent an increase in the operator's work load and to automate the change of the set value as described above. Therefore, an increase in device cost can be prevented.

なお、上記第1実施形態では、補正値kとして、高圧側導圧管3及び低圧側導圧管4の正常時における基準差圧平均値Adpsと、診断時における差圧データ平均値Adpとの比率(=Adps/Adp)を求めたが、これに限定されず、例えば正常時において同様に求めた所定サンプル数の差圧データDps(i)の合計値Tdpsと、実運転時(診断時)において時系列的に得られる所定サンプル数の差圧データDp(i)の合計値Tdpとの比率(=Tdps/Tdp)を補正値kとして求めても良い。   In the first embodiment, as the correction value k, the ratio between the reference differential pressure average value Adps when the high pressure side pressure guiding tube 3 and the low pressure side pressure guiding tube 4 are normal and the differential pressure data average value Adp during diagnosis ( = Adps / Adp), but is not limited to this. For example, the total value Tdps of the differential pressure data Dps (i) of the predetermined number of samples obtained in the same way at normal time and the time in actual operation (during diagnosis) A ratio (= Tdps / Tdp) with the total value Tdp of the differential pressure data Dp (i) of a predetermined number of samples obtained in series may be obtained as the correction value k.

ところで、上述したように、第1実施形態の導圧管詰まり検出装置では、予め正常時に求めておいた基準差圧平均値Adpsと、診断時に求めた差圧データ平均値Adpとの比率を補正値k(=Adps/Adp)とし、この補正値kを用いることで、流量変化に起因する分散比率Dの変化を補正した。しかしながら、一般のプラントでは、差圧データDp(i)が診断している最中で常に一定であるとは限らない。例えば、一回の診断中においてさえ、流量がゼロから平均流量値の数倍以上変動する場合や、プラントによっては断続的に流体が流れる場合もあり得る。   As described above, in the pressure guiding tube blockage detecting device according to the first embodiment, the ratio between the reference differential pressure average value Adps previously obtained during normal operation and the differential pressure data average value Adp obtained during diagnosis is a correction value. By using k (= Adps / Adp) and using this correction value k, the change in the dispersion ratio D due to the flow rate change was corrected. However, in a general plant, the differential pressure data Dp (i) is not always constant during diagnosis. For example, even during a single diagnosis, the flow rate may vary from zero to several times the average flow rate value, or the fluid may flow intermittently depending on the plant.

図3は、断続的に流体が流れる条件下(以下、断続的流れ条件下と呼ぶ)における差圧データDp(i)の時間変化を示すものである。図3では、期間T1及びT2において流体が流れず(つまり流量はゼロ)、差圧データDp(i)がゼロとなっている場合を例示している。
このような断続的流れ条件下では、流体が流れない期間T1及びT2と、それ以外の流体が流れる期間に差圧データDp(i)のサンプリングを行うため、差圧揺動分散Vaと差圧データ平均値Adpの計算に誤差が生じる。例えば、流体が流れない期間T1及びT2のサンプリング数をn、それ以外の流体が流れる期間のサンプリング数をmとすると、断続的流れ条件下で第1実施形態の導圧管詰まり検出装置を使用した場合、補正分散比率Dcompは、下記(10)式で表される。この(10)式からわかるように、断続的流れ条件下において差圧揺動分散Vaが小さくなるほど、分散比率Dは過大補正される傾向にある。
FIG. 3 shows the time change of the differential pressure data Dp (i) under the condition that the fluid flows intermittently (hereinafter referred to as the intermittent flow condition). FIG. 3 illustrates a case where fluid does not flow in the periods T1 and T2 (that is, the flow rate is zero) and the differential pressure data Dp (i) is zero.
Under such intermittent flow conditions, the differential pressure fluctuation dispersion Va and the differential pressure are sampled because the differential pressure data Dp (i) is sampled during the periods T1 and T2 in which no fluid flows and the periods in which other fluids flow. An error occurs in the calculation of the data average value Adp. For example, when the sampling number in the periods T1 and T2 in which the fluid does not flow is n and the sampling number in the period in which the other fluid flows is m, the pressure guiding tube clogging detection apparatus of the first embodiment is used under intermittent flow conditions. In this case, the corrected dispersion ratio Dcomp is expressed by the following equation (10). As can be seen from this equation (10), the dispersion ratio D tends to be overcorrected as the differential pressure fluctuation dispersion Va decreases under intermittent flow conditions.

Figure 0004933305
Figure 0004933305

上記のように、断続的流れ条件下のように激しく流量が変化する場合では、正確に導圧管の詰まり状態を検出することが困難となる。このような場合は、以下に説明する第2実施形態の導圧管詰まり検出装置を用いることにより、正確に導圧管の詰まり状態を検出することができる。   As described above, when the flow rate changes drastically as in an intermittent flow condition, it is difficult to accurately detect the clogged state of the pressure guiding tube. In such a case, the clogged state of the pressure guiding tube can be accurately detected by using the pressure guiding tube clogging detection device of the second embodiment described below.

〔第2実施形態〕
第2実施形態における導圧管詰まり検出装置の装置構成については、図1に示す第1実施形態の導圧管詰まり検出装置と比較して、差圧伝送器5に以下に説明する機能が付加されたのみであり、他の構成要素は同一であるので図示及び説明を省略する。なお、説明の便宜上、第1実施形態の差圧伝送器5と区別するために、第2実施形態では差圧伝送器5aとする。
[Second Embodiment]
As for the device configuration of the pressure guiding tube clogging detecting device in the second embodiment, the following functions are added to the differential pressure transmitter 5 as compared with the pressure guiding tube clogging detecting device of the first embodiment shown in FIG. Since other components are the same, illustration and description are omitted. For convenience of explanation, in order to distinguish from the differential pressure transmitter 5 of the first embodiment, the differential pressure transmitter 5a is used in the second embodiment.

第2実施形態における導圧管詰まり検出装置の差圧伝送器5aは、高圧側導圧管3を介して伝達される高圧側圧力と、低圧側導圧管4を介して伝達される低圧側圧力とに基づいて流体の差圧を検出し、当該差圧と所定の閾値LTとを比較し、閾値LTより大きい差圧の時系列データである差圧データDp(i)のみを差圧揺動算出部6及び分散比率補正部9に出力する。ここで、閾値LTは、平均的な差圧データDp(i)の値の5%程度に設定されている。   The differential pressure transmitter 5 a of the pressure guiding tube clogging detection device in the second embodiment is configured to convert the high pressure side pressure transmitted through the high pressure side pressure guiding tube 3 and the low pressure side pressure transmitted through the low pressure side pressure guiding tube 4. Based on this, the differential pressure of the fluid is detected, the differential pressure is compared with a predetermined threshold LT, and only the differential pressure data Dp (i), which is time series data of the differential pressure greater than the threshold LT, is calculated. 6 and the dispersion ratio correction unit 9. Here, the threshold value LT is set to about 5% of the value of the average differential pressure data Dp (i).

続いて、第2実施形態における導圧管詰まり検出装置の動作について説明する。
<基準揺動分散Vas及び基準差圧平均値Adpsの設定>
まず、第1実施形態と同様に、高圧側導圧管3及び低圧側導圧管4の正常時(つまり導圧管に詰まりがない状態)において、差圧伝送器5aから時系列的に得られる差圧データDp(i)に基づいて、基準揺動分散Vasと、基準差圧平均値Adpsとを実運転の最初の段階に予め求め、記憶部12に記憶しておく必要がある。ここで、第1実施形態と異なる点は、差圧伝送器5aから時系列的に得られる差圧データDp(i)とは、上述したように、閾値LTより大きな値の差圧データDp(i)であるという点である。つまり、図3から明らかなように、差圧伝送器5aからは、流体が流れない期間T1及びT2以外の流体が流れる期間のみの差圧データDp(i)が得られることになる。
Next, the operation of the pressure guiding tube blockage detection device in the second embodiment will be described.
<Setting of reference fluctuation dispersion Vas and reference differential pressure average value Adps>
First, as in the first embodiment, when the high pressure side pressure guiding tube 3 and the low pressure side pressure guiding tube 4 are normal (that is, the pressure guiding tube is not clogged), the differential pressure obtained in time series from the differential pressure transmitter 5a. Based on the data Dp (i), the reference fluctuation dispersion Vas and the reference differential pressure average value Adps must be obtained in advance in the first stage of actual operation and stored in the storage unit 12. Here, the difference from the first embodiment is that the differential pressure data Dp (i) obtained in time series from the differential pressure transmitter 5a is the differential pressure data Dp () having a value larger than the threshold LT as described above. i). That is, as is apparent from FIG. 3, the differential pressure transmitter 5a obtains differential pressure data Dp (i) only during a period during which fluid other than the periods T1 and T2 during which no fluid flows.

具体的には、正常時、図3に示すような断続的流れ条件下において、差圧伝送器5aから時系列的に得られる、閾値LTより大きい差圧データをDps(i)とすると、差圧揺動Fdps(i)は上記(1)式によって算出する。一方、差圧揺動Fdps(i)の分散(基準揺動分散)Vasは上記(2)式によって算出する。なお、(2)式において、Nは差圧データDps(i)の全サンプル数であるが、この全サンプル数は当然閾値LTより大きい差圧データDps(i)のサンプル数である。また、基準差圧平均値Adpsは、上記(9)式によって算出する。これら(1)(2)(9)式に基づいて、基準揺動分散Vas及び基準差圧平均値Adpsを求め、予め記憶部12に記憶しておく。  Specifically, when the differential pressure data larger than the threshold value LT obtained in time series from the differential pressure transmitter 5a under the intermittent flow conditions as shown in FIG. The pressure fluctuation Fdps (i) is calculated by the above equation (1). On the other hand, the dispersion (reference fluctuation dispersion) Vas of the differential pressure fluctuation Fdps (i) is calculated by the above equation (2). In Equation (2), N is the total number of samples of the differential pressure data Dps (i), but this total number of samples is naturally the number of differential pressure data Dps (i) greater than the threshold LT. The reference differential pressure average value Adps is calculated by the above equation (9). Based on these equations (1), (2), and (9), the reference fluctuation dispersion Vas and the reference differential pressure average value Adps are obtained and stored in the storage unit 12 in advance.

<実運転時における詰まり判定動作>
図4は、第2実施形態におけるプラントの実運転時(断続的流れ条件下)における導圧管詰まり判定動作のフローチャート図である。なお、図4に示す動作フローは、導圧管の診断時期が到来する毎に行なわれるものである。まず、差圧伝送器5aは、高圧側導圧管3を介して伝達される高圧側圧力と、低圧側導圧管4を介して伝達される低圧側圧力とに基づいて流体の差圧を検出し、当該差圧と閾値LTとを比較し、閾値LTより大きい差圧の時系列データである差圧データDp(i)のみを差圧揺動算出部6及び分散比率補正部9に出力する(ステップS10)。ここでも、差圧伝送器5aからは、流体が流れない期間T1及びT2以外の流体が流れる期間のみの差圧データDp(i)が出力される。
<Clogging judgment operation during actual operation>
FIG. 4 is a flowchart of the pressure guiding tube blockage determining operation during actual operation (under intermittent flow conditions) of the plant in the second embodiment. In addition, the operation | movement flow shown in FIG. 4 is performed whenever the diagnosis time of a pressure guiding tube comes. First, the differential pressure transmitter 5 a detects the differential pressure of the fluid based on the high pressure side pressure transmitted through the high pressure side pressure guiding tube 3 and the low pressure side pressure transmitted through the low pressure side pressure guiding tube 4. The differential pressure is compared with the threshold LT, and only the differential pressure data Dp (i), which is time-series data of the differential pressure larger than the threshold LT, is output to the differential pressure fluctuation calculating unit 6 and the dispersion ratio correcting unit 9 ( Step S10). In this case, the differential pressure transmitter 5a outputs differential pressure data Dp (i) only during a period in which a fluid other than the periods T1 and T2 in which no fluid flows.

そして、差圧揺動算出部6は、上記差圧伝送器5から時系列的に得られる、閾値LTより大きい差圧データDp(i)に基づいて、上記(4)式から差圧揺動Fdp(i)を算出し、当該差圧揺動Fdp(i)を揺動分散算出部7に出力する(ステップS11)。   Then, the differential pressure fluctuation calculation unit 6 calculates the differential pressure fluctuation from the equation (4) based on the differential pressure data Dp (i) larger than the threshold value LT obtained in time series from the differential pressure transmitter 5. Fdp (i) is calculated, and the differential pressure fluctuation Fdp (i) is output to the fluctuation dispersion calculating unit 7 (step S11).

次に、揺動分散算出部7は、上記差圧揺動算出部6から得られる差圧揺動Fdp(i)の分散Vaを上記(5)式に基づいて算出し、当該差圧揺動分散Vaを分散比率算出部8に出力する(ステップS12)。そして、分散比率算出部8は、上記揺動分散算出部7から得られる差圧揺動分散Vaと、記憶部12に予め記憶されている、高圧側導圧管3及び低圧側導圧管4の正常時における基準揺動分散Vasとの分散比率Dを上記(6)式から算出し、当該分散比率Dを分散比率補正部9に出力する(ステップS13)。  Next, the fluctuation dispersion calculator 7 calculates the variance Va of the differential pressure fluctuation Fdp (i) obtained from the differential pressure fluctuation calculator 6 based on the above equation (5), and the differential pressure fluctuation is calculated. The variance Va is output to the variance ratio calculation unit 8 (step S12). Then, the dispersion ratio calculation unit 8 is configured so that the differential pressure fluctuation dispersion Va obtained from the fluctuation dispersion calculation unit 7 and the normality of the high-pressure side impulse line 3 and the low-pressure side impulse line 4 stored in the storage unit 12 in advance. The dispersion ratio D with respect to the reference fluctuation dispersion Vas at the time is calculated from the above equation (6), and the dispersion ratio D is output to the dispersion ratio correction unit 9 (step S13).

続いて、分散比率補正部9は、差圧伝送器5aから時系列的に得られる、閾値LTより大きい差圧データDp(i)に基づいて、上記(7)式から差圧データ平均値Adpを算出する(ステップS14)。そして、分散比率補正部9は、記憶部12に予め記憶されている、高圧側導圧管3及び低圧側導圧管4の正常時における基準差圧平均値Adpsと、上記差圧データ平均値Adpとの比率を補正値k(=Adps/Adp)として算出する(ステップS15)。  Subsequently, the dispersion ratio correction unit 9 calculates the differential pressure data average value Adp from the above equation (7) based on the differential pressure data Dp (i) larger than the threshold value LT obtained in time series from the differential pressure transmitter 5a. Is calculated (step S14). Then, the dispersion ratio correction unit 9 stores the reference differential pressure average value Adps when the high pressure side pressure guiding tube 3 and the low pressure side pressure guiding tube 4 are normal and the differential pressure data average value Adp stored in the storage unit 12 in advance. Is calculated as a correction value k (= Adps / Adp) (step S15).

さらに、分散比率補正部9は、上記(8)式に示すように、分散比率補正部9から得られる分散比率Dに上記補正値kを乗算することで補正分散比率Dcompを算出し、当該補正分散比率Dcompを詰まり判定部10に出力する(ステップS16)。そして、詰まり判定部10は、第1実施形態と同様に、上記補正分散比率Dcompと所定の閾値とを比較することにより、高圧側導圧管3及び低圧側導圧管4の詰まり状態を判定し、当該判定結果を表示部11に出力する(ステップS17)。  Furthermore, the dispersion ratio correction unit 9 calculates the corrected dispersion ratio Dcomp by multiplying the dispersion ratio D obtained from the dispersion ratio correction unit 9 by the correction value k as shown in the above equation (8), and the correction The dispersion ratio Dcomp is output to the clogging determination unit 10 (step S16). Then, similarly to the first embodiment, the clogging determination unit 10 determines the clogged state of the high-pressure side impulse line 3 and the low-pressure side impulse line 4 by comparing the corrected dispersion ratio Dcomp and a predetermined threshold value, The determination result is output to the display unit 11 (step S17).

以上のように、第2実施形態の導圧管詰まり検出装置によると、閾値LTより大きい差圧データDp(i)のみをサンプリングするので、断続的流れ条件下のように激しく流量が変化するであっても、流体が流れない期間の影響を受けることがなく、正確に導圧管の詰まり状態を判定することができる。   As described above, according to the pressure guiding tube blockage detection device of the second embodiment, only the differential pressure data Dp (i) larger than the threshold value LT is sampled, so that the flow rate changes drastically as in the intermittent flow condition. However, the clogged state of the pressure guiding tube can be accurately determined without being affected by the period during which no fluid flows.

なお、上記第1及び第2実施形態では、差圧揺動Fdp(i)を算出する式として(4)式を用いたが、この(4)式の代わりに(3)式を用いても良い(添え字が変わるのみである)。この(3)式を用いることにより、差圧に過渡的な変化が生じた場合であっても、その過渡的変化成分を除去することができ、真の揺動成分のみを捉えることができる。   In the first and second embodiments, the equation (4) is used as an equation for calculating the differential pressure fluctuation Fdp (i). However, the equation (3) may be used instead of the equation (4). Good (subscript only changes). By using this equation (3), even if a transient change occurs in the differential pressure, the transient change component can be removed and only the true oscillation component can be captured.

さらに、差圧揺動Fdp(i)を算出する式として、下記(11)〜(13)式のいずれかを用いても良い。これら(11)〜(13)式は、上記(3)式をさらに差圧データの今回値Dp(i)、または前回値Dp(i-1)、または前々回値Dp(i-2)で割ったものである。これらのような式を用いることにより、差圧の過渡的変化成分や流量の変化に影響されない、正確な差圧揺動Fdp(i)を得ることが可能となる。   Furthermore, any of the following formulas (11) to (13) may be used as a formula for calculating the differential pressure fluctuation Fdp (i). These equations (11) to (13) are obtained by further dividing the above equation (3) by the current value Dp (i), the previous value Dp (i-1), or the previous value Dp (i-2) of the differential pressure data. It is a thing. By using these equations, it is possible to obtain an accurate differential pressure fluctuation Fdp (i) that is not influenced by a transient change component of the differential pressure or a change in flow rate.

Figure 0004933305
Figure 0004933305

本発明の第1実施形態における導圧管詰まり検出装置の構成概略図である。1 is a schematic configuration diagram of a pressure guiding tube blockage detection device according to a first embodiment of the present invention. 本発明の第1実施形態における導圧管詰まり検出装置の動作フローチャート図である。It is an operation | movement flowchart figure of the pressure guiding tube blockage detection apparatus in 1st Embodiment of this invention. 断続的流れ条件下における差圧データDp(i)の時間変化を示す模式図である。It is a schematic diagram which shows the time change of the differential pressure data Dp (i) under intermittent flow conditions. 本発明の第2実施形態における導圧管詰まり検出装置の動作フローチャート図である。It is an operation | movement flowchart figure of the pressure guiding tube blockage detection apparatus in 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…配管、2…オリフィス、3…高圧側導圧管、4…低圧側導圧管、5、5a…差圧伝送器(差圧検出手段)、6…差圧揺動算出部、7…揺動分散算出部、8…分散比率算出部、9…分散比率補正部、10…詰まり判定部、11…表示部、12…記憶部

DESCRIPTION OF SYMBOLS 1 ... Piping, 2 ... Orifice, 3 ... High pressure side pressure guiding tube, 4 ... Low pressure side pressure guiding tube, 5, 5a ... Differential pressure transmitter (differential pressure detection means), 6 ... Differential pressure fluctuation calculation part, 7 ... Swing Dispersion calculation unit, 8 ... dispersion ratio calculation unit, 9 ... dispersion ratio correction unit, 10 ... clogging determination unit, 11 ... display unit, 12 ... storage unit

Claims (5)

高圧側導圧管を介して伝達される高圧側圧力と、低圧側導圧管を介して伝達される低圧側圧力とに基づいて流体の差圧を検出し、当該差圧の時系列データを出力する差圧検出手段と、
前記差圧の時系列データに基づいて差圧揺動を算出する差圧揺動算出手段と、
前記差圧揺動の分散を算出する揺動分散算出手段と、
当該揺動分散算出手段によって算出した差圧揺動の分散と、予め高圧側導圧管及び低圧側導圧管の正常時に求めた差圧揺動の分散との分散比率を算出する分散比率算出手段と、
前記差圧検出手段から出力される差圧の時系列データと、予め前記正常時に求めた差圧の時系列データとに基づいて、前記流体の流量変化に起因する前記分散比率の変化を抑制する補正値を算出し、当該補正値により前記分散比率を補正する分散比率補正手段と、
当該分散比率補正手段によって補正された前記分散比率に基づいて前記高圧側導圧管及び低圧側導圧管の詰まりを判定する詰まり判定手段と、
を備えることを特徴とする導圧管詰まり検出装置。
Detects the differential pressure of the fluid based on the high pressure side pressure transmitted through the high pressure side pressure guiding tube and the low pressure side pressure transmitted through the low pressure side pressure guiding tube, and outputs time series data of the differential pressure. Differential pressure detection means;
Differential pressure fluctuation calculating means for calculating differential pressure fluctuation based on the time-series data of the differential pressure;
Oscillating dispersion calculating means for calculating dispersion of the differential pressure oscillating;
A dispersion ratio calculating means for calculating a dispersion ratio between the dispersion of the differential pressure fluctuation calculated by the fluctuation dispersion calculating means and the dispersion of the differential pressure fluctuation calculated in advance when the high pressure side pressure guiding tube and the low pressure side pressure guiding tube are normal; ,
Based on the time-series data of the differential pressure output from the differential pressure detection means and the time-series data of the differential pressure obtained in advance at the normal time, the change in the dispersion ratio due to the change in the flow rate of the fluid is suppressed. A dispersion ratio correction means for calculating a correction value and correcting the dispersion ratio by the correction value;
Clogging determining means for determining clogging of the high pressure side pressure guiding pipe and the low pressure side pressure guiding pipe based on the dispersion ratio corrected by the dispersion ratio correcting means;
A pressure guiding tube clogging detection apparatus comprising:
前記分散比率補正手段は、前記正常時に予め求めた差圧の時系列データの平均値Adpsと、前記差圧検出手段から出力される差圧の時系列データの平均値Adpとの比率Adps/Adpを補正値として算出し、前記補正値を前記分散比率に乗算することで当該分散比率を補正することを特徴とする請求項1記載の導圧管詰まり検出装置。   The dispersion ratio correcting means is a ratio Adps / Adp between an average value Adps of time series data of differential pressure obtained in advance during the normal time and an average value Adp of time series data of differential pressure output from the differential pressure detecting means. 2. The pressure guiding tube blockage detecting device according to claim 1, wherein the dispersion ratio is corrected by calculating as a correction value and multiplying the dispersion ratio by the correction value. 前記差圧検出手段は、検出した差圧と所定の閾値とを比較し、当該閾値より大きい差圧の時系列データを出力し、
前記正常時に予め求められた差圧の時系列データは、前記所定の閾値より大きい値であり、前記正常時に予め求められた差圧揺動の分散は、当該正常時に予め求められた前記所定の閾値より大きい差圧の時系列データに基づいて算出されたものであることを特徴とする請求項1または2記載の導圧管詰まり検出装置。
The differential pressure detection means compares the detected differential pressure with a predetermined threshold value, and outputs time series data of the differential pressure greater than the threshold value,
The time-series data of the differential pressure obtained in advance at the normal time is a value larger than the predetermined threshold value, and the variance of the differential pressure fluctuation obtained in advance at the normal time is the predetermined pressure obtained in advance at the normal time. 3. The pressure guiding tube blockage detecting device according to claim 1, wherein the pressure guiding tube blockage detecting device is calculated based on time-series data of a differential pressure larger than a threshold value.
前記差圧揺動算出手段は、前記差圧の時系列データにおける今回値Dp(i)、前回値Dp(i-1)、前々回値Dp(i-2)からなる下記(11)式、(12)式または(13)式のいずれかを用いて差圧揺動Fdp(i)を算出することを特徴とする請求項1〜3のいずれか一項に記載の導圧管詰まり検出装置。
Figure 0004933305
The differential pressure fluctuation calculating means includes the following equation (11), which includes a current value Dp (i), a previous value Dp (i-1), and a previous value Dp (i-2) in the time series data of the differential pressure: The pressure guiding tube blockage detecting device according to any one of claims 1 to 3, wherein the differential pressure fluctuation Fdp (i) is calculated by using either of the formula (12) or the formula (13).
Figure 0004933305
高圧側導圧管を介して伝達される高圧側圧力と、低圧側導圧管を介して伝達される低圧側圧力とに基づいて流体の差圧を検出し、当該差圧の時系列データを取得する第1ステップと、
前記差圧の時系列データに基づいて差圧揺動を算出する第2ステップと、
前記差圧揺動の分散を算出する第3ステップと、
当該第3ステップにて算出した差圧揺動の分散と、予め高圧側導圧管及び低圧側導圧管の正常時に求めた差圧揺動の分散との分散比率を算出する第4ステップと、
前記第1ステップにて取得された差圧の時系列データと、予め前記正常時に求めた差圧の時系列データとに基づいて、前記流体の流量変化に起因する前記分散比率の変化を抑制する補正値を算出する第5ステップと、
前記補正値に基づいて前記分散比率を補正する第6ステップと、
当該第6ステップによって補正された前記分散比率に基づいて前記高圧側導圧管及び低圧側導圧管の詰まりを判定する第7ステップと、
を有することを特徴とする導圧管詰まり検出方法。
Based on the high pressure side pressure transmitted through the high pressure side pressure guiding tube and the low pressure side pressure transmitted through the low pressure side pressure guiding tube, the differential pressure of the fluid is detected, and time series data of the differential pressure is obtained. The first step;
A second step of calculating a differential pressure fluctuation based on the time series data of the differential pressure;
A third step of calculating a variance of the differential pressure fluctuation;
A fourth step of calculating a dispersion ratio between the dispersion of the differential pressure fluctuation calculated in the third step and the dispersion of the differential pressure fluctuation calculated in advance when the high pressure side pressure guiding tube and the low pressure side pressure guiding tube are normal;
Based on the time series data of the differential pressure acquired in the first step and the time series data of the differential pressure obtained in advance at the normal time, the change in the dispersion ratio due to the change in the flow rate of the fluid is suppressed. A fifth step of calculating a correction value;
A sixth step of correcting the dispersion ratio based on the correction value;
A seventh step of determining clogging of the high-pressure side impulse line and the low-pressure side impulse line based on the dispersion ratio corrected in the sixth step;
A pressure guiding tube clogging detection method comprising:
JP2007045294A 2006-03-27 2007-02-26 Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method Active JP4933305B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007045294A JP4933305B2 (en) 2006-03-27 2007-02-26 Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
CN2007101516629A CN101256106B (en) 2007-02-26 2007-09-25 Impulse line-clogging detecting unit and impulse line-clogging detecting method
US11/861,215 US7650245B2 (en) 2007-02-26 2007-09-25 Impulse line-clogging detecting unit and impulse line-clogging detecting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006084525 2006-03-27
JP2006084525 2006-03-27
JP2007045294A JP4933305B2 (en) 2006-03-27 2007-02-26 Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method

Publications (2)

Publication Number Publication Date
JP2007292733A JP2007292733A (en) 2007-11-08
JP4933305B2 true JP4933305B2 (en) 2012-05-16

Family

ID=38763470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045294A Active JP4933305B2 (en) 2006-03-27 2007-02-26 Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method

Country Status (1)

Country Link
JP (1) JP4933305B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016114846A1 (en) * 2016-08-10 2018-02-15 Endress+Hauser Gmbh+Co. Kg Differential pressure measuring arrangement and method for detecting clogged differential pressure lines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680109A (en) * 1996-06-21 1997-10-21 The Foxboro Company Impulse line blockage detector systems and methods
JP4476540B2 (en) * 2002-10-10 2010-06-09 横河電機株式会社 Pipe blockage detection device
JP4379680B2 (en) * 2003-03-26 2009-12-09 横河電機株式会社 Pressure guiding tube blockage detection device

Also Published As

Publication number Publication date
JP2007292733A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US7650245B2 (en) Impulse line-clogging detecting unit and impulse line-clogging detecting method
JP4970820B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
CN102128666B (en) Method for calibrating Coriolis mass flowmeter
KR101616582B1 (en) Flow controller
EP2893301B1 (en) Self-diagnosing differential pressure flow meter
EP2909587B1 (en) Ultrasonic flow metering system with an upstream pressure transducer
AU2013405149B2 (en) Coriolis direct wellhead measurement devices and methods
JP4476540B2 (en) Pipe blockage detection device
CN102654410A (en) Differential pressure based flow measurement
EP2003253A2 (en) Water distribution information management device
US20220244082A1 (en) Flow measurement method based on dynamic optimization of three pressure sensors
JP4804798B2 (en) Pressure detector and clogging diagnosis method for pressure detector
CN111928910A (en) Integral type bidirectional measurement return bend flowmeter
JP4933305B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
EP3130895B1 (en) Flow sensor device and method related thereto
JP2009085769A (en) Apparatus for measuring fluid in pipe line, and system for diagnosing clogging in connecting pipe
JP5031689B2 (en) Gas meter weighing method and gas meter weighing device
US11982556B2 (en) Wet gas flow rate metering method based on a coriolis mass flowmeter and device thereof
EP0674154A1 (en) Method and device for determining the flow rate of a pumped fluid
JP5005404B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
JP4609025B2 (en) Pressure detector and clogging diagnosis method for pressure detector
JP4623488B2 (en) Fluid flow measuring device
JP5013959B2 (en) Position confirmation device
JP2014106097A (en) Device and method for detecting impulse line blockage
JP2011080856A (en) Device and method for detecting clogging of pressure guide pipe

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250