JP4379680B2 - Pressure guiding tube blockage detection device - Google Patents

Pressure guiding tube blockage detection device Download PDF

Info

Publication number
JP4379680B2
JP4379680B2 JP2003084970A JP2003084970A JP4379680B2 JP 4379680 B2 JP4379680 B2 JP 4379680B2 JP 2003084970 A JP2003084970 A JP 2003084970A JP 2003084970 A JP2003084970 A JP 2003084970A JP 4379680 B2 JP4379680 B2 JP 4379680B2
Authority
JP
Japan
Prior art keywords
pressure
swing
sum
differential pressure
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003084970A
Other languages
Japanese (ja)
Other versions
JP2004294175A (en
Inventor
宣夫 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003084970A priority Critical patent/JP4379680B2/en
Publication of JP2004294175A publication Critical patent/JP2004294175A/en
Application granted granted Critical
Publication of JP4379680B2 publication Critical patent/JP4379680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【発明の属する技術分野】
この発明は、圧力伝送器や差圧伝送器等に使用される導圧管の詰まりを検出する装置に関し、特に過渡的な圧力変動の影響を受け難い導圧管閉塞装置に関するものである。
【0001】
【従来の技術】
圧力伝送器や差圧伝送器では、圧力を伝送器本体に導く導圧管が詰まっていると、正確な圧力や差圧を検出することができない。特許文献1および特許文献2にはこのような導圧管の閉塞を検出する装置の発明が記載されている。以下、特許文献2に記載された発明の概要を説明する。
【0002】
図5に管路閉塞装置の構成を示す。管路81にはオリフィス82が設置され、流体が矢印の方向に流れている。オリフィス82の上流側圧力PH、下流側圧力PLはそれぞれ導圧管83a、83bで取り出され、差圧伝送器84に入力され、差圧および静圧が検出される。
【0003】
差圧および静圧信号は管路閉塞検出装置9に入力され、導圧管83a、83bが詰まっているかどうかが診断される。そのために、差圧、静圧信号は分散演算部91内にある揺動演算部911に入力され、下記(3)、(4)式に基づいて揺動が演算される。
差圧揺動FiΔP=ΔP−ΔPi−1 ・・・・ (3)
静圧揺動FiP=P−Pi−1 ・・・・・・・ (4)
ここにおいて、ΔP、ΔPi−1はそれぞれ今回と前回の差圧、P、Pi−1は今回と前回の静圧である。
【0004】
この揺動は2乗和演算部912に入力され、下記(5)、(6)式に基づいて差圧揺動の2乗和σΔP、静圧揺動の2乗和σが演算される。これらの2乗和はデータのばらつきの程度を表す値であり、分散と同等のものである。
差圧揺動の2乗和σΔP=Σ(FiΔP*FiΔP)/n ・・・ (5)
静圧揺動の2乗和σ=Σ(FiP*FiP)/n ・・・・ (6)
なお、nは積算するデータの数である。
【0005】
これらの2乗和は判定部93に入力され、導圧管が詰まっているかどうかが判定される。そのため、差圧揺動の2乗和と静圧揺動の2乗和の比率を比率演算部92で演算し、この比率の大きさにより、詰まりを判定する。このようにすると、高圧側、低圧側の導圧管のうち、どの導圧管あるいは両方の導圧管が詰まっているかどうかを判定することができる。
【0006】
また、相関演算部によって差圧揺動と静圧揺動の相互相関および静圧揺動の自己相関を下記(7)、(8)式によって演算し、これらの相関係数の比率からどの導圧管が詰まっているかを判断することも行われる。
差圧揺動と静圧揺動の相互相関C1=Σ(FiΔP*FiP) ・・・ (7)
静圧揺動の自己相関C2=Σ(FiP*FiP) ・・・・・・・・・ (8)
【特許文献1】
特許3129121号明細書
【特許文献2】
特願2002−297174号明細書
【0007】
【発明が解決しようとする課題】
しかしながら、このような管路閉塞検出装置には次のような課題があった。
【0008】
前記(3)式、(4)式から明らかなように、今回の測定値と前回の測定値の差を揺動値として、分散や相関を計算していた。しかしながら、差圧や静圧が過渡的に一方向に変動している途中においては、この変動している成分のために揺動値が変化してしまい、正確な揺動を計算することができず、正確な詰まり判定を行うことができないという課題があった。
【0009】
従って本発明の目的は、差圧あるいは静圧が一方向に変動している場合でも、正確な詰まり判定ができる導圧管閉塞検出装置を提供することにある。
【0010】
【課題を解決するための手段】
このような課題を解決するために、本発明のうち請求項1記載の発明は、2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧揺動の2乗和と前記静圧揺動の2乗和を演算する分散演算部と、この分散演算部の出力が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧揺動の2乗和および前記差圧揺動の2乗和と前記静圧揺動の2乗和の2乗和比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は、下記(9)式に基づいて揺動を演算するようにし、前記判定部は、前記差圧揺動の2乗和を所定の基準値と比較して、かつ前記2乗和比のばらつきが大きいときに、前記2本の導圧管の両方が詰まっていると判断するようにしたものである。圧力の過渡的な変化に影響されない。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(9)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
【0012】
請求項2記載の発明は、請求項1記載の発明において、前記判定部は、前記2乗和比が1に近い値であるときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記2乗和比のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにしたものである。どちらかの導圧管が詰まっている場合に、検出できる。
【0014】
請求項3記載の発明は、2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧揺動の2乗和と前記静圧揺動の2乗和を演算する分散演算部と、前記揺動演算部の出力が入力され、入力された前記差圧信号の揺動と前記静圧信号の揺動の積の和である相関値を演算する相関演算部と、前記分散演算部が演算した前記差圧揺動の2乗和と前記静圧揺動の2乗和および前記相関演算部が演算した前記相関値が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧揺動の2乗和および前記相関値と前記静圧揺動の2乗和の比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は、下記(10)式に基づいて揺動を演算するようにしたものである。圧力の過渡的な変化に影響されずに詰まりを検出できる。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(10)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
【0016】
請求項記載の発明は、請求項記載の発明において、前記判定部は、前記が1に近い値のときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにしたものである。どちらかの導圧管が詰まっていることを検出できる。
【0017】
請求項5記載の発明は、請求項3または請求項4記載の発明において、前記判定部は、前記差圧揺動の2乗和を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにしたものである。両方の導圧管の詰まりを検出できる。
【0018】
【発明の実施の形態】
以下に、図に基づいて本発明を詳細に説明する。
図1は本発明に係る導圧管閉塞検出装置の一実施例を示す構成図である。図1において、1は揺動演算部であり差圧信号と静圧信号が入力され静圧揺動FiPH、差圧揺動FiΔPを演算して出力する。静圧信号は高圧側の圧力を用いる。
【0019】
21は分散演算部であり、静圧揺動FiPH、差圧揺動FiΔPが入力され、差圧分散値D1,静圧分散値D2を演算して出力する。22は相関演算部であり、静圧揺動FiPH、差圧揺動FiΔPが入力され、それらの相関係数D3を演算して出力する。3は判定部であり、差圧分散値D1,静圧分散値D2および相関係数D3が入力され、それらの値から導圧管の詰まりを判定する。
【0020】
次に差圧測定について説明する。図2は差圧測定の原理図である。配管41内には矢印の方向に流体が流れている。この配管41の途中にはオリフィス42が設置されており、その上下流の圧力は導圧管51,52を介して差圧伝送器6に導かれる。導圧管51,52は圧力の変化に対して時定数TH、TLの1次遅れ要素となり、導圧管が詰まるとこの時定数TH、TLが大きくなると考えることができる。
【0021】
差圧伝送器6には圧力検出部と電気回路が内蔵されており、これらは時定数Ttransの1次遅れ要素61となる。また、細かな変動があると制御に支障を来す場合があるので、62のように平均化されて差圧信号および高圧側または低圧側の静圧信号が出力される。
【0022】
次に、図1の実施例を詳細に説明する。揺動演算部1は下記(11)、(12)式に基づいて静圧揺動FiPH、差圧揺動FiΔPを演算する。添え字のiは時刻iの値であることを表す。
時刻iの静圧揺動FiPH=PH(i)−2×PH(i-1)+PH(i-2)・・・(11)
時刻iの差圧揺動FiΔP=ΔP(i)―2×ΔP(i-1)+ΔP(i-2)・・・(12)
ここにおいて、PH(i)は時刻iの静圧信号、ΔP(i)は同差圧信号である。すなわち、現在の静圧(差圧)と2つ前の静圧(差圧)を加算し、それから1つ前の静圧(差圧)の2倍を減算する。
【0023】
単純に今回の値から前回の値を減算して揺動を計算すると、圧力が増加しているときは正になる傾向があり、減少しているときは負になる傾向がある。本来揺動はランダムであると仮定して判定を行うので、このような傾向があると導圧管の詰まりによる揺動の変化と運転状態の変化が区別できず、誤判定の原因になる。前記(11)、(12)式では運転状態の変化が揺動計算に表れないので、正しい判定が可能になる。
【0024】
このことを図3を用いて説明する。図3は圧力測定値の変化の一例を示したものであり、横軸は時間、縦軸は圧力値である。また、曲線7は測定圧力のグラフであり、細かく変動しながら増加している。●は測定点である。従来例のように揺動を今回の測定値と前回の測定値の差で計算すると、揺動値に増加成分が含まれてしまう。それに対して、前記(11)式は下記(13)式に分解することができるので、増加成分はうち消されて揺動FiPHには表れない。そのため、揺動成分のみを抽出することができる。差圧についても同様である。
iPH={PH(i)−PH(i-1)}−{PH(i-1)―PH(i-2)}・・・・(13)
【0025】
分散演算部21は下記(14)、(15)式に基づいて差圧揺動と静圧揺動の分散D1,D2を演算する。
差圧揺動の分散D1=Σ(FiΔP×FiΔP) ・・・・・ (14)
静圧揺動の分散D2=Σ(FiPH×FiPH) ・・・・・ (15)
iPH、FiΔPはそれぞれ前記(11)、(12)式で求めた静圧と差圧の揺動である。また、加算は連続するn個のデータについて行う。
【0026】
相関演算部22は下記(16)式に基づいて静圧揺動と差圧揺動の相関係数D3を演算する。
相関係数D3=Σ(FiPH×FiΔP) ・・・・・・・・・ (16)
ここにおいて、FiPH、FiΔPはそれぞれ前記(11)、(12)式で求めた静圧揺動、差圧揺動である。また、添え字のiは時間的に同等な値を用いることを表している。
【0027】
判定部3は入力された値に基づいて導圧管の詰まりを判定する。そのために、下記(17)式によって分散比率D4を、下記(18)によって相関係数D5を演算する。
分散比率D4=D1/D2 ・・・・・・・・ (17)
相関係数D5=D3/D2 ・・・・・・・・ (18)
ここにおいて、D1は前記(14)式で求めた差圧揺動の分散、D2は前記(15)式で求めた静圧揺動の分散、D3は前記(16)式で求めた相関係数である。この分散比率D4,相関係数D5および差圧揺動の分散D1を正常時における基準値R4,R5,R1と比較して詰まりの判定を行う。
【0028】
分散比率D4は低圧側導圧管のみ、あるいは高圧側導圧管のみの詰まりを検出することができる。低圧側導圧管が詰まると低圧側の静圧揺動がゼロに近くなるので、差圧揺動D1は高圧側の静圧揺動D2に近くなる。そのため、分散比率D4は1に近づく。高圧側導圧管が詰まると高圧側の静圧揺動の分散D2が小さくなるので、分散比率D4のばらつきが大きくなる。
【0029】
相関係数D5によっても低圧側導圧管のみ、または高圧側導圧管のみの詰まりを検出できる。低圧側導圧管が詰まると低圧側の静圧揺動がゼロに近くなるので差圧揺動は高圧側の静圧揺動に近くなり、相関係数D5は1に近づく。高圧側導圧管が詰まると差圧揺動は低圧側の静圧揺動に近くなり、高圧側の静圧揺動と関連がなくなる。そのため、相関係数D3はゼロに近づく。しかし、静圧揺動も小さくなるので、分母の静圧揺動の分散D2は2乗の早さでゼロに近づく。従って、相関係数D5のばらつきが大きくなる。
【0030】
高圧側導圧管と低圧側導圧管の両方の詰まりに対しては、差圧揺動の分散D1と事前に計算した正常値における値を比較して判定する。両方の導圧管が詰まると差圧の揺動は一般に小さくなる。しかし、高圧側の導圧管が詰まっても差圧揺動の分散が正常値であることもあるので、分散比率D4による判定か、相関係数D5による判定と組み合わせる必要がある。
【0031】
図4は前述した判定基準をまとめた表である。両方の導圧管の詰まりに対しては差圧揺動の分散(差圧分散)D1はゼロに収束するが詰まり直前で大きくなることもある。分散比率D4,相関係数D5共にばらつきが大きくなる。高圧側(H側)導圧管の詰まりに対しては、差圧分散D1は低圧側(L側)の揺動に収束するが詰まり直前で大きくなることもある。分散比率、相関係数共にばらつきが大きくなる。
【0032】
低圧側(L側)導圧管の詰まりに対しては、差圧分散D1は高圧側(H側)揺動に収束するが、詰まり直前で大きくなることもある。分散比率D4、相関係数共に1に収束する。正常な状態では分散比率D4,相関係数D5共に0〜1の値を取るが、高圧側と低圧側(H/L)の揺動が類似すると1に近くなる。
【0033】
これらのことから、差圧分散D1と分散比率D4、あるいは差圧分散D1と相関係数D5のいずれかの組み合わせを用いることにより、高圧側導圧管か低圧側導圧管のいずれかが詰まった場合および両方の導圧管が詰まった場合を区別することができる。
【0034】
なお、この実施例では静圧として高圧側の圧力を用いたが、低圧側の圧力を用いることもできる。低圧側の圧力を用いた場合は、前述の説明で高圧側導圧管の詰まりと低圧側導圧管の詰まりを逆にすればよい。
【0035】
すなわち、分散比率D4については、高圧側導圧管が詰まると高圧側の揺動が小さくなるので差圧揺動は低圧側の静圧揺動に近くなり、分散比率は1に近づく。低圧側導圧管が詰まると低圧側の静圧揺動がゼロ近くになり、分散比率のばらつきが大きくなる。
【0036】
また、相関係数D5については、高圧側導圧管が詰まると差圧揺動と静圧揺動が同程度になり相関係数D5は1に近づく。低圧側導圧管が詰まると差圧揺動と静圧揺動の間に相関がなくなり相関値はゼロに近づくが、分母が2乗でゼロに近づくのでばらつきが大きくなる。
【発明の効果】
以上説明したことから明らかなように、本発明によれば次の効果が期待できる。
請求項1記載の発明によれば、2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧揺動の2乗和と前記静圧揺動の2乗和を演算する分散演算部と、この分散演算部の出力が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧揺動の2乗和および前記差圧揺動の2乗和と前記静圧揺動の2乗和の2乗和比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は、下記(19)式に基づいて揺動を演算するようにし、前記判定部は、前記差圧揺動の2乗和を所定の基準値と比較して、かつ前記2乗和比のばらつきが大きいときに、前記2本の導圧管の両方が詰まっていると判断するようにした。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(19)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
【0037】
プラントが過渡的な状態にあって、圧力や差圧が上昇中や下降中である場合でもこれらの圧力の変化が揺動に表れないので、導圧管の詰まりを正確に判断することができるという効果がある。また、一様な温度変化などで差圧や圧力の値が変化しても、これらの変化が揺動に表れないので、正確な詰まり検出ができるという効果もある。また、時間的に引き続いた3つの値を用い、中間の値の2倍を差し引くことにより圧力の変動を除去でき、純粋に揺動部分のみを取り出すことができる。そのため、正確に導圧管の詰まりを検出することができるという効果がある。また、前記判定部は、前記差圧信号の2乗和を所定の基準値と比較して、かつ前記2乗和比のばらつきが大きいときに、前記2本の導圧管の両方が詰まっていると判断するようにした。プラントの状態に影響されることなく、両方の導圧管の詰まりを正確に検出することができるという効果がある。
【0040】
請求項2記載の発明によれば、請求項1記載の発明において、前記判定部は、前記2乗和比が1に近い値であるときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記2乗和比のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにした。プラントの状態に影響されることなく、どちらかの導圧管が詰まっていることを正確に、検出することができるという効果がある。また、事前に正常なときの値を調べておく必要がないという効果もある。
【0042】
請求項3記載の発明によれば、2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧揺動の2乗和と前記静圧揺動の2乗和を演算する分散演算部と、前記揺動演算部の出力が入力され、入力された前記差圧信号の揺動と前記静圧信号の揺動の積の和である相関値を演算する相関演算部と、前記分散演算部が演算した前記差圧揺動の2乗和と前記静圧揺動の2乗和および前記相関演算部が演算した前記相関値が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧揺動の2乗和および前記相関値と前記静圧揺動の2乗和の比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は、下記(20)式に基づいて揺動を演算するようにした。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(20)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
【0043】
プラントが過渡的な状態にあって、圧力や差圧が上昇中や下降中である場合でもこれらの圧力の変化が揺動に表れないので、導圧管の詰まりを正確に判断することができるという効果がある。また、一様な温度変化などで差圧や圧力の値が変化しても、これらの変化が揺動に表れないので、正確な詰まり検出ができるという効果もある。また、時間的に引き続いた3つの値を用い、中間の値の2倍を差し引くことにより圧力の変動を除去でき、純粋に揺動部分のみを取り出すことができる。そのため、正確に導圧管の詰まりを検出することができるという効果がある。
【0046】
請求項記載の発明によれば、請求項記載の発明において、前記判定部は、前記が1に近い値のときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにした。プラントの状態に影響されることなく、どちらかの導圧管が詰まっていることを正確に、検出することができるという効果がある。また、事前に正常なときの値を調べておく必要がないという効果もある。
【0047】
請求項5記載の発明によれば、請求項3または請求項4記載の発明において、前記判定部は、前記差圧揺動の2乗和を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにした。プラントの状態に影響されることなく、両方の導圧管の詰まりを正確に検出することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例を示す構成図である。
【図2】差圧測定の状態を示した構成図である。
【図3】本発明の効果を示す特性図である。
【図4】詰まり検出の判定基準を示した表である。
【図5】従来の導圧管閉塞検出装置の構成図である。
【符号の説明】
1 揺動演算部
21 分散演算部
22 相関演算部
3 判定部
51,52 導圧管
BACKGROUND OF THE INVENTION
The present invention relates to a device for detecting clogging of a pressure guiding tube used in a pressure transmitter, a differential pressure transmitter, and the like, and more particularly to a pressure guiding tube blocking device that is not easily affected by transient pressure fluctuations.
[0001]
[Prior art]
In a pressure transmitter or a differential pressure transmitter, if the pressure guiding pipe that guides the pressure to the transmitter main body is clogged, an accurate pressure or differential pressure cannot be detected. Patent Document 1 and Patent Document 2 describe an invention of an apparatus for detecting such blocking of a pressure guiding tube. The outline of the invention described in Patent Document 2 will be described below.
[0002]
FIG. 5 shows the configuration of the conduit blockage device. An orifice 82 is installed in the pipe 81, and fluid flows in the direction of the arrow. The upstream pressure PH and the downstream pressure PL of the orifice 82 are taken out by the pressure guiding pipes 83a and 83b, respectively, and input to the differential pressure transmitter 84 to detect the differential pressure and the static pressure.
[0003]
The differential pressure and static pressure signals are input to the conduit blockage detecting device 9 to diagnose whether or not the pressure guiding tubes 83a and 83b are clogged. For this purpose, the differential pressure and static pressure signals are input to a swing calculation unit 911 in the dispersion calculation unit 91, and swing is calculated based on the following equations (3) and (4).
Differential pressure fluctuation F iΔP = ΔP i −ΔP i−1 (3)
Static pressure fluctuation F iP = P i −P i−1 (4)
Here, ΔP i and ΔP i−1 are the current and previous differential pressures, and P i and P i−1 are the current and previous static pressures, respectively.
[0004]
The swing is input to the square sum calculating section 912, the following (5), the square sum sigma [Delta] P of the differential pressure fluctuation, the square sum sigma P of the hydrostatic swing is calculated based on the equation (6) The These sums of squares are values representing the degree of variation in data and are equivalent to variance.
Sum of squares of differential pressure fluctuation σ ΔP = Σ (F iΔP * F iΔP ) / n (5)
Static pressure fluctuation square sum σ P = Σ (F iP * F iP ) / n (6)
Note that n is the number of data to be integrated.
[0005]
These square sums are input to the determination unit 93 to determine whether or not the pressure guiding tube is clogged. Therefore, the ratio calculation unit 92 calculates a ratio between the square sum of the differential pressure fluctuation and the square sum of the static pressure fluctuation, and clogging is determined based on the ratio. In this way, it is possible to determine which one or both of the high pressure side and low pressure side pressure guide tubes are clogged.
[0006]
In addition, the correlation calculation unit calculates the cross-correlation between the differential pressure fluctuation and the static pressure fluctuation and the autocorrelation of the static pressure fluctuation according to the following equations (7) and (8). It is also determined whether the pressure tube is clogged.
Cross correlation between differential pressure fluctuation and static pressure fluctuation C1 = Σ (F iΔP * F iP ) (7)
Autocorrelation of static pressure fluctuation C2 = Σ ( FiP * FiP ) (8)
[Patent Document 1]
Japanese Patent No. 3129121 [Patent Document 2]
Japanese Patent Application No. 2002-297174 Specification [0007]
[Problems to be solved by the invention]
However, such a pipe blockage detecting device has the following problems.
[0008]
As is clear from the equations (3) and (4), the variance and correlation are calculated using the difference between the current measurement value and the previous measurement value as the fluctuation value. However, while the differential pressure or static pressure is transiently changing in one direction, the fluctuation value changes due to this fluctuation component, and accurate fluctuation can be calculated. Therefore, there is a problem that an accurate clogging determination cannot be performed.
[0009]
Accordingly, an object of the present invention is to provide a pressure guiding tube blockage detecting device capable of accurately determining clogging even when a differential pressure or a static pressure fluctuates in one direction.
[0010]
[Means for Solving the Problems]
In order to solve such a problem, the invention according to claim 1 of the present invention receives a differential pressure signal between two pressure guiding tubes and a static pressure signal of one of the pressure guiding tubes. a fluctuation calculating unit for calculating a swing of the signal, the output of the fluctuation calculating unit is input, a variance calculating unit for calculating the sum of squares of the static pressure swings square sum of the differential pressure swing the output of the variance calculating section is input, and a determination unit for detecting clogging of the impulse line, the determination unit and the square sum of the square sum and the differential pressure swing of the differential pressure swing It detects the 2 blockage of the impulse line from square sum ratio of sum of the static pressure swing, the swing operation unit, so as to calculate the swing in accordance with the following equation (9), the determination parts are the sum of squares of the differential pressure swing compared with a predetermined reference value, and when the variation of the 2 Nowahi is large, the two Shirube圧In which both has to be determined that clogged the. Unaffected by transient changes in pressure.
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (9)
However, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
[0012]
According to a second aspect of the present invention, in the first aspect of the present invention, the determination unit may include a pressure guiding tube on a side other than the pressure guiding tube that has obtained the static pressure signal when the square sum ratio is a value close to 1. It is determined that the pressure-guiding tube on the side from which the static pressure signal has been obtained is blocked when it is determined that the square sum ratio has a large variation. This can be detected when either pressure guiding tube is clogged.
[0014]
According to the third aspect of the present invention, the differential pressure signal between the two pressure guiding pipes and the static pressure signal of either of the pressure guiding pipes are input, and the swing calculation unit that calculates the swing of these signals, the output of the fluctuation calculating unit is input, a variance calculating unit for calculating the sum of squares of the static pressure swings square sum of the differential pressure swing, the output of the fluctuation calculating unit is input, is input a correlation calculation unit for calculating a correlation value which is the sum of the product of oscillation of the oscillating and the static pressure signal of the differential pressure signal was, the the sum of squares of the differential pressure swing to the variance calculating unit has calculated the correlation value sum of squares and the correlation calculation unit of the static pressure swing computed is input, and a determination unit for detecting clogging of the impulse lines, the square of the determination unit is the differential pressure swing It detects a blockage of the impulse line from the sum and the square sum ratio of the correlation value static pressure swing, the swing operation unit, the following (10) It is obtained so as to calculate the swing based on. Clogging can be detected without being affected by transient changes in pressure.
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (10)
However, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
[0016]
According to a fourth aspect of the present invention, in the third aspect of the invention, when the determination unit is clogged with a pressure guiding tube on a side other than the pressure guiding tube that has obtained the static pressure signal when the ratio is a value close to 1. It is determined that when the variation in the ratio is large, it is determined that the pressure guiding tube on the side where the static pressure signal is obtained is clogged. It can be detected that one of the pressure guiding tubes is clogged.
[0017]
Invention of claim 5, wherein, in the invention of claim 3 or claim 4, wherein said determination unit compares the sum of squares of the differential pressure swing with a predetermined reference value, the two guiding tube Both are determined to be clogged. It is possible to detect clogging of both pressure guiding tubes.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a pressure guiding tube blockage detecting device according to the present invention. In FIG. 1, reference numeral 1 denotes a swing calculation unit which receives a differential pressure signal and a static pressure signal and calculates and outputs a static pressure swing F iPH and a differential pressure swing F iΔP . The static pressure signal uses the pressure on the high pressure side.
[0019]
A dispersion calculating unit 21 receives the static pressure fluctuation F iPH and the differential pressure fluctuation F iΔP and calculates and outputs the differential pressure dispersion value D1 and the static pressure dispersion value D2. Reference numeral 22 denotes a correlation calculation unit that receives the static pressure fluctuation F iPH and the differential pressure fluctuation F iΔP and calculates and outputs the correlation coefficient D3 thereof. Reference numeral 3 denotes a determination unit that receives the differential pressure dispersion value D1, the static pressure dispersion value D2, and the correlation coefficient D3, and determines clogging of the pressure guiding tube from these values.
[0020]
Next, the differential pressure measurement will be described. FIG. 2 is a principle diagram of differential pressure measurement. A fluid flows in the pipe 41 in the direction of the arrow. An orifice 42 is installed in the middle of the pipe 41, and upstream and downstream pressures are guided to the differential pressure transmitter 6 through pressure guiding pipes 51 and 52. It can be considered that the pressure guiding pipes 51 and 52 are first order lag elements of the time constants TH and TL with respect to the pressure change, and that the time constants TH and TL increase when the pressure guiding pipe is clogged.
[0021]
The differential pressure transmitter 6 incorporates a pressure detection unit and an electric circuit, which serve as a first-order lag element 61 having a time constant Ttrans. Further, since there may be a problem in control if there is a minute fluctuation, the differential pressure signal and the high-pressure side or low-pressure side static pressure signal are output after being averaged as in 62.
[0022]
Next, the embodiment of FIG. 1 will be described in detail. Fluctuation calculating unit 1 below (11), calculates the static pressure fluctuation F IPH, the differential pressure fluctuation F AiderutaP based on equation (12). The subscript i indicates the value of time i.
Static pressure fluctuation F iPH at time i = PH (i) −2 × PH (i−1) + PH (i−2) (11)
Differential pressure fluctuation F iΔP = ΔP (i) −2 × ΔP (i−1) + ΔP (i−2) (12) at time i
Here, PH (i) is the static pressure signal at time i, and ΔP (i) is the differential pressure signal. That is, the current static pressure (differential pressure) and the previous static pressure (differential pressure) are added, and then twice the previous static pressure (differential pressure) is subtracted.
[0023]
Simply calculating the swing by subtracting the previous value from the current value tends to be positive when the pressure is increasing and tends to be negative when the pressure is decreasing. Since the determination is performed on the assumption that the swing is originally random, if there is such a tendency, a change in swing due to clogging of the pressure guiding tube cannot be distinguished from a change in the operating state, which may cause an erroneous determination. In the equations (11) and (12), the change in the operating state does not appear in the swing calculation, so that a correct determination can be made.
[0024]
This will be described with reference to FIG. FIG. 3 shows an example of changes in the measured pressure value, where the horizontal axis represents time and the vertical axis represents the pressure value. Curve 7 is a graph of the measured pressure, which increases while finely varying. ● is a measurement point. If the fluctuation is calculated by the difference between the current measurement value and the previous measurement value as in the conventional example, an increase component is included in the fluctuation value. On the other hand, since the equation (11) can be decomposed into the following equation (13), the increasing component is eliminated and does not appear in the oscillation FiPH . Therefore, only the swing component can be extracted. The same applies to the differential pressure.
FiPH = {PH (i) -PH (i-1)}-{PH (i-1) -PH (i-2)} (13)
[0025]
The dispersion calculation unit 21 calculates the dispersions D1 and D2 of the differential pressure fluctuation and the static pressure fluctuation based on the following equations (14) and (15).
Differential pressure fluctuation dispersion D1 = Σ (F iΔP × F iΔP ) (14)
Static pressure fluctuation dispersion D2 = Σ ( FiPH × FiPH ) (15)
F iPH and F iΔP are the fluctuations of the static pressure and the differential pressure obtained by the equations (11) and (12), respectively. The addition is performed for n consecutive data.
[0026]
The correlation calculation unit 22 calculates a correlation coefficient D3 between the static pressure fluctuation and the differential pressure fluctuation based on the following equation (16).
Correlation coefficient D3 = Σ (F iPH × F iΔP ) (16)
Here, F iPH and F iΔP are the static pressure fluctuation and the differential pressure fluctuation obtained by the equations (11) and (12), respectively. Further, the subscript i indicates that a temporally equivalent value is used.
[0027]
The determination unit 3 determines clogging of the pressure guiding tube based on the input value. For this purpose, the dispersion ratio D4 is calculated by the following equation (17), and the correlation coefficient D5 is calculated by the following (18).
Dispersion ratio D4 = D1 / D2 (17)
Correlation coefficient D5 = D3 / D2 (18)
Here, D1 is the variance of the differential pressure fluctuation obtained by the above equation (14), D2 is the variance of the static pressure fluctuation obtained by the above equation (15), and D3 is the correlation coefficient obtained by the above equation (16). It is. The dispersion ratio D4, the correlation coefficient D5, and the differential pressure fluctuation dispersion D1 are compared with the reference values R4, R5, and R1 in the normal state to determine clogging.
[0028]
The dispersion ratio D4 can detect clogging of only the low pressure side impulse line or only the high pressure side impulse line. When the low pressure side pressure guiding tube is clogged, the low pressure side static pressure fluctuation is close to zero, so that the differential pressure fluctuation D1 is close to the high pressure side static pressure fluctuation D2. Therefore, the dispersion ratio D4 approaches 1. When the high-pressure side pressure guiding tube is clogged, the dispersion D2 of the static pressure fluctuation on the high-pressure side becomes small, so that the dispersion ratio D4 varies greatly.
[0029]
Correlation coefficient D5 can also detect clogging of only the low-pressure side impulse line or only the high-pressure side impulse line. When the low pressure side pressure guiding tube is clogged, the static pressure fluctuation on the low pressure side is close to zero, so the differential pressure fluctuation is close to the static pressure fluctuation on the high pressure side, and the correlation coefficient D5 approaches 1. When the high pressure side pressure guiding tube is clogged, the differential pressure fluctuation becomes close to the low pressure side static pressure fluctuation, and is not related to the high pressure side static pressure fluctuation. Therefore, the correlation coefficient D3 approaches zero. However, since the static pressure fluctuation is also reduced, the dispersion D2 of the static pressure fluctuation of the denominator approaches zero at the speed of the square. Therefore, the variation of the correlation coefficient D5 becomes large.
[0030]
Clogging of both the high-pressure side pressure guiding tube and the low-pressure side pressure guiding tube is determined by comparing the variance D1 of the differential pressure fluctuation with the value at the normal value calculated in advance. When both pressure guiding tubes are clogged, the fluctuation of the differential pressure is generally reduced. However, even if the pressure guiding tube on the high pressure side is clogged, the variance of the differential pressure fluctuation may be a normal value, so it is necessary to combine the determination with the dispersion ratio D4 or the determination with the correlation coefficient D5.
[0031]
FIG. 4 is a table summarizing the determination criteria described above. For the clogging of both pressure guiding pipes, the differential pressure fluctuation dispersion (differential pressure dispersion) D1 converges to zero, but may increase immediately before clogging. Variations in both the dispersion ratio D4 and the correlation coefficient D5 increase. For clogging of the high pressure side (H side) pressure guiding tube, the differential pressure dispersion D1 converges on the oscillation of the low pressure side (L side) but may increase immediately before clogging. Variations in both the dispersion ratio and the correlation coefficient increase.
[0032]
For the clogging of the low pressure side (L side) pressure guiding tube, the differential pressure dispersion D1 converges on the high pressure side (H side) oscillation, but may increase immediately before clogging. Both the dispersion ratio D4 and the correlation coefficient converge to 1. In a normal state, the dispersion ratio D4 and the correlation coefficient D5 both take a value of 0 to 1, but it approaches 1 when the high-pressure side and low-pressure side (H / L) swings are similar.
[0033]
Therefore, when either the high pressure side pressure guiding tube or the low pressure side pressure guiding tube is clogged by using any combination of the differential pressure dispersion D1 and the dispersion ratio D4 or the differential pressure dispersion D1 and the correlation coefficient D5. And it is possible to distinguish when both impulse lines are clogged.
[0034]
In this embodiment, the high-pressure side pressure is used as the static pressure, but the low-pressure side pressure can also be used. When the pressure on the low pressure side is used, the clogging of the high pressure side impulse line and the clogging of the low pressure side impulse line may be reversed in the above description.
[0035]
That is, with respect to the dispersion ratio D4, when the high pressure side pressure guiding tube is clogged, the fluctuation on the high pressure side becomes small, so that the differential pressure fluctuation is close to the static pressure fluctuation on the low pressure side, and the dispersion ratio approaches 1. When the low pressure side pressure guiding tube is clogged, the static pressure fluctuation on the low pressure side becomes close to zero, and the dispersion ratio varies greatly.
[0036]
Regarding the correlation coefficient D5, when the high-pressure side pressure guiding tube is clogged, the differential pressure fluctuation and the static pressure fluctuation are approximately the same, and the correlation coefficient D5 approaches 1. When the low pressure side pressure guiding tube is clogged, there is no correlation between the differential pressure fluctuation and the static pressure fluctuation, and the correlation value approaches zero. However, since the denominator approaches zero in the square, the variation increases.
【The invention's effect】
As is clear from the above description, the following effects can be expected according to the present invention.
According to the first aspect of the present invention, the differential pressure signal between the two pressure guiding tubes and the static pressure signal of one of the pressure guiding tubes are input, and the swing calculation unit that calculates the swing of these signals the output of the fluctuation calculating unit is input, a variance calculating unit for calculating the sum of squares of the static pressure swings square sum of the differential pressure swing, the output of the dispersion calculating unit is input, the and a judging unit for detecting clogging of impulse lines, the square of the determination unit square sum of the static pressure swings square sum of square sum and the differential pressure swing of the differential pressure swing detects a blockage of the impulse line from a sum ratio, the fluctuation calculating unit, so as to calculate the swing in accordance with the following equation (19), wherein the determination unit, the square sum of the differential pressure swing Is compared with a predetermined reference value, and when the variation of the square sum ratio is large, it is determined that both of the two pressure guiding tubes are clogged. It was.
Oscillation value Fi = P (i) −2 × P (i−1) + P (i−2) (19)
However, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
[0037]
Even if the plant is in a transient state and the pressure or differential pressure is rising or falling, these pressure changes do not appear to swing, so it is possible to accurately determine clogging of the pressure guiding pipe effective. In addition, even if the differential pressure or the pressure value changes due to a uniform temperature change or the like, these changes do not appear in oscillation, so that there is an effect that clogging can be detected accurately. Further, by using three values continued in time and subtracting twice the intermediate value, pressure fluctuation can be removed, and only the swinging portion can be taken out purely. Therefore, there is an effect that clogging of the pressure guiding tube can be accurately detected. Further, the determination unit compares the square sum of the differential pressure signal with a predetermined reference value, and when the variation of the square sum ratio is large, both of the two pressure guiding tubes are clogged. I decided to judge. There is an effect that it is possible to accurately detect clogging of both pressure guiding pipes without being affected by the state of the plant.
[0040]
According to a second aspect of the present invention, in the first aspect of the present invention, the determination unit is configured to introduce the static pressure signal on the side other than the pressure guiding tube when the square sum ratio is a value close to 1. It is determined that the pressure pipe is clogged, and when the variation in the square sum ratio is large, it is determined that the pressure guiding pipe on the side where the static pressure signal is obtained is clogged. There is an effect that it is possible to accurately detect that one of the pressure guiding tubes is clogged without being influenced by the state of the plant. In addition, there is also an effect that it is not necessary to check a normal value in advance.
[0042]
According to the third aspect of the present invention, the differential pressure signal between the two pressure guiding pipes and the static pressure signal of either of the pressure guiding pipes are input, and the swing calculation unit that calculates the swing of these signals the output of the fluctuation calculating unit is input, a variance calculating unit for calculating the sum of squares of the static pressure swings square sum of the differential pressure swing, the output of the fluctuation calculating unit is input, a correlation calculation unit for calculating a correlation value which is the sum of the product of oscillation of the oscillation of the inputted difference pressure signal and the static pressure signal, the square sum of the differential pressure swing to the variance calculating unit has calculated wherein the correlation value sum of squares and the correlation calculation unit of the static pressure swing computed is input, and a determination unit for detecting clogging of the impulse lines, the judgment unit of the differential pressure swings with the sum of squares and the square sum ratio of the static pressure swing and the correlation values to detect a blockage of the impulse line, the fluctuation calculating unit, following ( 0) was set to calculates the swing based on equation.
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (20)
However, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
[0043]
Even if the plant is in a transient state and the pressure or differential pressure is rising or falling, these pressure changes do not appear to swing, so it is possible to accurately determine clogging of the pressure guiding pipe effective. In addition, even if the differential pressure or the pressure value changes due to a uniform temperature change or the like, these changes do not appear in oscillation, so that there is an effect that clogging can be detected accurately. Further, by using three values continued in time and subtracting twice the intermediate value, pressure fluctuation can be removed, and only the swinging portion can be taken out purely. Therefore, there is an effect that clogging of the pressure guiding tube can be accurately detected.
[0046]
According to a fourth aspect of the present invention, in the third aspect of the present invention, when the ratio is a value close to 1, the determination unit is clogged with a non-pressure tube that has obtained the static pressure signal. When the variation in the ratio is large, it is determined that the pressure guiding tube on the side where the static pressure signal is obtained is clogged. There is an effect that it is possible to accurately detect that one of the pressure guiding tubes is clogged without being influenced by the state of the plant. In addition, there is also an effect that it is not necessary to check a normal value in advance.
[0047]
According to the invention of claim 5, wherein, in the invention of claim 3 or claim 4, wherein said determination unit compares the sum of squares of the differential pressure swing with a predetermined reference value, the two Judgment was made that both of the impulse lines were clogged. There is an effect that it is possible to accurately detect clogging of both pressure guiding pipes without being affected by the state of the plant.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a configuration diagram showing a state of differential pressure measurement.
FIG. 3 is a characteristic diagram showing the effect of the present invention.
FIG. 4 is a table showing criteria for detecting clogging.
FIG. 5 is a configuration diagram of a conventional pressure guiding tube blockage detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oscillation calculating part 21 Dispersion calculating part 22 Correlation calculating part 3 Determination part 51,52 Pressure guiding tube

Claims (5)

2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧揺動の2乗和と前記静圧揺動の2乗和を演算する分散演算部と、この分散演算部が演算した前記差圧揺動の2乗和と前記静圧揺動の2乗和が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧揺動の2乗和および前記差圧揺動の2乗和と前記静圧揺動の2乗和の2乗和比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は、下記(1)式に基づいて揺動を演算するようにし、
前記判定部は、前記差圧揺動の2乗和を所定の基準値と比較して、かつ前記2乗和比のばらつきが大きいときに、前記2本の導圧管の両方が詰まっていると判断するようにしたことを特徴とする導圧管閉塞検出装置。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(1)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
The differential pressure signal between the two pressure guiding tubes and the static pressure signal of one of the pressure guiding tubes are input, and the swing calculation unit that calculates the swing of these signals and the output of this swing calculation unit are input. is a variance calculator for calculating the sum of squares of the static pressure swings square sum of the differential pressure swing, said a sum of squares static pressure swing of the differential pressure swing this variance calculating section has computed is square sum input of the dynamic, the and a judging unit for detecting a blockage of impulse lines, the judgment unit the the square sum electrostatic sum of squares and the differential pressure swing of the differential pressure swing with the square sum ratio of the sum of squares of the pressure swing detecting a blockage of the impulse line, the fluctuation calculating unit, so as to calculate the swing in accordance with the following equation (1),
The determination unit, a sum of squares of the differential pressure swing compared with a predetermined reference value, and when the variation of the 2 Nowahi is large, when both of the two impulse lines are clogged A pressure guiding tube blockage detecting device characterized in that a determination is made.
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (1)
However, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
前記判定部は、前記2乗和比が1に近い値であるときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記2乗和比のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにしたことを特徴とする請求項1記載の導圧管閉塞検出装置。  The determination unit determines that the pressure guiding pipe on the side other than the pressure guiding pipe that has obtained the static pressure signal is clogged when the square sum ratio is close to 1, and the variation in the square sum ratio is large. 2. The pressure guiding tube blockage detecting device according to claim 1, wherein it is determined that the pressure guiding tube on the side where the static pressure signal is obtained is sometimes clogged. 2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧揺動の2乗和と前記静圧揺動の2乗和を演算する分散演算部と、前記揺動演算部が演算した前記差圧信号の揺動と前記静圧信号の揺動が入力され、前記差圧信号の揺動と前記静圧信号の揺動の積の和である相関値を演算する相関演算部と、前記分散演算部が演算した前記差圧揺動の2乗和と前記静圧揺動の2乗和および前記相関演算部が演算した前記相関値が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧揺動の2乗和および前記相関値と前記静圧揺動の2乗和の比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は、下記(2)式に基づいて揺動を演算するようにしたことを特徴とする導圧管閉塞検出装置。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(2)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
The differential pressure signal between the two pressure guiding tubes and the static pressure signal of one of the pressure guiding tubes are input, and the swing calculation unit that calculates the swing of these signals and the output of this swing calculation unit are input. is a variance calculator for calculating the sum of squares of the static pressure swings square sum of the differential pressure swing, a swing of the differential pressure signal the fluctuation calculating unit has calculated the static pressure signal swing is input, a correlation calculation unit for calculating a correlation value which is the sum of the product of oscillation of the oscillating and the static pressure signal of the differential pressure signal, of the differential pressure swing to the variance calculating unit has calculated sum of squares and the sum of squares and the correlation calculation unit of the static pressure swing is input the correlation value calculated, and a determination unit for detecting clogging of the impulse line, the determination unit is the differential pressure from sum of squares and the square sum ratio of the correlation value static pressure oscillation of the oscillating detects a blockage of the impulse line, the fluctuation calculating unit, the lower (2) impulse line blockage detection device is characterized in that so as to calculate the swing based on equation.
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (2)
However, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
前記判定部は、前記比が1に近い値のときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記比のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにしたことを特徴とする請求項3記載の導圧管閉塞検出装置。  The determination unit determines that the pressure guide tube on the side other than the pressure guide tube that has obtained the static pressure signal is clogged when the ratio is close to 1, and determines that the static pressure signal is large when the ratio varies greatly. 4. The pressure guiding tube blockage detecting device according to claim 3, wherein it is determined that the pressure guiding tube on the obtained side is clogged. 前記判定部は、前記差圧揺動の2乗和を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにしたことを特徴とする請求項3または請求項4記載の導圧管閉塞検出装置。The determination unit, according to claim 3 in which the square sum of the differential pressure swing compared with a predetermined reference value, characterized by being adapted to determine both of the two impulse lines are clogged Alternatively, the pressure guiding tube blockage detecting device according to claim 4.
JP2003084970A 2003-03-26 2003-03-26 Pressure guiding tube blockage detection device Expired - Lifetime JP4379680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084970A JP4379680B2 (en) 2003-03-26 2003-03-26 Pressure guiding tube blockage detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084970A JP4379680B2 (en) 2003-03-26 2003-03-26 Pressure guiding tube blockage detection device

Publications (2)

Publication Number Publication Date
JP2004294175A JP2004294175A (en) 2004-10-21
JP4379680B2 true JP4379680B2 (en) 2009-12-09

Family

ID=33400006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084970A Expired - Lifetime JP4379680B2 (en) 2003-03-26 2003-03-26 Pressure guiding tube blockage detection device

Country Status (1)

Country Link
JP (1) JP4379680B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177833A (en) * 2004-12-24 2006-07-06 Yokogawa Electric Corp Differential pressure transmitter
JP4933305B2 (en) * 2006-03-27 2012-05-16 横河電機株式会社 Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
JP4970820B2 (en) 2006-03-27 2012-07-11 横河電機株式会社 Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
CN101256106B (en) 2007-02-26 2011-11-09 横河电机株式会社 Impulse line-clogging detecting unit and impulse line-clogging detecting method
JP5005404B2 (en) * 2007-03-28 2012-08-22 横河電機株式会社 Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method

Also Published As

Publication number Publication date
JP2004294175A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4970820B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
US10006790B2 (en) Flow-rate measurement assembly according to the differential-pressure measurement principle
CN101256106B (en) Impulse line-clogging detecting unit and impulse line-clogging detecting method
JP3129121B2 (en) Pipe line obstruction detector
JP4476540B2 (en) Pipe blockage detection device
CN101506629A (en) Flow measurement diagnostics
EP2435799A1 (en) Method and apparatus for monitoring multiphase fluid flow
US20080103629A1 (en) Diagnostic device for use in process control system
JP3344742B2 (en) Method and apparatus for detecting fluid leaks from tubes
CN104132694A (en) Triple redundancy vortex flowmeter system
JP4379680B2 (en) Pressure guiding tube blockage detection device
JP4804798B2 (en) Pressure detector and clogging diagnosis method for pressure detector
KR101493162B1 (en) Equipment for diagnosing blockage of lead pipe and method for diagnosing blockage of lead pipe
JP5891139B2 (en) Impulse tube clogging diagnosis device and clogging diagnosis method
JP4273519B2 (en) Ultrasonic flow meter
JP3117842B2 (en) Gas leak detection method
JPH0727658A (en) Gas leakage detection method
JP5365456B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
JP4019419B2 (en) Pressure guiding tube clogging detector and differential pressure / pressure transmitter incorporating it
JPH08178782A (en) Differential pressure measuring apparatus
JPH01227012A (en) Method and apparatus for controlling flow rate
JP3117844B2 (en) Gas leak detection method
JPH07140034A (en) Leakage detection method for pipe line
JP3757009B2 (en) Split flow meter
RU2410702C2 (en) Method to detect direction and value of flow and related device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

EXPY Cancellation because of completion of term