JP4609025B2 - Pressure detector and clogging diagnosis method for pressure detector - Google Patents

Pressure detector and clogging diagnosis method for pressure detector Download PDF

Info

Publication number
JP4609025B2
JP4609025B2 JP2004290930A JP2004290930A JP4609025B2 JP 4609025 B2 JP4609025 B2 JP 4609025B2 JP 2004290930 A JP2004290930 A JP 2004290930A JP 2004290930 A JP2004290930 A JP 2004290930A JP 4609025 B2 JP4609025 B2 JP 4609025B2
Authority
JP
Japan
Prior art keywords
pressure
dispersion
differential pressure
ratio
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004290930A
Other languages
Japanese (ja)
Other versions
JP2006105707A (en
Inventor
宣夫 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004290930A priority Critical patent/JP4609025B2/en
Publication of JP2006105707A publication Critical patent/JP2006105707A/en
Application granted granted Critical
Publication of JP4609025B2 publication Critical patent/JP4609025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導圧管の圧力を検出する圧力検出器及び圧力検出器の詰まり診断方法に関し、特に、振動式であって、差圧及び静圧を伝送する圧力検出器及び圧力検出器の詰まり診断方法に関する。   The present invention relates to a pressure detector for detecting pressure in a pressure guiding tube and a clogging diagnosis method for the pressure detector, and more particularly to a vibration type pressure sensor that transmits differential pressure and static pressure and clogging diagnosis for the pressure detector. Regarding the method.

従来の圧力検出器及び圧力検出器の詰まり診断方法は、圧力の揺動の分散に基づいて導圧管の詰まりを診断するものもある(例えば、特許文献2参照。)。
例えば、圧力検出器である差圧・圧力伝送器において、差圧信号または静圧信号の揺動の統計計算を実施して導圧管の詰まりを診断する。
Some conventional pressure detectors and clogging diagnosis methods for pressure detectors diagnose clogging of a pressure guiding tube based on dispersion of pressure fluctuations (see, for example, Patent Document 2).
For example, in a differential pressure / pressure transmitter, which is a pressure detector, statistical calculation of fluctuation of a differential pressure signal or a static pressure signal is performed to diagnose clogging of a pressure guiding tube.

以下に図6に基づいて本発明を詳細に説明する。図6は、従来の圧力検出器を示す構成図である。   Hereinafter, the present invention will be described in detail with reference to FIG. FIG. 6 is a block diagram showing a conventional pressure detector.

流体が流れる管路1の途中にオリフィス2が設置される。オリフィス2の高圧側の圧力と低圧側の圧力とは導圧管3によって圧力伝送器50に伝達する。   An orifice 2 is installed in the middle of the conduit 1 through which the fluid flows. The pressure on the high pressure side and the pressure on the low pressure side of the orifice 2 are transmitted to the pressure transmitter 50 through the pressure guiding tube 3.

圧力伝送器50は、センサ41と演算手段52とを備える。そして、センサ41は導圧管3の圧力を検出し、演算手段52はセンサ41の出力から、差圧信号と静圧信号とを生成する。また、センサ41は、例えば、振動式のセンサで形成する。   The pressure transmitter 50 includes a sensor 41 and a calculation means 52. The sensor 41 detects the pressure of the pressure guiding tube 3, and the calculation means 52 generates a differential pressure signal and a static pressure signal from the output of the sensor 41. Further, the sensor 41 is formed by a vibration type sensor, for example.

さらに、演算手段52は、周波数カウンタ63と揺動演算部61と分散演算部62と判定部72とを備える。そして、揺動演算部61は、カウンタ63が規定する積分時間に基づき上述の差圧信号と静圧信号とを出力し定期的にサンプリングし、差圧信号と静圧信号との揺動F0p(n)を演算する。また、分散演算部62は、揺動F0p(n)の分散V0dを演算する。さらに、判定部72は、分散V0dの値に基づき、導圧管3の詰まりを診断する   Further, the calculation means 52 includes a frequency counter 63, a swing calculation unit 61, a dispersion calculation unit 62, and a determination unit 72. Then, the swing calculation unit 61 outputs the above-described differential pressure signal and static pressure signal based on the integration time defined by the counter 63 and periodically samples them, and swings F0p ( n) is calculated. Further, the variance calculation unit 62 calculates the variance V0d of the swing F0p (n). Further, the determination unit 72 diagnoses clogging of the pressure guiding tube 3 based on the value of the dispersion V0d.

特許第3129121号公報Japanese Patent No. 3129121 特開2004−132817公報JP 2004-132817 A

しかしながら、従来の圧力検出器及び圧力検出器の詰まり診断方法は、オリフィスに流れる流量の影響を受けることがあり、診断の確度が低いという課題がある。   However, the conventional pressure detector and the method for diagnosing clogging of the pressure detector may be affected by the flow rate flowing through the orifice, and there is a problem that the accuracy of diagnosis is low.

本発明の目的は、以上説明した課題を解決するものであり、診断の確度が高い圧力検出器及び圧力検出器の詰まり診断方法を提供することにある。   An object of the present invention is to solve the problems described above, and to provide a pressure detector with high diagnostic accuracy and a clogging diagnosis method for the pressure detector.

このような目的を達成する本発明は、次の通りである。
(1)2本の導圧管の差圧又は静圧をセンサにより検出し、前記差圧又は静圧の揺動の分散に基づいて前記導圧管の詰まりを診断する圧力検出器において、
前記センサの短い積分時間の出力をサンプリングして差圧または静圧信号を演算し、差圧又は静圧信号の揺動を演算する揺動演算部と、
前記差圧又は静圧揺動の分散を演算する分散演算部を有し、前記揺動の第1分散を演算する第1サンプリング手段と、
前記センサの長い積分時間の出力をサンプリングして差圧または静圧信号を演算し、差圧又は静圧信号の揺動を演算する揺動演算部と、前記差圧又は静圧揺動の分散を演算する分散演算部を有し、前記揺動の第2分散を演算する第2サンプリング手段と、
正常な状態における前記第1分散と前記第2分散の比を格納する記憶手段と、を備え、
診断時における前記第1分散と前記第2分散の比と、前記正常な状態における前記第1分散と前記第2分散の比に基づいて、前記導圧管の詰まりを診断することを特徴とする圧力検出器。
(2)2本の導圧管の差圧又は静圧をセンサにより検出し、前記差圧又は静圧の揺動の分散に基づいて前記導圧管の詰まりを診断する圧力検出器の詰まり診断方法において、
前記センサの短い積分時間の出力をサンプリングして前記差圧又は静圧の揺動の第1分散を演算し、前記センサの長い積分時間の出力をサンプリングして前記差圧又は静圧の揺動の第2分散を演算するステップ、
前記第1分散と前記第2分散の比を演算するステップ、
正常な状態における前記第1分散と前記第2分散の比と、診断時に求めた前記第1分散と前記第2分散の比に基づいて前記導圧管の詰まりを診断するステップ、
を備えることを特徴とする圧力検出器の詰まり診断方法。
The present invention which achieves such an object is as follows.
(1) In a pressure detector that detects a differential pressure or static pressure of two pressure guiding tubes with a sensor and diagnoses clogging of the pressure guiding tube based on dispersion of fluctuations in the differential pressure or static pressure,
A fluctuation calculation unit for sampling a short integration time output of the sensor to calculate a differential pressure or a static pressure signal, and calculating a fluctuation of the differential pressure or the static pressure signal;
A first sampling means for calculating a first variance of the oscillation, comprising a variance computing unit for computing the variance of the differential pressure or the static pressure oscillation;
A fluctuation calculating unit for calculating a differential pressure or a static pressure signal by sampling an output of a long integration time of the sensor and calculating a fluctuation of the differential pressure or the static pressure signal, and dispersion of the differential pressure or the static pressure fluctuation Second sampling means for calculating the second variance of the oscillation,
Storage means for storing a ratio of the first dispersion and the second dispersion in a normal state,
The first dispersion at diagnosis and the second dispersion ratio based on said first dispersion and said second dispersion ratio in a normal state, the pressure, characterized in that to diagnose blockage of the impulse line Detector.
(2) In a clogging diagnosis method for a pressure detector that detects a differential pressure or static pressure between two pressure guiding tubes with a sensor and diagnoses clogging of the pressure guiding tube based on dispersion of fluctuations in the differential pressure or static pressure. ,
Sampling the output of the short integration time of the sensor to calculate the first variance of the fluctuation of the differential pressure or static pressure, sampling the output of the long integration time of the sensor and fluctuation of the differential pressure or static pressure Calculating a second variance of
Calculating a ratio of the first variance and the second variance;
Diagnosing clogging of the pressure guiding tube based on a ratio between the first dispersion and the second dispersion in a normal state and a ratio between the first dispersion and the second dispersion obtained at the time of diagnosis;
A method for diagnosing clogging of a pressure detector, comprising:

以上説明したことから明らかなように、本発明によれば次のような効果がある。
本発明によれば、流量の影響を受けない詰まり診断方法を提供できる。
As is apparent from the above description, the present invention has the following effects.
According to the present invention, it is possible to provide a clogging diagnosis method that is not affected by the flow rate.

以下に図1に基づいて本発明を詳細に説明する。図1は、本発明の一実施例を示す構成図である。図6の従来例と同等の要素には同等の符号を付し、説明を省略する。   Hereinafter, the present invention will be described in detail with reference to FIG. FIG. 1 is a block diagram showing an embodiment of the present invention. Elements equivalent to those in the conventional example of FIG. 6 are denoted by the same reference numerals, and description thereof is omitted.

図1の実施例の特徴は、第1サンプリング手段10と、第2サンプリング手段20とを備える点にある。   A feature of the embodiment of FIG. 1 is that a first sampling means 10 and a second sampling means 20 are provided.

第1サンプリング手段10は、短い時間周波数を計測するカウンタ13と揺動演算部11と分散演算部12とを備える。また、揺動演算部11は、一定間隔で周波数をサンプリングし差圧信号を演算し、差圧信号の差圧揺動F1dp(n)を演算する。さらに、分散演算部12は、差圧揺動F1dp(n)の差圧分散V1dpを演算する。   The first sampling unit 10 includes a counter 13 that measures a short time frequency, a swing calculation unit 11, and a dispersion calculation unit 12. Further, the swing calculation unit 11 calculates a differential pressure signal by sampling the frequency at regular intervals, and calculates a differential pressure swing F1dp (n) of the differential pressure signal. Further, the dispersion calculating unit 12 calculates a differential pressure dispersion V1dp of the differential pressure fluctuation F1dp (n).

例えば、差圧揺動F1dp(n)は、以下の式(1)で定義する。ただし、n番目にサンプリングする差圧信号D1dp(n)とし、(n−1)番目にサンプリングする差圧信号D1dp(n−1)とする。
F1dp(n)=D1dp(n)−D1dp(n−1) (1)
For example, the differential pressure fluctuation F1dp (n) is defined by the following equation (1). It is assumed that the differential pressure signal D1dp (n) to be sampled nth is the differential pressure signal D1dp (n-1) to be sampled (n-1) th.
F1dp (n) = D1dp (n) −D1dp (n−1) (1)

また、例えば、差圧分散V1dpは、以下の式(2)で定義する。ただし、Nは全サンプル数とする。
V1dp=Σ{F1dp(n)・F1dp(n)}/N (2)
Further, for example, the differential pressure dispersion V1dp is defined by the following equation (2). N is the total number of samples.
V1dp = Σ {F1dp (n) · F1dp (n)} / N (2)

また、第2サンプリング手段20は、長い時間周波数を計測するカウンタ23と揺動演算部21と分散演算部22とを備える。また、揺動演算部21は、一定間隔で周波数をサンプリングし差圧信号を演算し、差圧信号の差圧揺動F2dp(n)を演算する。さらに、分散演算部22は、差圧揺動F2dp(n)の差圧分散V2dpを演算する。   The second sampling unit 20 includes a counter 23 that measures a long time frequency, a swing calculation unit 21, and a dispersion calculation unit 22. Further, the swing calculation unit 21 calculates the differential pressure signal by sampling the frequency at regular intervals, and calculates the differential pressure swing F2dp (n) of the differential pressure signal. Further, the dispersion calculating unit 22 calculates a differential pressure dispersion V2dp of the differential pressure fluctuation F2dp (n).

例えば、差圧揺動F2dp(n)は、以下の式(3)で定義する。ただし、n番目にサンプリングする差圧信号D2dp(n)とし、(n−1)番目にサンプリングする差圧信号D2dp(n−1)とする。
F2dp(n)=D2dp(n)−D2dp(n−1) (3)
For example, the differential pressure fluctuation F2dp (n) is defined by the following equation (3). It is assumed that the differential pressure signal D2dp (n) to be sampled nth is the differential pressure signal D2dp (n-1) to be sampled (n-1) th.
F2dp (n) = D2dp (n) -D2dp (n-1) (3)

また、例えば、差圧分散V2dpは、以下の式(2)で定義する。ただし、Nは全サンプル数とする。
V2dp=Σ{F2dp(n)・F2dp(n)}/N (4)
Further, for example, the differential pressure dispersion V2dp is defined by the following equation (2). N is the total number of samples.
V2dp = Σ {F2dp (n) · F2dp (n)} / N (4)

さらに、比率演算部31は、差圧分散V1dpと差圧分散V2dpとの比(V1dp/V2dp)を演算する。   Further, the ratio calculation unit 31 calculates a ratio (V1dp / V2dp) between the differential pressure dispersion V1dp and the differential pressure dispersion V2dp.

また、記憶手段33は、所定の閾値Kを格納する。さらに、判定部32は、比(V1dp/V2dp)と閾値Kとを比較する。そして、比(V1dp/V2dp)が閾値Kよりも大きいときは、正常な状態と判定し、比(V1dp/V2dp)が閾値Kよりも小さいときは、導圧管が詰まった状態と判定する。   Further, the storage means 33 stores a predetermined threshold value K. Further, the determination unit 32 compares the ratio (V1dp / V2dp) with the threshold value K. When the ratio (V1dp / V2dp) is larger than the threshold value K, it is determined that the state is normal, and when the ratio (V1dp / V2dp) is smaller than the threshold value K, it is determined that the pressure guiding tube is clogged.

ここで、図2に基づいて第1サンプリング手段10と第2サンプリング手段20との作用を詳細に説明する。図2は、図1の実施例における差圧の遥動を示す図である。横軸は時間を示す。 Here, the operation of the first sampling means 10 and the second sampling means 20 will be described in detail with reference to FIG. FIG. 2 is a diagram showing the fluctuation of the differential pressure in the embodiment of FIG. The horizontal axis indicates time.

同図において、波形pは導圧管の差圧の変化を示し、波形g1は第1サンプリング手段10でサンプリングする差圧信号D1dp(n)の変化を示し、波形g2は第2サンプリング手段20でサンプリングする差圧信号D2dp(n)の変化を示す。 In the figure, a waveform p shows a change in the differential pressure of the pressure guiding tube, a waveform g1 shows a change in the differential pressure signal D1dp (n) sampled by the first sampling means 10, and a waveform g2 is sampled by the second sampling means 20. A change in the differential pressure signal D2dp (n) is shown.

また、短時間カウンタ13が規定する積分時間Ave1(n)における導圧管の圧力pの平均値は差圧信号D1dp(n)となる。具体的には、積分時間Ave1(1)における導圧管の圧力pの平均値は差圧信号D1dp(1)となり、積分時間Ave1(2)における導圧管の圧力pの平均値は差圧信号D1dp(2)となり、・・・、積分時間Ave1(6)における導圧管の圧力pの平均値は差圧信号D1dp(6)となる。   Moreover, the average value of the pressure p of the pressure guiding tube in the integration time Ave1 (n) defined by the short-time counter 13 is the differential pressure signal D1dp (n). Specifically, the average value of the pressure pipe pressure p in the integration time Ave1 (1) is the differential pressure signal D1dp (1), and the average value of the pressure pipe pressure p in the integration time Ave1 (2) is the differential pressure signal D1dp. (2),..., The average value of the pressure p in the pressure guiding tube in the integration time Ave1 (6) is the differential pressure signal D1dp (6).

同様に、長時間カウンタ23が規定する積分時間Ave2(n)における導圧管の圧力pの平均値は差圧信号D2dp(n)となる。具体的には、積分時間Ave2(1)における導圧管の圧力pの平均値は差圧信号D2dp(1)となり、積分時間Ave2(2)における導圧管の圧力pの平均値は差圧信号D2dp(2)となり、積分時間Ave2(3)における導圧管の圧力pの平均値は差圧信号D2dp(3)となる。   Similarly, the average value of the pressure p in the pressure guiding tube during the integration time Ave2 (n) defined by the long-time counter 23 is the differential pressure signal D2dp (n). Specifically, the average value of the pressure pipe pressure p in the integration time Ave2 (1) is the differential pressure signal D2dp (1), and the average value of the pressure pipe pressure p in the integration time Ave2 (2) is the differential pressure signal D2dp. (2), and the average value of the pressure guide pipe pressure p in the integration time Ave2 (3) is the differential pressure signal D2dp (3).

また、図3に基づいて第1サンプリング手段10と第2サンプリング手段20との作用を詳細に説明する。図3は、図1の実施例の出力におけるボード線図である。横軸は周波数を示す。縦軸は、図1の実施例で測定した静圧の揺動と、オリフィスと導圧管との接続点における静圧の揺動との比である揺動利得(Fluctuation Gain)である。 The operation of the first sampling means 10 and the second sampling means 20 will be described in detail with reference to FIG. FIG. 3 is a Bode diagram at the output of the embodiment of FIG. The horizontal axis indicates the frequency . The vertical axis represents the fluctuation gain (Fluctuation Gain) which is the ratio of the fluctuation of the static pressure measured in the embodiment of FIG. 1 to the fluctuation of the static pressure at the connection point between the orifice and the pressure guiding tube.

同図において、特性fsは正常な状態の特性であり、特性fAは導圧管が詰まった状態の特性である。また、ポイント1S及びポイント1Aは、第1サンプリング手段10でサンプリングする特性に対応し、ポイント2S及びポイント2Aは、第2サンプリング手段20でサンプリングする特性に対応する。   In the figure, a characteristic fs is a characteristic in a normal state, and a characteristic fA is a characteristic in a state where a pressure guiding tube is clogged. Point 1S and point 1A correspond to the characteristics sampled by the first sampling means 10, and point 2S and point 2A correspond to the characteristics sampled by the second sampling means 20.

詳しくは、第1サンプリング手段10の特性は、積分時間が短いため、圧力の揺動の高周波成分に対して感度が大きく、第2サンプリング手段20の特性は、積分時間が長いため、圧力の揺動の低周波成分に対して感度が大きい。   Specifically, since the characteristics of the first sampling means 10 have a short integration time, the sensitivity is high with respect to the high-frequency component of the pressure fluctuation, and the characteristics of the second sampling means 20 have a long integration time. High sensitivity to low frequency components of motion.

そして、導圧管が正常な状態から詰まった状態になると、特性fsは特性fAに変化し、第1サンプリング手段10の特性はポイント1Sからポイント1Aに変化し、第2サンプリング手段20の特性はポイント2Sからポイント2Aに変化する。   When the pressure guiding tube is clogged from the normal state, the characteristic fs changes to the characteristic fA, the characteristic of the first sampling means 10 changes from the point 1S to the point 1A, and the characteristic of the second sampling means 20 changes to the point. It changes from 2S to point 2A.

さらに、ポイント1Sからポイント1Aまでの変化は、ポイント2Sからポイント2Aまでの変化よりも大きい。   Furthermore, the change from point 1S to point 1A is larger than the change from point 2S to point 2A.

したがって、ポイント1Sからポイント1Aまでの変化と、ポイント2Sからポイント2Aまでの変化とを監視すれば、導圧管の詰まりを診断できる。   Therefore, if the change from the point 1S to the point 1A and the change from the point 2S to the point 2A are monitored, the clogging of the pressure guiding tube can be diagnosed.

そして、このような診断は、差圧分散V1dpと差圧分散V2dpとの比(V1dp/V2dp)を演算し、閾値Kと比較することで簡便に実現できる。即ち、比率演算部31及び記憶手段33を備えることで簡便に形成できる。   Such a diagnosis can be easily realized by calculating the ratio (V1dp / V2dp) between the differential pressure variance V1dp and the differential pressure variance V2dp and comparing it with the threshold value K. That is, it can be simply formed by providing the ratio calculation unit 31 and the storage means 33.

また、上述の実施例では、差圧信号のサンプリングに関する演算を実施する場合のみを説明したが、静圧信号のサンプリングに関しても同様の演算を実施するようにできる。   In the above-described embodiment, only the case where the calculation related to the sampling of the differential pressure signal is performed has been described. However, the same calculation can be performed regarding the sampling of the static pressure signal.

このとき、例えば、第1サンプリング手段10における静圧揺動F1p(n)は、差圧揺動F1dp(n)と同様に、以下の式(5)で定義する。ただし、n番目にサンプリングする静圧信号D1p(n)とし、(n−1)番目にサンプリングする静圧信号D1p(n−1)とする。
F1p(n)=D1p(n)−D1p(n−1) (5)
At this time, for example, the static pressure fluctuation F1p (n) in the first sampling means 10 is defined by the following equation (5), similarly to the differential pressure fluctuation F1dp (n). However, it is set as the static pressure signal D1p (n) sampled nth, and the static pressure signal D1p (n-1) sampled (n-1) th.
F1p (n) = D1p (n) −D1p (n−1) (5)

さらに、例えば、静圧分散V1pは、差圧分散V1dpと同様に、以下の式(6)で定義する。
V1p=Σ{F1p(n)・F1p(n)}/N (6)
Further, for example, the static pressure dispersion V1p is defined by the following equation (6), similarly to the differential pressure dispersion V1dp.
V1p = Σ {F1p (n) · F1p (n)} / N (6)

また、例えば、第2サンプリング手段20における静圧揺動F2p(n)は、差圧揺動F2dp(n)と同様に、以下の式(7)で定義する。ただし、n番目にサンプリングする差圧信号D2p(n)とし、(n−1)番目にサンプリングする静圧信号D2p(n−1)とする。
F2p(n)=D2p(n)−D2p(n−1) (7)
Further, for example, the static pressure fluctuation F2p (n) in the second sampling means 20 is defined by the following equation (7), similarly to the differential pressure fluctuation F2dp (n). However, the differential pressure signal D2p (n) to be sampled n-th and the static pressure signal D2p (n-1) to be sampled (n-1) -th.
F2p (n) = D2p (n) -D2p (n-1) (7)

さらに、例えば、静圧分散V2pは、差圧分散V2dpと同様に、以下の式(8)で定義する。
V2p=Σ{F2p(n)・F2p(n)}/N (8)
Further, for example, the static pressure dispersion V2p is defined by the following equation (8), similarly to the differential pressure dispersion V2dp.
V2p = Σ {F2p (n) · F2p (n)} / N (8)

また、比率演算部31は、静圧分散V1pと静圧分散V2pとの比(V1p/V2p)を演算する。   Further, the ratio calculation unit 31 calculates a ratio (V1p / V2p) between the static pressure dispersion V1p and the static pressure dispersion V2p.

そして、判定部32は、比(V1dp/V2dp)と比(V1p/V2p)とに基づいて、正常な状態か詰まった状態かを判定する。このような図1の実施例は、導圧管の詰まりを正確に診断できる。   Then, the determination unit 32 determines whether the state is normal or clogged based on the ratio (V1dp / V2dp) and the ratio (V1p / V2p). 1 can accurately diagnose clogging of the pressure guiding tube.

以下に図4に基づいてこのような図1の実施例の詰まり診断方法を説明する。図4は、図1の実施例の詰まり診断方法におけるフローチャートである。     The clogging diagnosis method of the embodiment of FIG. 1 will be described below with reference to FIG. FIG. 4 is a flowchart in the clogging diagnosis method of the embodiment of FIG.

まず、低周波成分に対する圧力の揺動の第1分散(V1dp、V1p)を演算し、高周波成分に対する圧力の揺動の第2分散(V2dp、V2p)を演算するステップS11を実行する。具体的には、上記の式(2)、式(4)、式(6)、式(8)をそれぞれ演算する。   First, step S11 is performed to calculate the first dispersion (V1dp, V1p) of pressure fluctuation with respect to the low frequency component and to calculate the second dispersion (V2dp, V2p) of pressure fluctuation with respect to the high frequency component. Specifically, the above equations (2), (4), (6), and (8) are respectively calculated.

次に、第1分散(V1dp,V1p)と第2分散(V2dp、V2p)との比(V1dp,V1p)/(V2dp、V2p)を演算するステップS12を実行する。具体的には、比(V1dp/V2dp)と比(V1p/V2p)とをそれぞれ演算する。   Next, step S12 is performed to calculate the ratio (V1dp, V1p) / (V2dp, V2p) between the first variance (V1dp, V1p) and the second variance (V2dp, V2p). Specifically, the ratio (V1dp / V2dp) and the ratio (V1p / V2p) are respectively calculated.

最後に、比の値に基づいて導圧管の詰まりを診断するステップS13を実行する。具体的には、比(V1dp/V2dp)と比(V1p/V2p)とが閾値K(Kdp,Kp)よりも大きいときは正常、即ち導圧管の詰まり無し、と診断する。また、比(V1dp/V2dp)と比(V1p/V2p)とが閾値K(Kdp,Kp)よりも小さいときは導圧管の詰まり有りと診断する。   Finally, step S13 for diagnosing clogging of the pressure guiding tube based on the ratio value is executed. Specifically, when the ratio (V1dp / V2dp) and the ratio (V1p / V2p) are larger than the threshold value K (Kdp, Kp), it is diagnosed that the pressure guiding tube is not clogged. When the ratio (V1dp / V2dp) and the ratio (V1p / V2p) are smaller than the threshold value K (Kdp, Kp), it is diagnosed that the pressure guiding tube is clogged.

このように、図1の実施例は、簡便・正確に導圧管の詰まりを診断できる。   Thus, the embodiment of FIG. 1 can diagnose clogging of the pressure guiding tube simply and accurately.

また、上述の実施例とは別に、図1の実施例の記憶手段33は、正常な状態のポイント1S及びポイント2Sにおける比(V1sdp/V2sdp)と比(V1sp/V2sp)とを格納し、判定部32の判定に使用するようにしてもよい。   In addition to the above-described embodiment, the storage unit 33 of the embodiment of FIG. 1 stores the ratio (V1sdp / V2sdp) and the ratio (V1sp / V2sp) at the point 1S and the point 2S in the normal state, and the determination You may make it use for the determination of the part 32. FIG.

以下に図5に基づいてこのような図1の実施例の詰まり診断方法を説明する。図5は、図1の実施例の詰まり診断方法における他のフローチャートである。図4のフローチャートと同等のものは説明を簡略にする。   The clogging diagnosis method of the embodiment of FIG. 1 will be described below with reference to FIG. FIG. 5 is another flowchart in the clogging diagnosis method of the embodiment of FIG. The description equivalent to the flowchart of FIG. 4 is simplified.

図5のフローチャートの特徴は、正常な状態における演算と、診断のときにおける演算とを備える点にある。正常な状態は、例えば、メンテナンス直後の導圧管が詰まっていない状態とする。また、診断のときは、導圧管が詰まっているか、導圧管が詰まっていないかのはっきりしていない状態のときとする。   The feature of the flowchart of FIG. 5 is that it includes an operation in a normal state and an operation at the time of diagnosis. The normal state is, for example, a state where the pressure guiding tube immediately after maintenance is not clogged. In the diagnosis, the pressure guiding tube is clogged or it is not clear whether the pressure guiding tube is clogged.

第1に、正常な状態における周波成分に対する差圧揺動の第1分散V1sdpと静圧揺動の第1分散V1spを演算し、
低周波成分に対する差圧揺動の第2分散V2sdpと静圧揺動の第二分散V2spを演算するステップ21を実行する
First, it calculates a first dispersion V1sp the first dispersion V1sdp and static pressure oscillation of the differential pressure fluctuation with respect to high-frequency components in the normal state,
Step 21 of calculating the second variance V2sdp of the differential pressure fluctuation and the second variance V2sp of the static pressure fluctuation with respect to the low frequency component is executed.

第2に、正常な状態における第1分散V1sdpと第2分散V2sdpとの比、及び第一分散V1spと第2分散V2spとの比V1sdp/V2sdpとV1sp/V2spを演算するステップS22を実行する Second, to execute a step S22 of calculating a first dispersion V1sd p and the ratio of the second dispersion V2sdp, and the first dispersion V1sp the ratio V1sdp / V2sdp and V1sp / V2sp the second dispersion V2sp under normal conditions

第3に、正常な状態における2種類の比V1sdp/V2sdpとV1sp/V2spを記憶手段33に格納するステップS23を実行する。   Third, step S23 is executed to store the two types of ratios V1sdp / V2sdp and V1sp / V2sp in the normal state in the storage means 33.

第4に、診断のときにおける周波成分に対する差圧揺動の第1分散V1dpと静圧揺動の第1分散V1pを演算し、周波成分に対する差圧揺動の第2分散V2dpと静圧揺動の第2分散V2pを演算するステップ24を実行する Fourth, calculates a first dispersion V 1p of the first dispersion V1dp and static pressure oscillation of the differential pressure fluctuation with respect to the high-frequency component definitive when the diagnosis, the second dispersion V2d p of the differential pressure fluctuation with respect to the low frequency component And step 24 of calculating the second variance V2p of the static pressure fluctuation

第5に、診断のときにおける第1分散V1dpと第2分散V2dpとの比、及び第一分散V1pと第2分散V2pの比V1dp/V2dpとV1p/V2pを演算するステップS25を実行する。   Fifth, step S25 is performed to calculate the ratio between the first variance V1dp and the second variance V2dp and the ratio V1dp / V2dp and V1p / V2p between the first variance V1p and the second variance V2p at the time of diagnosis.

第6に、比の値に基づいて導圧管の詰まりを診断するステップS26を実行する。具体的には、比V1dp/V2dpが比V1sdp/V2sdpと同等かつ、比V1p/V2pがV1sp/V2spと同等のときは正常、即ち導圧管の詰まり無し、と診断する。また、比V1dp/V2dpが比V1sdp/V2sdpよりも十分に小さいときかつ比V1p/V2pが比V1sp/V2spよりも十分に小さいは導圧管の詰まり有りと診断する。 Sixth, step S26 for diagnosing clogging of the pressure guiding tube based on the ratio value is executed. Specifically, when the ratio V1dp / V2dp is equal to the ratio V1sdp / V2sdp and the ratio V1p / V2p is equal to V1sp / V2sp , it is diagnosed that the pressure guide tube is not clogged. When the ratio V1dp / V2dp is sufficiently smaller than the ratio V1sdp / V2sdp and when the ratio V1p / V2p is sufficiently smaller than the ratio V1sp / V2sp , it is diagnosed that the pressure guiding tube is clogged.

また、前述の例は、カウンタを2つ備える実施例であったが、これとは別に、1つのカウンタから、短い積分時間の周波数出力と、長い積分時間の周波数出力とを同じカウンターから計算するようにしても、第1サンプリング手段と第2サンプリング手段とを形成できる。よって、このような場合であっても、同等の作用効果を得ることができる。
更に別の手段としては、短い積分時間の周波数出力から計算された差圧信号をD1dpとし、その差圧信号を一定時間平均化した差圧信号をD2dpとすることもできる。
In the above example, two counters are provided. However, separately from this, the frequency output of a short integration time and the frequency output of a long integration time are calculated from the same counter from one counter. In this case, the first sampling means and the second sampling means can be formed. Therefore, even in such a case, an equivalent effect can be obtained.
As another means, the differential pressure signal calculated from the frequency output of a short integration time can be D1dp, and the differential pressure signal obtained by averaging the differential pressure signal for a certain period of time can be D2dp.

さらに、前述の例は振動式の圧力検出器であったが、これとは別に、振動式以外の圧力検出器であっても、実質的に同等の構成となり、同等の作用効果を得ることができる。詳しくは、短い積分時間のアナログ出力をサンプリングする第1サンプリング手段と、長い積分時間のアナログ出力をサンプリングする第2サンプリング手段とを備える。   Furthermore, although the above-mentioned example is a vibration type pressure detector, a pressure detector other than the vibration type is substantially the same in configuration and can obtain the same operation effect. it can. Specifically, it comprises a first sampling means for sampling an analog output having a short integration time and a second sampling means for sampling an analog output having a long integration time.

また、前述の例は、サンプリング手段を2つ備える実施例であったが、これとは別に、サンプリング手段を2つ以上備えるものであっても、同等の作用効果を得ることができる。   Moreover, although the above-mentioned example was an embodiment provided with two sampling means, it is possible to obtain the same operation effect even if two or more sampling means are provided.

以上のように、本発明は、前述の実施例に限定されることなく、その本質を逸脱しない範囲でさらに多くの変更及び変形を含むものである。   As described above, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 図1の実施例における圧力の遥動を示す図である。It is a figure which shows the fluctuation of the pressure in the Example of FIG. 図1の実施例の出力におけるボード線図である。It is a Bode diagram in the output of the example of FIG. 図1の実施例の詰まり診断方法におけるフローチャートである。It is a flowchart in the clogging diagnostic method of the Example of FIG. 図1の実施例の詰まり診断方法における他のフローチャートである。It is another flowchart in the clogging diagnostic method of the Example of FIG. 従来の圧力検出器を示す構成図である。It is a block diagram which shows the conventional pressure detector.

符号の説明Explanation of symbols

1 管路
2 オリフィス
3 導圧管
10,20 サンプリング手段
13 短時間カウンタ(周波数カウンタ)
23 長時間カウンタ(周波数カウンタ)
11,21 揺動演算部
12,22 分散演算部
31 比率演算部
32 判定部
33 記憶手段
40 圧力検出器
41 センサ
42 演算手段

DESCRIPTION OF SYMBOLS 1 Pipe line 2 Orifice 3 Impulse pipe 10,20 Sampling means 13 Short time counter (frequency counter)
23 Long-time counter (frequency counter)
11, 21 Swing calculation unit 12, 22 Dispersion calculation unit 31 Ratio calculation unit 32 Judgment unit 33 Storage unit 40 Pressure detector 41 Sensor 42 Calculation unit

Claims (2)

2本の導圧管の差圧又は静圧をセンサにより検出し、前記差圧又は静圧の揺動の分散に基づいて前記導圧管の詰まりを診断する圧力検出器において、
前記センサの短い積分時間の出力をサンプリングして差圧または静圧信号を演算し、差圧又は静圧信号の揺動を演算する揺動演算部と、
前記差圧又は静圧揺動の分散を演算する分散演算部を有し、前記揺動の第1分散を演算する第1サンプリング手段と、
前記センサの長い積分時間の出力をサンプリングして差圧または静圧信号を演算し、差圧又は静圧信号の揺動を演算する揺動演算部と、前記差圧又は静圧揺動の分散を演算する分散演算部を有し、前記揺動の第2分散を演算する第2サンプリング手段と、
正常な状態における前記第1分散と前記第2分散の比を格納する記憶手段と、を備え、
診断時における前記第1分散と前記第2分散の比と、前記正常な状態における前記第1分散と前記第2分散の比に基づいて、前記導圧管の詰まりを診断することを特徴とする圧力検出器。
In a pressure detector that detects a differential pressure or static pressure between two pressure guiding tubes with a sensor, and diagnoses clogging of the pressure guiding tube based on dispersion of fluctuations in the differential pressure or static pressure,
A fluctuation calculation unit for sampling a short integration time output of the sensor to calculate a differential pressure or a static pressure signal, and calculating a fluctuation of the differential pressure or the static pressure signal;
A first sampling means for calculating a first variance of the oscillation, comprising a variance computing unit for computing the variance of the differential pressure or the static pressure oscillation;
A fluctuation calculating unit for calculating a differential pressure or a static pressure signal by sampling an output of a long integration time of the sensor and calculating a fluctuation of the differential pressure or the static pressure signal, and dispersion of the differential pressure or the static pressure fluctuation Second sampling means for calculating the second variance of the oscillation,
Storage means for storing a ratio of the first dispersion and the second dispersion in a normal state,
The first dispersion at diagnosis and the second dispersion ratio based on said first dispersion and said second dispersion ratio in a normal state, the pressure, characterized in that to diagnose blockage of the impulse line Detector.
2本の導圧管の差圧又は静圧をセンサにより検出し、前記差圧又は静圧の揺動の分散に基づいて前記導圧管の詰まりを診断する圧力検出器の詰まり診断方法において、
前記センサの短い積分時間の出力をサンプリングして前記差圧又は静圧の揺動の第1分散を演算し、前記センサの長い積分時間の出力をサンプリングして前記差圧又は静圧の揺動の第2分散を演算するステップ、
前記第1分散と前記第2分散の比を演算するステップ、
正常な状態における前記第1分散と前記第2分散の比と、診断時に求めた前記第1分散と前記第2分散の比に基づいて前記導圧管の詰まりを診断するステップ、
を備えることを特徴とする圧力検出器の詰まり診断方法。
In a clogging diagnosis method for a pressure detector, which detects a differential pressure or static pressure between two pressure guiding pipes with a sensor and diagnoses clogging of the pressure guiding pipe based on dispersion of fluctuations in the differential pressure or static pressure,
The first variance of the differential pressure or static pressure fluctuation is calculated by sampling the short integration time output of the sensor, and the differential pressure or static pressure fluctuation is sampled by sampling the long integration time output of the sensor. Calculating a second variance of
The step of calculating a ratio of scattered second minute and the first dispersion,
Diagnosing clogging of the pressure guiding tube based on a ratio between the first dispersion and the second dispersion in a normal state and a ratio between the first dispersion and the second dispersion obtained at the time of diagnosis;
A method for diagnosing clogging of a pressure detector, comprising:
JP2004290930A 2004-10-04 2004-10-04 Pressure detector and clogging diagnosis method for pressure detector Active JP4609025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290930A JP4609025B2 (en) 2004-10-04 2004-10-04 Pressure detector and clogging diagnosis method for pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290930A JP4609025B2 (en) 2004-10-04 2004-10-04 Pressure detector and clogging diagnosis method for pressure detector

Publications (2)

Publication Number Publication Date
JP2006105707A JP2006105707A (en) 2006-04-20
JP4609025B2 true JP4609025B2 (en) 2011-01-12

Family

ID=36375631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290930A Active JP4609025B2 (en) 2004-10-04 2004-10-04 Pressure detector and clogging diagnosis method for pressure detector

Country Status (1)

Country Link
JP (1) JP4609025B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515039B2 (en) * 2006-06-05 2009-04-07 Kavlico Corporation Method and apparatus for tire pressure monitoring
JP5302178B2 (en) * 2009-12-21 2013-10-02 アズビル株式会社 Impulse tube clogging diagnosis device and clogging diagnosis method
EP2520080B1 (en) 2009-12-30 2017-08-02 BYD Company Limited Method for reading out high dynamic range image frame in image sensor and device using the same
CN102348069B (en) * 2010-07-27 2014-11-05 比亚迪股份有限公司 Method for acquiring high dynamic image with fixed frame rate from image sensor and apparatus thereof
DE102014119240A1 (en) 2014-12-19 2016-06-23 Endress + Hauser Gmbh + Co. Kg Flow measuring device according to the differential pressure measuring principle for measuring a flow of a medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294356A (en) * 1994-04-27 1995-11-10 Yokogawa Electric Corp Choking-diagnostic device for pressure leading pipe in pressure measuring device
JP2000505563A (en) * 1996-06-21 2000-05-09 ザ フォックスボロ カンパニー Apparatus and method for detecting impulse line blockage
JP2004132817A (en) * 2002-10-10 2004-04-30 Yokogawa Electric Corp Apparatus for detecting clogging of conduit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294356A (en) * 1994-04-27 1995-11-10 Yokogawa Electric Corp Choking-diagnostic device for pressure leading pipe in pressure measuring device
JP2000505563A (en) * 1996-06-21 2000-05-09 ザ フォックスボロ カンパニー Apparatus and method for detecting impulse line blockage
JP2004132817A (en) * 2002-10-10 2004-04-30 Yokogawa Electric Corp Apparatus for detecting clogging of conduit

Also Published As

Publication number Publication date
JP2006105707A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
KR102339510B1 (en) Diagnostic methods for mass flow control devices and differential pressure flow meters
US9024767B2 (en) Condition monitoring with alarm confidence levels for flow metering systems
CA2888939C (en) Ultrasonic flow metering system with an upstream pressure transducer
JP3129121B2 (en) Pipe line obstruction detector
WO2010064629A1 (en) Equipment for diagnosing blockage of lead pipe and method for diagnosing blockage
US9134154B2 (en) Percentage deviation based evaluation of velocity dependent characteristics in ultrasonic flow metering systems
US20140109645A1 (en) Determination of reference values for ultrasonic flow metering systems
US8453517B2 (en) Pressure guiding tube blockage diagnosing device and blockage diagnosing method
JP4804798B2 (en) Pressure detector and clogging diagnosis method for pressure detector
JP4609025B2 (en) Pressure detector and clogging diagnosis method for pressure detector
CN103575482A (en) Equipment for diagnosing blockage of lead pipe and method for diagnosing blockage of lead pipe
JP2009085769A (en) Apparatus for measuring fluid in pipe line, and system for diagnosing clogging in connecting pipe
JP5288188B2 (en) Ultrasonic flow meter
JP4829532B2 (en) Pressure transmitter with clogging diagnosis function and clogging diagnosis method for pressure transmitter
JP4418261B2 (en) Gain history device
JP2008203000A (en) Device and method for clogging diagnosis
JP3750423B2 (en) Gas meter
CN103575466A (en) Pressure guiding tube blockage diagnosing device and blockage diagnosing method
JP4273519B2 (en) Ultrasonic flow meter
JP4019419B2 (en) Pressure guiding tube clogging detector and differential pressure / pressure transmitter incorporating it
JP4491834B2 (en) Pressure detector and clogging diagnosis method for pressure detector
JP4933305B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
JPH0579029A (en) Diagnostic method for water level gauge operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150